JP2007224113A - Method for recovering effective components from recovered biodegradable polyester - Google Patents

Method for recovering effective components from recovered biodegradable polyester Download PDF

Info

Publication number
JP2007224113A
JP2007224113A JP2006045058A JP2006045058A JP2007224113A JP 2007224113 A JP2007224113 A JP 2007224113A JP 2006045058 A JP2006045058 A JP 2006045058A JP 2006045058 A JP2006045058 A JP 2006045058A JP 2007224113 A JP2007224113 A JP 2007224113A
Authority
JP
Japan
Prior art keywords
biodegradable polyester
recovered
product
polylactic acid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006045058A
Other languages
Japanese (ja)
Inventor
Kenichi Ishihara
健一 石原
Minoru Nakajima
実 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2006045058A priority Critical patent/JP2007224113A/en
Publication of JP2007224113A publication Critical patent/JP2007224113A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/14Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with steam or water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering effective components from a recovered biodegradable polyester without increasing the quantity of energy used, when the hydrolysis reaction of the recovered biodegradable polyester is performed. <P>SOLUTION: This method for recovering the effective components from the recovered biodegradable polyester is characterized by depolymerizing the recovered biodegradable polyester with water in an amount of ≤5 wt. times that of the recovered biodegradable polyester at a temperature of about 80 to about 300°C and then recovering the monomers of the biodegradable polyester, the oligomers of the biodegradable polyester or their mixture as the depolymerization product. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、生分解性ポリエステル回収物を、水を用いて解重合反応させ、解重合生成物として該生分解性ポリエステルのモノマー、該生分解性ポリエステルのオリゴマー等の混合物として回収する、生分解性ポリエステル回収物から、有効成分を回収する方法に関する。   In the present invention, a biodegradable polyester recovery product is subjected to a depolymerization reaction using water, and recovered as a depolymerization product as a mixture of the biodegradable polyester monomer, the biodegradable polyester oligomer, and the like. The present invention relates to a method for recovering an active ingredient from a recovered polyester.

ポリ乳酸は、従来から、環境への負荷が少ない生分解性プラスチックの代表としてよく知られてきた。近年、循環型社会構築気運が高まり、プラスチック原料が化石資源からバイオマスへ転換する動きがあり、デンプンなど植物が原料となるポリ乳酸が大きな注目を集めている。このポリ乳酸は、その物性として透明性に優れ、成形加工の多様性があり、安全性も高いため、農林水産用資材、土木・建築資材、食品包装・容器、又は日用品用途などでの各方面での使用が期待されている。   Conventionally, polylactic acid has been well known as a representative of biodegradable plastics that have a low environmental impact. In recent years, the trend of building a recycling-oriented society has increased, and plastic raw materials have been moved from fossil resources to biomass, and polylactic acid from plants such as starch has attracted much attention. This polylactic acid has excellent transparency, has a wide variety of molding processes, and is highly safe, so it can be used in various fields such as agricultural, forestry and fishery materials, civil engineering / building materials, food packaging / containers, or daily necessities. Use in is expected.

しかしながら、上記のような使用の増大に伴って大量に発生する、使用済みポリ乳酸、
およびポリ乳酸製造段階で発生する品質不適格品(以下、これらをポリ乳酸回収物と略称
することがある。)については、ポリ乳酸部位は生分解性を有するものの分解までに長時
間を要し、またポリ乳酸以外の部位は生分解性を有さないことが多くそのまま自然界に残り、今後大きな社会問題となることが予想される。上記の問題に対して、ポリ乳酸回収物を元の原料に変換・回収し、この原料から再度重合反応等によってポリ乳酸ポリマーを製造し再利用する、いわゆるケミカルリサイクルが有効である。この方法は、基本的にロスの無い、化合物の資源再使用が可能な方法であり、資源の再利用が可能となる。
However, used polylactic acid, which is generated in large quantities with increasing use as described above,
In addition, for non-qualified products generated in the polylactic acid production stage (hereinafter, these may be abbreviated as polylactic acid recovered products), although the polylactic acid portion is biodegradable, it takes a long time to decompose. In addition, parts other than polylactic acid often do not have biodegradability and remain in the natural world, and are expected to become a major social problem in the future. In order to solve the above problems, so-called chemical recycling is effective, in which a polylactic acid recovery product is converted and recovered to an original raw material, and a polylactic acid polymer is produced from the raw material again by a polymerization reaction or the like and reused. This method is basically a loss-free method that enables resource reuse of compounds, and enables resource reuse.

例えば、水存在したで加水分解反応を用いる方法として、約200℃〜約350℃の高温下で、ポリ乳酸に対し大量の水を使用し完全に乳酸まで変換させる方法が提案されている(例えば特許文献1参照。)。   For example, as a method of using a hydrolysis reaction in the presence of water, a method has been proposed in which polylactic acid is completely converted to lactic acid using a large amount of water at a high temperature of about 200 ° C. to about 350 ° C. (for example, (See Patent Document 1).

しかしながら、高温条件下、加水分解反応のために大量の水を用いるため、その使用する水量の分エネルギー使用量が増加し、更に最終的にポリ乳酸とするためにはその使用した水を留去させる必要があり、この段階でもエネルギー使用量が増加するという問題がある。
特開2003−300927号公報
However, since a large amount of water is used for the hydrolysis reaction under high temperature conditions, the amount of energy used is increased, and the water used is finally distilled off to obtain polylactic acid. There is a problem that the energy consumption increases even at this stage.
JP 2003-3000927 A

本発明の目的は、従来技術が有していた問題点を解決し、ポリ乳酸回収物の加水分解反応を実施する際、使用するエネルギー量を増やさずに、ポリ乳酸回収物から有効成分を回収するする方法を提供することにある。   The object of the present invention is to solve the problems of the prior art and recover the active ingredient from the polylactic acid recovery product without increasing the amount of energy used when the hydrolysis reaction of the polylactic acid recovery product is carried out. It is to provide a way to do.

本発明者らは上記従来技術に鑑み、鋭意検討を行った結果、本発明を完成するに至った。すなわち、本発明は、生分解性ポリエステル回収物を80℃〜300℃の温度下で、生分解性ポリエステル回収物に対して5重量倍以下である水を用いて解重合反応を行い、解重合生成物として該生分解性ポリエステルのモノマー、該生分解性ポリエステルのモノマー及びオリゴマーの混合物、又は該生分解性ポリエステルのオリゴマーとして回収する方法である。   As a result of intensive studies in view of the above-described prior art, the present inventors have completed the present invention. That is, the present invention performs a depolymerization reaction of the biodegradable polyester recovered material at a temperature of 80 ° C. to 300 ° C. using water that is 5 times by weight or less of the biodegradable polyester recovered material. The biodegradable polyester monomer is recovered as a product, a mixture of the biodegradable polyester monomer and oligomer, or the biodegradable polyester oligomer.

本発明の方法によれば、生分解性ポリエステル回収物から水を用いた解重合反応によって、生分解性ポリエステルのモノマー、ラクチド、オリゴマー等の混合物を有効成分として回収する場合、使用する水の量を低減することにより使用するエネルギー量を増やさずに有効成分を回収することが可能である。また、同容量の解重合槽では、使用する水の量を低減した分、生分解性ポリエステル回収物の投入量を増加することができ、処理量を増加させることもできる。特に生分解性ポリエステルがポリ乳酸である場合には期待できる。   According to the method of the present invention, when a mixture of biodegradable polyester monomers, lactides, oligomers, etc. is recovered as an active ingredient by a depolymerization reaction using water from a biodegradable polyester recovery product, the amount of water used It is possible to recover the active ingredient without increasing the amount of energy used. Moreover, in the depolymerization tank of the same capacity, the input amount of the biodegradable polyester recovered product can be increased by the amount of water used, and the processing amount can be increased. This can be expected particularly when the biodegradable polyester is polylactic acid.

本発明において、生分解性ポリエステル回収物とはポリ乳酸、ポリグリコール酸、ポリカプロラクトン等の生分解性ポリエステルを含んでいる回収物である。好ましくはその主成分がポリ乳酸であり、生分解性ポリエステル回収物全体の60重量%以上含むものが好ましく、より好ましくは80重量%以上である。ポリ乳酸については、ポリL−乳酸、ポリD−乳酸、ラセミ状のポリ乳酸、ポリL−乳酸とポリD−乳酸の混合物、ポリ乳酸ステレオコンプレックスポリマーなど各種ポリ乳酸に適用できる。更に、生分解性ポリエステル回収物には、一旦市場で製品として用いられたものを回収してきたものを主として指すので、生分解性ポリエステル以外に種々の異素材を含む。この異素材としてはポリエチレン、ポリプロピレン、若しくはポリ塩化ビニル等のポリオレフィン類、生分解性でない脂肪族ポリエステル、芳香族ポリエステル類、ポリアミド類、紙、土砂、埃、金属類、残存触媒、又は木材などが挙げられる。また、さらに本発明の方法においては、生分解性ポリエステル回収物は一般に水洗浄及び粗粉砕などの前処理を施し、解重合反応に適した形状にしてから投入することが好ましい。この際に水に極めて易溶な異素材も取り除くことができるので好ましい。またこの前処理を行う前及び/又は行った後で、簡易的な機械的又は物理的手段によって可能な限り生分解性ポリエステル回収物から異素材を取り除くことが好ましい。例えば目視で異素材と判別できるものを取り除く方法、又は磁石を用いて磁石に吸い付けられる金属類を取り除くなどの方法である。   In the present invention, the biodegradable polyester recovered material is a recovered material containing biodegradable polyester such as polylactic acid, polyglycolic acid, polycaprolactone and the like. Preferably, the main component is polylactic acid, preferably 60% by weight or more, more preferably 80% by weight or more of the whole biodegradable polyester recovered product. The polylactic acid can be applied to various polylactic acids such as poly L-lactic acid, poly D-lactic acid, racemic polylactic acid, a mixture of poly L-lactic acid and poly D-lactic acid, and a polylactic acid stereocomplex polymer. Furthermore, since the biodegradable polyester recovered material mainly refers to a material once collected as a product in the market, it contains various different materials in addition to the biodegradable polyester. Examples of the different materials include polyolefins such as polyethylene, polypropylene, and polyvinyl chloride, non-biodegradable aliphatic polyesters, aromatic polyesters, polyamides, paper, earth and sand, dust, metals, residual catalysts, and wood. Can be mentioned. Furthermore, in the method of the present invention, it is preferable that the biodegradable polyester recovered product is generally charged with a pretreatment such as washing with water and coarse pulverization to obtain a shape suitable for the depolymerization reaction. In this case, it is preferable because a foreign material that is extremely soluble in water can be removed. It is also preferable to remove foreign materials from the biodegradable polyester collection as much as possible by simple mechanical or physical means before and / or after this pretreatment. For example, there are a method of removing a material that can be visually discriminated from a different material, or a method of removing a metal attracted to the magnet using a magnet.

本発明の実施方法は、生分解性ポリエステルと水を用いて解重合反応を行う。解重合反応については、生分解性ポリエステル回収物の性状に特に限定されることはなく、その生分解性ポリエステル回収物の性状によって、任意に時間及び水の量等を調整することができる。また解重合反応は回分式又は連続式いずれも採用可能である。   The implementation method of this invention performs a depolymerization reaction using biodegradable polyester and water. The depolymerization reaction is not particularly limited to the properties of the biodegradable polyester recovery product, and the time and the amount of water can be arbitrarily adjusted according to the properties of the biodegradable polyester recovery product. The depolymerization reaction can be either batchwise or continuous.

更に本発明においては前記生分解性ポリエステル回収物を80℃〜300℃の温度下で解重合反応を行う必要があり、生分解性ポリエステル回収物に対して5重量倍以下の水を用いて解重合反応を行うことが好ましい。解重合生成物として生分解性ポリエステルのモノマー、生分解性ポリエステルのモノマー及びオリゴマーの混合物、又は生分解性ポリエステルのオリゴマーとして回収する。オリゴマーは重合度の異なる混合物であってもよい。他にラクチドなどを含むような条件で解重合反応を行っても良い。   Furthermore, in the present invention, the biodegradable polyester recovered product needs to be subjected to a depolymerization reaction at a temperature of 80 ° C. to 300 ° C., and the biodegradable polyester recovered product is dissolved using 5 times by weight or less of water. It is preferable to perform a polymerization reaction. The depolymerized product is recovered as a biodegradable polyester monomer, a mixture of biodegradable polyester monomers and oligomers, or an oligomer of biodegradable polyester. The oligomer may be a mixture having different degrees of polymerization. In addition, the depolymerization reaction may be performed under conditions that include lactide and the like.

解重合反応において、生分解性ポリエステル回収物は水中において反応温度は、80℃〜300℃、好ましくは100℃〜280℃、更に好ましくは150℃〜250℃である。反応温度が300℃より高くなると、乳酸からの有効成分以外の他の物質への分解が更に進み有効成分の回収率が低下する。一方、温度が80℃より低いと、解重合反応の速度が極端に遅くなり、その分反応器を大型にせざるを得ず、経済的な効果が少なくなる。あるいは非常に長い解重合反応時間を要するようになる。   In the depolymerization reaction, the biodegradable polyester recovered product has a reaction temperature in water of 80 ° C to 300 ° C, preferably 100 ° C to 280 ° C, more preferably 150 ° C to 250 ° C. When the reaction temperature is higher than 300 ° C., the decomposition of lactic acid into other substances other than the active ingredient further proceeds and the recovery rate of the active ingredient is lowered. On the other hand, when the temperature is lower than 80 ° C., the rate of the depolymerization reaction becomes extremely slow, and the reactor must be enlarged accordingly, and the economic effect is reduced. Alternatively, a very long depolymerization reaction time is required.

反応圧力については、密閉型反応容器を使用した場合、反応温度が決まれば、おのずと水の蒸気圧付近と設定される。また、不活性ガスなどを用いて該反応温度での水の蒸気圧以上とすることや、反応器の一部を開放して該反応温度での水の蒸気圧以下とすることも可能である。
反応時間については、反応温度、反応圧力、生分解性ポリエステル回収物の性状、使用する水の量により任意に設定することが可能である。
Regarding the reaction pressure, when a sealed reaction vessel is used, if the reaction temperature is determined, the reaction pressure is naturally set around the vapor pressure of water. It is also possible to set the water vapor pressure at the reaction temperature to be equal to or higher than that using an inert gas, or to open the reactor partly to the water vapor pressure at the reaction temperature or lower. .
About reaction time, it is possible to set arbitrarily by reaction temperature, reaction pressure, the property of a biodegradable polyester recovery thing, and the quantity of the water to be used.

使用する水の量については、反応温度、反応圧力、生分解性ポリエステル回収物の性状、反応時間により任意に設定することが可能である。使用する水の量は生分解性ポリエステル回収物に対して5重量倍以下とすることが好ましく、更に好ましくは3重量倍以下である。使用する水の量が多すぎると、解重合反応生成物中の水の割合がその分多くなり、その使用する水量の分、解重合反応段階でのエネルギー使用量が増加し、生分解性ポリエステルのモノマー、オリゴマーを有効利用しようとした場合、濃縮操作を行うため含まれる水を留去する必要があり、この段階でもエネルギー使用量が増加するという問題がある。   About the quantity of the water to be used, it is possible to set arbitrarily by reaction temperature, reaction pressure, the property of biodegradable polyester recovered material, and reaction time. The amount of water used is preferably 5 times by weight or less, more preferably 3 times by weight or less based on the biodegradable polyester recovered product. If the amount of water used is too large, the proportion of water in the depolymerization reaction product will increase accordingly, and the amount of water used will increase the amount of energy used in the depolymerization reaction stage, resulting in biodegradable polyester. In the case of effectively utilizing the monomers and oligomers of the above, it is necessary to distill off the water contained in order to perform the concentration operation, and there is a problem that the amount of energy used increases even at this stage.

生分解性ポリエステル回収物を解重合反応させる際、酸または塩基などはじめとする既知の解重合反応触媒を添加することにより、反応時間を短くすることも可能である。
解重合生成物としては、特に生分解性ポリエステルがポリ乳酸の場合には、ポリ乳酸のモノマーである乳酸、乳酸の二量体であるラクチド、乳酸のオリゴマーなどの混合物からなる。該解重合反応物混合物は有効利用するため、再度ポリ乳酸へ変換することを主目的とするが、ポリ乳酸に返還する際、一旦オリゴマー及び/あるいはラクチドを経由することが好ましい。このため、解重合反応については、再度ポリ乳酸へ変換する際の変換率が十分に確保できるように、十分に解重合反応を行う必要がある。生分解性ポリエステル回収物に対する乳酸の回収率が20wt%以上であることが好ましい。
When the biodegradable polyester recovered product is subjected to a depolymerization reaction, the reaction time can be shortened by adding a known depolymerization reaction catalyst such as an acid or a base.
When the biodegradable polyester is polylactic acid, the depolymerized product is composed of a mixture of lactic acid which is a monomer of polylactic acid, lactide which is a dimer of lactic acid, oligomer of lactic acid, and the like. The depolymerization product mixture is mainly used for conversion to polylactic acid again in order to effectively use it, but when returning to polylactic acid, it is preferable that the mixture is once passed through an oligomer and / or lactide. For this reason, about a depolymerization reaction, it is necessary to fully perform a depolymerization reaction so that the conversion rate at the time of converting again into polylactic acid can fully be ensured. The recovery rate of lactic acid with respect to the biodegradable polyester recovery product is preferably 20 wt% or more.

以下、実施例により本発明の内容を更に具体的に説明するが、本発明はこれにより何ら
限定を受けるものではない。尚実施例および比較例において「部」と称しているものは重
量部を表す。
(1)乳酸、ラクチド、オリゴマーの測定方法(wt%)
得られたポリ乳酸回収物の解重合反応物は、高速液体クロマトグラフ(カラム:島津製作所 ULTRON PS−80H、移動相:過塩素酸水溶液(pH2.1))によって測定し、乳酸、ラクチド、オリゴマー(2,3,4量体)の割合を求めた。
(2)光学純度の測定方法(wt%)
得られたポリ乳酸回収物の解重合反応物は、高速液体クロマトグラフ(カラム:ダイセル化学 CHIRALPAK MA(+)、溶離液:2.0mM硫酸銅水溶液)によって測定し、L−乳酸及びD−乳酸の割合を求め、解重合生成物の光学純度とした。
(3)乳酸の回収率の求め方(mol%)
乳酸の回収率については、まずポリ乳酸回収物のポリ乳酸重量物を把握し、得られた解重合生成物中の乳酸重量部、乳酸の分子量及びポリ乳酸の単位分子量を用い、次の式にて求めた。
乳酸の収率=(乳酸の重量部×72)/(ポリ乳酸の重量部×90)×100
Hereinafter, the content of the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. In addition, what is called "part" in an Example and a comparative example represents a weight part.
(1) Measuring method of lactic acid, lactide and oligomer (wt%)
The depolymerization reaction product of the obtained polylactic acid recovered product was measured by a high performance liquid chromatograph (column: ULTRON PS-80H, Shimadzu Corporation, mobile phase: perchloric acid aqueous solution (pH 2.1)), and lactic acid, lactide, oligomer The ratio of (2, 3, tetramer) was determined.
(2) Optical purity measurement method (wt%)
The depolymerization reaction product of the obtained polylactic acid recovered product was measured by a high performance liquid chromatograph (column: Daicel Chemical CHIRALPAK MA (+), eluent: 2.0 mM copper sulfate aqueous solution). The ratio was determined and used as the optical purity of the depolymerized product.
(3) How to determine the recovery rate of lactic acid (mol%)
Regarding the recovery rate of lactic acid, first, grasp the polylactic acid weight of the polylactic acid recovery product, use the lactic acid weight part in the obtained depolymerization product, the molecular weight of lactic acid and the unit molecular weight of polylactic acid, and use the following formula: Asked.
Yield of lactic acid = (parts by weight of lactic acid × 72) / (parts by weight of polylactic acid × 90) × 100

〔実施例1〕
ポリ乳酸回収物(L体=93.1%、平均分子量:129,000、ラクティTM9010(島津製作所製))100部を、水30部を解重合反応槽に投入し、500rpmで攪拌下、180℃、約1MPaG解重合反応条件下で1時間保持した。得られた解重合反応生成物を分析したところ、乳酸51.3mol%、ポリ乳酸オリゴマー(2,3,4量体)40.4mol%、ラクチド0mol%であった。該得られた解重合生成物を処理して、水の留去、オリゴマー化、ラクチド化及び開環重合反応を逐次実施したところ、分子量100,000のポリ乳酸が得られた。
[Example 1]
100 parts of polylactic acid recovered product (L-form = 93.1%, average molecular weight: 129,000, Lacty TM 9010 (manufactured by Shimadzu Corporation)), 30 parts of water were put into a depolymerization reaction tank, and stirred at 500 rpm. It was kept at 180 ° C. under about 1 MPaG depolymerization reaction conditions for 1 hour. When the obtained depolymerization reaction product was analyzed, it was 51.3 mol% lactic acid, 40.4 mol% polylactic acid oligomer (2,3,4 tetramer), and 0 mol% lactide. When the obtained depolymerization product was treated and subjected to water distillation, oligomerization, lactide formation and ring-opening polymerization reaction in succession, a polylactic acid having a molecular weight of 100,000 was obtained.

〔実施例2〕
実施例1において、水の量を500部に変更し、同様の操作を行った。その結果、得られた解重合反応生成物を分析したところ、乳酸96.6mol%、ポリ乳酸オリゴマー(2量体)0.9mol%、ラクチド0mol%であった。
[Example 2]
In Example 1, the amount of water was changed to 500 parts, and the same operation was performed. As a result, when the obtained depolymerization reaction product was analyzed, they were 96.6 mol% lactic acid, 0.9 mol% polylactic acid oligomer (dimer), and 0 mol% lactide.

〔実施例3〕
実施例1において、水の量を20部に変更し、同様の操作を行った。その結果、得られた解重合反応生成物を分析したところ、乳酸33.2mol%、ポリ乳酸オリゴマー(2量体)44.2mol%、ラクチド0mol%であった。
Example 3
In Example 1, the amount of water was changed to 20 parts, and the same operation was performed. As a result, when the obtained depolymerization reaction product was analyzed, they were 33.2 mol% lactic acid, 44.2 mol% polylactic acid oligomer (dimer), and 0 mol% lactide.

〔実施例4〕
実施例1において、反応温度を160℃、反応圧力を約0.6MPaG、反応時間を2時間に変更し、同様の操作を行った。その結果、得られた解重合反応生成物を分析したところ、乳酸50.8mol%、ポリ乳酸オリゴマー(2,3,4量体)39.2mol%、ラクチド0mol%であった。
Example 4
In Example 1, the reaction temperature was changed to 160 ° C., the reaction pressure was changed to about 0.6 MPaG, and the reaction time was changed to 2 hours. As a result, when the obtained depolymerization reaction product was analyzed, they were 50.8 mol% lactic acid, 39.2 mol% polylactic acid oligomer (2,3,4 tetramer), and 0 mol% lactide.

〔実施例5〕
実施例1において、反応温度を80℃、反応圧力を常圧、反応時間を3日に変更し、同様の操作を行った。その結果、得られた解重合反応生成物を分析したところ、乳酸29.2mol%、ポリ乳酸オリゴマー(2,3,4量体)10.5mol%、ラクチド0mol%であった。
Example 5
In Example 1, the reaction temperature was changed to 80 ° C., the reaction pressure was changed to normal pressure, and the reaction time was changed to 3 days, and the same operation was performed. As a result, when the obtained depolymerization reaction product was analyzed, they were 29.2 mol% lactic acid, 10.5 mol% polylactic acid oligomer (2,3,4 tetramer), and 0 mol% lactide.

〔実施例6〕
実施例1において、反応温度を250℃、反応圧力を約2.4MPaG、反応時間を10分に変更し、同様の操作を行った。その結果、得られた解重合反応生成物を分析したところ、乳酸46.1mol%、ポリ乳酸オリゴマー(2,3,4量体)35.4mol%、ラクチド5.3mol%であった。
Example 6
In Example 1, the reaction temperature was changed to 250 ° C., the reaction pressure was changed to about 2.4 MPaG, and the reaction time was changed to 10 minutes. As a result, when the obtained depolymerization reaction product was analyzed, they were 46.1 mol% lactic acid, 35.4 mol% polylactic acid oligomer (2,3,4 tetramer), and 5.3 mol% lactide.

〔比較例1〕
実施例1において、反応温度を50℃、反応圧力を常圧、反応時間を3日に変更し、同様の操作を行った。その結果、ポリ乳酸の解重合反応はほとんど進行せず、反応終了後未反応のポリ乳酸が約90部回収された。
[Comparative Example 1]
In Example 1, the reaction temperature was changed to 50 ° C., the reaction pressure was changed to normal pressure, and the reaction time was changed to 3 days, and the same operation was performed. As a result, the polylactic acid depolymerization reaction hardly proceeded, and about 90 parts of unreacted polylactic acid was recovered after the reaction was completed.

〔比較例2〕
実施例1において、ポリ乳酸回収物を10部、水の量を1000部に変更し、同様の操作を行った。その結果、得られた解重合反応生成物を分析したところ、乳酸のみが得られ、98.0mol%であった。乳酸は回収できたものの、実施例1と同じ解重合反応槽を用いたので、解重合反応槽の容量限界までポリ乳酸回収物と水の混合物を入れて処理しても、実施例1対比10%の重量しかポリ乳酸回収物の処理ができなかった。また大量の水を解重合反応槽に入れたので、昇温の際に消費したエネルギーが大きく又処理に要する時間がかかったにもかかわらず、ポリ乳酸回収物の処理量は少なかった。
[Comparative Example 2]
In Example 1, the polylactic acid recovered product was changed to 10 parts and the amount of water was changed to 1000 parts, and the same operation was performed. As a result, when the obtained depolymerization reaction product was analyzed, only lactic acid was obtained, which was 98.0 mol%. Although lactic acid could be recovered, the same depolymerization reaction tank as in Example 1 was used. Therefore, even if a mixture of polylactic acid recovered and water was processed up to the capacity limit of the depolymerization reaction tank, it was compared with Example 1. Only the weight of the polylactic acid could be processed. In addition, since a large amount of water was put into the depolymerization reaction tank, the amount of polylactic acid recovered was small, despite the large energy consumed during the temperature increase and the time required for the treatment.

本発明により、生分解性ポリエステル回収物から有効成分を回収するため、生分解性ポリエステル回収物の加水分解反応を実施する際、使用するエネルギー量を増やさずに、乳酸、ラクチド、乳酸のオリゴマーなどの混合物として回収でき、その工業的な意義は大きい。特に生分解性ポリエステルがポリ乳酸である場合には、ポリ乳酸に対する今後の需要が見込まれているだけに特に期待することができる。   According to the present invention, in order to recover the active ingredient from the biodegradable polyester recovery product, lactic acid, lactide, lactic acid oligomer, etc. without increasing the amount of energy used when carrying out the hydrolysis reaction of the biodegradable polyester recovery product It can be recovered as a mixture of the above, and its industrial significance is great. In particular, when the biodegradable polyester is polylactic acid, it can be expected especially because future demand for polylactic acid is expected.

Claims (4)

生分解性ポリエステル回収物を80℃〜300℃の温度下で、生分解性ポリエステル回収物に対して5重量倍以下である水を用いて解重合反応を行い、解重合生成物として該生分解性ポリエステルのモノマー、該生分解性ポリエステルのモノマー及びオリゴマーの混合物、又は該生分解性ポリエステルのオリゴマーとして回収することを特徴とする、生分解性ポリエステル回収物からの有効成分回収方法。   The biodegradable polyester recovered product is subjected to a depolymerization reaction at a temperature of 80 ° C. to 300 ° C. using water that is 5 times by weight or less of the biodegradable polyester recovered product, and the biodegradable product is obtained as a depolymerized product. A method for recovering an active ingredient from a biodegradable polyester recovery, comprising recovering the biodegradable polyester as a monomer, a mixture of the biodegradable polyester monomer and oligomer, or an oligomer of the biodegradable polyester. 生分解性ポリエステルがポリ乳酸である、請求項1記載の有効成分回収方法。   The active ingredient recovery method according to claim 1, wherein the biodegradable polyester is polylactic acid. ポリ乳酸の平均分子量が1×10〜1×10である、請求項2記載の有効成分回収方法。 The active ingredient collection | recovery method of Claim 2 whose average molecular weights of polylactic acid are 1 * 10 < 3 > -1 * 10 < 7 >. 解重合生成物のモノマーが乳酸であり、その他の解重合生成物がラクチド、乳酸オリゴマーである、請求項2〜3のいずれか1項記載の有効成分回収方法。   The active ingredient recovery method according to any one of claims 2 to 3, wherein the monomer of the depolymerization product is lactic acid, and the other depolymerization product is lactide or a lactic acid oligomer.
JP2006045058A 2006-02-22 2006-02-22 Method for recovering effective components from recovered biodegradable polyester Pending JP2007224113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006045058A JP2007224113A (en) 2006-02-22 2006-02-22 Method for recovering effective components from recovered biodegradable polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006045058A JP2007224113A (en) 2006-02-22 2006-02-22 Method for recovering effective components from recovered biodegradable polyester

Publications (1)

Publication Number Publication Date
JP2007224113A true JP2007224113A (en) 2007-09-06

Family

ID=38546216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006045058A Pending JP2007224113A (en) 2006-02-22 2006-02-22 Method for recovering effective components from recovered biodegradable polyester

Country Status (1)

Country Link
JP (1) JP2007224113A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249508A (en) * 2008-04-07 2009-10-29 Kyushu Institute Of Technology Method for oligomerizing polylactic acid product efficiently
JP2012523443A (en) * 2009-04-14 2012-10-04 ガラクティック・エス.エー. Chemical recycling of PLA by alcoholysis
JP2012523442A (en) * 2009-04-14 2012-10-04 ガラクティック・エス.エー. Chemical recycling of PLA by hydrolysis
WO2021181532A1 (en) * 2020-03-10 2021-09-16 マクセルホールディングス株式会社 Polylactic acid decomposition method
IT202000017218A1 (en) * 2020-07-15 2022-01-15 Novamont Spa REUSE IN POLYMERIZATION OF BIOPLASTICS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309863A (en) * 1994-05-17 1995-11-28 Japan Steel Works Ltd:The Method for recovering lactide from polylactic acid product
JP2003300927A (en) * 2002-04-12 2003-10-21 Nagoya Industrial Science Research Inst Method for forming monomer of biodegradable polyester
JP2005298401A (en) * 2004-04-12 2005-10-27 Toyohashi Univ Of Technology Method for converting biodegradable polyester into monomer
JP2006274231A (en) * 2005-03-30 2006-10-12 Chiba Prefecture Method for obtaining monomer of polylactic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309863A (en) * 1994-05-17 1995-11-28 Japan Steel Works Ltd:The Method for recovering lactide from polylactic acid product
JP2003300927A (en) * 2002-04-12 2003-10-21 Nagoya Industrial Science Research Inst Method for forming monomer of biodegradable polyester
JP2005298401A (en) * 2004-04-12 2005-10-27 Toyohashi Univ Of Technology Method for converting biodegradable polyester into monomer
JP2006274231A (en) * 2005-03-30 2006-10-12 Chiba Prefecture Method for obtaining monomer of polylactic acid

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249508A (en) * 2008-04-07 2009-10-29 Kyushu Institute Of Technology Method for oligomerizing polylactic acid product efficiently
JP2012523443A (en) * 2009-04-14 2012-10-04 ガラクティック・エス.エー. Chemical recycling of PLA by alcoholysis
JP2012523442A (en) * 2009-04-14 2012-10-04 ガラクティック・エス.エー. Chemical recycling of PLA by hydrolysis
KR101730666B1 (en) * 2009-04-14 2017-04-26 걀락틱 에스.에이. Chemical recycling of pla by alcoholysis
WO2021181532A1 (en) * 2020-03-10 2021-09-16 マクセルホールディングス株式会社 Polylactic acid decomposition method
JPWO2021181532A1 (en) * 2020-03-10 2021-09-16
JP7425181B2 (en) 2020-03-10 2024-01-30 マクセル株式会社 How to decompose polylactic acid
IT202000017218A1 (en) * 2020-07-15 2022-01-15 Novamont Spa REUSE IN POLYMERIZATION OF BIOPLASTICS
WO2022013309A1 (en) * 2020-07-15 2022-01-20 Novamont S.P.A. Reuse of bioplastics in polymerisation

Similar Documents

Publication Publication Date Title
Tang et al. Toward infinitely recyclable plastics derived from renewable cyclic esters
Yoshioka et al. Kinetics of hydrolysis of poly (ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model
Ariffin et al. Chemical recycling of polyhydroxyalkanoates as a method towards sustainable development
KR102223614B1 (en) Depolymerization of Polymer Including Ester Group by Polar Chemical Compounds
JP5161466B2 (en) Method for producing lactide from polylactic acid
JP2007224113A (en) Method for recovering effective components from recovered biodegradable polyester
WO2004013217A1 (en) Method of enzymatic depolymerization of polylactic acid and process for producing polylactic acid from depolymerization product
JP4647413B2 (en) Depolymerization method of biodegradable polyester
JP5998224B2 (en) Rapidly degradable polyester polymer and process for its production and use thereof
WO2019053392A1 (en) Enzymatic process for depolymerization of post-consumer poly(ethylene terephthalate) by a glycolysis reaction, process for recycling post-consumer poly(ethylene terephthalate) and recycled poly(ethylene terephthalate)
JP6989612B2 (en) Manufacturing method of alkyl lactic acid
Abedsoltan A focused review on recycling and hydrolysis techniques of polyethylene terephthalate
JP2007023176A (en) Method for depolymerizing biodegradable polyester
JP4171823B2 (en) Depolymerization of polyester using supercritical carbon dioxide and process for producing polyester from depolymerization product
JP2009029757A (en) Depolymerization method of polylactic acid
CN104592024A (en) Alcoholysis recovery method for waste polylactic acid material
JP5678663B2 (en) Method for producing 2-hydroxyisobutyric acid polymer and depolymerization method
CN115073418B (en) Zinc complex catalyst and method for depolymerizing high-regularity polylactic acid and recycling racemic lactide
JP5193475B2 (en) Method for producing lactide from polylactic acid
KR20230029576A (en) Compositions and methods for the degradation of waste polypropylene
JP2005132901A (en) Method for removing foreign material from aliphatic polyester
JP2006176757A (en) Production method for polyester
JP4486561B2 (en) Method for removing foreign materials from polylactic acid stereocomplex polymer
Faisal et al. Recycling of poly lactic acid into lactic acid with high temperature and high pressure water
KR101428340B1 (en) A method for preparing lactide using a ionic solvent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110411

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110603

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110708