JP2007220883A - Wiring and its manufacturing method, and electronic parts and electronic apparatus using the same - Google Patents

Wiring and its manufacturing method, and electronic parts and electronic apparatus using the same Download PDF

Info

Publication number
JP2007220883A
JP2007220883A JP2006039272A JP2006039272A JP2007220883A JP 2007220883 A JP2007220883 A JP 2007220883A JP 2006039272 A JP2006039272 A JP 2006039272A JP 2006039272 A JP2006039272 A JP 2006039272A JP 2007220883 A JP2007220883 A JP 2007220883A
Authority
JP
Japan
Prior art keywords
conductive fine
film
fine particle
wiring
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006039272A
Other languages
Japanese (ja)
Inventor
Kazufumi Ogawa
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagawa University NUC
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd, Kagawa University NUC filed Critical Alps Electric Co Ltd
Priority to JP2006039272A priority Critical patent/JP2007220883A/en
Publication of JP2007220883A publication Critical patent/JP2007220883A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring which uses a film with a uniform thickness in particle size level wherein conductive particulates are selectively formed by one layer on the surface of an optional substrate, or a wiring which uses a film wherein a film having one layer of conductive particulates is selectively accumulated by plural layers, and to provide their manufacturing method and electronic parts and an electronic apparatus using them. <P>SOLUTION: The wiring uses a pattern-like single layer conductive particulate film 24 wherein a film of conductive particulate formed selectively by one layer on the surface of a substrate is covalent-bonded with a first organic film formed selectively on the surface of the substrate, by means of a second organic film formed on the surface of the conductive particulate; and another wiring uses a pattern-like single-layer conductive particulate film with organic films different from each other. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子デバイスやプリント基板に用いる導体配線やその製造方法に関するものである。さらに詳しくは、表面に熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性を付与した導電性微粒子を用いた単層の導電性微粒子膜や導電性微粒子の積層体を用いた導体配線やその製造方法とそれらを用いた電子部品および電子機器に関するものである。 The present invention relates to a conductor wiring used for an electronic device or a printed board and a method for manufacturing the same. More specifically, a conductor wiring using a single-layer conductive fine particle film or a conductive fine particle laminate using conductive fine particles imparted with thermal reactivity or photoreactivity, radical reactivity or ion reactivity on the surface. In addition, the present invention relates to a manufacturing method thereof, an electronic component using the same, and an electronic device.

本発明において、「導電性微粒子」には、金、銀、銅、ニッケル、あるいは、銀メッキした貴金属や銅、ニッケルの金属微粒子、あるいは金属酸化物微粒子であるITOやSnOが含まれる。また、電子部品には、半導体集積回路やプリント基板が含まれる。電子機器には、半導体集積回路やプリント基板を用いた機器が含まれる。 In the present invention, the “conductive fine particles” include gold, silver, copper, nickel, silver-plated noble metal, copper, nickel metal fine particles, or metal oxide fine particles ITO or SnO 2 . Electronic components include semiconductor integrated circuits and printed boards. Electronic devices include devices using semiconductor integrated circuits and printed circuit boards.

従来から、電子デバイスやプリント基板に用いる導体配線およびその製造方法として、導体ペーストを印刷して配線を形成方法や、金属積層板表面の金属層をホトリソグラフィーを用いて選択的にエッチング除去して配線を形成方法が知られている。例えば、下記特許文献などがある。
特開2002-124518号公報
Conventionally, as a conductor wiring used for electronic devices and printed circuit boards and a manufacturing method thereof, a method of forming a wiring by printing a conductor paste, or a metal layer on the surface of a metal laminate is selectively removed by photolithography. A method of forming a wiring is known. For example, there are the following patent documents.
JP 2002-124518 A

しかしながら、印刷やホトリソグラフィーでは、電子デバイスやプリント基板の微細化高密度化に十分対応しきれなくなってきている。   However, printing and photolithography have been unable to adequately cope with the miniaturization and densification of electronic devices and printed boards.

一方、電子デバイスやプリント基板上の配線を微細化するためには、基板上で導電性微粒子を均一な膜厚の被膜にする必要がある。しかしながら、それら導電性微粒子を用いて単層毎に累積し、粒子サイズレベルで均一厚みの被膜を製造するという思想はなかった。   On the other hand, in order to miniaturize the wiring on an electronic device or a printed board, it is necessary to form a conductive fine particle on the board with a uniform film thickness. However, there has been no idea of producing a coating having a uniform thickness at the particle size level by accumulating the conductive fine particles for each single layer.

本発明は、導電性微粒子を用い、導電性微粒子本来の機能を損なうことなく、新たな機能を付与し、任意の基材表面に選択的に導電性微粒子を1層のみ並べた粒子サイズレベルで均一厚みの被膜(パターン状の単層導電性微粒子膜)を用いた配線や導電性微粒子を1層のみ並べた膜を複数層選択的に累積した被膜(パターン状の導電性微粒子膜積層体)を用いた配線及びそれらの製造方法とそれらを用いた電子部品および電子機器を提供することを目的とする。   The present invention uses conductive fine particles, gives a new function without impairing the original function of the conductive fine particles, and at a particle size level in which only one layer of conductive fine particles is selectively arranged on the surface of an arbitrary substrate. A film (patterned conductive fine particle film laminate) in which multiple layers of films using only one layer of wiring and conductive fine particles arranged with a uniform thickness (patterned single layer conductive fine particle film) are stacked. An object of the present invention is to provide wiring using the above, a manufacturing method thereof, an electronic component and an electronic device using the wiring.

前記課題を解決するための手段として提供される第一の発明は、基材表面に選択的に1層形成された導電性微粒子の膜が前記基材表面に選択的に形成された第1の有機膜と前記導電性微粒子表面に形成された第2の有機膜を介して互いに共有結合しているパターン状の単層導電性微粒子膜を用いた配線である。 A first invention provided as a means for solving the above-mentioned problems is a first invention in which a film of conductive fine particles selectively formed on the surface of the substrate is selectively formed on the surface of the substrate. This is a wiring using a patterned single-layer conductive fine particle film that is covalently bonded to each other via an organic film and a second organic film formed on the surface of the conductive fine particle.

第二の発明は、前記第一の発明において、基材表面に形成された第1の有機被膜と導電性微粒子表面に形成された第2の有機膜が互いに異なるパターン状の単層導電性微粒子膜を用いた配線である。   A second invention is the first invention, wherein the first organic film formed on the surface of the substrate and the second organic film formed on the surface of the conductive fine particles have different patterns of single-layer conductive fine particles. Wiring using a film.

第三の発明は、前期第一の発明において、共有結合が、エポキシ基とイミノ基の反応で形成された−N−C−の結合であるパターン状の単層導電性微粒子膜を用いた配線である。   A third invention is a wiring using a patterned single-layer conductive fine particle film in which the covalent bond is a —N—C— bond formed by a reaction of an epoxy group and an imino group in the first invention of the previous period It is.

第四発明は、前記第一および第二の発明において、基材表面に形成された第1の有機被膜と導電性微粒子表面に形成された第2の有機膜が単分子膜で構成されているパターン状の単層導電性微粒子膜を用いた配線である。   According to a fourth invention, in the first and second inventions, the first organic film formed on the surface of the base material and the second organic film formed on the surface of the conductive fine particles are composed of a monomolecular film. This is a wiring using a patterned single-layer conductive fine particle film.

第五発明は、基材表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と基材表面を反応させて前記基材表面に第1の反応性の有機膜を形成する工程と、前記第1の反応性の有機膜を所定のパターンに加工する工程と、導電性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と導電性微粒子表面を反応させて導電性微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された基材表面に第2の反応性の有機膜で被覆された導電性微粒子を接触させて選択的に反応させる工程と、余分な第2の反応性の有機膜で被覆された導電性微粒子を洗浄除去する単層導電性微粒子膜を用いた配線の製造方法である。   According to a fifth aspect of the present invention, a substrate surface is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to react the alkoxysilane compound with the substrate surface. Forming a first reactive organic film on the surface of the substrate, processing the first reactive organic film into a predetermined pattern, and forming conductive fine particles into at least a second alkoxysilane compound. A second reactive organic film is formed on the surface of the conductive fine particles by dispersing them in a chemical adsorption solution prepared by mixing a silanol condensation catalyst and a non-aqueous organic solvent, and reacting the alkoxysilane compound with the surface of the conductive fine particles. A step of forming, a step of bringing the conductive fine particles coated with the second reactive organic film into contact with the surface of the substrate on which the first reactive organic film is formed, and selectively reacting, and an extra step First A method for producing wiring using a reactive monolayer conductive fine particle film removed by washing the coated conductive fine particles in the organic film of the.

第六の発明は、前期第五の発明において、基材表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程、および導電性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と導電性微粒子表面を反応させて導電性微粒子表面に第2の反応性の有機膜を形成する工程の後に、それぞれ基材および導電性微粒子表面を有機溶剤で洗浄して基材及び導電性微粒子表面に共有結合した第1及び第2の反応性の単分子膜を形成するパターン状の単層導電性微粒子膜を用いた配線の製造方法である。 According to a sixth aspect of the present invention, in the fifth aspect of the previous invention, the substrate surface is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to thereby obtain an alkoxysilane. A step of reacting the compound with the surface of the substrate to form a first reactive organic film on the surface of the substrate, and mixing the conductive fine particles with at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent After the step of forming the second reactive organic film on the surface of the conductive fine particles by allowing the alkoxysilane compound and the surface of the conductive fine particles to react with each other by dispersing in the chemical adsorption liquid prepared in this manner, Patterned single-layer conductive fine particles forming first and second reactive monomolecular films in which the surface of the fine particles is washed with an organic solvent and covalently bonded to the surface of the substrate and the conductive fine particles A method of manufacturing a wiring using.

第七の発明は、前記第五の発明において第1の反応性の有機膜がエポキシ基を含み第2の反応性の有機膜がイミノ基を含むことを特徴とする請求項5記載のパターン状の単層導電性微粒子膜を用いた配線の製造方法である。   The seventh invention is characterized in that, in the fifth invention, the first reactive organic film contains an epoxy group and the second reactive organic film contains an imino group. This is a method of manufacturing a wiring using the single-layer conductive fine particle film.

第八の発明は、前記第六の発明において、第1の反応性の単分子膜がエポキシ基を含み第2の反応性の単分子膜がイミノ基を含むことを特徴とする請求項6記載のパターン状の単層導電性微粒子膜を用いた配線の製造方法である。   The eighth invention is characterized in that, in the sixth invention, the first reactive monomolecular film contains an epoxy group and the second reactive monomolecular film contains an imino group. This is a method of manufacturing a wiring using the patterned single-layer conductive fine particle film.

第九の発明は、基材表面に選択的に層状に累積され導電性微粒子が導電性微粒子表面に形成された有機被膜を介して層間で互いに共有結合していることを特徴とするパターン状の導電性微粒子膜積層体を用いた配線である。 According to a ninth aspect of the present invention, there is provided a pattern-like structure characterized in that the conductive fine particles are selectively accumulated in a layer form on the surface of the base material, and the conductive fine particles are covalently bonded to each other through an organic film formed on the surface of the conductive fine particles. This is a wiring using a conductive fine particle film laminate.

第十の発明は、前記第九の発明において、導電性微粒子表面に形成された有機被膜が2種類有り、第1の有機膜が形成された導電性微粒子と第2の有機膜が形成された導電性微粒子とが交互に積層されているパターン状の導電性微粒子膜積層体を用いた配線である。   According to a tenth aspect, in the ninth aspect, there are two kinds of organic coatings formed on the surface of the conductive fine particles, and the conductive fine particles on which the first organic film is formed and the second organic film are formed. It is a wiring using a patterned conductive fine particle film laminate in which conductive fine particles are alternately laminated.

第十一の発明は、前記第十の発明において、第1の有機膜と第2の有機膜が反応して共有結合を形成しているパターン状の導電性微粒子膜積層体を用いた配線である。   An eleventh invention is a wiring using the patterned conductive fine particle film laminate according to the tenth invention, wherein the first organic film and the second organic film react to form a covalent bond. is there.

第十二の発明は、前記第九の発明において、共有結合が、エポキシ基とイミノ基の反応で形成された−N−C−の結合であるパターン状の導電性微粒子膜積層体を用いた配線である。   A twelfth invention uses the patterned conductive fine particle film laminate in which the covalent bond is a —N—C— bond formed by a reaction between an epoxy group and an imino group in the ninth invention. Wiring.

第十三の発明は、少なくとも基材表面を第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程と、前記第1の反応性の有機膜を所定のパターンに加工する工程と、第1の導電性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と導電性微粒子表面を反応させて第1の導電性微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された基材表面に第2の反応性の有機膜で被覆された第1の導電性微粒子を接触させて反応させる工程と、余分な第2の反応性の有機膜で被覆された第1の導電性微粒子を洗浄除去して第1のパターン状の単層導電性微粒子膜を選択的に形成する工程と、第2の導電性微粒子を少なくとも第3のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と導電性微粒子表面を反応させて第2の導電性微粒子表面に第3の反応性の有機膜を形成する工程と、第2の反応性の有機膜で被覆された第1のパターン状の単層導電性微粒子膜が形成された基材表面に第3の反応性の有機膜で被覆された第2の導電性微粒子を接触させて反応させる工程と、余分な第3の反応性の有機膜で被覆された第2の導電性微粒子を洗浄除去して第2のパターン状の単層導電性微粒子膜を選択的に形成する工程とを含むパターン状の導電性微粒子膜積層体を用いた配線の製造方法である。   In a thirteenth invention, at least the substrate surface is brought into contact with a chemical adsorption solution prepared by mixing a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent so that the alkoxysilane compound and the substrate surface are brought into contact with each other. A step of reacting to form a first reactive organic film on the surface of the substrate; a step of processing the first reactive organic film into a predetermined pattern; and at least second of the first conductive fine particles. The alkoxysilane compound, the silanol condensation catalyst, and the non-aqueous organic solvent are mixed in a chemical adsorbing liquid and dispersed to react with the alkoxysilane compound and the surface of the conductive fine particles. Forming the reactive organic film, and contacting the first conductive fine particles coated with the second reactive organic film on the surface of the substrate on which the first reactive organic film is formed. Reacting and Cleaning and removing the first conductive fine particles coated with the extra second reactive organic film to selectively form the first patterned single-layer conductive fine particle film; The conductive fine particles are dispersed in a chemical adsorption solution prepared by mixing at least a third alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the alkoxysilane compound and the surface of the conductive fine particles are reacted to produce a second conductive material. Forming a third reactive organic film on the surface of the reactive fine particles, and a substrate surface on which the first patterned single-layer conductive fine particle film coated with the second reactive organic film is formed A step of bringing the second conductive fine particles coated with the third reactive organic film into contact with each other and reacting, and the second conductive fine particles coated with the extra third reactive organic film are washed and removed. To select the second patterned single-layer conductive fine particle film. A method for producing a formed wiring using a patterned conductive fine particle film laminate comprising the steps of.

第十四の発明は、前記第十三の発明において、第1の反応性の有機膜と第3の反応性の有機膜が同じものであるパターン状の導電性微粒子膜積層体を用いた配線の製造方法である。   A fourteenth invention is a wiring using the patterned conductive fine particle film laminate according to the thirteenth invention, wherein the first reactive organic film and the third reactive organic film are the same. It is a manufacturing method.

第十五の発明は、前記第十三の発明において、第2のパターン状の単層導電性微粒子膜を形成する工程の後、同様に第1のパターン状の単層導電性微粒子膜を形成する工程と第2のパターン状の単層導電性微粒子膜を形成する工程を繰り返し行うことを特徴とする多層構造のパターン状の導電性微粒子膜積層体を用いた配線の製造方法である。   In a fifteenth aspect based on the thirteenth aspect, after the step of forming the second patterned single-layer conductive fine particle film, the first patterned single-layer conductive fine particle film is similarly formed. And a step of forming a second patterned single-layer conductive fine particle film are repeated. A method of manufacturing a wiring using a patterned conductive fine particle film laminate having a multilayer structure.

第十六の発明は、前記第十三の発明において、第1〜3の反応性の有機膜を形成する工程の後に、それぞれ基材あるいは導電性微粒子表面を有機溶剤で洗浄して基材や導電性微粒子表面に共有結合した第1〜3の反応性の単分子膜を形成することを特徴とするパターン状の導電性微粒子膜積層体を用いた配線の製造方法である。   According to a sixteenth aspect, in the thirteenth aspect, after the steps of forming the first to third reactive organic films, the substrate or the surface of the conductive fine particles is washed with an organic solvent, respectively. A wiring manufacturing method using a patterned conductive fine particle film laminate, wherein first to third reactive monomolecular films covalently bonded to the surface of conductive fine particles are formed.

第十七の発明は、前記第十三の発明において、第1および3の反応性の有機膜がエポキシ基を含み第2の反応性の有機膜がイミノ基を含むパターン状の導電性微粒子膜積層体を用いた配線の製造方法である。 The seventeenth invention is the patterned conductive fine particle film according to the thirteenth invention, wherein the first and third reactive organic films contain an epoxy group and the second reactive organic film contains an imino group. It is a manufacturing method of wiring using a layered product.

第十八の発明は、前記第五及び十三の発明において、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いるパターン状の単層導電性微粒子膜およびパターン状の導電性微粒子膜積層体を用いた配線の製造方法である。 The eighteenth invention is the pattern according to the fifth and thirteenth inventions, wherein a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of a silanol condensation catalyst. A wiring manufacturing method using a single-layer conductive fine particle film and a patterned conductive fine particle film laminate.

第十九の発明は、前記第五及び十三の発明において、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いるパターン状の単層導電性微粒子膜およびパターン状の導電性微粒子膜積層体を用いた配線の製造方法である。 According to a nineteenth aspect, in the fifth and thirteenth aspects, at least one selected from a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound as a cocatalyst for a silanol condensation catalyst. A wiring manufacturing method using a patterned single-layer conductive fine particle film and a patterned conductive fine particle film laminate.

第二十の発明は、前記第一乃至第七および第九乃至十二の配線を用いた電子部品である。   A twentieth invention is an electronic component using the first to seventh and ninth to twelfth wirings.

第二十一の発明は、前記第一乃至第七および第九乃至十二の配線を用いた電子機器である。
以下、かかる発明について、さらに要旨説明する。
A twenty-first invention is an electronic apparatus using the first to seventh and ninth to twelfth wirings.
Hereinafter, the gist of the invention will be further described.

本発明は、基材表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程と、前記第1の反応性の有機膜を所定のパターンに加工する工程と、導電性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と導電性微粒子表面を反応させて導電性微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された基材表面に第2の反応性の有機膜で被覆された導電性微粒子を接触させて選択的に反応させる工程と、余分な第2の反応性の有機膜で被覆された導電性微粒子を洗浄除去する工程とにより、基材表面に選択的に1層形成された導電性微粒子の膜が基材表面に選択的に形成された第1の有機膜と導電性微粒子表面に形成された第2の有機膜を介して互いに共有結合しているパターン状の単層導電性微粒子膜を用いた配線を提供することを要旨とする。   In the present invention, the substrate surface is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the alkoxysilane compound and the substrate surface are reacted. A step of forming a first reactive organic film on the surface of the substrate, a step of processing the first reactive organic film into a predetermined pattern, and the conductive fine particles at least a second alkoxysilane compound and a silanol. A second reactive organic film is formed on the surface of the conductive fine particles by dispersing in a chemisorbed liquid prepared by mixing a condensation catalyst and a non-aqueous organic solvent and reacting the alkoxysilane compound with the surface of the conductive fine particles. A step of selectively contacting the surface of the substrate on which the first reactive organic film is formed with the conductive fine particles coated with the second reactive organic film, and an extra second The opposite of The conductive fine particles coated with the conductive organic film are washed and removed to form a first conductive fine particle film selectively formed on the substrate surface. The gist is to provide a wiring using a patterned single-layer conductive fine particle film that is covalently bonded to each other via an organic film and a second organic film formed on the surface of the conductive fine particle.

このとき、基材表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程、および導電性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と導電性微粒子表面を反応させて導電性微粒子表面に第2の反応性の有機膜を形成する工程の後に、それぞれ基材および導電性微粒子表面を有機溶剤で洗浄して基材及び導電性微粒子表面に共有結合した第1及び第2の反応性の単分子膜を形成するとパターン状の単層導電性微粒子膜の膜厚制御を容易にできて都合がよい。   At this time, the substrate surface is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the alkoxysilane compound and the substrate surface are reacted to form a group. A step of forming a first reactive organic film on the surface of the material, and dispersing conductive fine particles in a chemical adsorption solution prepared by mixing at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent After the step of reacting the alkoxysilane compound and the surface of the conductive fine particles to form the second reactive organic film on the surface of the conductive fine particles, the substrate and the surface of the conductive fine particles are respectively washed with an organic solvent to form a base. When the first and second reactive monomolecular films covalently bonded to the surface of the material and the conductive fine particles are formed, it is possible to easily control the film thickness of the patterned single-layer conductive fine particle film. If is good.

さらに、第1の反応性の有機膜にエポキシ基を含め第2の反応性の有機膜にイミノ基を含めておくと、基材表面に共有結合したパターン状の単層導電性微粒子膜を用いた配線を作製する上で都合がよい。
また、第1の反応性の単分子膜にエポキシ基を含め第2の反応性の単分子膜にイミノ基を含めておくと基材表面に共有結合したパターン状の単層導電性微粒子膜を用いた配線を作製する上で都合がよい。
Further, if the first reactive organic film contains an epoxy group and the second reactive organic film contains an imino group, a patterned single-layer conductive fine particle film covalently bonded to the substrate surface is used. This is convenient for manufacturing the wiring.
In addition, if the first reactive monomolecular film includes an epoxy group and the second reactive monomolecular film includes an imino group, a patterned single-layer conductive fine particle film covalently bonded to the substrate surface is formed. This is convenient in producing the used wiring.

さらにまた、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると製膜時間を短縮する上で都合がよい。
また、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いるとさらに製膜時間を短縮できて都合がよい。
Furthermore, it is convenient to use a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound in place of the silanol condensation catalyst for shortening the film formation time.
In addition, the use of a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound as a co-catalyst as a co-catalyst for the silanol condensation catalyst can further reduce the film formation time. convenient.

またここで、導電性微粒子表面に形成された第1の有機被膜と基材表面に形成された第2の有機膜が互いに異ならせておけば、パターン状の単層導電性微粒子膜を基材表面に1層のみ結合させる上で都合がよい。
さらに、共有結合としてエポキシ基とイミノ基の反応で形成された−N−C−の結合を用いると、基材に対して密着強度が優れたパターン状の単層導電性微粒子膜を用いた配線を提供する上で都合がよい。
また、導電性微粒子表面に形成された第1の有機被膜と基材表面に形成された第2の有機膜が単分子膜で構成されていると膜厚均一性を改善する上で都合がよい。
Here, if the first organic film formed on the surface of the conductive fine particles and the second organic film formed on the surface of the base material are different from each other, the patterned single-layer conductive fine particle film is used as the base material. This is convenient for bonding only one layer to the surface.
Furthermore, when a —N—C— bond formed by a reaction between an epoxy group and an imino group is used as a covalent bond, a wiring using a patterned single-layer conductive fine particle film having excellent adhesion strength to a substrate Convenient for providing
In addition, it is convenient to improve the film thickness uniformity when the first organic film formed on the surface of the conductive fine particles and the second organic film formed on the surface of the base material are formed of a monomolecular film. .

さらに、本発明は、少なくとも基材表面を第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程と、前記第1の反応性の有機膜を所定のパターンに加工する工程と、第1の導電性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と導電性微粒子表面を反応させて第1の導電性微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された基材表面に第2の反応性の有機膜で被覆された第1の導電性微粒子を接触させて反応させる工程と、余分な第2の反応性の有機膜で被覆された第1の導電性微粒子を洗浄除去して第1のパターン状の単層導電性微粒子膜を選択的に形成する工程と、第2の導電性微粒子を少なくとも第3のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と導電性微粒子表面を反応させて第2の導電性微粒子表面に第3の反応性の有機膜を形成する工程と、第2の反応性の有機膜で被覆された第1のパターン状の単層導電性微粒子膜が形成された基材表面に第3の反応性の有機膜で被覆された第2の導電性微粒子を接触させて選択的に反応させる工程と、余分な第3の反応性の有機膜で被覆された第2の導電性微粒子を洗浄除去して第2のパターン状の単層導電性微粒子膜を選択的に形成する工程とにより、基材表面に選択的に層状に累積され導電性微粒子が導電性微粒子表面に形成された有機被膜を介して層間で互いに共有結合しているパターン状の導電性微粒子膜積層体を用いた配線を提供することを要旨とする。   Furthermore, the present invention makes the alkoxysilane compound react with the substrate surface by contacting at least the substrate surface with a chemical adsorption solution prepared by mixing the first alkoxysilane compound, the silanol condensation catalyst, and the non-aqueous organic solvent. Forming a first reactive organic film on the surface of the substrate, processing the first reactive organic film into a predetermined pattern, and forming the first conductive fine particles into at least a second An alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent are mixed and dispersed in a chemical adsorption solution, and the alkoxysilane compound and the surface of the conductive fine particles are reacted to form a second on the surface of the first conductive fine particles. A step of forming a reactive organic film, and a reaction in which the first conductive fine particles coated with the second reactive organic film are brought into contact with the surface of the substrate on which the first reactive organic film is formed. Process Cleaning and removing the first conductive fine particles coated with the extra second reactive organic film to selectively form a first patterned single-layer conductive fine particle film; The conductive fine particles are dispersed in a chemical adsorption solution prepared by mixing at least a third alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the second surface is reacted with the alkoxysilane compound and the surface of the conductive fine particles. A substrate surface on which a step of forming a third reactive organic film on the surface of the conductive fine particles and a first patterned single-layer conductive fine particle film coated with the second reactive organic film are formed And a step of bringing the second conductive fine particles coated with the third reactive organic film into contact with each other and selectively reacting with the second conductive fine particles, and a second conductivity coated with the extra third reactive organic film The second pattern of single-layer conductive fine particles is washed and removed. A pattern in which conductive fine particles are accumulated in layers selectively on the surface of the substrate through the organic film formed on the surface of the conductive fine particles and are covalently bonded to each other through the organic film formed on the surface of the conductive fine particles. The gist is to provide a wiring using the conductive fine particle film laminate.

このとき、第1の反応性の有機膜と第3の反応性の有機膜に同じものを用いるとパターン状の導電性微粒子膜積層体の製造方法をパターン状の単層純化する上で都合がよい。
また、第2のパターン状の単層導電性微粒子膜を形成する工程の後、同様に第1のパターン状の単層導電性微粒子膜を形成する工程と第2のパターン状の単層導電性微粒子膜を形成する工程を繰り返し行えば、多層構造のパターン状の導電性微粒子膜積層体を用いた配線を容易に製造できる。
At this time, if the same material is used for the first reactive organic film and the third reactive organic film, it is convenient for purifying the patterned single layer of the manufacturing method of the patterned conductive fine particle film laminate. Good.
Further, after the step of forming the second patterned single-layer conductive fine particle film, the step of similarly forming the first patterned single-layer conductive fine particle film and the second patterned single-layer conductive particle film By repeatedly performing the step of forming the fine particle film, a wiring using the multilayered patterned conductive fine particle film laminate can be easily manufactured.

さらに、第1〜3の反応性の有機膜を形成する工程の後に、それぞれ基材あるいは導電性微粒子表面を有機溶剤で洗浄して基材や導電性微粒子表面に共有結合した第1〜3の反応性の単分子膜を形成すると、パターン状の導電性微粒子膜積層体の膜厚を均一化する上で都合がよい。   Further, after the steps of forming the first to third reactive organic films, the substrate or the conductive fine particle surface is washed with an organic solvent to be covalently bonded to the substrate or the conductive fine particle surface, respectively. Forming a reactive monomolecular film is convenient for making the film thickness of the patterned conductive fine particle film laminate uniform.

さらにまた、第1および3の反応性の有機膜がエポキシ基を含み第2の反応性の有機膜がイミノ基を含んでいると、エポキシ基とイミノ基の反応により層間で共有結合したパターン状の導電性微粒子膜積層体を用いた配線を製造する上で都合がよい。 Furthermore, when the first and third reactive organic films contain an epoxy group and the second reactive organic film contains an imino group, the pattern is formed by covalent bonding between the layers by the reaction of the epoxy group and the imino group. This is convenient for manufacturing a wiring using the conductive fine particle film laminate.

さらにまた、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると製膜時間を短縮する上で都合がよい。
また、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いるとさらに製膜時間を短縮できて都合がよい。
またここで、導電性微粒子表面に形成された有機被膜を2種類用い、第1の有機膜が形成された導電性微粒子と第2の有機膜が形成された導電性微粒子とを交互に積層すると多層のパターン状の導電性微粒子膜積層体を用いた配線を単層純なプロセスで製造する上で都合がよい。
Furthermore, it is convenient to use a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound in place of the silanol condensation catalyst for shortening the film formation time.
In addition, the use of a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound as a co-catalyst as a co-catalyst for the silanol condensation catalyst can further reduce the film formation time. convenient.
Further, here, when two types of organic coatings formed on the surface of the conductive fine particles are used, the conductive fine particles formed with the first organic film and the conductive fine particles formed with the second organic film are alternately laminated. This is convenient in manufacturing a wiring using a multilayer patterned conductive fine particle film laminate by a single-layer pure process.

さらに、第1の有機膜と第2の有機膜が反応して共有結合を形成していると密着強度が優れたパターン状の導電性微粒子膜積層体を提供する上で都合がよい。
また、共有結合として、エポキシ基とイミノ基の反応で形成された−N−C−の結合を用いると、強度の点で優れたパターン状の導電性微粒子膜積層体を用いた配線およびそれを用いた電子部品や電子機器を提供する上で都合がよい。
Furthermore, when the first organic film and the second organic film react to form a covalent bond, it is convenient to provide a patterned conductive fine particle film laminate having excellent adhesion strength.
In addition, when a —N—C— bond formed by a reaction between an epoxy group and an imino group is used as a covalent bond, a wiring using a conductive fine particle film laminate having a pattern excellent in strength and a wiring This is convenient in providing the used electronic parts and electronic devices.

以上説明したとおり、本発明によれば、導電性微粒子を用い、各種導電性微粒子の導電機能を損なうことなく、任意の基材表面に導電性微粒子を1層のみ並べた粒子サイズレベルで均一厚みの被膜(パターン状の単層導電性微粒子膜)を用いた配線や導電性微粒子を1層のみの並べた膜を複数層累積した被膜(パターン状の導電性微粒子膜積層体)を製造できる。したがって、単一基材表面で膜厚制御性と均一性に優れた配線、さらにはそれらを用いた電子部品や電子機器を提供できる格別の効果がある。   As described above, according to the present invention, the conductive fine particles are used and the uniform thickness is obtained at a particle size level in which only one layer of conductive fine particles is arranged on the surface of an arbitrary substrate without impairing the conductive function of various conductive fine particles. Thus, a film (patterned conductive fine particle film laminate) in which a plurality of wirings using a single film (patterned single-layer conductive fine particle film) or a film in which only one conductive fine particle is arranged is accumulated can be manufactured. Therefore, there is an extraordinary effect capable of providing wiring excellent in film thickness controllability and uniformity on the surface of a single substrate, and further electronic components and electronic devices using them.

本発明は、少なくとも基材表面を第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程と、前記第1の反応性の有機膜を所定のパターンに加工する工程と、第1の導電性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と導電性微粒子表面を反応させて第1の導電性微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された基材表面に第2の反応性の有機膜で被覆された第1の導電性微粒子を接触させて選択的に反応させる工程と、余分な第2の反応性の有機膜で被覆された第1の導電性微粒子を洗浄除去して第1のパターン状の単層導電性微粒子膜を形成する工程と、第2の導電性微粒子を少なくとも第3のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と導電性微粒子表面を反応させて第2の導電性微粒子表面に第3の反応性の有機膜を形成する工程と、第2の反応性の有機膜で被覆された第1のパターン状の単層導電性微粒子膜が形成された基材表面に第3の反応性の有機膜で被覆された第2の導電性微粒子を接触させて選択的に反応させる工程と、余分な第3の反応性の有機膜で被覆された第2の導電性微粒子を洗浄除去して第2のパターン状の単層導電性微粒子膜を形成する工程とにより、基材表面に層状に累積され導電性微粒子が導電性微粒子表面に形成された有機被膜を介して層間で互いに共有結合しているパターン状の導電性微粒子膜積層体を用いた配線を提供するものである。 In the present invention, at least the substrate surface is brought into contact with a chemical adsorption solution prepared by mixing a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the alkoxysilane compound and the substrate surface are reacted. Forming a first reactive organic film on the surface of the substrate; processing the first reactive organic film into a predetermined pattern; and converting the first conductive fine particles into at least a second alkoxysilane. A compound, a silanol condensation catalyst, and a non-aqueous organic solvent are mixed and dispersed in a chemical adsorption solution, and the alkoxysilane compound and the surface of the conductive fine particles are reacted to cause the second reactivity on the surface of the first conductive fine particles. Selectively forming the first conductive fine particles coated with the second reactive organic film on the surface of the base material on which the first reactive organic film is formed, and the step of forming the organic film. Process to react Cleaning and removing the first conductive fine particles coated with the extra second reactive organic film to form a first patterned single-layer conductive fine particle film; and second conductive fine particles Is dispersed in a chemical adsorption solution prepared by mixing at least a third alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the alkoxysilane compound and the surface of the conductive fine particles are reacted to form the second conductive fine particles. A step of forming a third reactive organic film on the surface, and a third surface on the surface of the substrate on which the first patterned single-layer conductive fine particle film coated with the second reactive organic film is formed. A step of bringing the second conductive fine particles coated with the reactive organic film into contact with each other and selectively reacting, and washing of the second conductive fine particles coated with the extra third reactive organic film Remove the second patterned single-layer conductive fine particle film The conductive fine particle film laminate having a pattern in which the conductive fine particles are accumulated in layers on the surface of the base material and are covalently bonded to each other through an organic coating formed on the conductive fine particle surface. Provide the wiring that has been.

したがって、本発明では、2種類の被膜で被われた2種類の導電性微粒子を用いることにより、各種導電性微粒子本来の機能を損なうことなく、任意の基材表面に導電性微粒子を選択的に1層のみの並べた粒子サイズレベルで均一厚みの被膜(パターン状の単層導電性微粒子膜)を用いた配線や導電性微粒子を1層のみの並べた膜を選択的に複数層累積した被膜(パターン状の導電性微粒子膜積層体)を用いた単一基材表面で膜厚制御性と均一性に優れた配線を提供したり、それらを簡便で且つ低コストで製造できる作用がある。   Therefore, in the present invention, by using two kinds of conductive fine particles covered with two kinds of coatings, the conductive fine particles can be selectively applied to the surface of any substrate without impairing the original functions of the various conductive fine particles. A film in which multiple layers of a film in which only one layer of wiring or conductive fine particles are arranged in a single-layered film size level (patterned single-layer conductive fine particle film) is selectively accumulated. There exists an effect | action which can provide the wiring excellent in film thickness controllability and uniformity on the surface of a single base material using (patterned electroconductive fine particle film | membrane laminated body), or can manufacture them simply and at low cost.

以下、本願発明の詳細を実施例を用いて説明するが、本願発明は、これら実施例によって何ら限定されるものではない。   Hereinafter, although the detail of this invention is demonstrated using an Example, this invention is not limited at all by these Examples.

また、本発明に関するパターン状の単層導電性微粒子膜を用いた配線やパターン状の導電性微粒子膜積層体を用いた配線の作成には、銀、銅、ニッケル、あるいは、銀メッキした貴金属や銅、ニッケルの微粒子が利用可能であるが、まず、代表例として銀微粒子を取り上げて説明する。   Further, for the production of wiring using the patterned single-layer conductive fine particle film and wiring using the patterned conductive fine particle film laminate according to the present invention, silver, copper, nickel, silver-plated noble metal, Copper and nickel fine particles can be used. First, silver fine particles will be taken up as a representative example.

まず、配線形成基材となるガラス基板1を用意し、よく乾燥した。次に、化学吸着剤として機能部位に反応性の官能基、例えば、エポキシ基と他端にアルコキシシリル基を含む薬剤、例えば、下記式(化1)に示す薬剤を99重量%、シラノール縮合触媒として、例えば、ジブチル錫ジアセチルアセトナートを1重量%となるようそれぞれ秤量し、シリコーン溶媒、例えば、ヘキサメチルジシロキサン溶媒に1重量%程度の濃度(好ましくい化学吸着剤の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。 First, the glass substrate 1 used as a wiring formation base material was prepared, and it dried well. Next, 99 wt% of a chemical containing a functional group reactive at the functional site as a chemical adsorbent, for example, an epoxy group and an alkoxysilyl group at the other end, for example, a chemical represented by the following formula (Chemical Formula 1) For example, each of dibutyltin diacetylacetonate is weighed so as to be 1% by weight, and a concentration of about 1% by weight in a silicone solvent, for example, hexamethyldisiloxane solvent (preferably the concentration of the chemical adsorbent is 0.5%). A chemisorbed solution was prepared by dissolving so as to be about ˜3%.

Figure 2007220883
Figure 2007220883

次に、この吸着液に、ガラス基板1を漬浸して普通の空気中で(相対湿度45%)で2時間反応させた。このとき、ガラス基板1表面には水酸基2が多数含まれているの(図1(a))で、前記化学吸着剤の−Si(OCH)基と前記水酸基がシラノール縮合触媒の存在下で脱アルコール(この場合は、脱CHOH)反応し、下記式(化2)に示したような結合を形成し、ガラス基板1表面全面に亘り表面と化学結合したエポキシ基を含む化学吸着単分子膜3が約1ナノメートル程度の膜厚で形成される。 Next, the glass substrate 1 was immersed in this adsorbing solution and reacted in ordinary air (relative humidity 45%) for 2 hours. At this time, since the surface of the glass substrate 1 contains a large number of hydroxyl groups 2 (FIG. 1 (a)), the -Si (OCH 3 ) group of the chemical adsorbent and the hydroxyl groups are present in the presence of a silanol condensation catalyst. Reaction of dealcohol (in this case, de-CH 3 OH) forms a bond as shown in the following formula (Chemical Formula 2), and includes a chemical adsorption unit containing an epoxy group chemically bonded to the surface over the entire surface of the glass substrate 1. The molecular film 3 is formed with a film thickness of about 1 nanometer.

Figure 2007220883
Figure 2007220883

その後、塩素系溶媒(この場合、トリクレン)あるいはn−メチルピロリディノンを用いて洗浄すると、表面に反応性の官能基、例えばエポキシ基を有する化学吸着単分子膜(第一の反応性の有機膜)で被われたガラス基板がそれぞれ作製できた。(図1(b)) Thereafter, when the substrate is washed with a chlorinated solvent (in this case, trichlene) or n-methylpyrrolidinone, a chemisorbed monomolecular film having a reactive functional group such as an epoxy group on the surface (first reactive organic film) The glass substrate 4 covered with the film) could be produced. (Fig. 1 (b))

なお、この被膜はナノメートルレベルの膜厚で極めて薄いため、ガラス基板の透明性を損なうことはなかった。
一方、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発しガラス基板表面に残った化学吸着剤が表面で空気中の水分と反応して、表面に前記化学吸着剤よりなる極薄の反応性のポリマー膜が形成されたガラス基板が得られた。
In addition, since this film was extremely thin with a film thickness of nanometer level, the transparency of the glass substrate was not impaired.
On the other hand, if it is taken out into the air without washing, the reactivity is almost the same, but the chemical adsorbent remaining on the glass substrate surface reacts with the moisture in the air on the surface, and the chemical adsorption takes place on the surface. A glass substrate on which an extremely thin reactive polymer film made of an agent was formed was obtained.

次ぎに、エキシマレーザーとマスクを用いて、前記基板表面の不要部を選択的に照射し、前記反応性の単分子膜をアブレーションで除去する(図1(c))か、あるいはエポキシ基を開環させて失活させた。(図1(d))すなわち、ガラス基板表面がエポキシ基を持ったパターン状の被膜5、5’で選択的に被われた基板6’を製作できた。 Next, using an excimer laser and a mask, the unnecessary portion of the substrate surface is selectively irradiated to remove the reactive monomolecular film by ablation (FIG. 1 (c)), or the epoxy group is opened. The ring was deactivated. That is, the substrates 6 and 6 ′ in which the glass substrate surface was selectively covered with the patterned coatings 5 and 5 ′ having an epoxy group could be manufactured.

他の方法として、前記被膜表面にカチオン系の重合開始剤、例えばチバ・スペシャルティ・ケミカルズ社製のイルガキュア250をメチルエチルケトン(MEK)で希釈してエポキシ被膜表面に塗布し、遠紫外線で選択的に露光しても、選択的にエポキシ基を開環重合させてパターン状に失活できた。   As another method, a cationic polymerization initiator, for example, Irgacure 250 manufactured by Ciba Specialty Chemicals Co., Ltd. is diluted with methyl ethyl ketone (MEK) and applied to the surface of the epoxy film, and selectively exposed to far ultraviolet rays. Even in this case, the epoxy group could be selectively ring-opened and deactivated in a pattern.

実施例1と同様に、まず、導電性の微粒子である大きさが100nm程度の無水の銀微粒子11を用意し、よく乾燥した。次に、化学吸着剤として機能部位に反応性の官能基、例えば、エポキシ基あるいはイミノ基と他端にアルコキシシリル基を含む薬剤、例えば、前記式(化1)あるいは下記式(化3)に示す薬剤を99重量%、シラノール縮合触媒として、例えば、有機酸である酢酸を1重量%となるようそれぞれ秤量し、シリコーン溶媒、例えば、ヘキサメチルジシロキサンとジメチルホルムアミド(50:50)混合溶媒に1重量%程度の濃度(好ましくい化学吸着剤の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。 As in Example 1, first, anhydrous silver fine particles 11 having a size of about 100 nm, which are conductive fine particles, were prepared and dried well. Next, as a chemical adsorbent, a functional functional group having a reactive functional group such as an epoxy group or imino group and an alkoxysilyl group at the other end, such as the above formula (Formula 1) or the following formula (Formula 3) 99% by weight of the chemicals shown and a silanol condensation catalyst, for example, acetic acid, an organic acid, is weighed to 1% by weight, and is mixed into a silicone solvent, for example, a mixed solvent of hexamethyldisiloxane and dimethylformamide (50:50). A chemical adsorption solution was prepared by dissolving to a concentration of about 1% by weight (preferably the concentration of the chemical adsorbent is about 0.5 to 3%).

Figure 2007220883
Figure 2007220883

この吸着液に無水の銀微粒子11を混入撹拌して普通の空気中で(相対湿度45%)で2時間程度反応させた。このとき、無水の銀微粒子表面には水酸基12が多数含まれているの(図2(a))で、前記化学吸着剤の−Si(OCH)基と前記水酸基が有機酸である酢酸の存在下で脱アルコール(この場合は、脱CHOH)反応し、前記式(化2)あるいは下記式(化4)に示したような結合を形成し、導電性銀微粒子表面全面に亘り表面と化学結合したエポキシ基を含む化学吸着単分子膜13あるいはアミノ基(第二の反応性の有機膜)を含む化学吸着膜14が約1ナノメートル程度の膜厚で形成された(図2(b)、2(c))。 Anhydrous silver fine particles 11 were mixed in the adsorbed liquid and stirred and reacted in ordinary air (relative humidity 45%) for about 2 hours. At this time, since there are many hydroxyl groups 12 on the surface of the anhydrous silver fine particles (FIG. 2 (a)), the -Si (OCH 3 ) group of the chemical adsorbent and the acetic acid in which the hydroxyl group is an organic acid. In the presence, dealcoholization (in this case, de-CH 3 OH) reacts to form a bond as shown in the above formula (Chemical Formula 2) or the following formula (Chemical Formula 4). A chemisorbed monomolecular film 13 containing an epoxy group chemically bonded to or a chemisorbed film 14 containing an amino group (second reactive organic film) was formed to a thickness of about 1 nanometer (FIG. 2 ( b), 2 (c)).

Figure 2007220883
Figure 2007220883

なお、ここで、アミノ基を含む吸着剤を使用する場合には、スズ系の触媒では沈殿が生成するので、酢酸等の有機酸を用いた方がよかった。また、アミノ基はイミノ基を含んでいるが、アミノ基以外にイミノ基を含む物質には、ピロール誘導体や、イミダゾール誘導体等がある。さらに、ケチミン誘導体を用いれば、被膜形成後、加水分解により容易にアミノ基を導入できた。
その後、塩素系溶媒(この場合、トリクレン)あるいはn−メチルピロリディノンを添加して撹拌洗浄すると、表面に反応性の官能基、例えばエポキシ基を有する化学吸着単分子膜で被われた銀微粒子15、あるいはアミノ基を有する化学吸着単分子膜で被われた銀微粒子16をそれぞれ作製できた。
Here, when an adsorbent containing an amino group is used, since a precipitate is generated with a tin-based catalyst, it is better to use an organic acid such as acetic acid. The amino group contains an imino group, but substances containing an imino group in addition to the amino group include pyrrole derivatives and imidazole derivatives. Furthermore, when a ketimine derivative was used, an amino group could be easily introduced by hydrolysis after film formation.
Thereafter, when a chlorinated solvent (in this case, tricrene) or n-methylpyrrolidinone is added and washed with stirring, the silver fine particles covered with a chemisorbed monomolecular film having a reactive functional group such as an epoxy group on the surface 15 or silver fine particles 16 covered with a chemisorption monomolecular film having an amino group could be produced.

なお、この被膜はナノメートルレベルの膜厚で極めて薄いため、粒子径を損なうことはなかった。
一方、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発し粒子表面に残った化学吸着剤が表面で空気中の水分と反応して、表面に前記化学吸着剤よりなる極薄の反応性ポリマー膜が形成された導電性銀微粒子が得られた。
Note that this film was extremely thin with a nanometer-level film thickness, so the particle diameter was not impaired.
On the other hand, when taken out into the air without washing, the reactivity does not change substantially, but the chemical adsorbent remaining on the particle surface reacts with the moisture in the air by evaporation of the solvent, and the chemical adsorbent on the surface. Conductive silver fine particles on which an extremely thin reactive polymer film was formed were obtained.

また、微粒子の素材がAuの場合には、表面に水酸基を持ってないが、化学吸着剤として末端のSiCl3基やSi(OCH)3を−SH基やトリアジンチオール基で置換した薬剤(例えば、H2N(CH2)−SH(nは整数))、具体的には、H2N(CH2)11−SH等を用いれば、Sを介してアミノ基を含む単分子膜が形成された金微粒子を製造できた。一方、−SHとメトキシシリル基を両末端にもつ薬剤(例えば、HS(CH)Si(OCH)3(mは整数))、具体的には、HS(CH)Si(OCH)3等を用いれば、Sを介して表面に反応性のメトキシシリル基を含む単分子膜が形成された金微粒子を製造できた。 Further, when the fine particle material is Au, the surface does not have a hydroxyl group, but as a chemical adsorbent, an agent in which a terminal SiCl 3 group or Si (OCH 3 ) 3 is substituted with a —SH group or a triazine thiol group ( For example, when H 2 N (CH 2 ) n —SH (n is an integer)), specifically, H 2 N (CH 2 ) 11 —SH or the like is used, a monomolecular film containing an amino group via S The gold fine particles in which was formed could be manufactured. On the other hand, a drug having —SH and a methoxysilyl group at both ends (for example, HS (CH 2 ) m Si (OCH 3 ) 3 (m is an integer)), specifically, HS (CH 2 ) 3 Si (OCH 3 ) If 3 or the like was used, gold fine particles having a monomolecular film containing a reactive methoxysilyl group formed on the surface via S could be produced.

この方法の特徴は、脱アルコール反応であるため、導電性銀微粒子が有機、あるいは無機物であったとしても使用可能であり、適用範囲が広い。   Since this method has a dealcoholization reaction, it can be used even if the conductive silver fine particles are organic or inorganic, and has a wide range of applications.

次に、前記エポキシ基を有する化学吸着単分子膜21(第一の反応性の有機膜)で選択的に被われたガラス基板22表面に、アミノ基を有する化学吸着単分子膜(第二の反応性の有機膜)で被われた銀微粒子をアルコールに分散させて塗布し、100℃程度に加熱すると、ガラス基板表面のエポキシ基と接触している銀微粒子表面のアミノ基が下記式(化5)に示したような反応で付加して導電性銀微粒子とガラス基板は二つの単分子膜を介して選択的に結合する。なお、このとき、超音波を当てながらアルコールを蒸発させると、被膜の膜厚均一性を向上できた。 Next, on the surface of the glass substrate 22 selectively covered with the chemical adsorption monomolecular film 21 having the epoxy group (first reactive organic film), the chemical adsorption monomolecular film having the amino group (second When silver fine particles covered with a reactive organic film) are dispersed in alcohol and applied, and heated to about 100 ° C., the amino groups on the surface of the silver fine particles in contact with the epoxy groups on the glass substrate surface The conductive silver fine particles and the glass substrate are selectively bonded through the two monomolecular films by the addition as shown in 5). At this time, when the alcohol was evaporated while applying ultrasonic waves, the film thickness uniformity of the coating could be improved.

Figure 2007220883
そこで、再びアルコールで基板表面を洗浄し、余分で未反応のアミノ基を有する化学吸着単分子膜で被われた銀微粒子を洗浄除去すると、ガラス基板22表面に共有結合したアミノ基を有する化学吸着単分子膜で被われた銀微粒子23を選択的に1層のみ並べた状態で、且つ粒子サイズレベルで均一厚みのパターン状の単層導電性銀微粒子膜24よりなる配線を形成できた。(図3(a))
Figure 2007220883
Therefore, the surface of the substrate is washed again with alcohol, and the silver fine particles covered with the extra unreacted amino group-containing chemisorption monomolecular film are removed by washing, and the chemisorption having the amino group covalently bonded to the surface of the glass substrate 22 A wiring composed of a single-layer conductive silver fine particle film 24 having a uniform thickness at the particle size level, with only one layer of silver fine particles 23 covered with the monomolecular film being selectively arranged, could be formed. (Fig. 3 (a))

ここで、銀微粒子のパターン状の単層導電性銀微粒子膜の厚みが100nm程度であり、極めて均一性が良かったので、干渉色は全く見えなかった。
なお、導電性銀微粒子は、絶縁性の有機薄膜で被われていたが、膜厚が極めて薄いため、導電性は、アルミニウム並が確保できた。特に、有機薄膜が単分子膜である場合には、銀と同レベルの導電性が得られた。
Here, since the thickness of the patterned single-layer conductive silver fine particle film of silver fine particles was about 100 nm and the uniformity was very good, no interference color was seen at all.
The conductive silver fine particles were covered with an insulating organic thin film. However, since the film thickness was extremely thin, the conductivity was as good as aluminum. In particular, when the organic thin film was a monomolecular film, the same level of conductivity as silver was obtained.

さらに、電流容量を上げるため導電性銀微粒子膜の膜厚を厚くしたい場合、実施例3に引き続き、共有結合したアミノ基を有する化学吸着単分子膜で被われた銀微粒子がパターン状に1層のみ並べた状態で、且つ粒子サイズレベルで均一厚みのパターン状の単層導電性銀微粒子膜24が形成されたガラス基板表面22に、エポキシ基を有する化学吸着単分子膜で被われた銀微粒子25をアルコールに分散させて塗布し、100℃程度に加熱すると、アミノ基を有する化学吸着単分子膜で被われた銀微粒子がパターン状に単層形成された部分のアミノ基と接触している銀微粒子表面のエポキシ基が前記式(化5)に示したような反応で付加して、ガラス基板表面でアミノ基を有する化学吸着単分子膜で被われた銀微粒子とエポキシ基を有する化学吸着単分子膜で被われた銀微粒子は、二つの単分子膜を介して選択的に結合固化した。 Furthermore, when it is desired to increase the thickness of the conductive silver fine particle film in order to increase the current capacity, the silver fine particles covered with the chemisorbed monomolecular film having a covalently bonded amino group are formed in a single layer in a pattern following Example 3. Silver particles covered with a chemically adsorbed monomolecular film having an epoxy group on a glass substrate surface 22 on which a single-layer conductive silver fine particle film 24 having a uniform thickness at a particle size level is formed. When 25 is dispersed in alcohol and coated and heated to about 100 ° C., the silver fine particles covered with the chemically adsorbed monomolecular film having amino groups are in contact with the amino groups in the portion where the monolayer is formed in a pattern. An epoxy group on the surface of the silver fine particles is added by the reaction shown in the above formula (Chemical Formula 5), and the silver fine particles covered with the chemically adsorbed monomolecular film having amino groups on the glass substrate surface and the epoxy group are formed. Silver microparticles covered with adsorbed monomolecular film was selectively bound and solidified via the two monolayers.

そこで、再びアルコールで基板表面を洗浄し、余分で未反応のエポキシ基を有する化学吸着単分子膜で被われた銀微粒子を洗浄除去すると、ガラス基板表面に共有結合した2層目の銀微粒子が1層のみ並んだ状態で、且つ粒子サイズレベルで均一厚みの2層構造のパターン状の単層導電性銀微粒子膜26が形成できた。(図3(b))
以下同様に、アミノ基を有する化学吸着単分子膜(例えば、第二の反応性の有機膜)で被われた銀微粒子とエポキシ基を有する化学吸着単分子膜(例えば、第一の反応性の有機膜)で被われた銀微粒子を交互に積層すると、多層構造の導電性銀微粒子の累積被膜よりなる配線を製造できた。なお、エポキシ基とアミノ基が付加して銀微粒子が結合硬化した配線は、電導度がおよそ0.2×10ジーメンスの導体配線であった。
Therefore, the surface of the substrate is washed again with alcohol, and the silver fine particles covered with an extra unreacted epoxy group chemically adsorbed monomolecular film are removed by washing, whereby the second layer of silver fine particles covalently bonded to the glass substrate surface 7 A single-layer conductive silver fine particle film 26 having a two-layer structure with a uniform thickness at a particle size level can be formed in a state where only one layer is arranged. (Fig. 3 (b))
Similarly, the chemical adsorption monomolecular film having an epoxy group and the silver fine particles covered with the chemical adsorption monomolecular film having an amino group (for example, the second reactive organic film) (for example, the first reactive organic film). When the silver fine particles covered with the organic film were alternately laminated, a wiring composed of a cumulative film of conductive silver fine particles having a multilayer structure could be manufactured. In addition, the wiring in which the epoxy group and the amino group were added and the silver fine particles were bonded and cured was a conductor wiring having an electric conductivity of approximately 0.2 × 10 6 Siemens.

なお、上記実施例1および2では、反応性基を含む化学吸着剤として式(化1)あるいは(化3)に示した物質を用いたが、上記のもの以外にも、下記(1)〜(16)に示した物質が利用できた。   In Examples 1 and 2, the substance represented by the formula (Chemical Formula 1) or (Chemical Formula 3) was used as the chemical adsorbent containing a reactive group. The substance shown in (16) was available.

(1) (CHOCH)CH2O(CH2)Si(OCH)3
(2) (CHOCH)CH2O(CH2)11Si(OCH)3
(3) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(4) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(5) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(6) (CH2OCH)CH2O(CH2)Si(OC)3
(7) (CHOCH)CH2O(CH2)11Si(OC)3
(8) (CHCHOCH(CH)CH(CH2)Si(OC)3
(9) (CHCHOCH(CH)CH(CH2)Si(OC)3
(10) (CHCHOCH(CH)CH(CH2)Si(OC)3
(11) H2N (CH2)Si(OCH)3
(12) H2N (CH2)Si(OCH)3
(13) H2N (CH2)Si(OCH)3
(14) H2N (CH2)Si(OC)3
(15) H2N (CH2)Si(OC)3
(16) H2N (CH2)Si(OC)3
(1) (CH 2 OCH) CH 2 O (CH 2 ) 7 Si (OCH 3 ) 3
(2) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OCH 3 ) 3
(3) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 2 Si (OCH 3 ) 3
(4) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OCH 3) 3
(5) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OCH 3) 3
(6) (CH2OCH) CH 2 O (CH 2) 7 Si (OC 2 H 5) 3
(7) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OC 2 H 5 ) 3
(8) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OC 2 H 5) 3
(9) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OC 2 H 5) 3
(10) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 6 Si (OC 2 H 5 ) 3
(11) H 2 N (CH 2 ) 5 Si (OCH 3 ) 3
(12) H 2 N (CH 2 ) 7 Si (OCH 3 ) 3
(13) H 2 N (CH 2 ) 9 Si (OCH 3 ) 3
(14) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(15) H 2 N (CH 2 ) 7 Si (OC 2 H 5 ) 3
(16) H 2 N (CH 2 ) 9 Si (OC 2 H 5 ) 3

ここで、(CHOCH)−基は、下記式(化6)で表される官能基を表し、(CHCHOCH(CH)CH−基は、下記式(化7)で表される官能基を表す。 Here, the (CH 2 OCH) — group represents a functional group represented by the following formula (Formula 6), and the (CH 2 CHOCH (CH 2 ) 2 ) CH— group is represented by the following formula (Formula 7). Represents a functional group.

Figure 2007220883
Figure 2007220883

Figure 2007220883
Figure 2007220883

なお、実施例1および2に置いて、シラノール縮合触媒には、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1錫、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ジオクテート、ジオクチル錫ジアセテート、ジオクタン酸第1錫、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄、ジオクチル錫ビスオクチリチオグリコール酸エステル塩、ジオクチル錫マレイン酸エステル塩、ジブチル錫マレイン酸塩ポリマー、ジメチル錫メルカプトプロピオン酸塩ポリマー、ジブチル錫ビスアセチルアセテート、ジオクチル錫ビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート及びビス(アセチルアセトニル)ジープロピルチタネートを用いることが可能であった。 In Examples 1 and 2, silanol condensation catalysts include carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates. Is available. More specifically, stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, lead naphthenate, cobalt naphthenate , Iron 2-ethylhexenoate, dioctyltin bisoctylthioglycolate, dioctyltin maleate, dibutyltin maleate polymer, dimethyltin mercaptopropionate polymer, dibutyltin bisacetylacetate, dioctyltin bisacetyl Laurate, tetrabutyl titanate, tetranonyl titanate and bis (acetylacetonyl) dipropyl titanate could be used.

また、膜形成溶液の溶媒としては、水を含まない有機塩素系溶媒、炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒、あるいはそれら混合物を用いることが可能であった。なお、洗浄を行わず、溶媒を蒸発させて粒子濃度を上げようとする場合には、溶媒の沸点は50〜250℃程度がよい。さらに、吸着剤がアルコキシシラン系の場合で且つ溶媒を蒸発させて有機被膜を形成する場合には、前記溶媒に加え、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれら混合物が使用できた。 Further, as a solvent for the film-forming solution, it is possible to use an organic chlorine-based solvent, a hydrocarbon-based solvent, a fluorinated carbon-based solvent, a silicone-based solvent, or a mixture thereof that does not contain water. In addition, when it is going to raise particle concentration by evaporating a solvent, without wash | cleaning, the boiling point of a solvent is good at about 50-250 degreeC. Further, when the adsorbent is an alkoxysilane type and the organic film is formed by evaporating the solvent, an alcohol type solvent such as methanol, ethanol, propanol, or a mixture thereof can be used in addition to the solvent.

具体的に使用可能なものは、クロロシラン系非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド等を挙げることができる。 Specifically usable are chlorosilane-based non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone, alkyl modified Examples thereof include silicone, polyether silicone, and dimethylformamide.

また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)等がある。なお、これらは1種パターン状の単層独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良い。 Fluorocarbon solvents include fluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). These may be used alone in a single layer with a single pattern, or two or more may be combined as long as they are well mixed. Further, an organic chlorine solvent such as chloroform may be added.

一方、上述のシラノール縮合触媒の代わりに、ケチミン化合物又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いた場合、同じ濃度でも処理時間を半分〜2/3程度まで短縮できた。 On the other hand, when a ketimine compound or organic acid, aldimine compound, enamine compound, oxazolidine compound, aminoalkylalkoxysilane compound is used instead of the above-mentioned silanol condensation catalyst, the treatment time is reduced to about half to 2/3 even at the same concentration. did it.

さらに、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(1:9〜9:1範囲で使用可能だが、通常1:1前後が好ましい。)して用いると、処理時間をさらに数倍早く(30分程度まで)でき、製膜時間を数分の一まで短縮できる。 Furthermore, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound can be used in a range of 1: 9 to 9: 1. )), The processing time can be increased several times faster (up to about 30 minutes), and the film forming time can be reduced to a fraction of a minute.

例えば、シラノール触媒であるジブチル錫オキサイドをケチミン化合物であるジャパンエポキシレジン社のH3に置き換え、その他の条件は同一にしてみたが、反応時間を1時間程度にまで短縮できた他は、ほぼ同様の結果が得られた。 For example, dibutyltin oxide, which is a silanol catalyst, was replaced with H3 from Japan Epoxy Resin, which is a ketimine compound, and the other conditions were the same, but the reaction time was reduced to about 1 hour. Results were obtained.

さらに、シラノール触媒を、ケチミン化合物であるジャパンエポキシレジン社のH3と、シラノール触媒であるジブチル錫ビスアセチルアセトネートの混合物(混合比は1:1)に置き換え、その他の条件は同一にしてみたが、反応時間を30分程度に短縮できた他は、ほぼ同様の結果が得られた。 Furthermore, the silanol catalyst was replaced with a mixture of ketimine compound Japan Epoxy Resin H3 and silanol catalyst dibutyltin bisacetylacetonate (mixing ratio is 1: 1), and other conditions were the same. The same results were obtained except that the reaction time could be shortened to about 30 minutes.

したがって、以上の結果から、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物がシラノール縮合触媒より活性が高いことが明らかとなった。 Therefore, the above results revealed that ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are more active than silanol condensation catalysts.

さらにまた、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物の内の1つとシラノール縮合触媒を混合して用いると、さらに活性が高くなることが確認された。 Furthermore, it was confirmed that the activity is further increased when one of a ketimine compound, an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is mixed with a silanol condensation catalyst.

なお、ここで、利用できるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等がある。 Here, the ketimine compound that can be used is not particularly limited. For example, 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza-3 , 10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-pentadeca Diene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza- 4,19-trieicosadiene and the like.

また、利用できる有機酸としても特に限定されるものではないが、例えば、ギ酸、あるいは酢酸、プロピオン酸、ラク酸、マロン酸等があり、ほぼ同様の効果があった。 Further, the organic acid that can be used is not particularly limited, but there are, for example, formic acid, acetic acid, propionic acid, lactic acid, malonic acid, and the like, which have almost the same effects.

上記実施例1〜4では、ガラス基板と銀微粒子を例として説明したが、本発明は、電子回路が形成された半導体デバイスやプリント基板など如何なる電子デバイスにも用いることが可能である。 In Examples 1 to 4 described above, the glass substrate and the silver fine particles have been described as examples. However, the present invention can be used for any electronic device such as a semiconductor device or a printed circuit board on which an electronic circuit is formed.

本発明の第1の実施例におけるガラス基板表面の反応を分子レベルまで拡大した概念図であり、(a)は反応前の表面の図、(b)は、エポキシ基を含む単分子膜が形成された後の図、(c)は、アミノ基を含む単分子膜が形成された後の図を示す。It is the conceptual diagram which expanded the reaction of the glass substrate surface in the 1st Example of this invention to the molecular level, (a) is the figure of the surface before reaction, (b) is the monomolecular film containing an epoxy group formed (C) shows a view after a monomolecular film containing an amino group is formed. 本発明の第2の実施例における導電性銀微粒子表面の反応を分子レベルまで拡大した概念図であり、(a)は反応前の導電性銀微粒子表面の図、(b)は、エポキシ基を含む単分子膜が形成された後の図、(c)は、アミノ基を含む単分子膜が形成された後の図を示す。It is the conceptual diagram which expanded the reaction of the electroconductive silver fine particle surface in the 2nd Example of this invention to the molecular level, (a) is the figure of the electroconductive silver fine particle surface before reaction, (b) is an epoxy group. The figure after the monomolecular film containing a film is formed, (c) shows the figure after the monomolecular film containing an amino group is formed. 本発明の第3および第4の実施例におけるガラス基板表面の反応を分子レベルまで拡大した概念図であり、(a)はパターン状の単層導電性銀微粒子膜配線として形成された基板表面の図、(b)は、パターン状の単層導電性銀微粒子膜が配線として2層形成された基板表面の図を示す。It is the conceptual diagram which expanded the reaction of the glass substrate surface in the 3rd and 4th Example of this invention to the molecular level, (a) is the substrate surface formed as a pattern-like single layer electroconductive silver fine particle film | membrane wiring. FIG. 2B is a diagram of the substrate surface on which two layers of patterned single-layer conductive silver fine particle films are formed as wiring.

符号の説明Explanation of symbols

1 ガラス基板
2 水酸基
3 エポキシ基を含む単分子膜
エポキシ基を含む単分子膜で被われたガラス基板
5、5’ エポキシ基を持ったパターン状の被膜
6、6’ パターン状の被膜で選択的に被われた基板
11 銀微粒子
12 水酸基
13 エポキシ基を含む単分子膜
14 アミノ基を含む単分子膜
15 エポキシ基を含む単分子膜で被われた銀微粒子
16 アミノ基を含む単分子膜で被われた銀微粒子
21 エポキシ基を有する化学吸着単分子膜
22 ガラス基板
23 アミノ基を有する化学吸着単分子膜で被われた銀微粒子
24 パターン状の単層導電性銀微粒子膜
25 エポキシ基を有する化学吸着単分子膜で被われた銀微粒子
26 2層構造のパターン状の単層導電性微粒子膜
1 Glass substrate 2 Hydroxyl group
3 Monomolecular film containing epoxy group
Patterned film having a glass substrate 5,5 'epoxy groups covered with a monomolecular film containing 4 epoxy groups
6, 6 ′ Substrate selectively covered with a patterned coating film 11 Silver fine particle 12 Hydroxyl group 13 Monomolecular film containing epoxy group 14 Monomolecular film containing amino group
Silver fine particles covered with a monomolecular film containing 15 epoxy groups
Silver fine particles covered with a monomolecular film containing 16 amino groups 21 Chemisorbed monomolecular film having an epoxy group
22 Glass substrate 23 Silver fine particles covered with chemically adsorbed monomolecular film having amino group 24 Patterned single-layer conductive silver fine particle film 25 Silver fine particles covered with chemically adsorbed monomolecular film having epoxy group
26 Patterned single-layer conductive fine particle film of two-layer structure

Claims (21)

基材表面に選択的に1層形成された導電性微粒子の膜が前記基材表面に選択的に形成された第1の有機膜と前記導電性微粒子表面に形成された第2の有機膜を介して互いに共有結合していることを特徴とするパターン状の単層導電性微粒子膜を用いた配線。 A first organic film selectively formed on the surface of the substrate, and a second organic film formed on the surface of the conductive particles; A wiring using a patterned single-layer conductive fine particle film characterized by being covalently bonded to each other. 基材表面に形成された第1の有機被膜と導電性微粒子表面に形成された第2の有機膜が互いに異なることを特徴とする請求項1記載のパターン状の単層導電性微粒子膜を用いた配線。 2. The patterned single-layer conductive fine particle film according to claim 1, wherein the first organic film formed on the surface of the substrate and the second organic film formed on the surface of the conductive fine particle are different from each other. Wiring that was. 共有結合が、エポキシ基とイミノ基の反応で形成された−N−C−の結合であることを特徴とする請求項1記載のパターン状の単層導電性微粒子膜を用いた配線。 The wiring using a patterned single-layer conductive fine particle film according to claim 1, wherein the covalent bond is a -NC- bond formed by a reaction between an epoxy group and an imino group. 基材表面に形成された第1の有機被膜と導電性微粒子表面に形成された第2の有機膜が単分子膜で構成されていることを特徴とする請求項1および2記載のパターン状の単層導電性微粒子膜を用いた配線。 The pattern-like pattern according to claim 1 or 2, wherein the first organic film formed on the surface of the substrate and the second organic film formed on the surface of the conductive fine particles are composed of a monomolecular film. Wiring using single-layer conductive fine particle film. 基材表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と基材表面を反応させて前記基材表面に第1の反応性の有機膜を形成する工程と、前記第1の反応性の有機膜を所定のパターンに加工する工程と、導電性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と導電性微粒子表面を反応させて導電性微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された基材表面に第2の反応性の有機膜で被覆された導電性微粒子を接触させて選択的に反応させる工程と、余分な第2の反応性の有機膜で被覆された導電性微粒子を洗浄除去することを特徴とするパターン状の単層導電性微粒子膜を用いた配線の製造方法。 The substrate surface is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to cause the alkoxysilane compound and the substrate surface to react with each other. Forming a first reactive organic film, processing the first reactive organic film into a predetermined pattern, and forming the conductive fine particles into at least a second alkoxysilane compound and a silanol condensation catalyst. A step of forming a second reactive organic film on the surface of the conductive fine particles by allowing the alkoxysilane compound and the surface of the conductive fine particles to react with each other by dispersing in a chemical adsorption solution prepared by mixing a non-aqueous organic solvent; A step of bringing the conductive fine particles coated with the second reactive organic film into contact with the surface of the base material on which the first reactive organic film is formed to selectively react, and an extra second reactivity of Method for producing wiring using a patterned single layer conductive fine particle film, which is washed off the coated conductive fine particles in the machine membrane. 基材表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程、および導電性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と導電性微粒子表面を反応させて導電性微粒子表面に第2の反応性の有機膜を形成する工程の後に、それぞれ基材および導電性微粒子表面を有機溶剤で洗浄して基材及び導電性微粒子表面に共有結合した第1及び第2の反応性の単分子膜を形成することを特徴とする請求項5記載のパターン状の単層導電性微粒子膜を用いた配線の製造方法。 The substrate surface is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to cause the alkoxysilane compound and the substrate surface to react with each other. A step of forming a first reactive organic film, and an electrically conductive fine particle dispersed in a chemical adsorption solution prepared by mixing at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, After the step of reacting the silane compound with the surface of the conductive fine particles to form a second reactive organic film on the surface of the conductive fine particles, the surface of the substrate and the conductive fine particles are washed with an organic solvent, respectively. 6. A patterned monolayer conductive fine particle film according to claim 5, wherein the first and second reactive monomolecular films covalently bonded to the surface of the conductive fine particle are formed. A method for manufacturing a wiring. 第1の反応性の有機膜がエポキシ基を含み第2の反応性の有機膜がイミノ基を含むことを特徴とする請求項5記載のパターン状の単層導電性微粒子膜を用いた配線の製造方法。 6. The wiring of the patterned single-layer conductive fine particle film according to claim 5, wherein the first reactive organic film contains an epoxy group and the second reactive organic film contains an imino group. Production method. 第1の反応性の単分子膜がエポキシ基を含み第2の反応性の単分子膜がイミノ基を含むことを特徴とする請求項6記載のパターン状の単層導電性微粒子膜を用いた配線の製造方法。 The patterned monolayer conductive fine particle film according to claim 6, wherein the first reactive monomolecular film contains an epoxy group and the second reactive monomolecular film contains an imino group. Wiring manufacturing method. 基材表面に選択的に層状に累積され導電性微粒子が導電性微粒子表面に形成された有機被膜を介して層間で互いに共有結合していることを特徴とするパターン状の導電性微粒子膜積層体を用いた配線。 Patterned conductive fine particle film laminate, wherein the conductive fine particles are selectively accumulated in layers on the substrate surface, and the layers are covalently bonded to each other through an organic coating formed on the surface of the conductive fine particles. Wiring using. 導電性微粒子表面に形成された有機被膜が2種類有り、第1の有機膜が形成された導電性微粒子と第2の有機膜が形成された導電性微粒子とが交互に積層されていることを特徴とする請求項9記載のパターン状の導電性微粒子膜積層体を用いた配線。 There are two types of organic coatings formed on the surface of the conductive fine particles, and the conductive fine particles on which the first organic film is formed and the conductive fine particles on which the second organic film is formed are alternately laminated. 10. A wiring using the patterned conductive fine particle film laminate according to claim 9. 第1の有機膜と第2の有機膜が反応して共有結合を形成していることを特徴とする請求項10記載のパターン状の導電性微粒子膜積層体を用いた配線。 11. The wiring using a patterned conductive fine particle film laminate according to claim 10, wherein the first organic film and the second organic film react to form a covalent bond. 共有結合が、エポキシ基とイミノ基の反応で形成された−N−C−の結合であることを特徴とする請求項9記載のパターン状の導電性微粒子膜積層体を用いた配線。 The wiring using the patterned conductive fine particle film laminate according to claim 9, wherein the covalent bond is a —N—C— bond formed by a reaction between an epoxy group and an imino group. 少なくとも基材表面を第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程と、前記第1の反応性の有機膜を所定のパターンに加工する工程と、第1の導電性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と導電性微粒子表面を反応させて第1の導電性微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された基材表面に第2の反応性の有機膜で被覆された第1の導電性微粒子を接触させて反応させる工程と、余分な第2の反応性の有機膜で被覆された第1の導電性微粒子を洗浄除去して第1のパターン状の単層導電性微粒子膜を選択的に形成する工程と、第2の導電性微粒子を少なくとも第3のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と導電性微粒子表面を反応させて第2の導電性微粒子表面に第3の反応性の有機膜を形成する工程と、第2の反応性の有機膜で被覆された第1のパターン状の単層導電性微粒子膜が形成された基材表面に第3の反応性の有機膜で被覆された第2の導電性微粒子を接触させて反応させる工程と、余分な第3の反応性の有機膜で被覆された第2の導電性微粒子を洗浄除去して第2のパターン状の単層導電性微粒子膜を選択的に形成する工程とを含むことを特徴とするパターン状の導電性微粒子膜積層体を用いた配線の製造方法。 At least the base material surface is brought into contact with a chemical adsorption solution prepared by mixing a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the alkoxysilane compound and the base material surface are reacted to form a base material surface. A step of forming a first reactive organic film, a step of processing the first reactive organic film into a predetermined pattern, and the first conductive fine particles at least with a second alkoxysilane compound and silanol condensation A second reactive organic film is formed on the surface of the first conductive fine particle by dispersing it in a chemisorbed liquid prepared by mixing a catalyst and a non-aqueous organic solvent and reacting the alkoxysilane compound with the surface of the conductive fine particle. A step of forming, a step of bringing the first conductive fine particles coated with the second reactive organic film into contact with the surface of the substrate on which the first reactive organic film is formed, and reacting, Second anti Cleaning and removing the first conductive fine particles coated with the conductive organic film to selectively form a first patterned single-layer conductive fine particle film; The alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent are dispersed in a chemical adsorption solution prepared to cause the alkoxysilane compound and the surface of the conductive fine particles to react to form a third on the surface of the second conductive fine particles. Forming a reactive organic film, and a third reactive organic film on the surface of the substrate on which the first patterned single-layer conductive fine particle film coated with the second reactive organic film is formed. A step of bringing the second conductive fine particles coated with the organic film into contact with each other and reacting, and a second pattern of the second conductive fine particles coated with the extra third reactive organic film is removed by washing. For selectively forming a single-layer conductive fine particle film Method for producing wiring using a patterned conductive fine particle film laminate which comprises and. 第1の反応性の有機膜と第3の反応性の有機膜が同じものであることを特徴とする請求項13記載のパターン状の導電性微粒子膜積層体を用いた配線の製造方法。 14. The method of manufacturing a wiring using the patterned conductive fine particle film laminate according to claim 13, wherein the first reactive organic film and the third reactive organic film are the same. 第2のパターン状の単層導電性微粒子膜を形成する工程の後、同様に第1のパターン状の単層導電性微粒子膜を形成する工程と第2のパターン状の単層導電性微粒子膜を形成する工程を繰り返し行うことを特徴とする請求項13記載の多層構造のパターン状の導電性微粒子膜積層体を用いた配線の製造方法。 After the step of forming the second patterned single-layer conductive fine particle film, the step of similarly forming the first patterned single-layer conductive fine particle film and the second patterned single-layer conductive fine particle film 14. The method of manufacturing a wiring using a patterned conductive fine particle film laminate having a multilayer structure according to claim 13, wherein the step of forming is repeated. 第1〜3の反応性の有機膜を形成する工程の後に、それぞれ基材あるいは導電性微粒子表面を有機溶剤で洗浄して基材や導電性微粒子表面に共有結合した第1〜3の反応性の単分子膜を形成することを特徴とする請求項13記載のパターン状の導電性微粒子膜積層体を用いた配線の製造方法。 After the steps of forming the first to third reactive organic films, the first to third reactivities in which the surface of the base material or conductive fine particle is washed with an organic solvent and covalently bonded to the surface of the base material or conductive fine particle, respectively. 14. The method of manufacturing a wiring using the patterned conductive fine particle film laminate according to claim 13, wherein the monomolecular film is formed. 第1および3の反応性の有機膜がエポキシ基を含み第2の反応性の有機膜がイミノ基を含むことを特徴とする請求項13記載のパターン状の導電性微粒子膜積層体を用いた配線の製造方法。 14. The patterned conductive fine particle film laminate according to claim 13, wherein the first and third reactive organic films contain an epoxy group and the second reactive organic film contains an imino group. Wiring manufacturing method. シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いることを特徴とする請求項5および13に記載のパターン状の単層導電性微粒子膜およびパターン状の導電性微粒子膜積層体を用いた配線の製造方法。 14. The patterned single-layer conductivity according to claim 5, wherein a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of the silanol condensation catalyst. A method of manufacturing a wiring using a fine particle film and a patterned conductive fine particle film laminate. シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いることを特徴とする請求項5および13に記載のパターン状の単層導電性微粒子膜およびパターン状の導電性微粒子膜積層体を用いた配線の製造方法。 14. The method according to claim 5, wherein at least one selected from a ketimine compound or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is used as a co-catalyst for the silanol condensation catalyst. A method for producing a wiring using the patterned single-layer conductive fine particle film and the patterned conductive fine particle film laminate. 請求項1乃至7記載の配線および9乃至12記載の配線を用いた電子部品。 An electronic component using the wiring according to claim 1 and the wiring according to 9 to 12. 請求項1乃至7記載の配線および9乃至12記載の配線を用いた電子機器。
The electronic device using the wiring of Claims 1 thru | or 7, and the wiring of 9 thru | or 12.
JP2006039272A 2006-02-16 2006-02-16 Wiring and its manufacturing method, and electronic parts and electronic apparatus using the same Pending JP2007220883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039272A JP2007220883A (en) 2006-02-16 2006-02-16 Wiring and its manufacturing method, and electronic parts and electronic apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039272A JP2007220883A (en) 2006-02-16 2006-02-16 Wiring and its manufacturing method, and electronic parts and electronic apparatus using the same

Publications (1)

Publication Number Publication Date
JP2007220883A true JP2007220883A (en) 2007-08-30

Family

ID=38497834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039272A Pending JP2007220883A (en) 2006-02-16 2006-02-16 Wiring and its manufacturing method, and electronic parts and electronic apparatus using the same

Country Status (1)

Country Link
JP (1) JP2007220883A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212181A (en) * 2008-03-03 2009-09-17 Toshiba Corp Nanoparticle thin film, method of manufacturing of nanoparticle thin film, nanoparticle thin film pattern forming method and circuit pattern forming method
WO2010029635A1 (en) * 2008-09-11 2010-03-18 パイオニア株式会社 Method for metallic wiring formation and electronic component comprising metallic wiring
JP2012109323A (en) * 2010-11-16 2012-06-07 Alps Electric Co Ltd Method for forming pattern of film
WO2018043304A1 (en) * 2016-09-01 2018-03-08 Jsr株式会社 Selective modification method for base material surfaces and composition
CN112635103A (en) * 2020-12-18 2021-04-09 深圳先进技术研究院 Conductive pattern, preparation method thereof and flexible electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002341161A (en) * 2001-05-21 2002-11-27 Kunihito Kawamoto Photonic crystal and method for producing the same
JP2003168606A (en) * 2001-01-24 2003-06-13 Matsushita Electric Ind Co Ltd Fine particle array, its manufacturing method and device using the method
JP2004067428A (en) * 2002-08-05 2004-03-04 Kunihito Kawamoto Method of patterning metallic particle and method of manufacturing ceramic electronic component using the same
JP2004200190A (en) * 2002-12-16 2004-07-15 Kunihito Kawamoto Method for forming metallic film and method for manufacturing ceramic electronic part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168606A (en) * 2001-01-24 2003-06-13 Matsushita Electric Ind Co Ltd Fine particle array, its manufacturing method and device using the method
JP2002341161A (en) * 2001-05-21 2002-11-27 Kunihito Kawamoto Photonic crystal and method for producing the same
JP2004067428A (en) * 2002-08-05 2004-03-04 Kunihito Kawamoto Method of patterning metallic particle and method of manufacturing ceramic electronic component using the same
JP2004200190A (en) * 2002-12-16 2004-07-15 Kunihito Kawamoto Method for forming metallic film and method for manufacturing ceramic electronic part

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212181A (en) * 2008-03-03 2009-09-17 Toshiba Corp Nanoparticle thin film, method of manufacturing of nanoparticle thin film, nanoparticle thin film pattern forming method and circuit pattern forming method
WO2010029635A1 (en) * 2008-09-11 2010-03-18 パイオニア株式会社 Method for metallic wiring formation and electronic component comprising metallic wiring
JP2012109323A (en) * 2010-11-16 2012-06-07 Alps Electric Co Ltd Method for forming pattern of film
WO2018043304A1 (en) * 2016-09-01 2018-03-08 Jsr株式会社 Selective modification method for base material surfaces and composition
CN112635103A (en) * 2020-12-18 2021-04-09 深圳先进技术研究院 Conductive pattern, preparation method thereof and flexible electronic device
CN112635103B (en) * 2020-12-18 2022-07-29 深圳先进技术研究院 Conductive pattern, preparation method thereof and flexible electronic device

Similar Documents

Publication Publication Date Title
JP2007118276A (en) Single-layer fine particle film, cumulated fine particle film and manufacturing method of them
JP2007117827A (en) Pattern-like fine particle film and its production method
JP4653716B2 (en) Highly conductive ink composition and method for producing metal conductive pattern
WO2008068873A1 (en) Monolayer nanoparticle film, multilayer nanoparticle film, and manufacturing method thereof
JP2007220883A (en) Wiring and its manufacturing method, and electronic parts and electronic apparatus using the same
JP4982640B2 (en) WIRING, MANUFACTURING METHOD THEREOF, AND ELECTRONIC COMPONENT AND ELECTRONIC DEVICE USING WIRING
JP4848502B2 (en) WIRING, MANUFACTURING METHOD THEREOF, AND ELECTRONIC COMPONENT AND ELECTRONIC DEVICE USING THEM
JP5487460B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
JP2007173518A (en) Optical sensor and manufacturing method thereof
JP2007119545A (en) Fine particle film and method for producing the same
JP4868496B2 (en) Solar cell and manufacturing method thereof
US9200012B2 (en) Patterned fine particle film structures
JP5071955B2 (en) Electrode, manufacturing method thereof, lead wiring using the same, connecting method thereof, electronic component and electronic device using the same
JP5167528B2 (en) Chemisorption solution
JP5082057B2 (en) Conductive paste and manufacturing method thereof, wiring and manufacturing method thereof, and electronic component and electronic device using the same
JP5002799B2 (en) Electrode and manufacturing method thereof, lead wiring and connecting method thereof, and electronic component and electronic device using the same
JP5235059B2 (en) Optical sensor and manufacturing method thereof
JP2007128605A (en) Magnetic recording medium, its manufacturing method and magnetic recording and reading device using the same
JP5611503B2 (en) Patterned insulating fine particle film, method for producing the same, electronic component, micromachine, and optical component using the same
JP2008221369A (en) Particulate membrane and method of manufacturing the same
JP2007142004A (en) Arrangement-controlled patterned single-layer insulating particulate film, insulating particulate built up film, and forming method thereof
JP2007290406A (en) Single-layer fine particle film, cumulated fine particle film and manufacturing method of them
JP2007127847A (en) Antireflection film, its manufacturing method and optical apparatus using same
JP2007128607A (en) Magnetic recording medium, its manufacturing method, and magnetic recording and reading device using the same
JP5288432B2 (en) Insulating fine particle film, manufacturing method thereof, and capacitor using insulating fine particle film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091103

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111128