JP2007220876A - Soft magnetic alloy consolidation object, and its manufacturing method - Google Patents

Soft magnetic alloy consolidation object, and its manufacturing method Download PDF

Info

Publication number
JP2007220876A
JP2007220876A JP2006039224A JP2006039224A JP2007220876A JP 2007220876 A JP2007220876 A JP 2007220876A JP 2006039224 A JP2006039224 A JP 2006039224A JP 2006039224 A JP2006039224 A JP 2006039224A JP 2007220876 A JP2007220876 A JP 2007220876A
Authority
JP
Japan
Prior art keywords
amorphous alloy
alloy powder
powder
soft magnetic
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006039224A
Other languages
Japanese (ja)
Other versions
JP4618557B2 (en
Inventor
Nobuo Kawashita
宜郎 川下
Masaru Owada
優 大和田
Tetsuro Tayu
哲朗 田湯
Hironori Sakamoto
宏規 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006039224A priority Critical patent/JP4618557B2/en
Publication of JP2007220876A publication Critical patent/JP2007220876A/en
Application granted granted Critical
Publication of JP4618557B2 publication Critical patent/JP4618557B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soft magnetic alloy consolidation object capable of being preferably used as a magnetic core for a motor for an electric automobile, a hybrid car or the like, and to provide a manufacturing method for the soft magnetic alloy consolidation object. <P>SOLUTION: The soft magnetic alloy consolidation object is manufactured by treating at least one kind of amorphous alloy powder by a pressure molding. In the compact, the amorphous alloy powder of 50 to 99 vol.% has an insulator film on its surface while using the whole volume of the amorphous alloy powder as a reference, and the amorphous alloy powder of 1 to 50 vol.% does not have the insulator film on its surface in the amorphous alloy powder. The manufacturing method contains a process (1) in which powder having no insulator film on the surface of the amorphous alloy powder and powder having the insulator film on the surface of the amorphous alloy powder are mixed so that each content reaches 1 to 50 vol.% and 50 to 99 vol.%, while using the whole volume of the amorphous alloy powder as the reference. The manufacturing method further contains the process (2) treating powder obtained in the process (1) by the pressure molding. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軟磁性合金圧密体及びその製造方法に係り、更に詳細には、例えば電気自動車やハイブリッド車等のモーターの磁心として好適に用いることができる軟磁性合金圧密体及びその製造方法に関する。   The present invention relates to a soft magnetic alloy compact and a method for manufacturing the same, and more particularly to a soft magnetic alloy compact and a method for manufacturing the same that can be suitably used as a magnetic core of a motor of, for example, an electric vehicle or a hybrid vehicle.

一般に、金属軟磁性材料は、高い飽和磁束密度と高透磁率とを有するが、電気抵抗率が低いため、渦電流損失が大きいことが知られている。一方、金属酸化物軟磁性材料は、金属軟磁性材料と比較して電気抵抗率は高く、渦電流損失は小さいが、飽和磁束密度が不十分であることが知られている。
このような事情から、双方の欠点を無くした軟磁性材料として、高い飽和磁束密度と高い電気抵抗率とを併有する複合軟磁性材料が開発されている。
In general, a metal soft magnetic material has a high saturation magnetic flux density and a high magnetic permeability, but is known to have a large eddy current loss because of its low electrical resistivity. On the other hand, it is known that the metal oxide soft magnetic material has higher electrical resistivity and smaller eddy current loss than the metal soft magnetic material, but the saturation magnetic flux density is insufficient.
Under such circumstances, a composite soft magnetic material having both a high saturation magnetic flux density and a high electric resistivity has been developed as a soft magnetic material that eliminates both drawbacks.

例えば、常温での成形が容易な金属については、表面を絶縁物で被覆した金属粒子を冷間プレス成形し、歪取り熱処理を実施した製品が実用化されている。
また、常温での成形が困難な合金については、絶縁性のバインダーと金属粒子を混合して射出成形やプレス成形する製品が実用化されている。
しかしながら、これらは密度が低く、良好な磁気特性が得られないという問題があり、熱間成形による高密度化と絶縁膜の絶縁性維持が望まれている。
For example, for metals that can be easily molded at room temperature, products in which metal particles whose surfaces are coated with an insulating material are cold press-molded and subjected to strain relief heat treatment have been put into practical use.
For alloys that are difficult to mold at room temperature, products that are injection molded or press molded by mixing an insulating binder and metal particles have been put to practical use.
However, these have a problem that the density is low and good magnetic properties cannot be obtained, and it is desired to increase the density by hot forming and maintain the insulating properties of the insulating film.

また、近年、モーター等の電気製品の小型化に伴い、これらの電気製品内の各種素子に用いられる磁心材料も小型化且つ高性能化が要求されており、従来用いられているフェライトなどの金属酸化物に替わって、磁束密度が高い鉄(Fe)にケイ素(Si)やコバルト(Co)、ニッケル(Ni)を含有させた高合金鋼を利用することが望まれている。
しかしながら、これら高合金鋼は金属であるため、上述したように金属酸化物と比較して電気抵抗率が低く、使用時の発熱量が多いという問題があり、モーターに使用した場合には、発熱によるロスが生じ、効率が低下することが知られている。
In recent years, along with miniaturization of electric products such as motors, magnetic core materials used for various elements in these electric products are also required to be miniaturized and high performance, and conventionally used metals such as ferrite. Instead of oxides, it is desired to use high alloy steel in which silicon (Si), cobalt (Co), and nickel (Ni) are contained in iron (Fe) having a high magnetic flux density.
However, since these high alloy steels are metals, there is a problem that the electrical resistivity is low as compared with metal oxides as described above, and there is a large amount of heat generated during use. It is known that the loss due to this occurs and the efficiency decreases.

かかる問題点を克服するために、軟磁性金属粒子に高抵抗軟磁性物質を被覆してプラズマ活性化焼結する製造方法が提案されている(特許文献1参照。)。
また、無機絶縁物を被覆した金属粉末を熱間成型する製造方法が提案されている(特許文献2参照。)。
更に、金属ガラス粉末に絶縁処理を施し、加圧成形して得られる圧粉磁心が提案されている(特許文献3参照。)。
特開平4−226003号公報 特開平8−51010号公報 特開2002−151317号公報
In order to overcome such problems, a manufacturing method in which soft magnetic metal particles are coated with a high-resistance soft magnetic material and plasma activated sintering is proposed (see Patent Document 1).
In addition, a manufacturing method has been proposed in which metal powder coated with an inorganic insulator is hot-molded (see Patent Document 2).
Furthermore, a powder magnetic core obtained by subjecting metal glass powder to insulation treatment and press molding has been proposed (see Patent Document 3).
JP-A-4-226003 JP-A-8-51010 JP 2002-151317 A

しかしながら、特許文献1に記載の従来技術においては、高抵抗軟磁性物質として各種フェライトや窒化鉄などが用いられており、これらは高温での焼結が可能である反面、必ずしも十分な電気絶縁性が得られないという問題があった。   However, in the prior art described in Patent Document 1, various ferrites, iron nitrides, and the like are used as high-resistance soft magnetic materials, and these can be sintered at high temperatures, but they are not always sufficiently electrically insulating. There was a problem that could not be obtained.

また、特許文献2に記載の従来技術においては、絶縁皮膜として合金粉末より酸化物が不安定なものが使用されており、成形時に合金粉末が酸化され、磁気特性や絶縁性が劣化する問題が生じるおそれがあった。   Further, in the prior art described in Patent Document 2, an insulating film whose oxide is more unstable than the alloy powder is used, and the alloy powder is oxidized at the time of molding, and there is a problem that the magnetic properties and the insulation are deteriorated. There was a risk of it occurring.

更に、現状の高合金鋼は強度が高いため、成形温度が低い場合には緻密化が困難である一方、成形温度が高い場合には被覆した絶縁材が熱間成形中に合金と反応したり皮膜自体が変質して絶縁性を劣化させるという問題があった。
このような問題に対し、特許文献3に記載の従来技術においては、金属ガラスを用いることにより低温での圧密化に成功しているが、用いる原料粉末の配合により密度がばらついたり、皮膜同士の密着性が悪く十分な強度が得られない等の問題が生じることがあった。
Furthermore, because the current high alloy steel has high strength, it is difficult to densify when the forming temperature is low, whereas when the forming temperature is high, the coated insulating material may react with the alloy during hot forming. There was a problem that the coating itself was altered and the insulation was deteriorated.
For such problems, in the prior art described in Patent Document 3, the metal glass is used to achieve consolidation at a low temperature, but the density varies depending on the composition of the raw material powder used. In some cases, the adhesiveness is poor and sufficient strength cannot be obtained.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、例えば電気自動車やハイブリッド車等のモーターの磁心として好適に用いることができる軟磁性合金圧密体及びその製造方法を提供することにある。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to soften a soft magnetic alloy that can be suitably used as a magnetic core of a motor of, for example, an electric vehicle or a hybrid vehicle. It is in providing a body and its manufacturing method.

本発明者らは、上記目的を達成するために鋭意研究を重ねた。
まず、従来から電気抵抗の高抵抗化の指標として一般的に用いられている直流抵抗と、渦電流による発熱量の相関について調査した。
その結果、これらは一対一の相関関係にはなく、電気抵抗が劣っていても渦電流による発熱が抑制される場合があることを見出した。これは、直流抵抗が測定器両端子間の直線的な電気の導通に対する指標であるのに対し、渦電流による発熱量は、交番磁場方向に垂直な断面における環状の電気の導通に支配されるものであるためと推定される。
したがって、材料組織において、粒子が環状に短絡している状態を阻止するか又は可能な限り曲率が小さい環状の短絡に抑制することが渦電流による発熱を抑制するために効果的な手法であると推測される。
そこで、材料組織と渦電流による発熱量の相関について調査した。
その結果、絶縁物で被覆した粉末と被覆していない粉末とを混合しても、その配合比(体積率)によっては、電気抵抗が劣化しても渦電流による発熱などいわゆる渦電流損失が増大しない範囲があることを見出し、本発明を完成するに至った。
更に、この絶縁物で被覆していない粉末を所定の配合比(体積率)で混在させることによって、強度が向上することも見出した。
The inventors of the present invention have made extensive studies to achieve the above object.
First, we investigated the correlation between DC resistance, which has been conventionally used as an index for increasing electrical resistance, and the amount of heat generated by eddy current.
As a result, they found that they are not in a one-to-one correlation, and that heat generation due to eddy currents may be suppressed even if the electrical resistance is inferior. This is because the direct current resistance is an indicator for linear electrical conduction between both terminals of the measuring instrument, whereas the amount of heat generated by the eddy current is governed by annular electrical conduction in a cross section perpendicular to the alternating magnetic field direction. It is presumed that it is a thing.
Therefore, in the material structure, preventing the state where the particles are short-circuited in the ring or suppressing the short-circuit in the ring as small as possible is an effective technique for suppressing heat generation due to the eddy current. Guessed.
Therefore, the correlation between the material structure and the amount of heat generated by the eddy current was investigated.
As a result, even if the powder coated with the insulator and the powder not coated are mixed, depending on the mixing ratio (volume ratio), so-called eddy current loss such as heat generation due to eddy current increases even if the electrical resistance deteriorates. The present inventors have found that there is a range that does not, and have completed the present invention.
Furthermore, it has also been found that the strength is improved by mixing the powder not coated with the insulator at a predetermined blending ratio (volume ratio).

即ち、本発明の軟磁性合金圧密体は、少なくとも1種の非晶質合金粉末を加圧成形処理して成り、該非晶質合金粉末は、該非晶質合金粉末の全体積を基準として、50〜99体積%の非晶質合金粉末がその表面に絶縁物被膜を有しており、且つ1〜50体積%の非晶質合金粉末がその表面に絶縁物被膜を有していないことを特徴とする。   That is, the soft magnetic alloy compact of the present invention is formed by press-molding at least one amorphous alloy powder, and the amorphous alloy powder is 50% on the basis of the total volume of the amorphous alloy powder. ~ 99% by volume of amorphous alloy powder has an insulating film on its surface, and 1 to 50% by volume of amorphous alloy powder has no insulating film on its surface And

また、本発明の軟磁性合金圧密体の第1の好適形態は、少なくとも1種の非晶質合金粉末を加圧成形処理して成り、該非晶質合金粉末は、該非晶質合金粉末の全体積を基準として、50〜99体積%の非晶質合金粉末がその表面に絶縁物被膜を有しており、且つ1〜50体積%の非晶質合金粉末がその表面に絶縁物被膜を有していないものであって、該非晶質合金粉末は、その平均粒径が5〜400μmであることを特徴とする。   The first preferred embodiment of the soft magnetic alloy compact of the present invention is formed by pressure-molding at least one amorphous alloy powder, and the amorphous alloy powder is a whole of the amorphous alloy powder. Based on the product, 50 to 99% by volume of amorphous alloy powder has an insulating film on its surface, and 1 to 50% by volume of amorphous alloy powder has an insulating film on its surface. The amorphous alloy powder is characterized by having an average particle size of 5 to 400 μm.

更に、本発明の軟磁性合金圧密体の第2の好適形態は、少なくとも1種の非晶質合金粉末を加圧成形処理して成り、該非晶質合金粉末は、該非晶質合金粉末の全体積を基準として、50〜99体積%の非晶質合金粉末がその表面に絶縁物被膜を有しており、且つ1〜50体積%の非晶質合金粉末がその表面に絶縁物被膜を有していないものであって、更に該非晶質合金粉末は、異なる粒度分布を有する上記表面に絶縁物被膜を有していない非晶質合金粉末Aと上記表面に絶縁物被膜を有している非晶質合金粉末Bとから成り、該非晶質合金粉末Aの平均粒径(r)と該非晶質合金粉末Bの平均粒径(r)とが次式(1)
/r<1…(1)
の関係を満足することを特徴とする。
Furthermore, a second preferred embodiment of the soft magnetic alloy compact of the present invention is formed by pressure-molding at least one amorphous alloy powder, and the amorphous alloy powder is a whole of the amorphous alloy powder. Based on the product, 50 to 99% by volume of amorphous alloy powder has an insulating film on its surface, and 1 to 50% by volume of amorphous alloy powder has an insulating film on its surface. Further, the amorphous alloy powder further has an amorphous alloy powder A having a different particle size distribution and no insulating film on the surface, and an insulating film on the surface. The amorphous alloy powder B comprises an average particle size (r A ) of the amorphous alloy powder A and an average particle size (r B ) of the amorphous alloy powder B expressed by the following formula (1):
r A / r B <1 (1)
It is characterized by satisfying the relationship.

また、本発明の軟磁性合金圧密体の第3の好適形態は、少なくとも1種の非晶質合金粉末を加圧成形処理して成り、該非晶質合金粉末は、該非晶質合金粉末の全体積を基準として、50〜99体積%の非晶質合金粉末がその表面に絶縁物被膜を有しており、且つ1〜50体積%の非晶質合金粉末がその表面に絶縁物被膜を有していないものであって、更に該非晶質合金粉末は、異なる粒度分布を有する上記表面に絶縁物被膜を有していない非晶質合金粉末Aと上記表面に絶縁物被膜を有している非晶質合金粉末Bとから成り、該非晶質合金粉末Aの平均粒径(r)と該非晶質合金粉末Bの平均粒径(r)とが次式(2)
0.05≦r/r≦0.3…(2)
の関係を満足することを特徴とする。
The third preferred embodiment of the soft magnetic alloy compact of the present invention is formed by pressure-molding at least one amorphous alloy powder, and the amorphous alloy powder is a whole of the amorphous alloy powder. Based on the product, 50 to 99% by volume of amorphous alloy powder has an insulating film on its surface, and 1 to 50% by volume of amorphous alloy powder has an insulating film on its surface. Further, the amorphous alloy powder further has an amorphous alloy powder A having a different particle size distribution and no insulating film on the surface, and an insulating film on the surface. An amorphous alloy powder B, and the average particle size (r A ) of the amorphous alloy powder A and the average particle size (r B ) of the amorphous alloy powder B are expressed by the following formula (2):
0.05 ≦ r A / r B ≦ 0.3 (2)
It is characterized by satisfying the relationship.

更にまた、本発明の軟磁性合金圧密体の第4の好適形態は、少なくとも1種の非晶質合金粉末を加圧成形処理して成り、該非晶質合金粉末は、該非晶質合金粉末の全体積を基準として、50〜99体積%の非晶質合金粉末がその表面に絶縁物被膜を有しており、且つ1〜50体積%の非晶質合金粉末がその表面に絶縁物被膜を有していないものであって、更に該非晶質合金粉末は、異なる粒度分布を有する上記表面に絶縁物被膜を有していない非晶質合金粉末Aと上記表面に絶縁物被膜を有している非晶質合金粉末Bとから成り、該非晶質合金粉末Aの平均粒径(r)と該非晶質合金粉末Bの平均粒径(r)とが次式(1)
/r<1…(1)
の関係を満足すると共に、該非晶質合金粉末Bのガラス転移温度を基準として、該非晶質合金粉末Aのガラス転移温度が10K以上低いことを特徴とする。
Furthermore, a fourth preferred embodiment of the soft magnetic alloy compact of the present invention is formed by subjecting at least one amorphous alloy powder to a pressure forming treatment, and the amorphous alloy powder is formed of the amorphous alloy powder. Based on the total volume, 50 to 99% by volume of amorphous alloy powder has an insulating film on its surface, and 1 to 50% by volume of amorphous alloy powder has an insulating film on its surface. The amorphous alloy powder further has an amorphous alloy powder A having a different particle size distribution and no insulating film on the surface, and an insulating film on the surface. The average particle size (r A ) of the amorphous alloy powder A and the average particle size (r B ) of the amorphous alloy powder B are expressed by the following formula (1):
r A / r B <1 (1)
And the amorphous alloy powder A has a glass transition temperature lower by 10 K or more on the basis of the glass transition temperature of the amorphous alloy powder B.

また、本発明の軟磁性合金圧密体の製造方法は、上記本発明の軟磁性合金圧密体を製造する方法であって、下記の工程(1)及び(2)を含むことを特徴とする。
(1)非晶質合金粉末の全体積を基準として、非晶質合金粉末の表面に絶縁物被膜を有していない粉末及び非晶質合金粉末の表面に絶縁物被膜を有している粉末を、それぞれの含有率が1〜50体積%及び50〜99体積%となるように混合する工程
(2)(1)工程で得られた粉末を加圧成形処理する工程
Moreover, the manufacturing method of the soft magnetic alloy compact of this invention is a method of manufacturing the said soft magnetic alloy compact of this invention, Comprising: The following processes (1) and (2) are included, It is characterized by the above-mentioned.
(1) Based on the total volume of the amorphous alloy powder, a powder that does not have an insulator coating on the surface of the amorphous alloy powder and a powder that has an insulator coating on the surface of the amorphous alloy powder Step of mixing the powders obtained in steps (2) and (1) so that the respective contents are 1 to 50% by volume and 50 to 99% by volume

本発明によれば、非晶質合金粉末の全体積を基準として、非晶質合金粉末の表面に絶縁物被膜を有していない粉末及び非晶質合金粉末の表面に絶縁物被膜を有している粉末を、それぞれの含有率が1〜50体積%及び50〜99体積%となるように混合し、得られた粉末を加圧成形処理することなどとしたため、電気自動車やハイブリッド車等のモーターの磁心として好適に用いることができる軟磁性合金圧密体及びその製造方法を提供することができる。   According to the present invention, on the basis of the total volume of the amorphous alloy powder, the surface of the amorphous alloy powder does not have an insulator coating and the surface of the amorphous alloy powder has an insulator coating. Are mixed so that the respective contents are 1 to 50% by volume and 50 to 99% by volume, and the obtained powder is subjected to pressure molding treatment, etc. It is possible to provide a soft magnetic alloy compact that can be suitably used as a magnetic core of a motor and a method for manufacturing the same.

以下、本発明の軟磁性合金圧密体について詳細に説明する。
上述の如く、本発明の軟磁性合金圧密体は、少なくとも1種の非晶質合金粉末を加圧成形処理して成るものである。
かかる非晶質合金粉末は、当該非晶質合金粉末の全体積を基準として、50〜99体積%の非晶質合金粉末がその表面に絶縁物被膜を有しており、且つ1〜50体積%の非晶質合金粉末がその表面に絶縁物被膜を有していない。
このような構成とすることにより、優れた強度を有し、且つ渦電流損失を低減し得る軟磁性合金圧密体となる。
Hereinafter, the soft magnetic alloy compact of the present invention will be described in detail.
As described above, the soft magnetic alloy compact of the present invention is formed by pressure-molding at least one amorphous alloy powder.
Such amorphous alloy powder has 50 to 99 volume% of amorphous alloy powder having an insulating film on its surface, and 1 to 50 volume based on the total volume of the amorphous alloy powder. % Amorphous alloy powder does not have an insulator coating on its surface.
By adopting such a configuration, a soft magnetic alloy consolidated body having excellent strength and capable of reducing eddy current loss is obtained.

表面に絶縁物被膜を有する非晶質合金粉末の割合を50体積%未満とする、換言すれば表面に絶縁物被膜を有していない非晶質合金粉末の割合を50体積%超とすると、渦電流損失の低減効果が損われる場合が著しく増加する一方で、表面に絶縁物被膜を有する非晶質合金粉末の割合を99体積%超とする、換言すれば表面に絶縁物被膜を有していない非晶質合金粉末の割合を1体積%未満とすると、所望する強度が得られない。
これは、絶縁物被膜の膜厚が不必要に厚い場合には所望の強度が得られず、所望の強度を得るためには膜厚を薄く保つことが有効であり、上述の如く絶縁物被膜を有していない非晶質合金粉末を混在させることにより、絶縁物被膜を有していない非晶質合金粉末の界面における絶縁物被膜の膜厚は、絶縁物被膜を有している非晶質合金粉末同士の界面における絶縁物被膜の膜厚の半分になり、好適な膜厚が形成され易いためと考えられる。また、強度をより向上させるためには、表面に絶縁物被膜を有していない非晶質合金粉末の割合を5体積%以上とすることが好ましく、10体積%以上とすることが更に好ましい。
When the ratio of the amorphous alloy powder having an insulating film on the surface is less than 50% by volume, in other words, the ratio of the amorphous alloy powder having no insulating film on the surface is more than 50% by volume, While the effect of reducing eddy current loss is significantly increased, the ratio of amorphous alloy powder having an insulating film on the surface is more than 99% by volume, in other words, having an insulating film on the surface. If the proportion of the amorphous alloy powder that is not present is less than 1% by volume, the desired strength cannot be obtained.
This is because the desired strength cannot be obtained when the thickness of the insulating coating is unnecessarily thick, and it is effective to keep the thickness thin in order to obtain the desired strength. By mixing the amorphous alloy powder that does not have an insulating film, the thickness of the insulating film at the interface of the amorphous alloy powder that does not have the insulating film becomes amorphous. This is because the film thickness is half of the thickness of the insulating coating film at the interface between the alloy powders and a suitable film thickness is easily formed. In order to further improve the strength, the ratio of the amorphous alloy powder having no insulating coating on the surface is preferably 5% by volume or more, and more preferably 10% by volume or more.

また、本発明における加圧成形処理工程は、所望の圧密体が得られれば特に限定されるものではないが、例えば従来公知のホットプレスやプラズマ放電焼結、熱間静水圧焼結(HIP)などの方法により行なうことができる。また、処理条件は、用いる非晶質合金粉末などの組成により異なるものと考えられ、特に限定されるものではないが、例えば成形圧力は50MPa〜980MPa、好ましくは100MPa〜500MPa、成形温度は350〜600℃、好ましくは370〜500℃、より好ましくは400〜500℃で、アルゴン(Ar)などの不活性ガス雰囲気や真空中の雰囲気とすればよい。また、ホットプレス法の場合には、典型的には成形圧力200〜600MPa、成形温度400〜500℃で、0.1Pa以下の真空雰囲気とすればよく、プラズマ放電焼結法の場合には、典型的には成形圧力100〜500MPa、成形温度400〜500℃で、0.1Pa以下の真空雰囲気とすればよく、HIP法の場合には、典型的には成形圧力100MPa〜1000MPa、成形温度450〜500℃とすればよい。
なお、放電プラズマ焼結装置を用いると、適度な導電性と局所的な高電気抵抗を有するため、効率的に軟磁性合金圧密体を作製することができる。
Further, the pressure molding treatment step in the present invention is not particularly limited as long as a desired compacted body is obtained. For example, conventionally known hot press, plasma discharge sintering, hot isostatic pressing (HIP) It can be performed by such a method. The processing conditions are considered to vary depending on the composition of the amorphous alloy powder to be used and are not particularly limited. For example, the molding pressure is 50 MPa to 980 MPa, preferably 100 MPa to 500 MPa, and the molding temperature is 350 to 500. An inert gas atmosphere such as argon (Ar) or a vacuum atmosphere may be used at 600 ° C., preferably 370 to 500 ° C., more preferably 400 to 500 ° C. In the case of the hot press method, typically, a molding pressure of 200 to 600 MPa, a molding temperature of 400 to 500 ° C., and a vacuum atmosphere of 0.1 Pa or less may be used. In the case of the plasma discharge sintering method, Typically, a molding pressure of 100 to 500 MPa, a molding temperature of 400 to 500 ° C., and a vacuum atmosphere of 0.1 Pa or less may be used. In the case of the HIP method, typically, a molding pressure of 100 MPa to 1000 MPa and a molding temperature of 450 are used. What is necessary is just to set it as -500 degreeC.
In addition, when a discharge plasma sintering apparatus is used, since it has moderate electroconductivity and local high electrical resistance, a soft-magnetic alloy compact can be produced efficiently.

また、本発明においては、加圧成形処理工程の成形温度が、上記少なくとも1種の非晶質合金粉末のガラス転移温度以上であることが望ましい。
このような工程を経ない場合、即ち成形温度が含有される非晶質合金粉末のガラス転移温度未満であると、非晶質合金粉末の特徴である良好な成形性が十分に発揮されず、高い強度が得られにくい。
In the present invention, it is desirable that the molding temperature in the pressure molding treatment step is equal to or higher than the glass transition temperature of the at least one amorphous alloy powder.
When such a step is not performed, that is, when the molding temperature is lower than the glass transition temperature of the amorphous alloy powder, the good formability characteristic of the amorphous alloy powder is not sufficiently exhibited, High strength is difficult to obtain.

更に、本発明においては、加圧成形処理工程の平均プレス歪速度が、0.0001〜1S−1であることが好ましく、より好ましくは0.005〜0.1S−1である。
平均プレス歪速度が1S−1を超えると絶縁物被膜の変形が非晶質合金粉末の変形に追随できずに被膜の破損が大きくないし多くなり、また非晶質合金粉末の変形抵抗自体が大きくなり金型と加圧成形処理装置(例えば、プラズマ放電焼結装置。)の負担が大きくなることがある一方、平均プレス歪速度が0.0001S−1未満のように過度に遅すぎると生産性が損われることがある。
Further, in the present invention, the average press strain rate of pressure molding step is preferably from 0.0001~1S -1, more preferably 0.005~0.1S -1.
When the average press strain rate exceeds 1S- 1 , the deformation of the insulating film cannot follow the deformation of the amorphous alloy powder, resulting in large or large damage of the film, and the deformation resistance itself of the amorphous alloy powder is large. While the burden on the die and the pressure molding processing apparatus (for example, plasma discharge sintering apparatus) may increase, if the average press strain rate is too slow, such as less than 0.0001 S −1 , productivity will be increased. May be damaged.

更にまた、本発明においては、用いる非晶質合金粉末は、その平均粒径が5〜400μmであることが好ましく、10〜300μmであることがより好ましく、10〜200μmであることが更に好ましい。
これは、一般に、軟磁性体は、保磁力が低いほど透磁率が高くなり、そして、非晶質合金粉末を用いた軟磁性合金圧密体は、非晶質合金粉末の平均粒径が5μmより小さくなると、混在する粒径が大きい粒子との接触面積が不足し、十分な強度向上効果が得られないことがあり、400μmを超えると、混在する極度に粒径が大きい粒子の空隙が大きくなり、密度向上効果が得られないことがある。
Furthermore, in the present invention, the amorphous alloy powder to be used preferably has an average particle size of 5 to 400 μm, more preferably 10 to 300 μm, still more preferably 10 to 200 μm.
Generally, the soft magnetic material has a higher magnetic permeability as the coercive force is lower, and the soft magnetic alloy compact using the amorphous alloy powder has an average particle diameter of the amorphous alloy powder of more than 5 μm. If it is smaller, the contact area with the mixed particles having a large particle size may be insufficient, and a sufficient strength improvement effect may not be obtained. If the particle size exceeds 400 μm, the voids of the extremely large particles having a large particle size increase. The density improving effect may not be obtained.

ここで、「平均粒径」は、粒度分布の平均値を表したものであるが、値が過度に乖離した粒径のものが混在したものを使用すると、調製した際に所望する磁気特性が得られない(低再現性)ことがある。そこで、サイズを基準としたときに、用いた非晶質合金粉末が1種類であるとは、粒度分布のピークが1つであり、平均粒径の±20%の範囲内に全重量の80%以上の粉末粒径がおさまることをいい、好ましくは±15%の範囲内に全重量の80%以上の粉末粒径がおさまることをいう。   Here, the “average particle size” represents the average value of the particle size distribution, but when a mixture of particles having particle sizes whose values are excessively different from each other is used, the desired magnetic properties when prepared are obtained. May not be obtained (low reproducibility). Therefore, when the size is used as a reference, the single amorphous alloy powder used means that there is one peak in the particle size distribution, and the total weight is within the range of ± 20% of the average particle size. % Means that the powder particle diameter is within 80% or more of the total weight within the range of ± 15%.

なお、一般に、軟磁性合金圧密体は、内部に生成した空隙によって密度が不足すると、十分な飽和磁束密度が得られないだけでなく、その空隙の増加と共に圧密体の強度も低下する。
そこで、上述したようにガラス転移領域の広い非晶質合金粉末を用いることにより、変形が容易であるため、より緻密化させることができる。
In general, when the density of a soft magnetic alloy compact is insufficient due to voids generated inside, not only a sufficient saturation magnetic flux density cannot be obtained, but also the strength of the compact decreases as the voids increase.
Therefore, by using an amorphous alloy powder having a wide glass transition region as described above, the deformation can be easily performed, so that it can be further densified.

また、軟磁性合金圧密体の磁気異方性は小さいことが好ましいので、用いる非晶質合金粉末は、その形状が球状であることが望ましく、このような球状の非晶質合金粉末は、例えばアトマイズ法により容易に作製することができるが、これらの形状や製法に限定されるものではない。   Further, since the magnetic anisotropy of the soft magnetic alloy compact is preferably small, the amorphous alloy powder to be used preferably has a spherical shape, and such a spherical amorphous alloy powder is, for example, Although it can be easily manufactured by an atomizing method, it is not limited to these shapes and manufacturing methods.

更に、用いる非晶質合金粉末の含有成分やその組成は特に限定されるものではないが、磁気特性が良好であり、広い低温度範囲(例えば350〜600℃)で非晶質(ガラス)状態となるものが望ましい。例えば、次式(3)
ΔTx=Tx−Tg…(3)
(式中のTxは結晶化開始温度、Tgはガラス転移温度を示す。)で表される過冷却液体領域の温度間隔ΔTxが20K以上であるFe、Ni又はCo、及びこれらの任意の組合わせに係る金属元素を主成分とする非晶質合金粉末を用いることが好適である。
典型的には、Ni、Co及びSiを含有したFe基合金、いわゆる鉄心材料を好適に用いることができる。
なお、非晶質合金粉末としては含有成分やその組成が異なる複数の非晶質合金粉末を混在させたものを用いてもよい。また、本発明においては、第3種以上の非晶質合金粉末を含んでいてもよい。
Furthermore, the content and composition of the amorphous alloy powder to be used are not particularly limited, but it has good magnetic properties and is in an amorphous (glass) state in a wide low temperature range (for example, 350 to 600 ° C.). Is desirable. For example, the following formula (3)
ΔTx = Tx−Tg (3)
(Wherein Tx represents a crystallization start temperature and Tg represents a glass transition temperature) Fe, Ni or Co having a temperature interval ΔTx of 20 K or more in the supercooled liquid region, and any combination thereof It is preferable to use an amorphous alloy powder containing the metal element as a main component.
Typically, an Fe-based alloy containing Ni, Co and Si, that is, a so-called iron core material can be suitably used.
The amorphous alloy powder may be a mixture of a plurality of amorphous alloy powders having different components and compositions. In the present invention, the third or more amorphous alloy powder may be included.

更にまた、絶縁物被膜は、所望の絶縁性を有していれば、その成分や膜厚について特に限定されるものではないが、その成分としては、例えば酸化ケイ素(SiO)やアルミナ(Al)、マグネシア(MgO)などを適用することができ、また膜厚は、例えば0.01〜2μm、好ましくは0.05〜1μmであればよい。 Furthermore, the insulating film is not particularly limited in terms of its component and film thickness as long as it has a desired insulating property. Examples of the component include silicon oxide (SiO 2 ) and alumina (Al 2 O 3 ), magnesia (MgO), or the like can be applied, and the film thickness may be, for example, 0.01 to 2 μm, preferably 0.05 to 1 μm.

また、本発明においては、非晶質合金粉末は、異なる粒度分布を有する上記表面に絶縁物被膜を有していない非晶質合金粉末Aと上記表面に絶縁物被膜を有している非晶質合金粉末Bとから成り、該非晶質合金粉末Aの平均粒径(r)と該非晶質合金粉末Bの平均粒径(r)とが次式(1)
/r<1…(1)
の関係を満足することが好ましく、次式(2)
0.05≦r/r≦0.3…(2)
の関係を満足することがより好ましく、上記式(2)において、その上限値が0.25であることが更に好ましく、0.20であることが特に好ましい。
上述したように、用いる原料粉末は非晶質(ガラス)合金であるので、酸化物と比較して変形が容易であり、比較的緻密化が進行するが、各粉末の変形量が過剰となると透磁率が低くなることがある。
そこで、密度を向上させ得るという観点から、非晶質合金粉末Aの平均粒径(r)と非晶質合金粉末Bの平均粒径(r)とが上記式(1)の関係を満足し、粉末の特性に応じた粒度分布を有することが好ましく、更には、それぞれの粉末の過剰な変形を抑制し得るという観点から上記式(2)の関係を満足することが好ましい。
このときは、絶縁物被膜を有していない粒径の小さいものが絶縁物被膜を有する粒径が大きいものの隙間に分散するので、軟磁性合金圧密体の全体に分散した状態となり、絶縁性を維持しつつ、密度を向上させることができる。
In the present invention, the amorphous alloy powder is composed of an amorphous alloy powder A having a different particle size distribution and not having an insulator coating on the surface, and an amorphous alloy having an insulator coating on the surface. The average particle size (r A ) of the amorphous alloy powder A and the average particle size (r B ) of the amorphous alloy powder B are expressed by the following formula (1):
r A / r B <1 (1)
It is preferable to satisfy the relationship:
0.05 ≦ r A / r B ≦ 0.3 (2)
It is more preferable that the above relationship is satisfied, and in the above formula (2), the upper limit value is more preferably 0.25, and particularly preferably 0.20.
As described above, since the raw material powder to be used is an amorphous (glass) alloy, it is easily deformed as compared with the oxide and relatively densified, but when the amount of deformation of each powder becomes excessive. Permeability may be low.
Therefore, from the viewpoint that the density can be improved, the average particle size (r A ) of the amorphous alloy powder A and the average particle size (r B ) of the amorphous alloy powder B satisfy the relationship of the above formula (1). It is preferable to have a particle size distribution according to the characteristics of the powder, and it is more preferable to satisfy the relationship of the above formula (2) from the viewpoint that excessive deformation of each powder can be suppressed.
At this time, since the small particle size without the insulating film is dispersed in the gaps with the large particle size having the insulating film, it becomes dispersed throughout the soft magnetic alloy compact, and the insulating property is reduced. The density can be improved while maintaining.

更に、本発明においては、非晶質合金粉末Bのガラス転移温度を基準として、非晶質合金粉末Aのガラス転移温度が10K以上低いことが好ましく、特に10〜30K低いことが好ましい。
このとき、平均粒径が相対的に小さい非晶質合金粉末Aは、平均粒径が相対的に大きい非晶質合金粉末Bの隙間に分散して、密度を向上させつつ非晶質合金粉末B同士の接合を補助するような構造を形成する。このとき、上記のようなガラス転移温度の関係を有する場合には、加圧成形処理の際に非晶質合金粉末Aが優先的に変形して、非晶質合金粉末Bと密着し、密度を向上させつつ絶縁物被膜の膜厚を薄い状態のままの接触面積を拡大させることができる。また、非晶質合金粉末Bの絶縁物被膜の破損を抑制することもできる。
Furthermore, in the present invention, the glass transition temperature of the amorphous alloy powder A is preferably 10 K or more lower, particularly preferably 10 to 30 K lower than the glass transition temperature of the amorphous alloy powder B.
At this time, the amorphous alloy powder A having a relatively small average particle size is dispersed in the gaps of the amorphous alloy powder B having a relatively large average particle size to improve the density and improve the density. A structure that assists the bonding between B is formed. At this time, in the case of having the glass transition temperature relationship as described above, the amorphous alloy powder A is preferentially deformed during the pressure forming process, and is in close contact with the amorphous alloy powder B. It is possible to increase the contact area while keeping the thickness of the insulating coating film thin. Moreover, damage to the insulating film of the amorphous alloy powder B can be suppressed.

また、本発明においては、非晶質合金粉末の全体積を基準として、非晶質合金粉末Aの含有率が50体積%以下である必要があるが、特に含有率が30体積%以下では、絶縁物被覆した粉末を100体積%にした場合と同等の発熱抑制効果が得られるため、30体積%以下であることが好ましい。なお、20体積%以下であることがより好ましい。   Further, in the present invention, the content of the amorphous alloy powder A needs to be 50% by volume or less based on the total volume of the amorphous alloy powder, and particularly when the content is 30% by volume or less, Since the heat generation suppressing effect equivalent to that obtained when the insulating-coated powder is 100% by volume can be obtained, it is preferably 30% by volume or less. In addition, it is more preferable that it is 20 volume% or less.

更にまた、本発明においては、加圧成形処理工程の成形温度が、非晶質合金粉末Aのガラス転移温度以上であり且つ非晶質合金粉末Aの結晶化開始温度以下であると共に、当該加圧成形処理の平均プレス歪速度が0.0001〜1S−1であることが好ましい、より好ましくは0.005〜0.1S−1である。
このような工程を経た軟磁性合金圧密体は、加圧成形処理の際に、非晶質合金粉末Aを非晶質合金粉末Bに優先して変形させることが可能となる。
Furthermore, in the present invention, the molding temperature in the pressure molding treatment step is not less than the glass transition temperature of the amorphous alloy powder A and not more than the crystallization start temperature of the amorphous alloy powder A. it is preferred that the average pressing strain rate of molding process is 0.0001~1S -1, more preferably 0.005~0.1S -1.
The soft magnetic alloy compact that has undergone such a process can deform the amorphous alloy powder A in preference to the amorphous alloy powder B during the pressure forming process.

次に、本発明の軟磁性合金圧密体の製造方法について詳細に説明する。
上述の如く、本発明の軟磁性合金圧密体の製造方法は、上記本発明の軟磁性合金圧密体を製造する方法であって、(1)非晶質合金粉末の全体積を基準として、非晶質合金粉末の表面に絶縁物被膜を有していない粉末及び非晶質合金粉末の表面に絶縁物被膜を有している粉末を、それぞれの含有率が1〜50体積%及び50〜99体積%となるように混合する工程、(2)(1)工程で得られた粉末を加圧成形処理する工程、を含む製造方法である。
このような製造方法により作製された軟磁性合金圧密体は、優れた強度を有し、且つ渦電流損失を低減し得るものとなる。
Next, the manufacturing method of the soft magnetic alloy compact of this invention is demonstrated in detail.
As described above, the method for producing a soft magnetic alloy compact according to the present invention is a method for producing the above soft magnetic alloy compact according to the present invention. (1) Based on the total volume of amorphous alloy powder, The powders having no insulating film on the surface of the crystalline alloy powder and the powders having the insulating film on the surface of the amorphous alloy powder have a content of 1 to 50% by volume and 50 to 99, respectively. It is a manufacturing method including a step of mixing so as to be volume%, and a step of pressure-forming the powder obtained in steps (2) and (1).
The soft magnetic alloy compact manufactured by such a manufacturing method has excellent strength and can reduce eddy current loss.

更に、上記のような絶縁物被膜は、例えば以下の製造方法により形成することができる。即ち、非晶質合金粉末を絶縁物前駆体含有溶液に浸漬し、乾燥させて非晶質合金粉末表面に絶縁物前駆体を被覆担持させる。この過程は、被覆量と溶液濃度に応じて、浸漬、乾燥を繰り返すことができる。
次いで、この絶縁物前駆体を被覆担持した非晶質合金粉末を加熱して、絶縁物前駆体を焼成する。絶縁物前駆体は焼成中に、化学反応と溶解により絶縁物被膜に変化する。
Furthermore, the insulating film as described above can be formed, for example, by the following manufacturing method. That is, the amorphous alloy powder is immersed in an insulator precursor-containing solution and dried to coat and carry the insulator precursor on the surface of the amorphous alloy powder. In this process, immersion and drying can be repeated according to the coating amount and the solution concentration.
Next, the amorphous alloy powder coated and supported with the insulator precursor is heated to fire the insulator precursor. During firing, the insulator precursor changes into an insulator film due to chemical reaction and dissolution.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

[非晶質合金粉末の準備]
鉄(Fe)、ガリウム(Ga)、ホウ素(B)ケイ素(Si)、鉄(Fe)−炭素(C)合金、鉄(Fe)−リン(P)合金を所定量秤量し、高周波溶解炉を用いてアルゴン(Ar)ガス中で溶解した。そして、組成がFe76Ga9.5Si2.5となるインゴットを作製した。
得られたインゴットをアルゴン雰囲気、減圧(10−3Pa)下で溶解し、Arガスで噴霧してガスアトマイズを行なった。
ガスアトマイズによって得られた粉末は、X線解析の結果、急冷された非晶質合金粉末となっていた。
得られた粉末は、平均粒径の±20%以内におさまるように篩を用いて分級した。なお、粒度は、レーザ回折方式粒度分布測定装置で測定して決定した。また、ガラス転移温度は、示差走査熱量分析(DSC解析)により白金坩堝を用いてAr気流中で測定して決定した。
[Preparation of amorphous alloy powder]
A predetermined amount of iron (Fe), gallium (Ga), boron (B) silicon (Si), iron (Fe) -carbon (C) alloy, iron (Fe) -phosphorus (P) alloy is weighed, and a high-frequency melting furnace is used. And dissolved in argon (Ar) gas. Then, the composition was prepared an ingot to be Fe 76 Ga 4 P 9.5 C 4 B 4 Si 2.5.
The obtained ingot was melted under an argon atmosphere and reduced pressure (10 −3 Pa) and sprayed with Ar gas for gas atomization.
As a result of X-ray analysis, the powder obtained by gas atomization was a rapidly cooled amorphous alloy powder.
The obtained powder was classified using a sieve so as to be within ± 20% of the average particle size. The particle size was determined by measuring with a laser diffraction particle size distribution measuring device. Further, the glass transition temperature was determined by measurement in an Ar stream using a platinum crucible by differential scanning calorimetry (DSC analysis).

(実施例1)
平均粒径が225μm、ガラス転移温度が465℃の非晶質合金粉末10g当たり、5mLのポリシザラン溶液(アクアミカ社製)を塗布し、ドライヤーで乾燥し、100℃で1時間保持して、絶縁物である酸化ケイ素(SiO)の被膜を有する非晶質合金粉末を得た。
一方、平均粒径が45μm、ガラス転移温度が440℃の非晶質合金粉末を用意し、それぞれの含有率が75体積%及び25体積%となるように混合した。なお、2種類の粉末の比重が同等とみなせたので、ここでは質量により測定した(以下の実施例及び比較例において同様。)。
この混合した粉末3gを秤量して、プレス面が外径30mm、内径20mmである円環状の金型に充填し、1.6MA/mの磁場中で、成形温度は室温、成形圧力は0.05GPaで仮成形した。
得られた仮成形体を真空中でプラズマ放電焼結法により下記の要領で加圧成形処理して、本例の軟磁性合金圧密体を得た。
具体的には、一定の成形圧力0.05GPaを保持しつつ、昇温速度25℃/分で室温から450℃まで昇温した。次いで、成形温度450℃で1分間保持した。更に、徐々に荷重を大きくして0.5GPaまで5秒で到達させた。この間の平均プレス歪速度は0.1S−1であった。しかる後、荷重負荷を開放して冷却し、本例の軟磁性合金圧密体を得た(寸法:外径30mm、内径20mm、厚み4mm)。なお、冷却中も室温になるまで真空を保持した。
Example 1
5 g of polysizaran solution (Aquamica) is applied per 10 g of amorphous alloy powder having an average particle size of 225 μm and a glass transition temperature of 465 ° C., dried with a drier, and held at 100 ° C. for 1 hour. Amorphous alloy powder having a silicon oxide (SiO 2 ) coating was obtained.
On the other hand, amorphous alloy powders having an average particle size of 45 μm and a glass transition temperature of 440 ° C. were prepared and mixed so that the respective contents were 75% by volume and 25% by volume. In addition, since it was considered that the specific gravity of two types of powder was equivalent, it measured by mass here (same in the following Examples and Comparative Examples).
3 g of the mixed powder was weighed and filled in an annular mold having a press surface of 30 mm outer diameter and 20 mm inner diameter, in a magnetic field of 1.6 MA / m, the molding temperature was room temperature, and the molding pressure was 0. Temporary molding was performed at 05 GPa.
The obtained temporary molded body was subjected to pressure forming treatment in a vacuum by a plasma discharge sintering method in the following manner to obtain a soft magnetic alloy consolidated body of this example.
Specifically, the temperature was increased from room temperature to 450 ° C. at a temperature increase rate of 25 ° C./min while maintaining a constant molding pressure of 0.05 GPa. Subsequently, it was held at a molding temperature of 450 ° C. for 1 minute. Further, the load was gradually increased to reach 0.5 GPa in 5 seconds. The average press strain rate during this period was 0.1S- 1 . Thereafter, the load was released and cooled to obtain a soft magnetic alloy consolidated body of this example (dimensions: outer diameter 30 mm, inner diameter 20 mm, thickness 4 mm). Note that the vacuum was maintained during cooling until the temperature reached room temperature.

(実施例2)
平均粒径が380μm、ガラス転移温度が465℃の非晶質合金粉末10g当たり、5mLのポリシザラン溶液(アクアミカ社製)を塗布し、ドライヤーで乾燥し、100℃で1時間保持して、絶縁物である酸化ケイ素(SiO)の被膜を有する非晶質合金粉末を得た。
一方、平均粒径が5μm、ガラス転移温度が440℃の非晶質合金粉末を用意し、それぞれの含有率が55体積%及び45体積%となるように混合して用いた以外は、実施例1と同様の操作を繰り返し、本例の軟磁性合金圧密体を得た。
(Example 2)
Apply 5 mL of polysizaran solution (Aquamica) per 10 g of amorphous alloy powder with an average particle size of 380 μm and a glass transition temperature of 465 ° C., dry with a drier, and hold at 100 ° C. for 1 hour. Amorphous alloy powder having a silicon oxide (SiO 2 ) coating was obtained.
On the other hand, Examples were prepared except that amorphous alloy powders having an average particle diameter of 5 μm and a glass transition temperature of 440 ° C. were prepared and mixed so that the respective contents were 55% by volume and 45% by volume. The same operation as in No. 1 was repeated to obtain a soft magnetic alloy consolidated body of this example.

(実施例3)
平均粒径が150μm、ガラス転移温度が465℃の非晶質合金粉末10g当たり、5mLのポリシザラン溶液(アクアミカ社製)を塗布し、ドライヤーで乾燥し、100℃で1時間保持して、絶縁物である酸化ケイ素(SiO)の被膜を有する非晶質合金粉末を得た。
一方、平均粒径が20μm、ガラス転移温度が440℃の非晶質合金粉末を用意し、それぞれの含有率が80体積%及び20体積%となるように混合して用いた以外は、実施例1と同様の操作を繰り返し、本例の軟磁性合金圧密体を得た。
(Example 3)
Apply 5 mL of polysizaran solution (manufactured by Aquamica) per 10 g of amorphous alloy powder with an average particle size of 150 μm and a glass transition temperature of 465 ° C., dry with a drier, and hold at 100 ° C. for 1 hour. Amorphous alloy powder having a silicon oxide (SiO 2 ) coating was obtained.
On the other hand, Examples were prepared except that amorphous alloy powders having an average particle size of 20 μm and a glass transition temperature of 440 ° C. were prepared and mixed so that the respective contents were 80% by volume and 20% by volume. The same operation as in No. 1 was repeated to obtain a soft magnetic alloy consolidated body of this example.

(実施例4)
平均粒径が225μm、ガラス転移温度が470℃の非晶質合金粉末10g当たり、5mLのポリシザラン溶液(アクアミカ社製)を塗布し、ドライヤーで乾燥し、100℃で1時間保持して、絶縁物である酸化ケイ素(SiO)の被膜を有する非晶質合金粉末を得た。
一方、平均粒径が45μm、ガラス転移温度が435℃の非晶質合金粉末を用意し、それぞれの含有率が90体積%及び10体積%となるように混合して用い、仮成形処理を実施せず、加圧成形処理における成形温度を465℃とし、且つ平均歪速度を0.05S−1とした以外は、実施例1と同様の操作を繰り返し、本例の軟磁性合金圧密体を得た。
Example 4
5 g of polysizaran solution (manufactured by Aquamica) is applied per 10 g of amorphous alloy powder having an average particle size of 225 μm and a glass transition temperature of 470 ° C., dried with a drier, and held at 100 ° C. for 1 hour. Amorphous alloy powder having a silicon oxide (SiO 2 ) coating was obtained.
On the other hand, an amorphous alloy powder having an average particle size of 45 μm and a glass transition temperature of 435 ° C. is prepared and mixed so that the respective contents are 90% by volume and 10% by volume, and a temporary forming process is performed. Otherwise, the same operation as in Example 1 was repeated except that the molding temperature in the pressure molding treatment was 465 ° C. and the average strain rate was 0.05 S −1 to obtain the soft magnetic alloy consolidated body of this example. It was.

(実施例5)
平均粒径が75μm、ガラス転移温度が465℃の非晶質合金粉末10g当たり、5mLのポリシザラン溶液(アクアミカ社製)を塗布し、ドライヤーで乾燥し、100℃で1時間保持して、絶縁物である酸化ケイ素(SiO)の被膜を有する非晶質合金粉末を得た。
一方、平均粒径が8μm、ガラス転移温度が440℃の非晶質合金粉末を用意し、それぞれの含有率が75体積%及び25体積%となるように混合して用い、加圧成形処理における平均歪速度を0.3S−1とした以外は、実施例1と同様の操作を繰り返し、本例の軟磁性合金圧密体を得た。
(Example 5)
5 g of polysizaran solution (manufactured by Aquamica) is applied per 10 g of amorphous alloy powder having an average particle size of 75 μm and a glass transition temperature of 465 ° C., dried with a drier, held at 100 ° C. for 1 hour, and an insulator Amorphous alloy powder having a silicon oxide (SiO 2 ) coating was obtained.
On the other hand, an amorphous alloy powder having an average particle size of 8 μm and a glass transition temperature of 440 ° C. is prepared and mixed so that the respective contents are 75% by volume and 25% by volume. Except for setting the average strain rate to 0.3 S- 1 , the same operation as in Example 1 was repeated to obtain a soft magnetic alloy consolidated body of this example.

(実施例6)
平均粒径が150μm、ガラス転移温度が465℃の非晶質合金粉末10g当たり、5mLのポリシザラン溶液(アクアミカ社製)を塗布し、ドライヤーで乾燥し、100℃で1時間保持して、絶縁物である酸化ケイ素(SiO)の被膜を有する非晶質合金粉末を得た。
一方、平均粒径が20μm、ガラス転移温度が440℃の非晶質合金粉末及び平均粒径が8μm、ガラス転移温度が440℃の非晶質合金粉末を用意し、それぞれの含有率が75体積%、15体積%及び10体積%となるように混合して用い、加圧成形処理における平均歪速度を0.3S−1とした以外は、実施例1と同様の操作を繰り返し、本例の軟磁性合金圧密体を得た。
(Example 6)
Apply 5 mL of polysizaran solution (manufactured by Aquamica) per 10 g of amorphous alloy powder with an average particle size of 150 μm and a glass transition temperature of 465 ° C., dry with a drier, and hold at 100 ° C. for 1 hour. Amorphous alloy powder having a silicon oxide (SiO 2 ) coating was obtained.
On the other hand, an amorphous alloy powder having an average particle size of 20 μm and a glass transition temperature of 440 ° C. and an amorphous alloy powder having an average particle size of 8 μm and a glass transition temperature of 440 ° C. are prepared, and each content is 75 volumes. %, 15% by volume and 10% by volume, and the same operation as in Example 1 was repeated except that the average strain rate in the pressure molding treatment was 0.3S- 1 . A soft magnetic alloy compact was obtained.

(実施例7)
平均粒径が225μm、ガラス転移温度が465℃の非晶質合金粉末10g当たり、5mLのポリシザラン溶液(アクアミカ社製)を塗布し、ドライヤーで乾燥し、100℃で1時間保持して、絶縁物である酸化ケイ素(SiO)の被膜を有する非晶質合金粉末を得た。
一方、平均粒径が75μm、ガラス転移温度が440℃の非晶質合金粉末を用意し、それぞれの含有率が75体積%及び25体積%となるように混合して用い、加圧成形処理における平均歪速度を0.005S−1とした以外は、実施例1と同様の操作を繰り返し、本例の軟磁性合金圧密体を得た。
(Example 7)
5 g of polysizaran solution (Aquamica) is applied per 10 g of amorphous alloy powder having an average particle size of 225 μm and a glass transition temperature of 465 ° C., dried with a drier, and held at 100 ° C. for 1 hour. Amorphous alloy powder having a silicon oxide (SiO 2 ) coating was obtained.
On the other hand, an amorphous alloy powder having an average particle size of 75 μm and a glass transition temperature of 440 ° C. is prepared and mixed so that the respective contents are 75% by volume and 25% by volume. Except that the average strain rate was 0.005 S −1 , the same operation as in Example 1 was repeated to obtain a soft magnetic alloy consolidated body of this example.

(実施例8)
平均粒径が75μm、ガラス転移温度が465℃の非晶質合金粉末10g当たり、5mLのポリシザラン溶液(アクアミカ社製)を塗布し、ドライヤーで乾燥し、100℃で1時間保持して、絶縁物である酸化ケイ素(SiO)の被膜を有する非晶質合金粉末を得た。
一方、平均粒径が75μm、ガラス転移温度が465℃の非晶質合金粉末を用意し、それぞれの含有率が80体積%及び20体積%となるように混合して用い、加圧成形処理における平均歪速度を0.05S−1とした以外は、実施例1と同様の操作を繰り返し、本例の軟磁性合金圧密体を得た。
(Example 8)
5 g of polysizaran solution (manufactured by Aquamica) is applied per 10 g of amorphous alloy powder having an average particle size of 75 μm and a glass transition temperature of 465 ° C., dried with a drier, held at 100 ° C. for 1 hour, and an insulator Amorphous alloy powder having a silicon oxide (SiO 2 ) coating was obtained.
On the other hand, an amorphous alloy powder having an average particle size of 75 μm and a glass transition temperature of 465 ° C. is prepared and mixed so that the respective contents are 80% by volume and 20% by volume. A soft magnetic alloy consolidated body of this example was obtained by repeating the same operation as in Example 1 except that the average strain rate was 0.05 S- 1 .

(比較例1)
平均粒径が225μm、ガラス転移温度が465℃の非晶質合金粉末及び平均粒径が45μm、ガラス転移温度が440℃の非晶質合金粉末を用意し、それぞれの含有率が75体積%及び25体積%となるように混合して用いた以外は、実施例1と同様の操作を繰り返し、本例の軟磁性合金圧密体を得た。
(Comparative Example 1)
An amorphous alloy powder having an average particle size of 225 μm and a glass transition temperature of 465 ° C. and an amorphous alloy powder having an average particle size of 45 μm and a glass transition temperature of 440 ° C. are prepared, and the respective contents are 75% by volume and A soft magnetic alloy consolidated body of this example was obtained by repeating the same operation as in Example 1 except that the mixture was used so as to be 25% by volume.

(比較例2)
平均粒径が225μm、ガラス転移温度が465℃の非晶質合金粉末10g当たり、5mLのポリシザラン溶液(アクアミカ社製)を塗布し、ドライヤーで乾燥し、100℃で1時間保持して、絶縁物である酸化ケイ素(SiO)の被膜を有する非晶質合金粉末を得た。
一方、平均粒径が45μm、ガラス転移温度が440℃の非晶質合金粉末10g当たり、5mLのポリシザラン溶液(アクアミカ社製)を塗布し、ドライヤーで乾燥し、100℃で1時間保持して、絶縁物である酸化ケイ素(SiO)の被膜を有する非晶質合金粉末を得た。それぞれの含有率が75体積%及び25体積%となるように混合して用いた以外は、実施例1と同様の操作を繰り返し、本例の軟磁性合金圧密体を得た。
(Comparative Example 2)
5 g of polysizaran solution (Aquamica) is applied per 10 g of amorphous alloy powder having an average particle size of 225 μm and a glass transition temperature of 465 ° C., dried with a drier, and held at 100 ° C. for 1 hour. Amorphous alloy powder having a silicon oxide (SiO 2 ) coating was obtained.
On the other hand, 5 mL of polysizaran solution (manufactured by Aquamica) was applied per 10 g of amorphous alloy powder having an average particle diameter of 45 μm and a glass transition temperature of 440 ° C., dried with a dryer, and held at 100 ° C. for 1 hour. An amorphous alloy powder having a coating of silicon oxide (SiO 2 ) as an insulator was obtained. A soft magnetic alloy consolidated body of this example was obtained by repeating the same operation as in Example 1 except that the respective contents were mixed and used so as to be 75% by volume and 25% by volume.

(比較例3)
平均粒径が225μm、ガラス転移温度が465℃の非晶質合金粉末10g当たり、5mLのポリシザラン溶液(アクアミカ社製)を塗布し、ドライヤーで乾燥し、100℃で1時間保持して、絶縁物である酸化ケイ素(SiO)の被膜を有する非晶質合金粉末を得た。これのみを用いた以外は、実施例1と同様の操作を繰り返し、本例の軟磁性合金圧密体を得た。
(Comparative Example 3)
5 g of polysizaran solution (Aquamica) is applied per 10 g of amorphous alloy powder having an average particle size of 225 μm and a glass transition temperature of 465 ° C., dried with a drier, and held at 100 ° C. for 1 hour. Amorphous alloy powder having a silicon oxide (SiO 2 ) coating was obtained. Except using only this, the same operation as Example 1 was repeated and the soft magnetic alloy compact of this example was obtained.

(比較例4)
平均粒径が20μm、ガラス転移温度が465℃の非晶質合金粉末10g当たり、5mLのポリシザラン溶液(アクアミカ社製)を塗布し、ドライヤーで乾燥し、100℃で1時間保持して、絶縁物である酸化ケイ素(SiO)の被膜を有する非晶質合金粉末を得た。これのみを用いた以外は、実施例1と同様の操作を繰り返し、本例の軟磁性合金圧密体を得た。
上記各例の軟磁性合金圧密体の仕様及び作製条件を表1に示す。
(Comparative Example 4)
Apply 5 mL of polysizaran solution (manufactured by Aquamica) per 10 g of amorphous alloy powder with an average particle size of 20 μm and a glass transition temperature of 465 ° C., dry with a drier, hold at 100 ° C. for 1 hour, and insulate Amorphous alloy powder having a silicon oxide (SiO 2 ) coating was obtained. Except using only this, the same operation as Example 1 was repeated and the soft magnetic alloy compact of this example was obtained.
Table 1 shows the specifications and production conditions of the soft magnetic alloy compacts of the above examples.

Figure 2007220876
Figure 2007220876

[性能評価]
上記各例の軟磁性合金圧密体の渦電流損失及び密度を下記の要領で測定した。得られた結果を表2に示す。
[Performance evaluation]
The eddy current loss and density of the soft magnetic alloy compacts of the above examples were measured as follows. The obtained results are shown in Table 2.

(渦電流損失)
周波数1kHz、飽和磁束密度1Tの条件下で測定した。表中の結果は、比較例1の渦電流損失を基準値(100)としたときの相対値である。
(Eddy current loss)
The measurement was performed under conditions of a frequency of 1 kHz and a saturation magnetic flux density of 1T. The results in the table are relative values when the eddy current loss of Comparative Example 1 is taken as the reference value (100).

(密度)
軟磁性合金圧密体の寸法及び質量から算出した。
(density)
It calculated from the size and mass of a soft magnetic alloy compact.

(強度)
プレス面が10mm×10mmである金型に混合した粉末を4g充填し、上記各例と同様の操作を行い、各例の軟磁性合金圧密体(寸法:10mm×10mm×5mm)を得た。得られた軟磁性合金圧密体から2mm×3mm×10mmの試験片をプレス面と平行に切り出し、3点曲げ試験に供し、抗折強度を測定した。得られた結果を表2に併記する。
(Strength)
4 g of the mixed powder was filled in a mold having a press surface of 10 mm × 10 mm, and the same operation as in each of the above examples was performed to obtain a soft magnetic alloy compact (size: 10 mm × 10 mm × 5 mm) of each example. A test piece of 2 mm × 3 mm × 10 mm was cut out in parallel to the press surface from the obtained soft magnetic alloy compact, and subjected to a three-point bending test to measure the bending strength. The obtained results are also shown in Table 2.

Figure 2007220876
Figure 2007220876

表1及び表2より、本発明の範囲に属する実施例1〜8は、本発明外の比較例1〜4と比較して、優れた抗折強度を有し、且つ渦電流損失を低減し得ることが分かる。
更に、表1及び表2より、実施例1〜3及び実施例5〜7は、抗折強度が250MPa以上であり、渦電流損失が低減され得ることから、特に、電気自動車やハイブリッド車等のモーターの磁心として好適に用いることができることが分かる。
なお、実施例4からは、二種類の粉末粒子のガラス転移温度の差が大きいものを用いた方が強度がより向上することが分かり、実施例8からは、混合する粉末粒子の平均粒径が異なる方が密度が向上し易いことが分かる。
From Tables 1 and 2, Examples 1 to 8 belonging to the scope of the present invention have superior bending strength and reduced eddy current loss compared to Comparative Examples 1 to 4 outside the present invention. I know you get.
Furthermore, from Tables 1 and 2, Examples 1 to 3 and Examples 5 to 7 have a bending strength of 250 MPa or more, and eddy current loss can be reduced. It can be seen that the magnetic core of the motor can be suitably used.
In addition, it turns out that the intensity | strength improves more from Example 4 that the difference of the glass transition temperature of two types of powder particles is larger, and from Example 8, the average particle diameter of the powder particles to mix It can be seen that the density is easily improved when the difference is.

現時点においては、優れた抗折強度を有し、渦電流損失の低減させ得る観点から、実施例1や実施例3が最も良好な結果をもたらすものと思われる。   At the present time, from the viewpoint of having excellent bending strength and reducing eddy current loss, it seems that Example 1 and Example 3 give the best results.

Claims (10)

少なくとも1種の非晶質合金粉末を加圧成形処理して成る軟磁性合金圧密体において、
上記非晶質合金粉末は、該非晶質合金粉末の全体積を基準として、50〜99体積%の非晶質合金粉末がその表面に絶縁物被膜を有しており、且つ1〜50体積%の非晶質合金粉末がその表面に絶縁物被膜を有していないことを特徴とする軟磁性合金圧密体。
In a soft magnetic alloy compact formed by pressure-molding at least one amorphous alloy powder,
The amorphous alloy powder is based on the total volume of the amorphous alloy powder, 50 to 99% by volume of the amorphous alloy powder has an insulating film on its surface, and 1 to 50% by volume. A soft magnetic alloy compact, characterized in that the amorphous alloy powder does not have an insulating film on its surface.
上記加圧成形処理の成形温度が、上記少なくとも1種の非晶質合金粉末のガラス転移温度以上であることを特徴とする請求項1に記載の軟磁性合金圧密体。   2. The soft magnetic alloy compact according to claim 1, wherein a molding temperature of the pressure molding treatment is equal to or higher than a glass transition temperature of the at least one amorphous alloy powder. 上記加圧成形処理の平均プレス歪速度が、0.0001〜1S−1であることを特徴とする請求項1又は2に記載の軟磁性合金圧密体。 3. The soft magnetic alloy compact according to claim 1, wherein an average press strain rate of the pressure forming treatment is 0.0001 to 1S −1 . 上記非晶質合金粉末は、その平均粒径が5〜400μmであることを特徴とする請求項1〜3のいずれか1つの項に記載の軟磁性合金圧密体。   4. The soft magnetic alloy compact according to claim 1, wherein the amorphous alloy powder has an average particle size of 5 to 400 μm. 上記非晶質合金粉末は、異なる粒度分布を有する上記表面に絶縁物被膜を有していない非晶質合金粉末Aと上記表面に絶縁物被膜を有している非晶質合金粉末Bとから成り、該非晶質合金粉末Aの平均粒径(r)と該非晶質合金粉末Bの平均粒径(r)とが次式(1)
/r<1…(1)
の関係を満足することを特徴とする請求項1〜4のいずれか1つの項に記載の軟磁性合金圧密体。
The amorphous alloy powder is composed of an amorphous alloy powder A having an insulating film on the surface and an amorphous alloy powder B having an insulating film on the surface having different particle size distributions. The average particle size (r A ) of the amorphous alloy powder A and the average particle size (r B ) of the amorphous alloy powder B are expressed by the following formula (1):
r A / r B <1 (1)
The soft magnetic alloy consolidated body according to any one of claims 1 to 4, wherein the following relationship is satisfied.
上記非晶質合金粉末は、異なる粒度分布を有する上記表面に絶縁物被膜を有していない非晶質合金粉末Aと上記表面に絶縁物被膜を有している非晶質合金粉末Bとから成り、該非晶質合金粉末Aの平均粒径(r)と該非晶質合金粉末Bの平均粒径(r)とが次式(2)
0.05≦r/r≦0.3…(2)
の関係を満足することを特徴とする請求項1〜4のいずれか1つの項に記載の軟磁性合金圧密体。
The amorphous alloy powder is composed of an amorphous alloy powder A having an insulating film on the surface and an amorphous alloy powder B having an insulating film on the surface having different particle size distributions. The average particle size (r A ) of the amorphous alloy powder A and the average particle size (r B ) of the amorphous alloy powder B are expressed by the following formula (2):
0.05 ≦ r A / r B ≦ 0.3 (2)
The soft magnetic alloy consolidated body according to any one of claims 1 to 4, wherein the following relationship is satisfied.
上記非晶質合金粉末Bのガラス転移温度を基準として、上記非晶質合金粉末Aのガラス転移温度が10K以上低いことを特徴とする請求項5又は6に記載の軟磁性合金圧密体。   The soft magnetic alloy compact according to claim 5 or 6, wherein the glass transition temperature of the amorphous alloy powder A is 10K or more lower than the glass transition temperature of the amorphous alloy powder B. 上記非晶質合金粉末の全体積を基準として、上記非晶質合金粉末Aの含有率が30体積%以下であることを特徴とする請求項5〜7のいずれか1つの項に記載の軟磁性合金圧密体。   8. The softness according to claim 5, wherein the content of the amorphous alloy powder A is 30% by volume or less based on the total volume of the amorphous alloy powder. Magnetic alloy compact. 上記加圧成形処理の成形温度が、上記非晶質合金粉末Aのガラス転移温度以上であり且つ上記非晶質合金粉末Aの結晶化開始温度以下であると共に、上記加圧成形処理の平均プレス歪速度が0.0001〜1S−1であることを特徴とする請求項5〜8のいずれか1つの項に記載の軟磁性合金圧密体。 The molding temperature of the pressure molding process is not less than the glass transition temperature of the amorphous alloy powder A and not more than the crystallization start temperature of the amorphous alloy powder A, and the average press of the pressure molding process The soft magnetic alloy compact according to any one of claims 5 to 8, wherein the strain rate is 0.0001 to 1S- 1 . 請求項1〜9のいずれか1つの項に記載の軟磁性合金圧密体の製造方法であって、下記の工程(1)及び(2)
(1)非晶質合金粉末の全体積を基準として、非晶質合金粉末の表面に絶縁物被膜を有していない粉末及び非晶質合金粉末の表面に絶縁物被膜を有している粉末を、それぞれの含有率が1〜50体積%及び50〜99体積%となるように混合する工程、
(2)(1)工程で得られた粉末を加圧成形処理する工程、
を含むことを特徴とする軟磁性合金圧密体の製造方法。
It is a manufacturing method of the soft-magnetic alloy compacted body as described in any one of Claims 1-9, Comprising: The following process (1) and (2)
(1) Based on the total volume of the amorphous alloy powder, a powder that does not have an insulator coating on the surface of the amorphous alloy powder and a powder that has an insulator coating on the surface of the amorphous alloy powder Are mixed so that the respective contents are 1 to 50% by volume and 50 to 99% by volume,
(2) A step of pressure-molding the powder obtained in the step (1),
A method for producing a soft magnetic alloy compact, comprising:
JP2006039224A 2006-02-16 2006-02-16 Soft magnetic alloy compact and manufacturing method thereof Expired - Fee Related JP4618557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039224A JP4618557B2 (en) 2006-02-16 2006-02-16 Soft magnetic alloy compact and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039224A JP4618557B2 (en) 2006-02-16 2006-02-16 Soft magnetic alloy compact and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007220876A true JP2007220876A (en) 2007-08-30
JP4618557B2 JP4618557B2 (en) 2011-01-26

Family

ID=38497827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039224A Expired - Fee Related JP4618557B2 (en) 2006-02-16 2006-02-16 Soft magnetic alloy compact and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4618557B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295613A (en) * 2008-06-02 2009-12-17 Fuji Electric Device Technology Co Ltd Method of manufacturing dust core
JP2013157355A (en) * 2012-01-26 2013-08-15 Tdk Corp Dust core
JP2016027656A (en) * 2015-09-03 2016-02-18 日立金属株式会社 Manufacturing method of powder magnetic core
JP2016162764A (en) * 2015-02-26 2016-09-05 株式会社デンソー Magnetic powder mixed resin material
JP2017034105A (en) * 2015-08-03 2017-02-09 国立大学法人東北大学 Method for producing dust core, and dust core
JP2017220590A (en) * 2016-06-08 2017-12-14 パナソニックIpマネジメント株式会社 Powder-compact magnetic core of iron-based magnetic material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665601A (en) * 1992-08-20 1994-03-08 Mitsubishi Materials Corp Ni-base alloy powder
JP2003193174A (en) * 2001-12-27 2003-07-09 Mitsubishi Materials Corp METHOD FOR MANUFACTURING Fe-Si SOFT MAGNETIC SINTERED MATERIAL WITH HIGH DENSITY AND EXCELLENT MAGNETIC PERMEABILITY
JP2004204296A (en) * 2002-12-25 2004-07-22 Japan Science & Technology Agency BULK SHAPED Fe BASED SINTERED ALLOY SOFT MAGNETIC MATERIAL CONSISTING OF METAL GLASS, AND PRODUCTION METHOD THEREFOR
JP2005167097A (en) * 2003-12-04 2005-06-23 Fuji Electric Holdings Co Ltd Magnetic component and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665601A (en) * 1992-08-20 1994-03-08 Mitsubishi Materials Corp Ni-base alloy powder
JP2003193174A (en) * 2001-12-27 2003-07-09 Mitsubishi Materials Corp METHOD FOR MANUFACTURING Fe-Si SOFT MAGNETIC SINTERED MATERIAL WITH HIGH DENSITY AND EXCELLENT MAGNETIC PERMEABILITY
JP2004204296A (en) * 2002-12-25 2004-07-22 Japan Science & Technology Agency BULK SHAPED Fe BASED SINTERED ALLOY SOFT MAGNETIC MATERIAL CONSISTING OF METAL GLASS, AND PRODUCTION METHOD THEREFOR
JP2005167097A (en) * 2003-12-04 2005-06-23 Fuji Electric Holdings Co Ltd Magnetic component and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295613A (en) * 2008-06-02 2009-12-17 Fuji Electric Device Technology Co Ltd Method of manufacturing dust core
JP2013157355A (en) * 2012-01-26 2013-08-15 Tdk Corp Dust core
JP2016162764A (en) * 2015-02-26 2016-09-05 株式会社デンソー Magnetic powder mixed resin material
JP2017034105A (en) * 2015-08-03 2017-02-09 国立大学法人東北大学 Method for producing dust core, and dust core
JP2016027656A (en) * 2015-09-03 2016-02-18 日立金属株式会社 Manufacturing method of powder magnetic core
JP2017220590A (en) * 2016-06-08 2017-12-14 パナソニックIpマネジメント株式会社 Powder-compact magnetic core of iron-based magnetic material

Also Published As

Publication number Publication date
JP4618557B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
KR101945580B1 (en) Method of producing powder for magnetic core
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
TWI294321B (en) Method for manufacturing of insulated soft magnetic metal powder formed body
TWI578338B (en) Powder core and its manufacturing method
KR101910139B1 (en) Magnetic core, method for producing magnetic core, and coil component
JP6427862B2 (en) Dust core, manufacturing method thereof, inductance element using the dust core, and rotating electric machine
JP5063861B2 (en) Composite dust core and manufacturing method thereof
KR101213856B1 (en) Sintered soft magnetic powder molded body
JPWO2010084812A1 (en) Metallurgical powder manufacturing method, dust core manufacturing method, dust core and coil component
JP2014216495A (en) Soft magnetic material composition, magnetic core, coil type electronic component, and process of manufacturing compact
JP2009010180A (en) Soft magnetic powder, soft magnetic formed object, and method of manufacturing them
JPWO2010073590A1 (en) Composite soft magnetic material and manufacturing method thereof
JP2009158652A (en) Compound magnetic material and manufacturing method thereof
JP7045905B2 (en) Soft magnetic powder and its manufacturing method
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
WO2012173239A1 (en) Iron-base soft magnetic powder for dust cores, manufacturing method thereof, and dust core
JP2007251125A (en) Soft magnetic alloy consolidation object and method for fabrication thereof
JP6667727B2 (en) Manufacturing method of dust core, manufacturing method of electromagnetic parts
JP2008172257A (en) Method for manufacturing insulating soft magnetic metal powder molding
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP4750471B2 (en) Low magnetostrictive body and dust core using the same
JP6609255B2 (en) Soft magnetic powder mixture
JP2011243830A (en) Powder magnetic core and method for manufacturing the same
JP2012151179A (en) Dust core
JP2015028985A (en) Soft magnetic material composition, method for manufacturing the same, magnetic core, and coil type electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees