JP2007220450A - Negative electrode pate for lithium secondary battery and lithium secondary battery using it - Google Patents

Negative electrode pate for lithium secondary battery and lithium secondary battery using it Download PDF

Info

Publication number
JP2007220450A
JP2007220450A JP2006038992A JP2006038992A JP2007220450A JP 2007220450 A JP2007220450 A JP 2007220450A JP 2006038992 A JP2006038992 A JP 2006038992A JP 2006038992 A JP2006038992 A JP 2006038992A JP 2007220450 A JP2007220450 A JP 2007220450A
Authority
JP
Japan
Prior art keywords
active material
material layer
negative electrode
current collector
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006038992A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Honda
和義 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006038992A priority Critical patent/JP2007220450A/en
Publication of JP2007220450A publication Critical patent/JP2007220450A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode plate for a lithium secondary battery using a high capacity active material and capable of reducing stress at both ends in the width direction of a current collector in expansion contraction caused by absorption of lithium ions, and to provide the lithium secondary battery using the negative electrode. <P>SOLUTION: The negative electrode 20 for the lithium secondary battery has a long sheet-shaped current collector 22 and a negative active material layer 24 containing a negative active material capable of absorbing and releasing lithium ions, formed on the current collector 22. The negative active material layer 24 comprises a first active material layer 21 formed on the central part of the current collector 22 and a second active material layer 23 formed at both ends in the width direction of the current collector 22, the density D2 of the second active material layer 23 is lower than the density D1 of the first active material layer 21. The lithium secondary battery uses the negative electrode 20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、シート状の集電体と、集電体の表面に形成された負極活物質層とを有するリチウム二次電池用負極板、およびそれを用いたリチウム二次電池に関する。   The present invention relates to a negative electrode plate for a lithium secondary battery having a sheet-like current collector and a negative electrode active material layer formed on the surface of the current collector, and a lithium secondary battery using the same.

近年、非水電解質二次電池の高容量化のための負極活物質(以下、活物質ともいう)として、Si(ケイ素)やSn(スズ)などの元素を含む負極材料が注目されている。例えば、Siの理論放電容量は約4199mAh/gであり、黒鉛の理論放電容量の約11倍である。   In recent years, negative electrode materials containing elements such as Si (silicon) and Sn (tin) have attracted attention as negative electrode active materials (hereinafter also referred to as active materials) for increasing the capacity of nonaqueous electrolyte secondary batteries. For example, the theoretical discharge capacity of Si is about 4199 mAh / g, which is about 11 times the theoretical discharge capacity of graphite.

しかしながら、これら負極材料は、リチウムイオンを吸蔵する際に構造が大きく変化し、膨張する。その結果、活物質粒子が割れたり、集電体から活物質層が剥がれたりすることによって、活物質と集電体との間の電子伝導性が低下し、結果としてサイクル特性といった電池特性が低下する。   However, the structure of these negative electrode materials greatly changes when lithium ions are occluded and expands. As a result, the active material particles are cracked or the active material layer is peeled off from the current collector, resulting in a decrease in electronic conductivity between the active material and the current collector, resulting in a decrease in battery characteristics such as cycle characteristics. To do.

そのため、放電容量が若干低下するがSiやSnの酸化物、窒化物または酸窒化物を用いることによって膨張収縮を軽減することが試みられている。   Therefore, although the discharge capacity is slightly reduced, attempts have been made to reduce expansion and contraction by using Si, Sn oxides, nitrides, or oxynitrides.

また、活物質層に、リチウムイオン吸蔵時の膨張空間をあらかじめ設けておき、極板ダメージを低減することが提案されている。   In addition, it has been proposed that an active material layer is previously provided with an expansion space during storage of lithium ions to reduce electrode plate damage.

例えば特許文献1には、リチウム(Li)とは合金化しない材料からなる集電体上に、Liと合金化する金属またはこの金属を含有する合金からなる薄膜が形成されたリチウム二次電池用負極板(以下、負極板ともいう)が開示されている。この従来例においては、集電体上に所定のパターンで選択的に凹凸状負極活物質層を形成し、この凹凸状負活物質層の形成にはフォトレジスト法とメッキ技術などを適用している。さらに、柱状に形成された負活物質間の空隙が活物質の体積膨張を吸収することによって、活物質の破壊を回避する内容を開示している。また、金属集電体の上に凹凸状にパターン化されて形成された活物質層を備える負極を用いて、従来の電池と同様にセパレータを介して正極活物質と対向させたリチウム二次電池(以下、電池ともいう)が開示されている。   For example, Patent Document 1 discloses a lithium secondary battery in which a thin film made of a metal alloyed with Li or an alloy containing the metal is formed on a current collector made of a material that is not alloyed with lithium (Li). A negative electrode plate (hereinafter also referred to as a negative electrode plate) is disclosed. In this conventional example, a concavo-convex negative active material layer is selectively formed in a predetermined pattern on a current collector, and a photoresist method and a plating technique are applied to form the concavo-convex negative active material layer. Yes. Furthermore, the content which avoids destruction of an active material is disclosed by the space | gap between the negative active materials formed in columnar shape absorbing the volume expansion of an active material. In addition, a lithium secondary battery using a negative electrode provided with an active material layer formed in a concavo-convex pattern on a metal current collector and facing a positive electrode active material via a separator in the same manner as a conventional battery (Hereinafter also referred to as a battery).

また特許文献2には、Li合金メッキ型の負極において、充放電サイクルの繰り返しや捲回時のメッキ負極層のクラックを防止するために、集電体の幅方向の両端部にメッキ層を含まない構成が開示されている。
特開2004−127561号公報 特開平8−130005号公報
Patent Document 2 also includes a plated layer at both ends in the width direction of the current collector in order to prevent cracking of the plated negative electrode layer during repeated charge / discharge cycles and winding in a Li alloy plated negative electrode. No configuration is disclosed.
JP 2004-127561 A JP-A-8-130005

しかしながら、前記特許文献1に記載の構成を有する負極板は、活物質層を構成する粒子が充放電時に顕著に膨張収縮するために、集電体に働く応力が大きく、集電体の幅方向の端部で破断が生じやすい。また、前記特許文献2に記載の構成を有する負極極のように、集電体の幅方向の両端部に活物質を形成しない部分を設けた場合には、容量の低下が大きい上に、この露出部分の集電体材料が削れやすく、電池組立工程で微粉が発生し、電池性能のバラツキが生じるおそれがある。   However, the negative electrode plate having the configuration described in Patent Document 1 has a large stress acting on the current collector because the particles constituting the active material layer significantly expand and contract during charge / discharge, and the width direction of the current collector is large. Breaking is likely to occur at the ends. In addition, when a portion where no active material is formed is provided at both ends in the width direction of the current collector, such as the negative electrode having the configuration described in Patent Document 2, the capacity is greatly reduced. The exposed portion of the current collector material is likely to be scraped, and fine powder is generated in the battery assembly process, which may cause variations in battery performance.

本発明は、前記従来の課題を解決するもので、高容量活物質を用い、かつリチウムイオンの吸蔵による膨張収縮時の、集電体箔の幅方向の両端部における応力の低減を、顕著な容量低下なしに実現することが出来る負極板、およびそれを用いた電池を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and is able to remarkably reduce stress at both ends in the width direction of the current collector foil during expansion and contraction using a high-capacity active material and occlusion of lithium ions. An object of the present invention is to provide a negative electrode plate that can be realized without lowering the capacity, and a battery using the same.

前記従来の課題を解決するために、本発明の負極板は、長尺のシート状の集電体と、前記集電体上に形成されたリチウムイオンを吸蔵および放出可能な負極活物質を含む負極活物質層と、を有する用負極板であって、
負極活物質層は、集電体の中央部に形成された第1の活物質層と、集電体の幅方向の両端部に形成された第2の活物質層と、からなり、
前記第2の活物質層の密度D2は、前記第1の活物質層の密度D1よりも小さいこと、を特徴とするものである。
In order to solve the conventional problems, a negative electrode plate of the present invention includes a long sheet-shaped current collector and a negative electrode active material capable of inserting and extracting lithium ions formed on the current collector. A negative electrode plate having a negative electrode active material layer,
The negative electrode active material layer includes a first active material layer formed at the center of the current collector and second active material layers formed at both ends in the width direction of the current collector.
The density D2 of the second active material layer is smaller than the density D1 of the first active material layer.

本構成を有する負極板を用いた場合には、集電体の幅方向の両端部に対する応力を軽減することが可能となるので、集電体の破断を防止することが出来る。   When the negative electrode plate having this configuration is used, stress on both ends in the width direction of the current collector can be reduced, so that the current collector can be prevented from being broken.

また、本発明の電池は、リチウムイオンを吸蔵・放出可能な正極活物質を含む正極板と、本発明の負極板と、セパレータと、から構成される極板群と、リチウムイオン伝導性を有する電解質と、を含む電池であって、
極板群は、正極板と負極板とをセパレータを介して長さ方向に捲回または折り畳んで構成されていること、を特徴とする。
Further, the battery of the present invention has a positive electrode plate including a positive electrode active material capable of inserting and extracting lithium ions, a negative electrode plate of the present invention, and an electrode plate group including a separator, and has lithium ion conductivity. A battery comprising an electrolyte,
The electrode plate group is configured by winding or folding a positive electrode plate and a negative electrode plate in the length direction with a separator interposed therebetween.

本構成の電池は、信頼性の高い負極板を用いることで、高容量で信頼性の高い電池とすくことが出来る。   By using a highly reliable negative electrode plate, the battery having this configuration can be made into a battery with high capacity and high reliability.

本発明の負極板およびそれを用いた電池によれば、高容量活物質を用い、かつリチウムイオンの吸蔵による活物質膨張収縮時の集電体端部に対する応力を軽減することで、集電体の破断を防止することが出来る。その結果、高容量で信頼性の高い電池とすることが出来る。   According to the negative electrode plate of the present invention and the battery using the negative electrode plate, the current collector is reduced by using a high-capacity active material and reducing the stress on the end of the current collector during expansion and contraction of the active material due to occlusion of lithium ions. Can be prevented from breaking. As a result, a battery with high capacity and high reliability can be obtained.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

(実施の形態)
図1は本発明の実施の形態における負極板の概略平面図であり、図2は図1におけるA−A’における断面構造を示す概略断面図である。図1と図2とにおいて、同じ構成要素については同じ符号を用いる。図1および図2において、負極板20は、長尺のシート状の集電体22と、集電体22の表面上に形成された負極活物質層24とを有する。図2に示すように集電体22の両面に負極活物質層24が形成されていてもよいし、集電体22の片方の面にのみ負極活物質層24が形成されていてもよい。負極活物質層24は気相法で形成されている。負極活物質層24は、集電体22の中央部に形成された第1の活物質層21と、集電体22の幅方向の両端部に形成された第2の活物質層23と、からなる。第2の活物質層23は集電体22の幅方向の両端部に所定の幅Wで形成されている。
(Embodiment)
FIG. 1 is a schematic plan view of a negative electrode plate according to an embodiment of the present invention, and FIG. 1 and 2, the same reference numerals are used for the same components. 1 and 2, the negative electrode plate 20 includes a long sheet-like current collector 22 and a negative electrode active material layer 24 formed on the surface of the current collector 22. As shown in FIG. 2, the negative electrode active material layer 24 may be formed on both surfaces of the current collector 22, or the negative electrode active material layer 24 may be formed only on one surface of the current collector 22. The negative electrode active material layer 24 is formed by a vapor phase method. The negative electrode active material layer 24 includes a first active material layer 21 formed at the center of the current collector 22, a second active material layer 23 formed at both ends in the width direction of the current collector 22, Consists of. The second active material layer 23 is formed with a predetermined width W at both ends in the width direction of the current collector 22.

さらに、第2の活物質層の密度D2は、第1の活物質層の密度D1よりも小さい。なお、本明細書において密度とは、単位体積当たりの質量密度(g/cm)を意味する。ここで、集電体22の中央部に形成された第1の活物質層21とは、電池構成時に正極板と対向し、充放電に関与する活物質層を意味し、通常ほぼ均一な厚さ・密度で形成されている。また、集電体22の幅方向の両端部とは、図1に示すようにある程度の面積を有しており、集電体22の端部断面部を意味するものではない。 Furthermore, the density D2 of the second active material layer is smaller than the density D1 of the first active material layer. In addition, in this specification, a density means the mass density (g / cm < 3 >) per unit volume. Here, the first active material layer 21 formed in the central portion of the current collector 22 is an active material layer that is opposed to the positive electrode plate during battery construction and is involved in charge and discharge, and has a generally uniform thickness. It is formed with thickness and density. Further, both end portions of the current collector 22 in the width direction have a certain area as shown in FIG. 1 and do not mean end cross sections of the current collector 22.

従来の負極板においては、負極活物質層が集電体の端部までほぼ均一に設けられているか、あるいは前述した特許文献2に示されるように、集電体の幅方向の両端部において負極活物質層を形成しない領域が設けられていた。   In the conventional negative electrode plate, the negative electrode active material layer is provided almost uniformly up to the end of the current collector, or as shown in Patent Document 2 described above, the negative electrode is formed at both ends in the width direction of the current collector. A region where no active material layer was formed was provided.

負極活物質層が集電体の幅方向の端部までほぼ均一に設けられている従来の負極板では、充放電による負極活物質層の膨張収縮に伴う応力が、集電体の中央付近と幅方向端部とで同程度に発生する。これに対して集電体の実用的な機械的強度は、集電体中央部付近では集電体材料の引っ張り強度によって規定されるが、集電体の幅方向端部では実用的な機械強度が集電体材料の引き裂き強度によって規定される。例えば集電体材料としてCu箔を用いた場合、電池化工程時の極板スリットの工程で、集電体の切断面に微小なキズが発生することがあり、充放電による膨張収縮時に前記微小クラック部分を基点にした集電体の破断が生じやすい。   In the conventional negative electrode plate in which the negative electrode active material layer is provided almost uniformly up to the end in the width direction of the current collector, the stress accompanying the expansion and contraction of the negative electrode active material layer due to charge / discharge is near the center of the current collector. It occurs to the same extent at the end in the width direction. On the other hand, the practical mechanical strength of the current collector is defined by the tensile strength of the current collector material near the center of the current collector, but is practical mechanical strength at the widthwise end of the current collector. Is defined by the tear strength of the current collector material. For example, when Cu foil is used as the current collector material, a minute scratch may occur on the cut surface of the current collector in the process of the electrode plate slitting process at the time of battery formation. The current collector based on the crack portion tends to break.

これに対して本発明の負極板20においては、集電体22の幅方向端部における負極活物質層(第2の活物質層23)の密度D2は、幅方向中央部における負極活物質層(第1の活物質層21)の密度D1に比べて小さく、そのため充放電による膨張収縮による集電体22への応力が低減できる。そのため充放電を繰り返したときにも、集電体端部を基点とした集電体22および負極板20の破断を防止することが出来る。   In contrast, in the negative electrode plate 20 of the present invention, the density D2 of the negative electrode active material layer (second active material layer 23) at the end in the width direction of the current collector 22 is the negative electrode active material layer at the center in the width direction. The density is smaller than the density D1 of the (first active material layer 21), and therefore stress on the current collector 22 due to expansion / contraction due to charge / discharge can be reduced. Therefore, even when charging and discharging are repeated, breakage of the current collector 22 and the negative electrode plate 20 with the current collector edge as the base point can be prevented.

一方、負極活物質層そのもののクラックを防止するために、特許文献2に示されるように集電体の幅方向の両端部において負極活物質層を形成しない領域を設けることが開示されている。特許文献2の場合には、また、負極活物質層が全く形成されていない集電体端部領域と負極活物質層形成領域で集電体にかかる応力の差が大きく、充放電の結果、二つの領域の境界で集電体の損傷が発生しやすい。また、正極板に対向する位置の負極板上に負極活物質層が全く存在しないとリチウムの析出が顕著に発生し、電池の信頼性が低下するため、正極板と負極板の位置あわせに高い精度が要求され、生産性が低下する。さらには集電体の幅方向の両端部の負極活物質層が形成されない領域は集電体箔が露出しており、電池化工程における負極板のスリットや巻き取りの際に集電体の露出部分が工程設備と摺動接触する可能性が高い。そのため、集電体22の表面の削り取りや脱落により、集電体材料からなる微粉が発生する場合がある。こうした金属材料の微粉は電池信頼性の低下要因となる。   On the other hand, in order to prevent cracking of the negative electrode active material layer itself, as disclosed in Patent Document 2, it is disclosed to provide regions where no negative electrode active material layer is formed at both ends in the width direction of the current collector. In the case of Patent Document 2, there is a large difference in stress applied to the current collector in the current collector end region where the negative electrode active material layer is not formed at all and the negative electrode active material layer formation region. Current collector damage is likely to occur at the boundary between the two regions. In addition, if there is no negative electrode active material layer on the negative electrode plate at a position facing the positive electrode plate, lithium deposition occurs remarkably and the reliability of the battery is lowered. Therefore, the alignment of the positive electrode plate and the negative electrode plate is high. Accuracy is required and productivity is reduced. Furthermore, the current collector foil is exposed in the region where the negative electrode active material layer is not formed at both ends in the width direction of the current collector, and the current collector is exposed during slitting or winding of the negative electrode plate in the battery forming process. There is a high possibility that the part will be in sliding contact with the process equipment. Therefore, fine powder made of the current collector material may be generated by scraping or dropping off the surface of the current collector 22. Such a fine powder of the metal material becomes a factor of lowering the battery reliability.

これに対して本発明の負極板20の構成においては、集電体22の幅方向の端部にまで第2の活物質層23が形成されているので、集電体22の端部領域と第1の活物質層22の形成領域とで集電体22にかかる応力の差は小さい。従って、充放電を繰り返しても、二つの領域の境界における集電体22の損傷は発生しにくい。また、集電体22の幅方向端部にまで第2の活物質層23が形成されているので、正・負極板の位置あわせがずれた場合にもリチウムの析出が軽微であり、電池の信頼性低下を防止できる。さらには、集電体22は幅方向端部まで第2の活物質層23に覆われているので、電池化工程における取扱いを経ても集電体22材料の削れが生じにくく、金属微粉の発生による電池信頼性の低下を防止できる。   On the other hand, in the configuration of the negative electrode plate 20 of the present invention, the second active material layer 23 is formed up to the end of the current collector 22 in the width direction. The difference in stress applied to the current collector 22 between the formation region of the first active material layer 22 is small. Therefore, even if charging / discharging is repeated, the current collector 22 is hardly damaged at the boundary between the two regions. Further, since the second active material layer 23 is formed up to the end in the width direction of the current collector 22, lithium deposition is slight even when the positive and negative electrode plates are misaligned. Reduced reliability can be prevented. In addition, since the current collector 22 is covered with the second active material layer 23 up to the end in the width direction, the material of the current collector 22 is hardly scraped even after handling in the battery forming process, and generation of metal fines is generated. It is possible to prevent a decrease in battery reliability due to.

第2の活物質層23の密度D2は、第1の活物質層22の密度D1に対して50%以上、80%以下であることが望ましい。第2の活物質層23の密度D2が第1の活物質層22の密度D1に対して50%未満となると、第1の活物質層22と第2の活物質層23との境界で充放電による膨張収縮の差により集電体22の損傷が発生しやすく、80%を超えると第2の活物質層23においても活物質層の膨張収縮が大きくなるので、幅方向端部の集電体キズ等を基点とした極板破断を防止する効果が小さくなる。なお、図1および図2においては、第1の活物質層22の厚さと第2の活物質層23の厚さとが等しい構成となっている。厚さが同じである方が極板群を構成時に構成しやすい、といった利点は有するが、必ずしも同じである必要はなく、たとえば第2の活物質層23の厚さが第1の活物質層22の厚さよりも薄くても良い。   The density D2 of the second active material layer 23 is desirably 50% or more and 80% or less with respect to the density D1 of the first active material layer 22. When the density D2 of the second active material layer 23 is less than 50% of the density D1 of the first active material layer 22, it is filled at the boundary between the first active material layer 22 and the second active material layer 23. The current collector 22 is liable to be damaged due to the difference in expansion and contraction due to discharge, and if it exceeds 80%, the expansion and contraction of the active material layer also increases in the second active material layer 23. The effect of preventing electrode plate breakage based on body scratches or the like is reduced. 1 and 2, the thickness of the first active material layer 22 and the thickness of the second active material layer 23 are the same. Although the same thickness has the advantage that the electrode group can be easily formed at the time of construction, it is not necessarily the same. For example, the thickness of the second active material layer 23 is the first active material layer. The thickness may be thinner than 22.

集電体22の幅方向における、第2の活物質層23が形成されている領域の幅Wは、1mm以上10mm以下であることが望ましい。この幅Wが1mm未満では集電体端部での破断防止の効果が小さく、幅Wが10mmを超えないことが、高エネルギー密度な電池を得るために望ましい。この幅Wは負極板20の全長に亘って通常一定であるが、本発明の効果を損なわない範囲で有れば、一定である必要はない。また、集電体22の一方の端部に形成された第2の活物質層23の幅ともう一方の端部に形成された第2の活物質層23の幅とが同じでも良く、異なっていても良い。   The width W of the region where the second active material layer 23 is formed in the width direction of the current collector 22 is preferably 1 mm or more and 10 mm or less. If this width W is less than 1 mm, the effect of preventing breakage at the end of the current collector is small, and it is desirable for the width W not to exceed 10 mm in order to obtain a battery with a high energy density. The width W is usually constant over the entire length of the negative electrode plate 20, but need not be constant as long as the effect of the present invention is not impaired. Further, the width of the second active material layer 23 formed at one end of the current collector 22 may be the same as the width of the second active material layer 23 formed at the other end. May be.

また、負極活物質層24(第1の活物質層21および第2の活物質層23)に含まれる活物質としては、リチウムと電気化学的に反応するものであれば特に制限はないが、リチウムとの反応性が比較的高く、高容量が期待できるケイ素単体、ケイ素合金、ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズ単体、スズ合金、スズと酸素とを含む化合物、およびスズと窒素とを含む化合物よりなる群から選択される少なくとも1種を含むことが好ましい。本発明による改善度合いが顕著となるからである。   The active material contained in the negative electrode active material layer 24 (the first active material layer 21 and the second active material layer 23) is not particularly limited as long as it reacts electrochemically with lithium. Silicon simple substance, silicon alloy, compound containing silicon and oxygen, compound containing silicon and nitrogen, simple substance of tin, tin alloy, compound containing tin and oxygen, which has relatively high reactivity with lithium and can be expected to have a high capacity And at least one selected from the group consisting of compounds containing tin and nitrogen. It is because the improvement degree by this invention becomes remarkable.

本発明でいうところの密度とは、前述したように単位体積当たりの質量密度(g/cm)を意味する。より具体的には、活物質層の体積に対する、ケイ素単体、ケイ素合金、ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズ単体、スズ合金、スズと酸素とを含む化合物、およびスズと窒素とを含む化合物よりなる群から選択される少なくとも1種、などの活物質材料の質量を指すものであり、リチウムはこれに含まれない。活物質層の体積は、活物質層内に微小な空間を含む場合にはこれも活物質層の体積としており、本発明でいうところの活物質層の体積とは、活物質層の外寸に基づく。活物質層の体積は物差しや顕微鏡などの一般的な測長治具による計測結果により求め、顕著な表面荒れにたいしては各種手法によって寸法情報の平均値を求めることによって決定される。また、活物質材料はICP発光分析法などの化学分析によって、所定面積における活物質材料の含有重量の総和として質量測定が行われる。 The density as used in the field of this invention means the mass density (g / cm < 3 >) per unit volume as mentioned above. More specifically, relative to the volume of the active material layer, silicon simple substance, silicon alloy, compound containing silicon and oxygen, compound containing silicon and nitrogen, tin simple substance, tin alloy, compound containing tin and oxygen, and This refers to the mass of the active material such as at least one selected from the group consisting of compounds containing tin and nitrogen, and does not include lithium. The volume of the active material layer is defined as the volume of the active material layer when a small space is included in the active material layer, and the volume of the active material layer in the present invention is the outer dimension of the active material layer. based on. The volume of the active material layer is determined by a measurement result using a general length measuring jig such as a ruler or a microscope, and is determined by determining an average value of dimensional information by various methods for remarkable surface roughness. In addition, the active material is subjected to mass measurement as a sum of the weights of the active material in a predetermined area by chemical analysis such as ICP emission analysis.

第1の活物質層21の集電体22の中央部での厚みは作製する電池の性能によって異なるが、概ね3〜40μmの範囲である。第1の活物質層21の厚さが3μm未満になると、電池全体に占める活物質の割合が小さくなり、電池のエネルギー密度が低下する。また、第1の活物質層21の厚さが40μmを超えると、活物質層の剥がれが発生しやすくなったり、充放電時の活物質層の膨張収縮による集電体22と第1の活物質層21との界面における応力が大きくなったり、本発明の構成を用いた場合でも集電体の変形などが発生しやすくなる。   The thickness of the first active material layer 21 at the center of the current collector 22 varies depending on the performance of the battery to be manufactured, but is generally in the range of 3 to 40 μm. When the thickness of the first active material layer 21 is less than 3 μm, the proportion of the active material in the entire battery decreases, and the energy density of the battery decreases. Further, when the thickness of the first active material layer 21 exceeds 40 μm, the active material layer tends to be peeled off, or the current collector 22 and the first active material layer due to expansion / contraction of the active material layer during charge / discharge. The stress at the interface with the material layer 21 is increased, and even when the configuration of the present invention is used, the current collector is easily deformed.

リチウムとの反応性の観点からは、活物質は非晶質または低結晶性であることが好ましい。ここでいう低結晶性とは、結晶粒の粒径が50nm以下の領域を言う。なお結晶粒の粒径は、X線回折分析で得られる回折像の中で最も強度の大きなピークの半価幅から、Scherrerの式によって算出される。また非晶質とは、X線回折分析で得られる回折像において、2θ=15〜40°の範囲にブロードなピークを有することを言う。   From the viewpoint of reactivity with lithium, the active material is preferably amorphous or low crystalline. The term “low crystallinity” as used herein refers to a region where the crystal grain size is 50 nm or less. Note that the grain size of the crystal grains is calculated by the Scherrer equation from the half-value width of the peak with the highest intensity in the diffraction image obtained by X-ray diffraction analysis. Amorphous means having a broad peak in the range of 2θ = 15 to 40 ° in a diffraction image obtained by X-ray diffraction analysis.

集電体22には銅、ニッケルなどを含むシート状の金属箔を用いることが出来る。強度、電池としての体積効率、取り扱いの容易性などの観点から箔の厚みは4〜30μmが好ましく、より好ましくは5〜10μmである。箔の表面は平滑であってもよいが、負極活物質層24との付着強度を高めるために、Ra=0.1〜4μm程度の凹凸箔を用いることも出来る。箔の凹凸は負極活物質層24を構成する粒子間に空隙を形成する効果を併せ持つ。付着力、コストなどの点から、より好ましくはRa=0.4〜2.5μmである。   For the current collector 22, a sheet-like metal foil containing copper, nickel, or the like can be used. The thickness of the foil is preferably 4 to 30 μm, more preferably 5 to 10 μm from the viewpoint of strength, volumetric efficiency as a battery, ease of handling, and the like. The surface of the foil may be smooth, but in order to increase the adhesion strength with the negative electrode active material layer 24, a concavo-convex foil of about Ra = 0.1 to 4 μm can be used. The unevenness of the foil also has the effect of forming voids between the particles constituting the negative electrode active material layer 24. From the viewpoints of adhesive force, cost, etc., Ra = 0.4 to 2.5 μm is more preferable.

本実施の形態における負極板20は、例えば以下に示す方法によって作製可能である。   The negative electrode plate 20 in the present embodiment can be manufactured by the following method, for example.

図3および図4は、本実施の形態における負極板20を構成するための製造装置の一例を示す概略図であり、図4は後述する第2キャン7、リチウム付与源46およびマスク12周辺の構成例を示す斜視模式図である。なお、第1キャン6、リチウム付与源46およびマスク12周辺の構成例は、図4と位置関係が異なるのみであるので、省略する。   3 and 4 are schematic views showing an example of a manufacturing apparatus for constituting the negative electrode plate 20 in the present embodiment, and FIG. 4 shows the vicinity of the second can 7, the lithium application source 46, and the mask 12 described later. It is a perspective schematic diagram which shows the structural example. Note that the configuration example around the first can 6, the lithium supply source 46, and the mask 12 is different from that in FIG.

図3において、真空槽2の内部は排気ポンプ1で排気されている。真空槽2中で巻き出しロール8から巻き出された長尺の集電体22は、搬送ローラ5および円筒状の第1キャン6および第2キャン7の周面に沿って走行し、巻き取りロール3に巻き取られる。ここで使用する集電体22は銅、ニッケルなどからなるシート状の箔である。またリチウム付与源46には、リチウムがヒーターなどの加熱装置(図示せず)によって溶融されてステンレス容器などに入れられている。また活物質付与源9には、ケイ素またはスズが坩堝などに入れられている。活物質付与源9は電子ビームなどの加熱装置(図示せず)により加熱され、ケイ素またはスズが蒸発する。   In FIG. 3, the inside of the vacuum chamber 2 is exhausted by the exhaust pump 1. The long current collector 22 unwound from the unwinding roll 8 in the vacuum chamber 2 travels along the peripheral surfaces of the transport roller 5 and the cylindrical first can 6 and the second can 7 and winds up. It is wound up on a roll 3. The current collector 22 used here is a sheet-like foil made of copper, nickel or the like. Further, in the lithium application source 46, lithium is melted by a heating device (not shown) such as a heater and placed in a stainless steel container or the like. Further, silicon or tin is put in a crucible or the like in the active material application source 9. The active material application source 9 is heated by a heating device (not shown) such as an electron beam, and silicon or tin evaporates.

巻き出しロール8から巻き出された長尺の集電体22は、第1キャン6に沿った状態でリチウム付与源46からマスク12の開口部13を経由して飛来するリチウムにさらされることにより、表面に帯状のリチウムが付与される。マスク12の開口部13は、図4に示すように、帯状の開口部であり、集電体22の移動方向に沿って、複数列形成されている。次に、遮蔽板10の開口部において、表面に帯状のリチウムが付与された集電体22が第1キャン6に沿った状態で活物質付与源9から飛来するケイ素やスズなどに集電体22の幅全体に亘ってさらされることにより、負極活物質層24(図示せず)が形成される。この際、帯状のリチウムが付与された箇所には第2の活物質層23(図示せず)が形成され、その他の箇所には第1の活物質層21(図示せず)が形成される。   The long current collector 22 unwound from the unwinding roll 8 is exposed to lithium flying from the lithium application source 46 through the opening 13 of the mask 12 along the first can 6. The surface is provided with belt-like lithium. As shown in FIG. 4, the openings 13 of the mask 12 are band-shaped openings and are formed in a plurality of rows along the moving direction of the current collector 22. Next, in the opening of the shielding plate 10, the current collector 22 having a strip-like lithium applied to the surface thereof is collected on silicon, tin, etc. flying from the active material applying source 9 along the first can 6. The negative electrode active material layer 24 (not shown) is formed by being exposed over the entire width of 22. At this time, the second active material layer 23 (not shown) is formed in the portion where the belt-like lithium is applied, and the first active material layer 21 (not shown) is formed in the other portions. .

負極活物質層24が形成された集電体22は、第2キャン7に送られる。第2キャン7では、集電体22の負極活物質層24が形成されていない面がリチウム付与源46および活物質付与源9からのリチウムおよび活物質にさらされること以外は第1キャン6での状況と同様であるので説明は省略する。   The current collector 22 on which the negative electrode active material layer 24 is formed is sent to the second can 7. In the second can 7, the surface of the current collector 22 where the negative electrode active material layer 24 is not formed is exposed to the lithium and the active material from the lithium application source 46 and the active material application source 9. Since it is the same as the situation of, description is omitted.

次に、第2の活物質層23の形成について説明する。前述したように、第2の活物質層23は、集電体22上に予めリチウムが付与された後、そこに活物質が付与されることで形成される。このときリチウムの少なくとも一部分は、活物質付与源9からの輻射熱や飛来ずるケイ素やスズの熱エネルギーおよび運動エネルギーによって一旦溶融あるいは蒸発する等して高活性な状態となる。この高活性な状態のリチウムは、飛来するケイ素やスズなどと反応することで、第2の活物質層23が形成される。このようにして、帯状リチウムの形成部分に呼応して、図1に示すような、第1の活物質層21に比べて低密度な活物質領域である第2の活物質層23が形成される。第2の活物質層23は帯状リチウム層の幅と必ずしも一致せず、たとえば帯状リチウムの幅より若干広い領域が形成される場合もある。   Next, the formation of the second active material layer 23 will be described. As described above, the second active material layer 23 is formed by applying lithium on the current collector 22 in advance and then applying the active material thereto. At this time, at least a part of lithium is in a highly active state by being once melted or evaporated by the radiant heat from the active material application source 9 or the thermal energy and kinetic energy of flying silicon or tin. The highly active lithium reacts with flying silicon, tin, and the like, whereby the second active material layer 23 is formed. Thus, the second active material layer 23, which is an active material region having a lower density than the first active material layer 21, as shown in FIG. The The second active material layer 23 does not necessarily match the width of the strip-shaped lithium layer, and for example, a region slightly wider than the width of the strip-shaped lithium may be formed.

集電体22上に負極活物質層24を形成した後、電池化工程のためにスリットを行う。スリットは帯状リチウム層の形成位置、すなわち第2の活物質層23に沿って行われる。これによって集電体22の幅方向の両端部において第2の活物質層23を有する負極板20を形成することが出来る。   After forming the negative electrode active material layer 24 on the current collector 22, slitting is performed for the battery fabrication process. The slit is performed along the formation position of the belt-like lithium layer, that is, along the second active material layer 23. Thus, the negative electrode plate 20 having the second active material layer 23 can be formed at both ends in the width direction of the current collector 22.

第2の活物質層23の形成状態は、リチウム付与源46と集電体22との距離、リチウム付与源46とマスク12との距離、マスク12の開口部13の形状、活物質付与源9と集電体22との距離などによって、第2の活物質層23の幅と密度D2とを調整することが出来る。活物質付与源9と集電体22との距離は真空蒸着法などの気相法を用いる場合には100〜600mm程度であることが、膜厚分布や材料利用効率の点から望ましい。   The formation state of the second active material layer 23 includes the distance between the lithium application source 46 and the current collector 22, the distance between the lithium application source 46 and the mask 12, the shape of the opening 13 of the mask 12, and the active material application source 9. The width and density D2 of the second active material layer 23 can be adjusted by the distance between the current collector 22 and the current collector 22 or the like. The distance between the active material application source 9 and the current collector 22 is preferably about 100 to 600 mm in the case of using a vapor phase method such as a vacuum evaporation method from the viewpoint of film thickness distribution and material utilization efficiency.

リチウムを付与する方法としては、薄膜プロセスを用いることが望ましい。薄膜プロセスを用いることにより、集電体22上にリチウムを精度よく付与することができる。リチウムを付与する薄膜プロセスとしてはスパッタ法や真空蒸着法が望ましい。中でも真空蒸着法は高速でリチウム付与ができるので最も望ましい。   As a method for applying lithium, it is desirable to use a thin film process. By using a thin film process, lithium can be applied to the current collector 22 with high accuracy. As a thin film process for applying lithium, sputtering or vacuum deposition is desirable. Among these, the vacuum deposition method is most preferable because lithium can be applied at a high speed.

帯状リチウムの幅は、作製する第2の活物質層23の幅や、作製する電池の形状によって異なるが、前述したスリットの際に第2の活物質層23の幅Wを確保できる幅で有ればよい。   The width of the strip-shaped lithium varies depending on the width of the second active material layer 23 to be manufactured and the shape of the battery to be manufactured, but has a width that can secure the width W of the second active material layer 23 in the slit described above. Just do it.

ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズと酸素とを含む化合物、またはスズと窒素とを含む化合物の活物質層を形成する場合には、酸素ガスや窒素ガスをガス導入管11から導入し、これらのガス雰囲気下や、そのイオン化雰囲気下で活物質付与源9からケイ素やスズを蒸発させることにより、本発明の負極板20が得られる。ガスをイオン化する場合には高周波の印加やイオン銃の使用等がガスの反応性向上に有効である。   When forming an active material layer of a compound containing silicon and oxygen, a compound containing silicon and nitrogen, a compound containing tin and oxygen, or a compound containing tin and nitrogen, oxygen gas or nitrogen gas is used as a gas. The negative electrode plate 20 of the present invention is obtained by introducing from the introduction tube 11 and evaporating silicon or tin from the active material application source 9 in the gas atmosphere or the ionization atmosphere thereof. In the case of ionizing a gas, application of a high frequency, use of an ion gun, etc. are effective for improving gas reactivity.

本発明の構成を持つ負極活物質層24の作製方法は、本発明の構造を得ることが出来るものであれば特に限定されないが、蒸着法、スパッタ法、CVD法などの気相法(ドライプロセス)を用いることが好ましい。上述した製造方法のように、気相法を用いると、負極活物質層24(第1の活物質層21および第2の活物質層23)の形成厚さや幅、形成位置などの制御が、他の製法と比較して容易だからである。   The method for producing the negative electrode active material layer 24 having the configuration of the present invention is not particularly limited as long as the structure of the present invention can be obtained, but a vapor phase method (dry process, such as a vapor deposition method, a sputtering method, a CVD method). ) Is preferably used. When the vapor phase method is used as in the manufacturing method described above, the formation thickness, width, formation position, etc. of the negative electrode active material layer 24 (the first active material layer 21 and the second active material layer 23) can be controlled. This is because it is easier than other methods.

こうした手法により得られた負極板20は、LiCoO、LiNiO、LiMnなどといった一般的に使用される正極活物質を含む正極板と、微多孔性フィルムなどからなるセパレータと、6フッ化リン酸リチウムなどをエチレンカーボネートやプロピレンカーボネートなどの環状カーボネート類に溶解した、一般に知られている組成のリチウムイオン伝導性を有する電解液と共に用いることで、リチウム二次電池を作製出来る。 The negative electrode plate 20 obtained by such a method includes a positive electrode plate containing a commonly used positive electrode active material such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , a separator made of a microporous film, and a 6 A lithium secondary battery can be produced by using lithium phosphate and the like in a cyclic carbonate such as ethylene carbonate or propylene carbonate together with an electrolyte having a generally known composition and having lithium ion conductivity.

また、本発明の負極は様々な形状のリチウム二次電池に適用可能であり、電池の形状や封止形態は特に限定されないが、本発明は特に折り畳み型や捲回型の二次電池に対して有効である。捲回型リチウム二次電池に適用する場合には、以下に示す構成を有することが好ましい。図面を参照しながら説明する。   In addition, the negative electrode of the present invention can be applied to lithium secondary batteries having various shapes, and the shape and sealing form of the battery are not particularly limited. However, the present invention is particularly applicable to a foldable or wound type secondary battery. It is effective. When applied to a wound lithium secondary battery, it is preferable to have the following configuration. This will be described with reference to the drawings.

図5は、本発明の捲回型リチウム二次電池の概略断面図である。図5において、長尺でシート状の正極31と本発明の帯状の負極板20とは、それらの間に配置された、両極板よりも幅広な帯状のセパレータとともに捲回され、極板群32を形成している。正極31にはアルミニウムなどからなる正極リード34が接続され、その一端は周縁にポリプロピレンなどからなる絶縁パッキン40が配された封口板39に接続されている。負極板20には銅などからなる負極リード35が接続され、その一端は極板群32を収容する電池缶38に接続されている。負極リード35は、例えば第2の活物質層23の一部を剥離して集電体22を露出させ、そこに溶接などにより電気的接続がされている。また、予め集電体22に、わずかに露出部を形成しておき、そこに負極リード35を接続しても良い。極板群32の上下には、それぞれ上部絶縁リング36および下部絶縁リング37が配されている。極板群32には、前述したリチウムイオン伝導性を有する電解質(図示せず)が含浸されている。電池缶38の開口は、封口板39で塞がれている。   FIG. 5 is a schematic cross-sectional view of a wound lithium secondary battery of the present invention. In FIG. 5, a long sheet-like positive electrode 31 and a belt-like negative electrode plate 20 of the present invention are wound together with a belt-like separator having a width wider than that of both electrode plates, and a plate group 32. Is forming. A positive electrode lead 34 made of aluminum or the like is connected to the positive electrode 31, and one end thereof is connected to a sealing plate 39 in which an insulating packing 40 made of polypropylene or the like is arranged on the periphery. A negative electrode lead 35 made of copper or the like is connected to the negative electrode plate 20, and one end thereof is connected to a battery can 38 that houses the electrode plate group 32. For example, a part of the second active material layer 23 is peeled off to expose the current collector 22, and the negative electrode lead 35 is electrically connected thereto by welding or the like. Further, a slightly exposed portion may be formed in the current collector 22 in advance, and the negative electrode lead 35 may be connected thereto. An upper insulating ring 36 and a lower insulating ring 37 are arranged above and below the electrode plate group 32, respectively. The electrode plate group 32 is impregnated with the above-described electrolyte (not shown) having lithium ion conductivity. The opening of the battery can 38 is closed with a sealing plate 39.

ここで、負極20として形成された、集電体22上に形成された第1の活物質層21および第2の活物質層22の密度は、集電体の中央部よりも集電体の幅方向端部において小さい。幅方向端部における密度は幅方向中央部に対して例えば50%を超えて80%以下である。これによって充放電による活物質層の膨張収縮を繰り返しても集電体端部を基点とした極板の破断を防止することが出来る。なお、極板の全長にわたって幅方向端部における活物質層の密度が幅方向中央部に対して小さい必要は必ずしもなく、電池設計や工程上の都合で極板の一部に限って、上記の活物質層厚み軽減の限定から逸することは本発明の主旨を損なうものではない。   Here, the density of the first active material layer 21 and the second active material layer 22 formed on the current collector 22 formed as the negative electrode 20 is higher than that of the current collector in the central portion. Small at the end in the width direction. The density at the end in the width direction is, for example, more than 50% and 80% or less with respect to the center in the width direction. Thereby, even if the expansion and contraction of the active material layer due to charging / discharging is repeated, it is possible to prevent the electrode plate from breaking at the end of the current collector. Note that the density of the active material layer at the end in the width direction is not necessarily small relative to the center in the width direction over the entire length of the electrode plate, and is limited to a part of the electrode plate for battery design and process convenience. Deviating from the limitation of reducing the thickness of the active material layer does not detract from the gist of the present invention.

ここで、負極板20として形成された、集電体22上の幅方向の両端部に形成された第2の活物質層23の密度D2は、集電体22上の中央部に形成された第1の活物質層21の密度D1に対して50%以上、80%以下である。これによって充放電による負極活物質層24が膨張収縮を繰り返しても集電体22端部を基点とした破断を防止することが出来る。なお、負極板20の全長にわたって第2の活物質層23の密度D2が第1の活物質層21の密度D1に対して50%以上、80%以下である必要は必ずしもなく、電池設計や工程上の都合で極板の一部に限って、上記の範囲から逸することは本発明の主旨を損なうものではない。   Here, the density D <b> 2 of the second active material layer 23 formed as the negative electrode plate 20 at both ends in the width direction on the current collector 22 was formed at the central portion on the current collector 22. It is 50% or more and 80% or less with respect to the density D1 of the first active material layer 21. As a result, even when the negative electrode active material layer 24 due to charge / discharge repeatedly expands and contracts, it is possible to prevent breakage based on the end of the current collector 22. Note that the density D2 of the second active material layer 23 is not necessarily 50% or more and 80% or less with respect to the density D1 of the first active material layer 21 over the entire length of the negative electrode plate 20, and the battery design and process are not necessarily required. For the above reasons, it is not detrimental to the gist of the present invention that a part of the electrode plate deviates from the above range.

本発明にかかる二次電池用負極、およびそれを用いた二次電池は、高容量活物質を用い、かつリチウムイオンの吸蔵および放出による活物質の膨張収縮時の集電体に対する応力を軽減することで、集電体の破断を抑制することが可能となるので、リチウム二次電池用負極、およびそれを用いたリチウム二次電池として有用である。   The negative electrode for a secondary battery and the secondary battery using the same according to the present invention use a high-capacity active material and reduce stress on the current collector during expansion and contraction of the active material due to insertion and extraction of lithium ions. As a result, it is possible to suppress breakage of the current collector, which is useful as a negative electrode for a lithium secondary battery and a lithium secondary battery using the same.

本発明の実施の形態における負極板の概略平面図Schematic plan view of a negative electrode plate in an embodiment of the present invention 本発明の実施の形態における負極板の概略断面図Schematic cross-sectional view of a negative electrode plate in an embodiment of the present invention 本発明の実施の形態における製造装置の一例を示す概略図Schematic which shows an example of the manufacturing apparatus in embodiment of this invention 本発明の実施の形態におけるリチウム付与装置の一例を示す概略斜視図The schematic perspective view which shows an example of the lithium provision apparatus in embodiment of this invention 本発明の実施の形態における捲回型リチウム二次電池の概略断面図Schematic sectional view of a wound lithium secondary battery in an embodiment of the present invention

符号の説明Explanation of symbols

1 排気ポンプ
2 真空槽
3 巻き取りロール
5 搬送ローラ
6 第1キャン
7 第2キャン
8 巻き出しロール
9 活物質付与源
10 遮蔽板
11 ガス導入管
12 マスク
13 開口部
20 負極
21 第1の活物質層
22 集電体
23 第2の活物質層
24 負極活物質層
31 正極
32 極板群
33 セパレータ
34 正極リード
35 負極リード
36 上部絶縁リング
37 下部絶縁リング
38 電池缶
39 封口板
40 絶縁パッキン
46 リチウム付与源
DESCRIPTION OF SYMBOLS 1 Exhaust pump 2 Vacuum tank 3 Winding roll 5 Conveying roller 6 1st can 7 2nd can 8 Unwinding roll 9 Active material provision source 10 Shielding plate 11 Gas introduction pipe 12 Mask 13 Opening part 20 Negative electrode 21 1st active material Layer 22 Current collector 23 Second active material layer 24 Negative electrode active material layer 31 Positive electrode 32 Electrode plate group 33 Separator 34 Positive electrode lead 35 Negative electrode lead 36 Upper insulating ring 37 Lower insulating ring 38 Battery can 39 Sealing plate 40 Insulating packing 46 Lithium Source of grant

Claims (4)

長尺のシート状の集電体と、前記集電体上に形成されたリチウムイオンを吸蔵および放出可能な負極活物質を含む負極活物質層と、を有するリチウム二次電池用負極板であって、
前記負極活物質層は、前記集電体の中央部に形成された第1の活物質層と、前記集電体の幅方向の両端部に形成された第2の活物質層と、からなり、
前記第2の活物質層の密度D2は、前記第1の活物質層の密度D1よりも小さいこと、を特徴とするリチウム二次電池用負極板。
A negative electrode plate for a lithium secondary battery, comprising: a long sheet-shaped current collector; and a negative electrode active material layer containing a negative electrode active material capable of occluding and releasing lithium ions formed on the current collector. And
The negative electrode active material layer includes a first active material layer formed at a central portion of the current collector, and second active material layers formed at both ends in the width direction of the current collector. ,
The negative electrode plate for a lithium secondary battery, wherein the density D2 of the second active material layer is smaller than the density D1 of the first active material layer.
前記第2の活物質層の密度D2は、前記第1の活物質層の密度D1の50%以上、80%以下である、請求項1に記載のリチウム二次電池用負極板。   The negative electrode plate for a lithium secondary battery according to claim 1, wherein the density D2 of the second active material layer is 50% or more and 80% or less of the density D1 of the first active material layer. 前記負極活物質層は気相法で作成された層であること、を特徴とする請求項1に記載のリチウム二次電池用負極板。 The negative electrode plate for a lithium secondary battery according to claim 1, wherein the negative electrode active material layer is a layer formed by a vapor phase method. リチウムイオンを吸蔵・放出可能な正極活物質を含む正極板と、請求項1から3のいずれかに記載のリチウム二次電池用負極板と、セパレータと、から構成される極板群と、
リチウムイオン伝導性を有する電解質と、を含むリチウム二次電池であって、
前記極板群は、前記正極板と前記リチウム二次電池用負極板とを前記セパレータを介して長さ方向に捲回または折り畳んで構成されていること、を特徴とするリチウム二次電池

A positive electrode plate comprising a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode plate for a lithium secondary battery according to any one of claims 1 to 3, and a separator,
A lithium secondary battery comprising an electrolyte having lithium ion conductivity,
2. The lithium secondary battery according to claim 1, wherein the electrode plate group is configured by winding or folding the positive electrode plate and the negative electrode plate for a lithium secondary battery in the length direction with the separator interposed therebetween.
JP2006038992A 2006-02-16 2006-02-16 Negative electrode pate for lithium secondary battery and lithium secondary battery using it Pending JP2007220450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006038992A JP2007220450A (en) 2006-02-16 2006-02-16 Negative electrode pate for lithium secondary battery and lithium secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006038992A JP2007220450A (en) 2006-02-16 2006-02-16 Negative electrode pate for lithium secondary battery and lithium secondary battery using it

Publications (1)

Publication Number Publication Date
JP2007220450A true JP2007220450A (en) 2007-08-30

Family

ID=38497500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006038992A Pending JP2007220450A (en) 2006-02-16 2006-02-16 Negative electrode pate for lithium secondary battery and lithium secondary battery using it

Country Status (1)

Country Link
JP (1) JP2007220450A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5274561B2 (en) * 2009-02-24 2013-08-28 パナソニック株式会社 Non-aqueous secondary battery electrode plate, manufacturing method thereof, and non-aqueous secondary battery using the same
JP2019169391A (en) * 2018-03-23 2019-10-03 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN114982001A (en) * 2020-01-15 2022-08-30 株式会社村田制作所 Negative electrode for secondary battery and secondary battery
WO2023032445A1 (en) * 2021-08-30 2023-03-09 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN116825957A (en) * 2023-08-28 2023-09-29 深圳市德兰明海新能源股份有限公司 Secondary battery, preparation method thereof and electricity utilization device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5274561B2 (en) * 2009-02-24 2013-08-28 パナソニック株式会社 Non-aqueous secondary battery electrode plate, manufacturing method thereof, and non-aqueous secondary battery using the same
JP2019169391A (en) * 2018-03-23 2019-10-03 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7087532B2 (en) 2018-03-23 2022-06-21 Tdk株式会社 Negative negative for lithium ion secondary battery and lithium ion secondary battery
CN114982001A (en) * 2020-01-15 2022-08-30 株式会社村田制作所 Negative electrode for secondary battery and secondary battery
WO2023032445A1 (en) * 2021-08-30 2023-03-09 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN116825957A (en) * 2023-08-28 2023-09-29 深圳市德兰明海新能源股份有限公司 Secondary battery, preparation method thereof and electricity utilization device

Similar Documents

Publication Publication Date Title
JP4036889B2 (en) battery
JP4038233B2 (en) Non-aqueous electrolyte secondary battery electrode, method for producing the same, and non-aqueous electrolyte secondary battery equipped with non-aqueous electrolyte secondary battery electrode
JP4460642B2 (en) LITHIUM SECONDARY BATTERY NEGATIVE ELECTRODE AND METHOD FOR PRODUCING THE SAME
JP5043338B2 (en) Lithium secondary battery
KR101460153B1 (en) Negative electrode, battery using the same, and method of manufacturing negative electrode
JP5189210B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2008044683A1 (en) Negative electrode for nonaqueous electrolyte secondary battery
WO2008023733A1 (en) Non-aqueous electrolyte secondary battery negative electrode, its manufacturing method, and non-aqueous electrolyte secondary battery
JP2007273459A (en) Transfer film, electrode plate for electrochemical element formed using the same, and lithium secondary battery
JP2007122992A (en) Negative electrode for lithium secondary battery and manufacturing method of lithium secondary battery
JP2007220450A (en) Negative electrode pate for lithium secondary battery and lithium secondary battery using it
JP4929763B2 (en) Lithium secondary battery
JP2007323990A (en) Negative electrode for lithium secondary battery, and lithium secondary battery including it
JP2007128659A (en) Anode for lithium secondary battery, and lithium secondary battery using the same
JP2007207663A (en) Method of manufacturing negative electrode of lithium-ion secondary battery, and lithium-ion secondary battery including negative electrode obtained using its method
JP4957167B2 (en) Current collector, electrode plate for non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery using the same
JP5076305B2 (en) Method for producing negative electrode for lithium secondary battery and method for producing lithium secondary battery
JP5130737B2 (en) Nonaqueous electrolyte secondary battery
JP5130738B2 (en) Nonaqueous electrolyte secondary battery
JP5034236B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP5103789B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2011187395A (en) Negative plate for nonaqueous electrolyte secondary battery, manufacturing method of negative plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2013012392A (en) Negative electrode plate and manufacturing method thereof
JP2011154786A (en) Apparatus for manufacturing electrode plate of electrochemical device