JP2007220285A - Magnetic recording medium and magnetic recording apparatus - Google Patents

Magnetic recording medium and magnetic recording apparatus Download PDF

Info

Publication number
JP2007220285A
JP2007220285A JP2007044932A JP2007044932A JP2007220285A JP 2007220285 A JP2007220285 A JP 2007220285A JP 2007044932 A JP2007044932 A JP 2007044932A JP 2007044932 A JP2007044932 A JP 2007044932A JP 2007220285 A JP2007220285 A JP 2007220285A
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
magnetic
recording medium
island
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007044932A
Other languages
Japanese (ja)
Inventor
Hiroki Kodama
宏喜 児玉
Takuya Uzumaki
拓也 渦巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007044932A priority Critical patent/JP2007220285A/en
Publication of JP2007220285A publication Critical patent/JP2007220285A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording medium and a magnetic recording apparatus wherein an S/N ratio is raised by finely and uniformly pulverizing magnetic crystal grains and growing the resultant grains with satisfactory reproducibility. <P>SOLUTION: A seed layer 3 comprising island-shaped films composed of either of a Co layer and a Co alloy layer, separated from each other and covered with a Cr based underlayer (4) is formed on a non-magnetic substrate 1 comprising an Al based alloy substrate or a glass substrate via at least an amorphous film 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は磁気記録媒体及び磁気記録装置に関するものであり、特に、低ノイズで高出力を得るために微細な結晶粒を形成するためのシード(seed)層の構成に特徴のある磁気記録媒体及び磁気記録装置に関するものである。   The present invention relates to a magnetic recording medium and a magnetic recording apparatus, and more particularly to a magnetic recording medium characterized by the structure of a seed layer for forming fine crystal grains to obtain high output with low noise, and The present invention relates to a magnetic recording apparatus.

近年のハードディスク装置等の磁気記録装置の記録密度の上昇は著しく、そのため、記録ビット間は記録密度の上昇に応じて狭くなってきている。
より小さな記録ビットを磁気記録媒体に形成するためには、記録ヘッドの高性能化もさることながら、記録密度を高くすると再生出力が低下するとともにノイズが増加してS/N比が低下してしまうので、磁気記録媒体の低ノイズ化による高S/N化が重要になる。
In recent years, the recording density of a magnetic recording device such as a hard disk device has increased remarkably. For this reason, the interval between recording bits has become narrower as the recording density has increased.
In order to form a smaller recording bit on the magnetic recording medium, the recording head is not only improved in performance but also when the recording density is increased, the reproduction output is lowered and the noise is increased and the S / N ratio is lowered. Therefore, it is important to increase the S / N ratio by reducing the noise of the magnetic recording medium.

そこで、従来の磁気記録媒体においては、高S/N化のために様々な試みが成されており、例えば、下地層の結晶配向性の制御や磁性層の結晶配向性の向上、格子整合、或いは、中間層の採用等の多数の方法が挙げられる。   Therefore, in the conventional magnetic recording medium, various attempts have been made to increase the S / N. For example, control of crystal orientation of the underlayer, improvement of crystal orientation of the magnetic layer, lattice matching, Or many methods, such as adoption of an intermediate | middle layer, are mentioned.

また、アルミ基板を用いた場合には、通常、その直上に設けるCrやCr合金の結晶配向性を高めるために下地層としてその組成比を制御することによってアモルファス状のNiPを設けている(例えば、特許文献1参照)。
これは、磁性層を構成するCoCrPtTa等のCo合金の面内配向性を高めるためには、無配向な膜、即ち、アモルファス膜が必要になるためである。
In the case of using an aluminum substrate, amorphous NiP is usually provided by controlling the composition ratio as an underlayer in order to improve the crystal orientation of Cr or Cr alloy provided immediately above (for example, , See Patent Document 1).
This is because a non-oriented film, i.e., an amorphous film, is required to increase the in-plane orientation of a Co alloy such as CoCrPtTa constituting the magnetic layer.

即ち、磁性層を構成するCoCrPtTa等のCo合金の面内配向性を高めるために、中間層としてCr系合金を用いた場合、bcc(体心立方)構造を有するCr系合金をCr(200)に配向させる必要があり、このため、Cr系合金層の直下のNiP層等の下地層はアモルファスであることが大前提であった。   That is, in order to increase the in-plane orientation of a Co alloy such as CoCrPtTa constituting the magnetic layer, when a Cr-based alloy is used as an intermediate layer, a Cr-based alloy having a bcc (body-centered cubic) structure is Cr (200). Therefore, it has been a major premise that the underlayer such as the NiP layer directly under the Cr-based alloy layer is amorphous.

これは、Cr系合金層の表面が(200)面になるように配向させた場合、(200)面における格子間隔の21/2 倍が、六方細密構造(hcp)のCoCrPtTa等の磁性層のc軸方向の格子間隔とほぼ一致するためであり、その結果、c軸が水平になって(110)面が主面になるように成長して磁性層が面内配向することになる。
特開2000−057552号公報
This is because when the Cr-based alloy layer is oriented so that the surface is the (200) plane, 2 1/2 times the lattice spacing on the (200) plane is a magnetic layer such as CoCrPtTa having a hexagonal close-packed structure (hcp). As a result, the magnetic layer grows so that the c-axis becomes horizontal and the (110) plane becomes the main surface, and the magnetic layer is oriented in the plane.
JP 2000-075552 A

しかし、従来の磁性層の配向性を高めることによって出力の向上とノイズの低減を図る方法では、十分なS/N比の改善が得られなかった。   However, the conventional method of improving the output and reducing the noise by increasing the orientation of the magnetic layer cannot provide a sufficient improvement in the S / N ratio.

一方、高S/N比を得るために、磁性層の結晶粒を小さくすることも行われているが、磁性層はCr系合金からなる中間層の結晶状態を反映してエピタキシャル成長するので、上述の配向性を高める方法では磁性層の結晶粒を十分微細化することが困難であり、必ずしも十分な高S/N比を得ることができなかった。   On the other hand, in order to obtain a high S / N ratio, the crystal grains of the magnetic layer are also reduced, but the magnetic layer is epitaxially grown reflecting the crystal state of the intermediate layer made of a Cr-based alloy. In the method of improving the orientation of the magnetic layer, it is difficult to sufficiently refine the crystal grains of the magnetic layer, and a sufficiently high S / N ratio cannot be obtained.

したがって、本発明は、磁性結晶粒を十分微細化且つ均一化し、再現性良く成長させて、S/N比を高めることを目的とする。   Accordingly, an object of the present invention is to increase the S / N ratio by sufficiently miniaturizing and homogenizing magnetic crystal grains and growing them with good reproducibility.

図1は本発明の原理的構成の説明図であり、この図1を参照して本発明における課題を解決するための手段を説明する。
図1参照
上述の課題を解決するために、本発明においては、磁気記録媒体において、Al系合金基板上にアモルファス膜2を介してCo層或いはCo合金層のいずれかからなるとともに、互いに分離し、Cr系下地層(4)で覆われた島状膜からなるシード層3を設けたことを特徴とする。
FIG. 1 is an explanatory diagram of the principle configuration of the present invention. Means for solving the problems in the present invention will be described with reference to FIG.
See Figure 1
In order to solve the above-mentioned problems, in the present invention, in a magnetic recording medium, an Al-based alloy substrate is formed of either a Co layer or a Co alloy layer via an amorphous film 2 and separated from each other. A seed layer 3 made of an island film covered with an underlayer (4) is provided.

或いは、ガラス基板上に直接、或いは、アモルファス膜2を介してCo層或いはCo合金層のいずれかからなるとともに、互いに分離し、Cr系下地層(4)で覆われた島状膜からなるシード層3を設けたことを特徴とする。   Alternatively, the seed is made of an island-like film which is made of either a Co layer or a Co alloy layer directly on a glass substrate or via an amorphous film 2 and is separated from each other and covered with a Cr-based underlayer (4). The layer 3 is provided.

この様に、Co層或いはCo合金層のいずれかからなる島状のシード層3を設けることによって、この島状のシード層3を核として結晶成長が行われるので、島状のシード層3の分布密度に応じて磁性層5の結晶粒を微細にすることができ、それによって、ノイズを低減するとともに出力を大きくしてS/N比を高めることができる。   In this manner, by providing the island-shaped seed layer 3 made of either the Co layer or the Co alloy layer, crystal growth is performed using the island-shaped seed layer 3 as a nucleus. Depending on the distribution density, the crystal grains of the magnetic layer 5 can be made fine, thereby reducing noise and increasing the output to increase the S / N ratio.

この場合、Co層或いはCo合金層のいずれかからなるシード層3の厚さを、連続膜換算で2nm以下にすることによって、シード層3の静磁気特性が磁性層5の静磁気特性に影響を与えることがなく、且つ、シード層3が磁性層5の配向性に影響を与えることはないので、磁性層5の配向性も良好に保つことができる。   In this case, by setting the thickness of the seed layer 3 made of either the Co layer or the Co alloy layer to 2 nm or less in terms of a continuous film, the magnetostatic characteristics of the seed layer 3 affect the magnetostatic characteristics of the magnetic layer 5. Since the seed layer 3 does not affect the orientation of the magnetic layer 5, the orientation of the magnetic layer 5 can be kept good.

また、この様な磁気記録媒体を用いて磁気記録装置を構成することによって、記録密度の向上が可能になる。   Further, by configuring a magnetic recording apparatus using such a magnetic recording medium, the recording density can be improved.

本発明によれば、基板上に互いに分離し且つCr系下地層で覆われた島状膜のシード層を介して磁性層を設けているので、磁性層の結晶粒を島状のシード層の分布密度に応じて微細化し、それによって、ノイズを低減するとともに出力を高めS/Nを大きくすることができるので、ハードディスク装置等の磁気ディスク記録装置の大容量化及び高密度磁気記録化に寄与するところが大きい。   According to the present invention, since the magnetic layer is provided on the substrate through the island-shaped seed layer separated from each other and covered with the Cr-based underlayer, the crystal grains of the magnetic layer are separated from the island-shaped seed layer. Miniaturization according to the distribution density, which can reduce noise, increase output, and increase S / N, contributing to higher capacity and higher density magnetic recording of magnetic disk recording devices such as hard disk devices. There is a lot to do.

本発明は、Al系合金基板上にアモルファス膜2を介して、または、ガラス基板上に直接、或いは、アモルファス膜2を介してCo層或いはCo合金層のいずれかからなるとともに、互いに分離し、Cr系下地層で覆われた島状膜からなるシード層3を設け、このCr系下地層上に磁性層を設けたものである。   The present invention consists of either a Co layer or a Co alloy layer via an amorphous film 2 on an Al-based alloy substrate, directly on a glass substrate, or via an amorphous film 2, and separated from each other. A seed layer 3 made of an island film covered with a Cr-based underlayer is provided, and a magnetic layer is provided on the Cr-based underlayer.

ここで、図2を参照して、本発明の実施例1の磁気記録媒体の製造工程を概念的に説明する。
なお、各図は本発明の実施例1の磁気記録媒体の概略的構成図であり、実際には、基板の両側に対称的に記録層を設けた構造となっている。
図2(a)参照
まず、例えば、3.5インチ(≒8.9cm)のAl95Mg5 (重量比)からなるAl−Mg合金基板11上に、厚さが、例えば、10μmのNi8119からなるアモルファス状のNiP補強層12をメッキにより設けて、Al−Mg合金基板11の機械的強度を高めて、高速回転時の磁気ヘッドとの接触信頼性を確保する。
Here, with reference to FIG. 2, the manufacturing process of the magnetic recording medium of Example 1 of this invention is demonstrated conceptually.
Each figure is a schematic configuration diagram of the magnetic recording medium according to the first embodiment of the present invention, and actually has a structure in which recording layers are provided symmetrically on both sides of the substrate.
See Fig. 2 (a)
First, for example, on an Al—Mg alloy substrate 11 made of Al 95 Mg 5 (weight ratio) of 3.5 inches (≈8.9 cm), an amorphous shape made of Ni 81 P 19 having a thickness of, for example, 10 μm. The NiP reinforcing layer 12 is provided by plating to increase the mechanical strength of the Al—Mg alloy substrate 11 to ensure contact reliability with the magnetic head during high-speed rotation.

次いで、必要に応じて砥粒を用いたテクスチャ加工を行って、NiP補強層12の表面の円周方向に沿って微細な溝を形成したり、或いは、凹凸加工を行って凹凸を形成する。
このテクスチャ加工によって形成された溝或いは凹凸加工によって形成された凹凸によって磁気ヘッドと磁気ディスク記録媒体との間の摩擦を低減して磁気ヘッドの吸着を防止するとともに、テクスチャ加工によって円周方向に磁化が向きやすくなるので面内記録方向への磁気異方性を高めることができる。
Next, texture processing using abrasive grains is performed as necessary to form fine grooves along the circumferential direction of the surface of the NiP reinforcing layer 12, or uneven processing is performed to form unevenness.
The groove formed by the texture processing or the unevenness formed by the uneven processing reduces the friction between the magnetic head and the magnetic disk recording medium to prevent the magnetic head from being attracted, and the texture is processed in the circumferential direction. Therefore, the magnetic anisotropy in the in-plane recording direction can be increased.

図2(b)参照
次いで、複数のチャンバーがゲートバルブによって仕切られた枚葉式のDC−マグネトロンスパッタ装置を用いて、例えば、5×10-6Paの真空度において、Coを連続膜換算で2nm以下スパッタして島状Coシード層13を形成する。
この場合、通常の金属膜の堆積と同様に、膜厚が極めて薄い状態では、NiP補強層12上に微小な結晶成長核が分散して発生し、この微小な結晶成長核を核として結晶成長が進むが、膜厚が2nm以下においては互いに分離した島状膜となる。
なお、1nmの連続膜換算膜厚とは、仮に連続膜として成膜されたと仮定したときに1nmの層が得られるスパッタ量であり、ここでは、0.5nm、1nm、1.25nm、2nmの4種類の膜厚の堆積を行った。
Refer to FIG.
Next, using a single-wafer DC-magnetron sputtering apparatus in which a plurality of chambers are partitioned by gate valves, for example, at a vacuum of 5 × 10 −6 Pa, Co is sputtered to 2 nm or less in terms of a continuous film. A Co seed layer 13 is formed.
In this case, as in the case of normal metal film deposition, when the film thickness is extremely thin, fine crystal growth nuclei are dispersed on the NiP reinforcing layer 12, and crystal growth is performed using the fine crystal growth nuclei as nuclei. However, when the film thickness is 2 nm or less, island-like films are separated from each other.
In addition, the continuous film equivalent film thickness of 1 nm is the amount of spatter that provides a 1 nm layer when it is assumed that the film is formed as a continuous film. Here, 0.5 nm, 1 nm, 1.25 nm, and 2 nm are obtained. Four types of film thickness were deposited.

図2(c)参照
引き続いて、隣接するチャンバー内へゲートバルブを介して搬入したのち、厚さが、例えば、10nmのCr90Mo10からなるCrMo下地層14を堆積させる。
この場合、CrMo下地層14は島状Coシード層13を成長核としてエピタキシャル成長するので、島状Coシード層13の分布密度に応じた大きさの柱状多結晶となる。
Refer to FIG.
Subsequently, after carrying into an adjacent chamber via a gate valve, a CrMo underlayer 14 made of Cr 90 Mo 10 having a thickness of, for example, 10 nm is deposited.
In this case, since the CrMo underlayer 14 is epitaxially grown using the island-shaped Co seed layer 13 as a growth nucleus, it becomes a columnar polycrystal having a size corresponding to the distribution density of the island-shaped Co seed layer 13.

図2(d)参照
引き続いて、隣接するチャンバー内へゲートバルブを介して搬入したのち、厚さが、例えば、20nmのCo69Cr21Pt8 Ta2 からなるCoCrPtTa磁性層15をCrMo下地層14上にエピタキシャル成長させ、次いで、隣接するチャンバー内へゲートバルブを介して搬入したのち、厚さが、例えば、8nmのDLC(ダイアモンドライクカーボン)層16を堆積させる。
以降は図示を省略するものの、DLC層16上にフッ素系の潤滑剤を塗布し、乾燥することによって、磁気記録媒体の基本構成が完成する。
See FIG. 2 (d). Subsequently, after carrying it into an adjacent chamber via a gate valve, a CoCrPtTa magnetic layer 15 made of, for example, Co 69 Cr 21 Pt 8 Ta 2 having a thickness of 20 nm is formed on the CrMo underlayer 14. Epitaxial growth is performed thereon, and then a DLC (diamond-like carbon) layer 16 having a thickness of, for example, 8 nm is deposited after being brought into an adjacent chamber through a gate valve.
Although not shown in the drawings, a basic structure of the magnetic recording medium is completed by applying a fluorine-based lubricant onto the DLC layer 16 and drying it.

この様に製造した磁気記録媒体について各種の測定を行ったので、図3乃至図5を参照して測定結果を説明する。
なお、測定した磁気記録媒体の場合には、上述のテクスチャ加工は行っていない。
Since various measurements were performed on the magnetic recording medium thus manufactured, the measurement results will be described with reference to FIGS.
In the case of the measured magnetic recording medium, the above texture processing is not performed.

図3(a)参照
図3(a)は、S/Nm のCo層厚依存性を示す図であり、島状Coシード層の層厚増加に伴って、S/Nm も増加するが、1.25nmから2nmにかけてS/Nm が急激に悪化する。
なお、Nm は媒体ノイズ(Nmedia )である。
See Fig. 3 (a)
FIG. 3A is a diagram showing the dependency of S / N m on the Co layer thickness. As the thickness of the island-like Co seed layer increases, S / N m also increases, but from 1.25 nm to 2 nm. S / N m rapidly deteriorates over time.
N m is medium noise (N media ).

図3(b)参照
図3(b)は、ノイズNm と出力SのCo層厚依存性を個別に示す図であり、出力は島状Coシード層の層厚増加に伴って増加する。
一方、ノイズは、島状Coシード層の層厚増加に伴って減少するものの、1.25nmから2nmにかけて急激に悪化する。
Refer to FIG.
FIG. 3B is a diagram individually showing the Co layer thickness dependence of the noise N m and the output S, and the output increases as the layer thickness of the island-like Co seed layer increases.
On the other hand, although noise decreases as the thickness of the island-like Co seed layer increases, the noise rapidly deteriorates from 1.25 nm to 2 nm.

これは、島状Coシード層が厚くなって、Coの静磁気特性が磁性層の静磁気特性に影響を与え始めたためと考えられ、このノイズの増大が、図3(a)に示すS/Nm の急激な悪化に影響を与えているものと考えられる。
なお、図におけるノイズは、二乗平均の平方根で表しており、また、出力は、正弦波状出力波形の上ピークと下ピークとの間のピーク間の値として示している。
This is thought to be because the island-like Co seed layer is thickened, and the magnetostatic characteristics of Co begin to affect the magnetostatic characteristics of the magnetic layer. This increase in noise is caused by the S / S shown in FIG. it is considered that affect the rapid deterioration of the N m.
Note that the noise in the figure is expressed by the square root of the root mean square, and the output is shown as a value between the peaks between the upper peak and the lower peak of the sinusoidal output waveform.

図4参照
図4は、M−Hループ特性のCo層厚依存性を示す図であり、島状Coシード層の層厚が2nmの場合には、島状Coシード層の磁気特性が反映されたループとなり、その他の場合には、島状Coシード層を設けない場合とほぼ同様のM−Hループ特性を示すことが理解される。
See Figure 4
FIG. 4 is a diagram showing the Co layer thickness dependence of the MH loop characteristics. When the island-shaped Co seed layer has a thickness of 2 nm, the loop reflects the magnetic characteristics of the island-shaped Co seed layer. In other cases, it is understood that the MH loop characteristics are almost the same as the case where the island-like Co seed layer is not provided.

図5参照
図5は、XRD測定における各入射角θにおける強度プロファイルを、島状Coシード層の層厚毎に並べて対比させたものである。
図から明らかなように、磁性層であるCoCrPtTa膜の面内配向性を示すCo−hcp(110)のピークは島状Coシード層の層厚によってほとんど変わらないことが理解される。
なお、プロファイルにおける急峻な大きなピークは全てAlによるピークである。
See Figure 5
FIG. 5 compares the intensity profiles at each incident angle θ in the XRD measurement side by side for each layer thickness of the island-like Co seed layer.
As is apparent from the figure, it is understood that the peak of Co-hcp (110) indicating the in-plane orientation of the CoCrPtTa film as the magnetic layer hardly changes depending on the layer thickness of the island-like Co seed layer.
In addition, all the sharp large peaks in the profile are peaks due to Al.

以上を総合的に判断すると、
a.島状Coシード層を設けることによって磁性層の配向性はほとんど影響を受けないこ と、
b.高S/Nm が得られることから、磁性層が図2(d)に概念的に示したように微細な 結晶粒になっていること、及び、
c.図3(b)におけるノイズの急増、及び、図4に示すM−Hループ特性から、島状C oシード層が2nmを越えると、島状Coシード層の磁気特性の影響が大きくなり、 磁気記録媒体全体の磁気特性が劣化するので、島状Coシード層の層厚は、連続膜厚 換算で2nm以下にする必要があること、
が理解される。
Judging the above comprehensively,
a. By providing the island-shaped Co seed layer, the orientation of the magnetic layer is hardly affected.
b. Since a high S / N m is obtained, the magnetic layer has fine crystal grains as conceptually shown in FIG. 2 (d), and
c. From the sudden increase in noise in FIG. 3B and the MH loop characteristics shown in FIG. 4, when the island-shaped Co seed layer exceeds 2 nm, the influence of the magnetic characteristics of the island-shaped Co seed layer increases. Since the magnetic properties of the entire recording medium deteriorate, the layer thickness of the island-like Co seed layer must be 2 nm or less in terms of continuous film thickness,
Is understood.

次に、図6を参照して、ガラス基板を用いた本発明の実施例2を説明するが、基本的製造工程は上記の実施例1と全く同様であるので、具体的製造方法の説明は省略する。
図6参照
図6は、本発明の実施例2の磁気記録媒体の概略的構成図であり、実際には、基板の両側に対称的に記録層を設けた構造となっている。
まず、例えば、2.5インチ(≒6.35cm)のガラス基板21上に、スパッタ法によって、厚さが、例えば、0.05μmのCr密着層22を介して、Ni8119からなるアモルファス状のNiP補強層23を順次堆積させる。
Next, Example 2 of the present invention using a glass substrate will be described with reference to FIG. 6. Since the basic manufacturing process is exactly the same as Example 1 described above, a specific manufacturing method is described. Omitted.
See FIG.
FIG. 6 is a schematic configuration diagram of a magnetic recording medium according to Embodiment 2 of the present invention. In practice, the recording layer is symmetrically provided on both sides of the substrate.
First, for example, an amorphous material made of Ni 81 P 19 is deposited on a 2.5-inch (≈6.35 cm) glass substrate 21 by a sputtering method with a Cr adhesion layer 22 having a thickness of, for example, 0.05 μm. A NiP reinforcing layer 23 is deposited in sequence.

以降は、上記の実施例1と同様に、NiP補強層23の表面に島状Coシード層24、CrMo下地層25、CoCrPtTa磁性層26、及び、DLC層27を順次堆積させたのち、DLC層27上にフッ素系の潤滑剤28を塗布し、乾燥することによって、磁気記録媒体の基本構成が完成する。   Thereafter, as in the first embodiment, the island-shaped Co seed layer 24, the CrMo underlayer 25, the CoCrPtTa magnetic layer 26, and the DLC layer 27 are sequentially deposited on the surface of the NiP reinforcing layer 23, and then the DLC layer. The basic configuration of the magnetic recording medium is completed by applying a fluorine-based lubricant 28 on the substrate 27 and drying it.

この実施例2においては、基板の構成が異なるだけで基本的特性は、上記の実施例1と同様であり、直径が2.5インチ以下の小型の磁気記録媒体にとって有用となる。   In the second embodiment, the basic characteristics are the same as in the first embodiment except that the configuration of the substrate is different, and it is useful for a small magnetic recording medium having a diameter of 2.5 inches or less.

次に、図7を参照して、本発明の実施例3の磁気記録媒体を説明する。
図7参照
図7は、本発明の実施例3の磁気記録媒体の概略的構成図であり、実際には、基板の両側に対称的に記録層を設けた構造となっている。
図から明らかなように、ガラス基板21上に直接島状Coシード層24を設けたものであり、それ以外の構成は上記の第2の実施の形態と同様である。
Next, a magnetic recording medium according to Example 3 of the present invention will be described with reference to FIG.
See FIG.
FIG. 7 is a schematic configuration diagram of a magnetic recording medium according to Example 3 of the present invention. In practice, the recording layer is symmetrically provided on both sides of the substrate.
As is apparent from the figure, the island-shaped Co seed layer 24 is directly provided on the glass substrate 21, and the other configuration is the same as that of the second embodiment.

この場合には、ガラス基板21自体がアモルファスであるので、アモルファス膜を提供するNiP補強層23を必要としないものである。
これによって、製造工程を2つ省略することができるが、基板の強度が若干低下するとともに、島状Coシード層24及びCrMo下地層25とガラス基板21との間の密着性が若干低下する。
In this case, since the glass substrate 21 itself is amorphous, the NiP reinforcing layer 23 that provides an amorphous film is not required.
As a result, two manufacturing steps can be omitted, but the strength of the substrate is slightly lowered, and the adhesion between the island-like Co seed layer 24 and the CrMo underlayer 25 and the glass substrate 21 is slightly lowered.

以上、本発明の各実施例を説明してきたが、本発明は上記の各実施例に記載した構成及び条件に限られるものではなく、各種の変更が可能である。
例えば、シード層をCoによって形成しているが、Coに限られるものではなく、Co90Pt10,Co70Cr30等のCo系合金を用いても良いものである。
Although the embodiments of the present invention have been described above, the present invention is not limited to the configurations and conditions described in the above embodiments, and various modifications can be made.
For example, the seed layer is made of Co, but is not limited to Co, and Co-based alloys such as Co 90 Pt 10 and Co 70 Cr 30 may be used.

また、上記の各実施例においては、基板としてAl−Mg合金を用いているが、Al−Mg合金に限られるものではなく、Al−Cu,Al−Si等の他のAl系合金を用いても良いものである。   In each of the above embodiments, an Al—Mg alloy is used as the substrate. However, the substrate is not limited to the Al—Mg alloy, and other Al alloys such as Al—Cu and Al—Si are used. Is also good.

また、上記の各実施例においては、下地層としてCr90Mo10を用いているが、他の組成のCrMoでも良く、さらには、Cr、CrRu、或いは、CrWを用いても良いものである。 In each of the above embodiments, Cr 90 Mo 10 is used as the underlayer. However, CrMo having another composition may be used, and Cr, CrRu, or CrW may be used.

また、上記の各実施例においては、磁性層として、Co69Cr21Pt8 Ta2 を用いているが、他の組成比のCoCrPtTa合金でも良く、また、Co74Cr15Pt4 Ta4 Nb3 等のCoCrPtTaNb合金、或いは、Co76.3Cr17Pt6.7 等のCoCrPt合金を用いても良いものであり、さらには、Co単体でも良く、いずれにしても、Coまたは、Coを主成分とし少なくともPtを含むCo合金であれば良い。
これは、Co合金は六方細密構造を有し、且つ、Co−Pt合金は1軸異方性を有し、適度に高い保磁力を得ることができるためである。
In each of the above embodiments, Co 69 Cr 21 Pt 8 Ta 2 is used as the magnetic layer, but a CoCrPtTa alloy having another composition ratio may be used, and Co 74 Cr 15 Pt 4 Ta 4 Nb 3 may be used. CoCrPtTaNb alloy or CoCrPt alloy such as Co 76.3 Cr 17 Pt 6.7 may be used. Furthermore, Co alone may be used. In any case, Co or Co is the main component and at least Pt is used. Any Co alloy may be used.
This is because the Co alloy has a hexagonal close-packed structure, and the Co—Pt alloy has uniaxial anisotropy and can obtain a moderately high coercive force.

ここで、再び、図1を参照して、本発明の詳細な特徴を説明する。
図1参照
(付記1) Al系合金基板上にアモルファス膜2を介してCo層或いはCo合金層のいずれかからなるとともに、互いに分離し、Cr系下地層(4)で覆われた島状膜からなるシード層3を設けたことを特徴とする磁気記録媒体。
(付記2) 上記Al系合金が、Al−Mg合金であることを特徴とする付記1記載の磁気記録媒体。
(付記3) ガラス基板上に直接、或いは、アモルファス膜2を介してCo層或いはCo合金層のいずれかからなるとともに、互いに分離し、Cr系下地層(4)で覆われた島状膜からなるシード層3を設けたことを特徴とする磁気記録媒体。
(付記4) 上記Co層或いはCo合金層のいずれかからなるシード層3の膜厚が、連続膜換算で2nm以下であることを特徴とする付記1乃至3のいずれか1に記載の磁気記録媒体。
(付記5) 磁気記録媒体として、付記1乃至4のいずれか1に記載の磁気記録媒体を用いた磁気記録装置。
Here, referring again to FIG. 1, the detailed features of the present invention will be described.
See Figure 1
(Supplementary note 1) A seed made of an island-like film made of either a Co layer or a Co alloy layer on an Al-based alloy substrate via an amorphous film 2 and separated from each other and covered with a Cr-based underlayer (4) A magnetic recording medium provided with a layer 3.
(Supplementary note 2) The magnetic recording medium according to supplementary note 1, wherein the Al-based alloy is an Al-Mg alloy.
(Supplementary Note 3) From an island-like film that is either directly on a glass substrate or is made of either a Co layer or a Co alloy layer via an amorphous film 2 and separated from each other and covered with a Cr-based underlayer (4) A magnetic recording medium provided with a seed layer 3.
(Additional remark 4) The magnetic recording of any one of additional remark 1 thru | or 3 whose film thickness of the seed layer 3 which consists of either said Co layer or Co alloy layer is 2 nm or less in conversion of a continuous film Medium.
(Additional remark 5) The magnetic recording apparatus using the magnetic recording medium of any one of additional marks 1 thru | or 4 as a magnetic recording medium.

本発明の原理的構成の説明図である。It is explanatory drawing of the fundamental structure of this invention. 本発明の実施例1の磁気記録媒体の製造工程の説明図である。It is explanatory drawing of the manufacturing process of the magnetic-recording medium of Example 1 of this invention. ノイズ特性のCo層厚依存性の説明図である。It is explanatory drawing of Co layer thickness dependence of a noise characteristic. M−Hループ特性のCo層厚依存性の説明図である。It is explanatory drawing of Co layer thickness dependence of MH loop characteristic. XRDスペクトルのCo層厚依存性の説明図である。It is explanatory drawing of Co layer thickness dependence of a XRD spectrum. 本発明の実施例2の磁気記録媒体の概略的構成図である。It is a schematic block diagram of the magnetic recording medium of Example 2 of this invention. 本発明の実施例3の磁気記録媒体の概略的構成図である。It is a schematic block diagram of the magnetic recording medium of Example 3 of this invention.

符号の説明Explanation of symbols

1 非磁性基板
2 アモルファス膜
3 シード層
4 Cr系合金層
5 磁性層
11 Al−Mg合金基板
12 NiP補強層
13 島状Coシード層
14 CrMo下地層
15 CoCrPtTa層
16 DLC層
21 ガラス基板
22 Cr密着層
23 NiP補強層
24 島状Coシード層
25 CrMo下地層
26 CoCrPtTa層
27 DLC層
28 潤滑剤
DESCRIPTION OF SYMBOLS 1 Nonmagnetic substrate 2 Amorphous film 3 Seed layer 4 Cr system alloy layer 5 Magnetic layer 11 Al-Mg alloy substrate 12 NiP reinforcement layer 13 Island-like Co seed layer 14 CrMo underlayer 15 CoCrPtTa layer 16 DLC layer 21 Glass substrate 22 Cr adhesion Layer 23 NiP reinforcing layer 24 island-like Co seed layer 25 CrMo underlayer 26 CoCrPtTa layer 27 DLC layer 28 lubricant

Claims (3)

Al系合金基板上にアモルファス膜を介してCo層或いはCo合金層のいずれかからなるとともに、互いに分離し、Cr系下地層で覆われた島状膜からなるシード層を設けたことを特徴とする磁気記録媒体。 A feature is that an Al-based alloy substrate is provided with a seed layer made of an island-like film separated from each other and covered with a Cr-based underlayer while being made of either a Co layer or a Co alloy layer via an amorphous film. Magnetic recording media. ガラス基板上に直接、或いは、アモルファス膜を介してCo層或いはCo合金層のいずれかからなるとともに、互いに分離し、Cr系下地層で覆われた島状膜からなるシード層を設けたことを特徴とする磁気記録媒体。 A seed layer made of an island-like film made of either a Co layer or a Co alloy layer directly on a glass substrate or via an amorphous film and separated from each other and covered with a Cr-based underlayer is provided. A characteristic magnetic recording medium. 磁気記録媒体として、請求項1または2に記載の磁気記録媒体を用いた磁気記録装置。 A magnetic recording apparatus using the magnetic recording medium according to claim 1 as a magnetic recording medium.
JP2007044932A 2007-02-26 2007-02-26 Magnetic recording medium and magnetic recording apparatus Pending JP2007220285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007044932A JP2007220285A (en) 2007-02-26 2007-02-26 Magnetic recording medium and magnetic recording apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007044932A JP2007220285A (en) 2007-02-26 2007-02-26 Magnetic recording medium and magnetic recording apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000272558A Division JP2002092864A (en) 2000-09-08 2000-09-08 Magnetic recording medium and magnetic recording apparatus

Publications (1)

Publication Number Publication Date
JP2007220285A true JP2007220285A (en) 2007-08-30

Family

ID=38497360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007044932A Pending JP2007220285A (en) 2007-02-26 2007-02-26 Magnetic recording medium and magnetic recording apparatus

Country Status (1)

Country Link
JP (1) JP2007220285A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124141A (en) * 1994-10-27 1996-05-17 Hitachi Ltd Magnetic recording medium and magnetic recorder using the same
JPH08221734A (en) * 1995-02-20 1996-08-30 Fujitsu Ltd Magnetic recording medium and magnetic recorder
JPH09259418A (en) * 1996-03-21 1997-10-03 Fuji Electric Co Ltd Magnetic recording medium and its production
JPH10162340A (en) * 1996-11-29 1998-06-19 Kubota Corp Metallic thin film type magnetic recording medium
JP2000057552A (en) * 1998-08-07 2000-02-25 Mitsubishi Chemicals Corp Magnetic recording medium
JP2001052330A (en) * 1999-05-28 2001-02-23 Ken Takahashi Magnetic recording medium and its manufacture and magnetic recording apparatus
JP2002092864A (en) * 2000-09-08 2002-03-29 Fujitsu Ltd Magnetic recording medium and magnetic recording apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124141A (en) * 1994-10-27 1996-05-17 Hitachi Ltd Magnetic recording medium and magnetic recorder using the same
JPH08221734A (en) * 1995-02-20 1996-08-30 Fujitsu Ltd Magnetic recording medium and magnetic recorder
JPH09259418A (en) * 1996-03-21 1997-10-03 Fuji Electric Co Ltd Magnetic recording medium and its production
JPH10162340A (en) * 1996-11-29 1998-06-19 Kubota Corp Metallic thin film type magnetic recording medium
JP2000057552A (en) * 1998-08-07 2000-02-25 Mitsubishi Chemicals Corp Magnetic recording medium
JP2001052330A (en) * 1999-05-28 2001-02-23 Ken Takahashi Magnetic recording medium and its manufacture and magnetic recording apparatus
JP2002092864A (en) * 2000-09-08 2002-03-29 Fujitsu Ltd Magnetic recording medium and magnetic recording apparatus

Similar Documents

Publication Publication Date Title
JP5184843B2 (en) Perpendicular magnetic recording medium and magnetic storage device
US8512884B2 (en) Perpendicular magnetic recording medium, method for producing the same, and magnetic recording/reproducing device
US8119264B2 (en) Perpendicular magnetic recording disk with ultrathin nucleation film for improved corrosion resistance and method for making the disk
US7407685B2 (en) Magnetic recording medium and the method of manufacturing the same
US7871718B2 (en) Perpendicular magnetic recording medium and magnetic storage apparatus
JP2006294090A (en) Perpendicular magnetic recording medium
JP2007035139A (en) Vertical magnetic recording medium and magnetic recording and reproducing apparatus
US7824785B2 (en) Perpendicular magnetic recording medium and magnetic storage apparatus
JP2009059431A (en) Magnetic recording medium and magnetic recording and reproducing apparatus
US8034471B2 (en) Magnetic recording medium, method of manufacturing magnetic recording medium and magnetic recording reproducing apparatus
US5772857A (en) Method of manufacturing CoCrTa/CoCrTaPt bi-layer magnetic thin films
US7374831B2 (en) Magnetic recording medium
JP5610716B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2002358617A (en) Perpendicular magnetic recording medium
JP2009032356A (en) Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
JP2006302426A (en) Perpendicular magnetic recording medium and its manufacturing method
JP2006079718A (en) Perpendicular magnetic recording medium
US8012613B2 (en) Magnetic recording medium, process for producing same, and magnetic recording reproducing apparatus
JP2005521980A (en) Magnetic recording medium and magnetic storage device
JP2008047253A (en) Longitudinal magnetic recording medium and manufacturing method therefor
JP2007220285A (en) Magnetic recording medium and magnetic recording apparatus
JP2002092864A (en) Magnetic recording medium and magnetic recording apparatus
JP2002237026A (en) Magnetic recording medium, manufacturing method for magnetic recording medium and magnetic recording device
US20110116189A1 (en) Magnetic recording medium and magnetic recording/reproducing device
JP4782047B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20081118

Free format text: JAPANESE INTERMEDIATE CODE: A132

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090917

A521 Written amendment

Effective date: 20090917

Free format text: JAPANESE INTERMEDIATE CODE: A821

A131 Notification of reasons for refusal

Effective date: 20091104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316