JP2007211526A - Output shaft supporting structure of construction machinery swiveling mechanism - Google Patents

Output shaft supporting structure of construction machinery swiveling mechanism Download PDF

Info

Publication number
JP2007211526A
JP2007211526A JP2006034121A JP2006034121A JP2007211526A JP 2007211526 A JP2007211526 A JP 2007211526A JP 2006034121 A JP2006034121 A JP 2006034121A JP 2006034121 A JP2006034121 A JP 2006034121A JP 2007211526 A JP2007211526 A JP 2007211526A
Authority
JP
Japan
Prior art keywords
output shaft
spherical
ring
self
turning mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006034121A
Other languages
Japanese (ja)
Inventor
Takeshi Maeda
剛 前田
Michio Hori
径生 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006034121A priority Critical patent/JP2007211526A/en
Publication of JP2007211526A publication Critical patent/JP2007211526A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4635Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2350/00Machines or articles related to building
    • F16C2350/26Excavators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an output shaft supporting structure of a construction machinery swiveling mechanism capable of having a compact self-aligning roller bearing with high load capacity. <P>SOLUTION: The construction machinery swiveling mechanism 11 is equipped with an output shaft 13 and the self-aligning roller bearing 21 supporting the output shaft 13 in a rotatable manner. The self-aligning roller bearing 21 is equipped with an inside ring, an outside ring, a plurality of spherical rollers arranged in a plurality of rows between the inside ring and the outside ring and a retainer holding an interval between the adjoining spherical rollers. The retainer is equipped with a pair of ring sections, a column section located between a pair of ring sections and a non slip section of each spherical roller in a domain of the end section of the column section, and the resin-made retainer is manufactured by an injection molding. The non slip section is located on the upper side of a pitch circle of the spherical roller to regulate the movement to the outside of the direction of a diameter of the end section in the longitudinal direction of the spherical roller. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、建設機械、例えば、油圧ショベルの上部旋回体を下部走行体に対して旋回自在に支持する旋回機構の出力軸支持構造に関するものである。   The present invention relates to an output shaft support structure of a turning mechanism that supports an upper turning body of a construction machine, for example, a hydraulic excavator, with respect to a lower traveling body.

従来の油圧ショベル101は、例えば、図12に示すように、キャタピラ102aを有する下部走行体102と、運転室103aを含む上部旋回体103と、上部旋回体103を下部走行体102に対して旋回自在に支持する旋回機構104と、一端が上部旋回体103に連結され、他端に掘削バケット105aを有するアーム105とを備える。   For example, as shown in FIG. 12, the conventional excavator 101 has a lower traveling body 102 having a caterpillar 102 a, an upper revolving body 103 including an operator cab 103 a, and an upper revolving body 103 swirling with respect to the lower traveling body 102. A swivel mechanism 104 that is freely supported, and an arm 105 having one end connected to the upper swivel body 103 and a digging bucket 105a at the other end.

旋回機構104は、図13に示すように、駆動力を発生させるモータ(図示せず)と、出力軸106と、モータの回転を減速して出力軸106に伝達する減速機構(図示せず)と、出力軸106を回転自在に支持する自動調心ころ軸受107と、出力軸106の先端に取り付けられて、下部走行体102に設けられたラック(図示せず)とかみ合うピニオン106aとを備える。   As shown in FIG. 13, the turning mechanism 104 includes a motor (not shown) that generates a driving force, an output shaft 106, and a speed reduction mechanism (not shown) that decelerates the rotation of the motor and transmits it to the output shaft 106. And a self-aligning roller bearing 107 that rotatably supports the output shaft 106, and a pinion 106a that is attached to the tip of the output shaft 106 and meshes with a rack (not shown) provided in the lower traveling body 102. .

出力軸106にはモータの回転が減速して伝達されるので、比較的低速で高トルクの回転となる。また、ピニオン106aとラックとの噛み合いによってラジアル方向の荷重が負荷される。したがって、このような出力軸106を支持する軸受107には、負荷容量が高く低速回転に適した軸受が使用される。   Since the rotation of the motor is decelerated and transmitted to the output shaft 106, the rotation is relatively low and high torque. Further, a radial load is applied by the engagement between the pinion 106a and the rack. Therefore, as the bearing 107 that supports the output shaft 106, a bearing having a high load capacity and suitable for low-speed rotation is used.

そこで、この旋回機構104の出力軸106を支持する自動調心ころ軸受107には、例えば、特開2002−21195号公報(特許文献1)に記載されたような自動調心ころ軸受が使用される。同公報に記載された自動調心ころ軸受107は、図14に示すように、内輪108と、外輪109と、内輪108および外輪109の間に複列に配置された複数の球面ころ110と、複数の球面ころ110の間隔を保持する保持器111とを備える。   Therefore, for example, a self-aligning roller bearing described in JP-A-2002-21195 (Patent Document 1) is used as the self-aligning roller bearing 107 that supports the output shaft 106 of the turning mechanism 104. The As shown in FIG. 14, the self-aligning roller bearing 107 described in the publication includes an inner ring 108, an outer ring 109, a plurality of spherical rollers 110 arranged in a double row between the inner ring 108 and the outer ring 109, And a cage 111 that holds the spacing between the plurality of spherical rollers 110.

保持器111は、図15に示すように、リング部とリング部の端面から突出する柱部111aとを有し、隣接する柱部111aの間に球面ころ110を収容するポケット111bを有する。柱部111aは、球面ころ110のピッチ円を跨いで径方向に延在し、球面ころ110の径方向への抜け止めおよび隣接する球面ころ110の間隔を一定に保つ機能を有する。   As shown in FIG. 15, the retainer 111 has a ring portion and a column portion 111a protruding from the end surface of the ring portion, and has a pocket 111b for accommodating the spherical roller 110 between the adjacent column portions 111a. The column portion 111 a extends in the radial direction across the pitch circle of the spherical roller 110, and has a function of preventing the spherical roller 110 from coming off in the radial direction and maintaining a constant interval between the adjacent spherical rollers 110.

上記構成の自動調心ころ軸受107は、他の軸受と比較して定格荷重が高く、また、歯車の噛み合いによって生じる回転軸の撓みに対して調心性を有しているので、このような場所に使用する軸受として好適である。
特開2002−21195号公報
The self-aligning roller bearing 107 having the above-described configuration has a higher rated load than other bearings, and has a self-aligning property against the deflection of the rotating shaft caused by the meshing of the gears. It is suitable as a bearing used for
JP 2002-21195 A

近年、油圧ショベル101の高出力化およびコンパクト化の要求が高まっている。旋回機構104のモータを高出力化した場合、自動調心ころ軸受107に負荷される荷重が増大する。これにより、従来の自動調心ころ軸受107では、負荷容量不足による軸受寿命の低下や、出力軸106の撓みによって球面ころ110の端部と内輪108および外輪109の軌道面との間に生じるエッジ応力の増大が問題となる。なお、この問題は、油圧ショベル101を高出力化した場合に留まらず、従来と荷重条件の同じ自動調心ころ軸受107をコンパクト化しようとする場合、上下軸受間距離を狭くする場合にも生じ得る。   In recent years, there is an increasing demand for higher output and more compact hydraulic excavator 101. When the output of the motor of the turning mechanism 104 is increased, the load applied to the self-aligning roller bearing 107 increases. Thereby, in the conventional self-aligning roller bearing 107, an edge generated between the end of the spherical roller 110 and the raceway surfaces of the inner ring 108 and the outer ring 109 due to a decrease in bearing life due to insufficient load capacity or bending of the output shaft 106. The increase in stress becomes a problem. This problem is not limited to the case where the output power of the excavator 101 is increased, but also occurs when the self-aligning roller bearing 107 having the same load condition as the conventional one is made compact and the distance between the upper and lower bearings is reduced. obtain.

高荷重に対応する最も簡単な方法は、自動調心ころ軸受107を大型化することであるが、油圧ショベル101のコンパクト化の観点から自動調心ころ軸受107を大型化することは適切ではない。   The simplest method for handling a high load is to enlarge the self-aligning roller bearing 107, but it is not appropriate to enlarge the self-aligning roller bearing 107 from the viewpoint of making the excavator 101 compact. .

そこで、自動調心ころ軸受107の軸受サイズを維持したまま、定格荷重を向上させることが望まれる。自動調心ころ軸受107の定格荷重を向上させる方法としては、内輪108および外輪109の間に配置する球面ころ110の本数を増加させるか、ころ径を大きくすることが考えられる。   Therefore, it is desired to improve the rated load while maintaining the bearing size of the self-aligning roller bearing 107. As a method of improving the rated load of the self-aligning roller bearing 107, it is conceivable to increase the number of the spherical rollers 110 arranged between the inner ring 108 and the outer ring 109 or to increase the roller diameter.

しかし、例えば、ころ本数を増加させる場合、自動調心ころ軸受107の球面ころ110の左右には保持器111の柱部111aが配置されており、柱部111aの強度確保の観点から柱部111aの太さを一定値以上にする必要がある。その結果、隣接する球面ころ110の間隔を小さくして収容可能な球面ころ110の本数を増やすことは困難であった。   However, for example, when increasing the number of rollers, the column portions 111a of the cage 111 are arranged on the left and right sides of the spherical roller 110 of the self-aligning roller bearing 107, and the column portions 111a are provided from the viewpoint of securing the strength of the column portions 111a. The thickness of must be a certain value or more. As a result, it is difficult to increase the number of spherical rollers 110 that can be accommodated by reducing the interval between adjacent spherical rollers 110.

そこで、この発明の目的は、コンパクトで負荷容量の高い自動調心ころ軸受を有する建設機械用旋回機構の出力軸支持構造を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide an output shaft support structure for a turning mechanism for a construction machine having a self-aligning roller bearing that is compact and has a high load capacity.

この発明に係る建設機械用旋回機構の出力軸支持構造は、上部旋回体を下部走行体に対して旋回自在に支持する旋回機構の出力軸と、出力軸を回転自在に支持する自動調心ころ軸受とを備える。自動調心ころ軸受に注目すると、内輪と、外輪と、内輪および外輪の間に配置された複数の球面ころと、一対のリング部、一対のリング部の間に位置する柱部、および球面ころの脱落を防止する抜け止め部を有する樹脂製保持器とを備える。そして、球面ころの長さ方向中央部に対面する柱部の中央領域は、球面ころのピッチ円の下側に位置し、抜け止め部は、球面ころのピッチ円の上側に位置し、球面ころの転動面に当接してこの球面ころの径方向への移動を規制する。また、抜け止め部は、球面ころの長さ方向端部に対面する柱部の端部領域に設けられている。   An output shaft support structure for a turning mechanism for a construction machine according to the present invention includes an output shaft of a turning mechanism that rotatably supports an upper turning body with respect to a lower traveling body, and a self-aligning roller that rotatably supports the output shaft. And a bearing. When paying attention to the self-aligning roller bearing, an inner ring, an outer ring, a plurality of spherical rollers arranged between the inner ring and the outer ring, a pair of ring parts, a column part positioned between the pair of ring parts, and a spherical roller And a resin-made cage having a retaining portion for preventing the drop-off. The central region of the column portion that faces the central portion in the length direction of the spherical roller is located below the pitch circle of the spherical roller, and the retaining portion is located above the pitch circle of the spherical roller. The spherical roller is brought into contact with the rolling surface to restrict the radial movement of the spherical roller. Further, the retaining portion is provided in an end region of the column portion facing the longitudinal end portion of the spherical roller.

隣接する球面ころの間隔はピッチ円上で最小となるので、ころ径が最大となる長さ方向中央部で柱部をピッチ円から外れた領域に配置することにより、隣接する球面ころの間隔を小さくすることができる。その結果、より多くの球面ころを収容することが可能となるので、自動調心ころ軸受の定格荷重が向上する。そして、このような自動調心ころ軸受を旋回機構の出力軸を支持する軸受に採用することにより、コンパクトで耐荷重性に優れた建設機械用旋回機構の出力軸支持構造を得ることができる。   Since the spacing between adjacent spherical rollers is the smallest on the pitch circle, the spacing between adjacent spherical rollers can be reduced by placing the column portion in a region outside the pitch circle at the central portion in the length direction where the roller diameter is maximum. Can be small. As a result, more spherical rollers can be accommodated, and the rated load of the self-aligning roller bearing is improved. By adopting such a self-aligning roller bearing as a bearing that supports the output shaft of the turning mechanism, it is possible to obtain an output shaft support structure for a turning mechanism for a construction machine that is compact and has excellent load resistance.

好ましくは、一対のリング部のうちの少なくとも一方は、その外径面が複数の球面ころのころ中心より外側に位置する。軸受組立て時の球面ころの傾きを有効に抑制できるので、軸受の取扱いが容易となる。   Preferably, at least one of the pair of ring portions has an outer diameter surface located outside the roller center of the plurality of spherical rollers. Since the inclination of the spherical roller at the time of assembling the bearing can be effectively suppressed, the handling of the bearing becomes easy.

この発明の他の局面に係る建設機械用旋回機構の出力軸支持構造は、上部旋回体を下部走行体に対して旋回自在に支持する旋回機構の出力軸と、出力軸を回転自在に支持する自動調心ころ軸受とを備える。自動調心ころ軸受に注目すると、内輪と、外輪と、内輪および外輪の間に配置された複数の球面ころと、複数の球面ころの間隔を保持する保持器とを備える。そして、保持器は、複数の球面ころの端面に対面するリング部と、隣接する球面ころの間に位置し、リング部の内側面から軸方向に突出する突出部とを有し、突出部の突出長さをAとし、リング部の内側面から球面ころの最大径部分に至るまでの軸方向長さをBとしたとき、A<Bの関係が成立する。   An output shaft support structure for a construction machine turning mechanism according to another aspect of the present invention includes an output shaft of a turning mechanism that rotatably supports an upper turning body with respect to a lower traveling body, and an output shaft that rotatably supports the output shaft. Spherical roller bearings are provided. When paying attention to the self-aligning roller bearing, it is provided with an inner ring, an outer ring, a plurality of spherical rollers arranged between the inner ring and the outer ring, and a retainer for holding a space between the plurality of spherical rollers. The retainer has a ring portion facing the end faces of the plurality of spherical rollers, and a protrusion that is located between the adjacent spherical rollers and protrudes in the axial direction from the inner surface of the ring portion. When the protruding length is A and the axial length from the inner surface of the ring portion to the maximum diameter portion of the spherical roller is B, the relationship of A <B is established.

上記構成の保持器は、突出部の先端が、隣接する球面ころの間隔が最小となる最大径部に対面する位置まで達しないので、隣接する球面ころの間隔を小さくすることができる。その結果、より多くの球面ころを収容することが可能となるので、軸受サイズを維持したまま定格荷重を向上した自動調心ころ軸受を得ることができる。そして、このような自動調心ころ軸受を旋回機構の出力軸を支持する軸受に採用することにより、コンパクトで耐荷重性に優れた建設機械用旋回機構の出力軸支持構造を得ることができる。なお、本明細書中「リング部の内側面」とは、リング部の球面ころと対面する端面を指すものとする。   In the cage configured as described above, since the tip of the protruding portion does not reach the position facing the maximum diameter portion where the distance between adjacent spherical rollers is minimized, the distance between adjacent spherical rollers can be reduced. As a result, a larger number of spherical rollers can be accommodated, so that a self-aligning roller bearing having an improved rated load while maintaining the bearing size can be obtained. By adopting such a self-aligning roller bearing as a bearing that supports the output shaft of the turning mechanism, it is possible to obtain an output shaft support structure for a turning mechanism for a construction machine that is compact and has excellent load resistance. In the present specification, the “inner side surface of the ring portion” refers to an end surface facing the spherical roller of the ring portion.

好ましくは、保持器は、隣接する突出部の間に、球面ころの一方側端部を受け入れる凹部を有する。上記構成の保持器は、リング部の端面に設けられた複数の凹部が隣接する球面ころの間隔を一定に保つ機能に加え、球面ころの脱落を防止する機能を有する。これにより、球面ころの円滑な回転を維持すると共に、球面ころの脱落を防止することができる。   Preferably, a cage | basket has a recessed part which receives the one side edge part of a spherical roller between adjacent protrusion parts. The cage having the above-described configuration has a function of preventing the spherical rollers from falling off, in addition to a function of maintaining a constant interval between the spherical rollers adjacent to each other by the plurality of concave portions provided on the end surface of the ring portion. Thereby, while maintaining smooth rotation of a spherical roller, drop-off of a spherical roller can be prevented.

さらに好ましくは、保持器は球面ころの両端に配置される。このように、球面ころの両端に保持器を配置することにより、さらに効果的に球面ころの円滑な回転を維持することができる。   More preferably, the cage is disposed at both ends of the spherical roller. Thus, by arranging the cages at both ends of the spherical roller, it is possible to more effectively maintain the smooth rotation of the spherical roller.

好ましくは、保持器は内輪の小鍔部の内側に係合する係合部を有する。これにより、特に、保持器を球面ころの両端に独立して配置した場合でも、軸受回転時に保持器が脱落するのを防止することができる。   Preferably, the retainer has an engaging portion that engages with the inside of the small collar portion of the inner ring. Thereby, it is possible to prevent the retainer from dropping off when the bearing rotates, particularly when the retainer is disposed independently at both ends of the spherical roller.

この発明によれば、収容可能な球面ころの本数を増加させることにより、軸受サイズを維持したまま自動調心ころ軸受の定格荷重を向上することができる。そして、このような自動調心ころ軸受を旋回機構の出力軸を支持する軸受に採用することにより、コンパクトで耐荷重性に優れた建設機械用旋回機構の出力軸支持構造を得ることができる。   According to the present invention, by increasing the number of spherical rollers that can be accommodated, the rated load of the self-aligning roller bearing can be improved while maintaining the bearing size. By adopting such a self-aligning roller bearing as a bearing that supports the output shaft of the turning mechanism, it is possible to obtain an output shaft support structure for a turning mechanism for a construction machine that is compact and has excellent load resistance.

図1〜図6を参照して、この発明の一実施形態に係る建設機械用旋回機構の出力軸支持構造を説明する。図1は、この発明の一実施形態に係る建設機械用旋回機構を示す図であって、図2は、図1に示す建設機械用旋回機構の出力軸を支持する自動調心ころ軸受を示す図、図3〜図6は、図2に示す自動調心ころ軸受に使用する保持器を示す図である。   With reference to FIGS. 1-6, the output-shaft support structure of the turning mechanism for construction machines which concerns on one Embodiment of this invention is demonstrated. FIG. 1 is a view showing a construction machine turning mechanism according to an embodiment of the present invention. FIG. 2 shows a self-aligning roller bearing that supports the output shaft of the construction machine turning mechanism shown in FIG. FIGS. 3 to 6 are views showing a cage used in the self-aligning roller bearing shown in FIG.

図1を参照して、建設機械用旋回機構11は、駆動力を発生させるモータ(図示せず)に連結された入力軸12と、出力軸13と、入力軸12の回転を減速して出力軸13に伝達する減速機構14と、出力軸13を回転自在に支持する自動調心ころ軸受21と、出力軸13の先端に設けられたピニオン16とを備える。   With reference to FIG. 1, the construction machine turning mechanism 11 decelerates the rotation of the input shaft 12, the output shaft 13, and the input shaft 12 connected to a motor (not shown) that generates a driving force, and outputs the reduced speed. A reduction mechanism 14 that transmits to the shaft 13, a self-aligning roller bearing 21 that rotatably supports the output shaft 13, and a pinion 16 provided at the tip of the output shaft 13 are provided.

減速機構14は、入力軸12に固定連結された太陽歯車17と、太陽歯車17と同軸上に固定された内歯車(図示せず)と、太陽歯車17と内歯車とに噛み合う複数の遊星歯車18と、遊星歯車18各々に設けられた遊星キャリア軸19と、全ての遊星キャリア軸19と出力軸13とに連結され、遊星歯車18の公転運動を出力軸13に伝達する遊星キャリア20とを備える遊星歯車減速機である。   The speed reduction mechanism 14 includes a sun gear 17 fixedly connected to the input shaft 12, an internal gear (not shown) fixed coaxially with the sun gear 17, and a plurality of planetary gears meshed with the sun gear 17 and the internal gear. 18, a planet carrier shaft 19 provided on each planetary gear 18, and a planet carrier 20 connected to all the planet carrier shafts 19 and the output shaft 13, and transmitting the revolution movement of the planetary gear 18 to the output shaft 13. It is a planetary gear reducer provided.

この減速機構14は、モータの回転に伴って入力軸12に固定連結された太陽歯車17が自転する。このとき、遊星歯車18は、太陽歯車17と内歯車との間で太陽歯車17の自転運動とは逆向きに自転し、太陽歯車17の自転運動と同じ向きに公転する。そして、遊星キャリア20は、遊星キャリア軸19を介して遊星歯車18の公転運動を出力軸13に伝達する。この減速機構14の減速比は、太陽歯車17の歯数をn、内歯車の歯数をnとすると、n/nで表される。 In this reduction mechanism 14, the sun gear 17 fixedly connected to the input shaft 12 rotates as the motor rotates. At this time, the planetary gear 18 rotates between the sun gear 17 and the internal gear in the direction opposite to the rotation of the sun gear 17 and revolves in the same direction as the rotation of the sun gear 17. Then, the planet carrier 20 transmits the revolution movement of the planetary gear 18 to the output shaft 13 via the planet carrier shaft 19. The reduction ratio of the reduction mechanism 14, n 1 the number of teeth of the sun gear 17, and the number of teeth of the internal gear and n 2, is represented by n 1 / n 2.

上記構成の建設機械用旋回機構11は、油圧ショベル等の建設機械の下部走行体と上部旋回体の間に配置され、モータの回転に伴ってピニオン16が下部走行体に設けられた旋回輪上を移動することにより、上部旋回体を下部走行体に対して旋回自在に支持する。   The construction machine turning mechanism 11 having the above-described configuration is disposed between a lower traveling body and an upper turning body of a construction machine such as a hydraulic excavator, and on a swivel wheel on which a pinion 16 is provided on the lower traveling body as the motor rotates. The upper revolving unit is supported so as to be rotatable with respect to the lower traveling unit.

図2を参照して、出力軸13を支持する自動調心ころ軸受21は、内輪22と、外輪23と、内輪22および外輪23の間に複列に配置された複数の球面ころ24と、隣接する球面ころ24の間隔を保持する保持器25とを備える。また、内輪22の外径面には複列の軌道面が形成され、外輪23の内径面には軸受中心を曲率中心とする球面の軌道面が形成されている。   With reference to FIG. 2, a self-aligning roller bearing 21 that supports the output shaft 13 includes an inner ring 22, an outer ring 23, a plurality of spherical rollers 24 arranged in a double row between the inner ring 22 and the outer ring 23, and And a cage 25 that holds the spacing between adjacent spherical rollers 24. A double row raceway surface is formed on the outer diameter surface of the inner ring 22, and a spherical raceway surface having a center of curvature as the center of curvature is formed on the inner diameter surface of the outer ring 23.

図3を参照して、保持器25は、一対のリング部25aおよび25bと、一対のリング部25a,25bの間に位置する柱部25cと、柱部25cのリング部25a側の端部領域に位置し、球面ころ24の長さ方向端部の径方向外側への移動を規制する抜け止め部25dとを有し、射出成型によって製造される樹脂製保持器である。   Referring to FIG. 3, cage 25 includes a pair of ring portions 25a and 25b, a column portion 25c positioned between the pair of ring portions 25a and 25b, and an end region on the ring portion 25a side of column portion 25c. And a retainer portion 25d that restricts the movement of the end of the spherical roller 24 in the lengthwise direction to the outside in the radial direction, and is a resin cage manufactured by injection molding.

次に、図4は、図3のIV−IVにおける断面図である。図4を参照して、リング部25a近傍の柱部25cは、球面ころ24のピッチ円を跨いで径方向に延在し、球面ころ24に対向する壁面は球面ころ24の転動面に沿う曲面形状である。球面ころ24のピッチ円より上側の開口端の開口幅wは、球面ころ24のころ径wより小さく設定されており、球面ころ24の径方向外側への移動を規制する。また、球面ころ24のピッチ円より下側の開口端の開口幅wも球面ころ24のころ径wより小さく設定されており、球面ころ24の径方向内側への移動を規制する。 Next, FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. Referring to FIG. 4, the column portion 25 c in the vicinity of the ring portion 25 a extends in the radial direction across the pitch circle of the spherical roller 24, and the wall surface facing the spherical roller 24 follows the rolling surface of the spherical roller 24. Curved shape. The opening width w 1 of the opening end above the pitch circle of the spherical roller 24 is set smaller than the roller diameter w 2 of the spherical roller 24 and restricts the movement of the spherical roller 24 outward in the radial direction. Also, the opening width w 3 of the lower opening end than the pitch circle of the spherical rollers 24 are also set smaller than the roller diameter w 2 of spherical rollers 24, to restrict the movement of the radially inner spherical rollers 24.

次に、図5は、図3のV−Vにおける断面図である。図5を参照して、ポケットの長さ方向中央部に位置する柱部25cは、球面ころ24のピッチ円の下側に位置し、球面ころ24に対向する端面は球面ころ24の転動面に沿う曲面形状である。また、ポケット内部に突出した凸部(図3の斜線部)によって、ポケットの開口幅wを球面ころ24のころ径wより小さく設定することにより、球面ころ24の径方向内側への移動を規制する。 Next, FIG. 5 is a cross-sectional view taken along line V-V in FIG. Referring to FIG. 5, the column portion 25 c located at the center in the longitudinal direction of the pocket is located below the pitch circle of the spherical roller 24, and the end surface facing the spherical roller 24 is the rolling surface of the spherical roller 24. It is a curved shape along. Further, by setting the opening width w 3 of the pocket to be smaller than the roller diameter w 2 of the spherical roller 24 by the protruding portion (shaded portion in FIG. 3) protruding inside the pocket, the spherical roller 24 moves inward in the radial direction. To regulate.

次に、図6は、図3のVI−VIにおける断面図である。図6を参照して、リング部25aの外径面は、球面ころ24のころ中心よりも外側に位置しており、リング部25bの外径面は、球面ころ24のころ中心よりも内側に位置している。   Next, FIG. 6 is a sectional view taken along line VI-VI in FIG. Referring to FIG. 6, the outer diameter surface of ring portion 25 a is located outside the roller center of spherical roller 24, and the outer diameter surface of ring portion 25 b is located inside the roller center of spherical roller 24. positioned.

上記構成の自動調心ころ軸受21において、隣接する球面ころ24の間隔はピッチ円上で最小となる。そこで、柱部25cをピッチ円から外れた領域に配置することにより、隣接する球面ころ24の間隔を小さくすることができる。その結果、より多くの球面ころ24を収容することが可能となるので、軸受サイズを維持したまま定格荷重の向上した自動調心ころ軸受21を得ることができる。   In the self-aligning roller bearing 21 configured as described above, the interval between adjacent spherical rollers 24 is minimized on the pitch circle. Therefore, the interval between the adjacent spherical rollers 24 can be reduced by disposing the column portion 25c in a region outside the pitch circle. As a result, a larger number of spherical rollers 24 can be accommodated, so that the self-aligning roller bearing 21 having an improved rated load can be obtained while maintaining the bearing size.

また、上記構成の保持器25は、リング部25bの側に球面ころ24の径方向への移動を規制する手段を有していないので、軸受組立て時に球面ころ24とリング部25aの外径面との当接部分を基点として球面ころ24が傾く可能性がある。そこで、図6に示すように、リング部25bの外径面を球面ころ24のころ中心より外側に配置することにより、軸受組立て時の球面ころの傾きを有効に抑制できるので、軸受の組立てが容易となる。   Further, the cage 25 having the above configuration does not have a means for restricting the radial movement of the spherical roller 24 on the ring portion 25b side, so that the outer diameter surfaces of the spherical roller 24 and the ring portion 25a at the time of assembling the bearings. There is a possibility that the spherical roller 24 tilts with the contact portion as a base point. Therefore, as shown in FIG. 6, by disposing the outer diameter surface of the ring portion 25b outside the roller center of the spherical roller 24, the inclination of the spherical roller at the time of assembling the bearing can be effectively suppressed. It becomes easy.

上記の実施形態においては、リング部25aの側にのみ抜け止め部25dを設けた例を示したが、これに限ることなく、リング部25bの側にも抜け止め部を設けてもよい。   In the above-described embodiment, the example in which the retaining portion 25d is provided only on the ring portion 25a side is shown. However, the present invention is not limited to this, and the retaining portion may also be provided on the ring portion 25b side.

また、抜け止め部25dは柱部25cの一部とした例を示したが、これに限ることなく、柱部から離れた位置、例えば、球面ころ24の端面に対面するリング部25a,25bの壁面から突出する凸部であって、球面ころ24の転動面に当接して球面ころ24の径方向の移動を規制するものであってもよい。   In addition, although the example in which the retaining portion 25d is a part of the column portion 25c has been shown, the present invention is not limited to this, and the position of the ring portions 25a and 25b facing the end surface of the spherical roller 24 is not limited to this. It may be a convex portion protruding from the wall surface and abutting against the rolling surface of the spherical roller 24 to restrict the radial movement of the spherical roller 24.

次に、図7〜図11を参照して、図1に示す建設機械用旋回機構の出力軸支持構造11に使用する自動調心ころ軸受の他の実施例を説明する。なお、図7は、この発明の他の実施形態に係る自動調心ころ軸受であって、図8〜図11は、図7に示す自動調心ころ軸受に使用する保持器を示す図である。   Next, another embodiment of a self-aligning roller bearing used in the output shaft support structure 11 of the construction machine turning mechanism shown in FIG. 1 will be described with reference to FIGS. 7 is a self-aligning roller bearing according to another embodiment of the present invention, and FIGS. 8 to 11 are views showing a cage used in the self-aligning roller bearing shown in FIG. .

図7を参照して、自動調心ころ軸受31は、両端に小鍔部32aを有する内輪32と、外輪33と、内輪32および外輪33の間に複列に配置された複数の球面ころ34と、複数の球面ころ34の間隔を保持する保持器35および36とを備える。なお、保持器35および36は、それぞれ独立して回転するので、自動調心ころ軸受31の両端部に配置される保持器36には、脱落を防止するために内輪32の小鍔部32aの内側に係合する係合部36aを設ける。   Referring to FIG. 7, the self-aligning roller bearing 31 includes an inner ring 32 having small flange portions 32 a at both ends, an outer ring 33, and a plurality of spherical rollers 34 arranged in a double row between the inner ring 32 and the outer ring 33. And cages 35 and 36 for holding the spacing between the plurality of spherical rollers 34. Since the cages 35 and 36 rotate independently of each other, the cage 36 disposed at both ends of the self-aligning roller bearing 31 has a small flange portion 32a of the inner ring 32 to prevent the cage from falling off. An engaging portion 36a that engages inside is provided.

図8および図9を参照して、保持器35は、複数の球面ころ34の端面に対面するリング部35aと、隣接する球面ころ34の間に位置し、リング部35aの内側面から軸方向に突出する突出部35cと、隣接する突出部35cの間に、球面ころ34の一方側端部を受け入れる凹部35bとを有する。そして、突出部35cの突出長さをAとし、リング部35aの内側面から球面ころ34の最大径部分に至るまでの軸方向長さをBとしたとき、A<Bの関係が成立するように設定されている。また、この保持器35は、銅合金等により形成された円筒状の材料の端面に切削加工によって凹部35bを形成する揉み抜き保持器である。なお、保持器36も同様の構造である。   Referring to FIGS. 8 and 9, the retainer 35 is located between the ring portion 35a facing the end surfaces of the plurality of spherical rollers 34 and the adjacent spherical roller 34, and axially extends from the inner surface of the ring portion 35a. And a recess 35b for receiving one end of the spherical roller 34 between the adjacent protrusions 35c. When the protruding length of the protruding portion 35c is A and the axial length from the inner surface of the ring portion 35a to the maximum diameter portion of the spherical roller 34 is B, the relationship of A <B is established. Is set to The cage 35 is a squeezed cage that forms a recess 35b by cutting on an end surface of a cylindrical material made of a copper alloy or the like. The retainer 36 has a similar structure.

さらに、図10を参照して、保持器35の突出部35bは、球面ころ34のピッチ円を跨いで径方向に延在し、球面ころ34の転動面に対向する壁面は、球面ころ34の転動面に沿う曲面形状である。この突出部35bは、球面ころ34の転動面に当接してその回転を案内すると共に、球面ころ34の径方向外側および径方向内側への抜けを防止する。また、図11に示す保持器36も同様である。   Further, referring to FIG. 10, the protruding portion 35 b of the cage 35 extends in the radial direction across the pitch circle of the spherical roller 34, and the wall surface facing the rolling surface of the spherical roller 34 is the spherical roller 34. The curved surface shape along the rolling surface. The protrusion 35b abuts on the rolling surface of the spherical roller 34 to guide its rotation, and prevents the spherical roller 34 from coming out radially outward and radially inward. The same applies to the cage 36 shown in FIG.

上記構成の自動調心ころ軸受31は、保持器35,36が一対となって構成され、保持器35,36の突出部の先端が球面ころ34の最大径部に対面する位置に達しないので、隣接する球面ころ34の間隔を小さくすることができる。その結果、より多くの球面ころ34を収容することが可能となるので、軸受サイズを維持したまま定格荷重を向上した自動調心ころ軸受31を得ることができる。   Since the self-aligning roller bearing 31 having the above-described configuration includes a pair of cages 35 and 36, and the tips of the protruding portions of the cages 35 and 36 do not reach a position where the maximum diameter portion of the spherical roller 34 faces. The interval between the adjacent spherical rollers 34 can be reduced. As a result, a larger number of spherical rollers 34 can be accommodated, so that a self-aligning roller bearing 31 with an improved rated load can be obtained while maintaining the bearing size.

図8に示した保持器として、揉み抜き保持器の例を示したが、これに限ることなく、射出成型による樹脂保持器にも適用可能である。   As the cage shown in FIG. 8, an example of a squeezed cage is shown, but the present invention is not limited to this and can be applied to a resin cage by injection molding.

上記の各実施形態に係る自動調心ころ軸受21,31を建設機械用旋回機構の出力軸を支持する軸受として使用することにより、軸受回転時の摩擦および発熱を低減し、大気中へのCOの排出を削減可能な建設機械を得ることができる。 By using the self-aligning roller bearings 21 and 31 according to the above embodiments as bearings for supporting the output shaft of the turning mechanism for construction machinery, friction and heat generation during the rotation of the bearing are reduced, and CO into the atmosphere is reduced. A construction machine capable of reducing the emission of 2 can be obtained.

以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

この発明は、建設機械用の旋回機構の出力軸支持構造に有利に利用される。   The present invention is advantageously used for an output shaft support structure of a turning mechanism for a construction machine.

この発明の一実施形態に係る建設機械用旋回機構の出力軸支持構造を示す図である。It is a figure which shows the output-shaft support structure of the turning mechanism for construction machines which concerns on one Embodiment of this invention. 図1に示す出力軸を支持する自動調心ころ軸受の一例を示す図である。It is a figure which shows an example of the self-aligning roller bearing which supports the output shaft shown in FIG. 図2に示す自動調心ころ軸受に使用される保持器を径方向から見た図である。It is the figure which looked at the retainer used for the self-aligning roller bearing shown in FIG. 2 from radial direction. 図3に示す保持器のIV−IVにおける断面図である。It is sectional drawing in IV-IV of the holder | retainer shown in FIG. 図3に示す保持器のV−Vにおける断面図である。It is sectional drawing in VV of the holder | retainer shown in FIG. 図3に示す保持器のVI−VIにおける断面図である。It is sectional drawing in VI-VI of the holder | retainer shown in FIG. 図1に示す出力軸を支持する自動調心ころ軸受の他の例を示す図である。It is a figure which shows the other example of the self-aligning roller bearing which supports the output shaft shown in FIG. 図7に示す自動調心ころ軸受に使用される保持器を軸方向から見た図である。It is the figure which looked at the retainer used for the self-aligning roller bearing shown in FIG. 7 from the axial direction. 図7に示す自動調心ころ軸受に使用される保持器を径方向から見た図である。It is the figure which looked at the retainer used for the self-aligning roller bearing shown in FIG. 7 from radial direction. 図7のVIII−VIIIにおける断面図である。It is sectional drawing in VIII-VIII of FIG. 図7のIX−IXにおける断面図である。It is sectional drawing in IX-IX of FIG. 建設機械としての油圧ショベルの概略図である。It is the schematic of the hydraulic shovel as a construction machine. 従来の建設機械用旋回機構の出力軸支持構造を示す図である。It is a figure which shows the output-shaft support structure of the conventional turning mechanism for construction machines. 図13に示す出力軸を支持する従来の自動調心ころ軸受を示す図である。It is a figure which shows the conventional self-aligning roller bearing which supports the output shaft shown in FIG. 図14に示す自動調心ころ軸受のXV−XVにおける断面図である。It is sectional drawing in XV-XV of the self-aligning roller bearing shown in FIG.

符号の説明Explanation of symbols

11 建設機械用旋回機構の出力軸支持構造、12 入力軸、13 出力軸、14 減速機構、16,106a ピニオン、17 太陽歯車、18 遊星歯車、19 遊星キャリア軸、20 遊星キャリア、21,31,107 自動調心ころ軸受、22,32,108 内輪、32a 小鍔部、23,33,109 外輪、24,34,110 球面ころ、25,35,36,111 保持器、25a,25b,35a リング部、25c,111a 柱部、25d 抜け止め部、35b 凹部、35c 突出部、36a 系合部、111b ポケット、101 油圧ショベル、102 下部走行体、102a キャタピラ、103 上部旋回体、103a 運転室、104 旋回機構、105 アーム、105a 掘削バケット、106 出力軸。 DESCRIPTION OF SYMBOLS 11 Output shaft support structure of turning mechanism for construction machines, 12 input shaft, 13 output shaft, 14 speed reduction mechanism, 16, 106a pinion, 17 sun gear, 18 planet gear, 19 planet carrier shaft, 20 planet carrier, 21, 31, 107 Spherical roller bearing, 22, 32, 108 Inner ring, 32a Small collar part, 23, 33, 109 Outer ring, 24, 34, 110 Spherical roller, 25, 35, 36, 111 Cage, 25a, 25b, 35a Ring Part, 25c, 111a pillar part, 25d retaining part, 35b recess, 35c protrusion, 36a mating part, 111b pocket, 101 hydraulic excavator, 102 lower traveling body, 102a caterpillar, 103 upper turning body, 103a cab, 104 Swivel mechanism, 105 arm, 105a drilling bucket, 106 output shaft.

Claims (7)

上部旋回体を下部走行体に対して旋回自在に支持する旋回機構の出力軸と、
前記出力軸を回転自在に支持する自動調心ころ軸受とを備える、建設機械用旋回機構の出力軸支持構造であって、
前記自動調心ころ軸受は、内輪と、外輪と、前記内輪および前記外輪の間に配置された複数の球面ころと、一対のリング部、前記一対のリング部の間に位置する柱部、および前記球面ころの脱落を防止する抜け止め部を有する樹脂製保持器とを備え、前記球面ころの長さ方向中央部に対面する前記柱部の中央領域は、前記球面ころのピッチ円の下側に位置し、前記抜け止め部は、前記球面ころのピッチ円の上側に位置し、前記球面ころの転動面に当接してこの球面ころの径方向への移動を規制する、建設機械用旋回機構の出力軸支持構造。
An output shaft of a turning mechanism that supports the upper turning body so as to be turnable with respect to the lower traveling body;
An output shaft support structure for a turning mechanism for a construction machine, comprising a self-aligning roller bearing that rotatably supports the output shaft,
The self-aligning roller bearing includes an inner ring, an outer ring, a plurality of spherical rollers disposed between the inner ring and the outer ring, a pair of ring portions, a column portion positioned between the pair of ring portions, and A retainer portion having a retaining portion for preventing the spherical roller from falling off, and the central region of the column portion facing the longitudinal central portion of the spherical roller is below the pitch circle of the spherical roller And the retaining portion is located above the pitch circle of the spherical roller and contacts the rolling surface of the spherical roller to regulate the radial movement of the spherical roller. The output shaft support structure of the mechanism.
前記抜け止め部は、前記球面ころの長さ方向端部に対面する前記柱部の端部領域に設けられている、請求項1に記載の建設機械用旋回機構の出力軸支持構造。   The output shaft support structure for a turning mechanism for a construction machine according to claim 1, wherein the retaining portion is provided in an end region of the column portion facing a longitudinal end portion of the spherical roller. 前記一対のリング部のうちの少なくとも一方は、その外径面が前記複数の球面ころのころ中心より外側に位置する、請求項1または2に記載の建設機械用旋回機構の出力軸支持構造。   The output shaft support structure for a turning mechanism for a construction machine according to claim 1 or 2, wherein an outer diameter surface of at least one of the pair of ring portions is located outside a roller center of the plurality of spherical rollers. 上部旋回体を下部走行体に対して旋回自在に支持する旋回機構の出力軸と、
前記出力軸を回転自在に支持する自動調心ころ軸受とを備える、建設機械用旋回機構の出力軸支持構造であって、
前記自動調心ころ軸受は、内輪と、外輪と、前記内輪および前記外輪の間に配置された複数の球面ころと、前記複数の球面ころの間隔を保持する保持器とを備え、前記保持器は、前記複数の球面ころの端面に対面するリング部と、隣接する球面ころの間に位置し、前記リング部の内側面から軸方向に突出する突出部とを有し、前記突出部の突出長さをAとし、前記リング部の内側面から前記球面ころの最大径部分に至るまでの軸方向長さをBとしたとき、A<Bの関係が成立する、建設機械用旋回機構の出力軸支持構造。
An output shaft of a turning mechanism that supports the upper turning body so as to be turnable with respect to the lower traveling body;
An output shaft support structure for a turning mechanism for a construction machine, comprising a self-aligning roller bearing that rotatably supports the output shaft,
The self-aligning roller bearing includes an inner ring, an outer ring, a plurality of spherical rollers disposed between the inner ring and the outer ring, and a cage that holds a space between the plurality of spherical rollers. Has a ring portion facing the end faces of the plurality of spherical rollers, and a protruding portion located between adjacent spherical rollers and protruding in the axial direction from the inner surface of the ring portion, and the protruding portion of the protruding portion When the length is A and the axial length from the inner surface of the ring portion to the maximum diameter portion of the spherical roller is B, the output of the construction machine turning mechanism satisfies the relationship of A <B. Shaft support structure.
前記保持器は、隣接する前記突出部の間に、前記球面ころの一方側端部を受け入れる凹部を有する、請求項4に記載の建設機械用旋回機構の出力軸支持構造。   The output shaft support structure for a turning mechanism for a construction machine according to claim 4, wherein the retainer has a recess for receiving one end portion of the spherical roller between the adjacent projecting portions. 前記保持器は、前記球面ころの両端に配置される、請求項4または5に記載の建設機械用旋回機構の出力軸支持構造。   The output shaft support structure for a turning mechanism for a construction machine according to claim 4 or 5, wherein the cage is disposed at both ends of the spherical roller. 前記保持器は、前記内輪の小鍔部の内側に係合する係合部を有する、請求項4〜6のいずれかに記載の建設機械用旋回機構の出力軸支持構造。   The output shaft support structure for a turning mechanism for a construction machine according to any one of claims 4 to 6, wherein the retainer has an engaging portion that engages with an inside of a small flange portion of the inner ring.
JP2006034121A 2006-02-10 2006-02-10 Output shaft supporting structure of construction machinery swiveling mechanism Withdrawn JP2007211526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034121A JP2007211526A (en) 2006-02-10 2006-02-10 Output shaft supporting structure of construction machinery swiveling mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034121A JP2007211526A (en) 2006-02-10 2006-02-10 Output shaft supporting structure of construction machinery swiveling mechanism

Publications (1)

Publication Number Publication Date
JP2007211526A true JP2007211526A (en) 2007-08-23

Family

ID=38490209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034121A Withdrawn JP2007211526A (en) 2006-02-10 2006-02-10 Output shaft supporting structure of construction machinery swiveling mechanism

Country Status (1)

Country Link
JP (1) JP2007211526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114654715A (en) * 2022-02-08 2022-06-24 河南新开源石化管道有限公司 Integral turning device of intermediate frequency heater for elbow anti-corrosion adhesive tape winding machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114654715A (en) * 2022-02-08 2022-06-24 河南新开源石化管道有限公司 Integral turning device of intermediate frequency heater for elbow anti-corrosion adhesive tape winding machine
CN114654715B (en) * 2022-02-08 2023-10-20 河南新开源石化管道有限公司 Integral rotating device of intermediate frequency heater for elbow anti-corrosion adhesive tape winding machine

Similar Documents

Publication Publication Date Title
JP4847892B2 (en) Oscillating intermeshing planetary gear device and manufacturing method of eccentric shaft thereof
JP5156961B2 (en) Reduction gear
JP5074128B2 (en) Reduction device with output gear and method of assembling the same
JP2005530968A5 (en)
JP2008008445A (en) Driving shaft support structure of travel cart
JP5388746B2 (en) Swing type reducer
JP2010286117A (en) Cage for bearing assembly
JP2008019922A (en) Planetary gear supporting structure for construction machine planetary gear reduction gear
JP4211333B2 (en) Power transmission device
JP2008088993A (en) Planetary gear mechanism
JP2009079629A (en) Retainer for needle roller bearing
JP2008232295A (en) Tapered roller bearing
JP2008267491A (en) Planetary gear speed reducer
JP2007211526A (en) Output shaft supporting structure of construction machinery swiveling mechanism
US10663037B2 (en) Helical gear device
JP2012137113A (en) Shaft device
JP2021025570A (en) Differential device
JP2010216591A (en) Reduction gear
JPH07293557A (en) Rotation support device for planetary gear
JP2007024105A (en) Angular contact ball bearing
JP2005076810A (en) Retainer for needle bearing and needle bearing
JP2008008458A (en) Device for supporting sprocket of traveling reducer for construction machine
JP5499451B2 (en) Roller bearing of planetary gear mechanism
JPS6116440Y2 (en)
JP5353060B2 (en) Gear mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090126

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100602