JP2007210879A - Magnetic garnet single crystal, its production method, and optical element using the same - Google Patents

Magnetic garnet single crystal, its production method, and optical element using the same Download PDF

Info

Publication number
JP2007210879A
JP2007210879A JP2006314086A JP2006314086A JP2007210879A JP 2007210879 A JP2007210879 A JP 2007210879A JP 2006314086 A JP2006314086 A JP 2006314086A JP 2006314086 A JP2006314086 A JP 2006314086A JP 2007210879 A JP2007210879 A JP 2007210879A
Authority
JP
Japan
Prior art keywords
single crystal
faraday rotator
garnet single
magnetic garnet
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006314086A
Other languages
Japanese (ja)
Other versions
JP4802995B2 (en
Inventor
Atsushi Oido
敦 大井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006314086A priority Critical patent/JP4802995B2/en
Priority to US11/647,431 priority patent/US7695562B2/en
Priority to EP07000357.9A priority patent/EP1806755B1/en
Priority to CN2007100022443A priority patent/CN101000410B/en
Publication of JP2007210879A publication Critical patent/JP2007210879A/en
Application granted granted Critical
Publication of JP4802995B2 publication Critical patent/JP4802995B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic garnet single crystal reduced in Pb content, its production method and an optical element using the same. <P>SOLUTION: This magnetic garnet single crystal is represented by the chemical formula, Bi<SB>α</SB>Na<SB>β</SB>M1<SB>3-α-β</SB>Fe<SB>5-γ</SB>M2<SB>γ</SB>O<SB>12</SB>(wherein M1 is at least one element selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; M2 is at least one element selected from Si, Ge and Ti; 0.5<α≤2.0; 0<β≤0.8; 0.2≤3-α-β<2.5; and 0<γ≤1.6). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁性ガーネット単結晶及びその製造方法並びにそれを用いた光学素子に関する。   The present invention relates to a magnetic garnet single crystal, a method for producing the same, and an optical element using the same.

ファラデー回転子は、透過する光の偏光面を回転させる機能を有する光学素子であり、通信用光アイソレータ、光アッテネータ、光サーキュレータ、光磁界センサ等の光デバイスに使用される。ファラデー回転子は、一般に板状のビスマス(Bi)置換希土類鉄ガーネット単結晶を用いて作製される。Bi置換希土類鉄ガーネット単結晶は、フラックス法の一種である液相エピタキシャル(LPE)法により育成される。フラックス法による単結晶育成は、大気圧中で行われる。   The Faraday rotator is an optical element having a function of rotating a polarization plane of transmitted light, and is used for an optical device such as a communication optical isolator, an optical attenuator, an optical circulator, and an optical magnetic field sensor. A Faraday rotator is generally manufactured using a plate-like bismuth (Bi) -substituted rare earth iron garnet single crystal. Bi-substituted rare earth iron garnet single crystal is grown by a liquid phase epitaxial (LPE) method which is a kind of flux method. Single crystal growth by the flux method is performed at atmospheric pressure.

フラックス法等の溶液法によりBi置換希土類鉄ガーネット単結晶を育成する際には、過飽和状態を保ちながらガーネット単結晶を安定に成長させるために、一般に酸化鉛(PbO)、酸化ビスマス(Bi)及び酸化ホウ素(B)が溶媒として用いられる。このため磁性ガーネット単結晶の育成時には結晶中に少量の鉛(Pb)が混入する。従来、通信用光デバイスに使用されるファラデー回転子には、化学式Bi3−x−yM1PbFe5−z−wM2M312においてPbの量yが0.03〜0.06程度である磁性ガーネット単結晶が用いられている。
特開2001−044026号公報 特開2001−044027号公報 特公平6−046604号公報
When a Bi-substituted rare earth iron garnet single crystal is grown by a solution method such as a flux method, lead oxide (PbO) or bismuth oxide (Bi 2 O) is generally used to stably grow the garnet single crystal while maintaining a supersaturated state. 3 ) and boron oxide (B 2 O 3 ) are used as solvents. For this reason, when growing a magnetic garnet single crystal, a small amount of lead (Pb) is mixed in the crystal. Conventionally, the Faraday rotator to be used for communication optical device, in the chemical formula Bi 3-x-y M1 x Pb y Fe 5-z-w M2 z M3 w O 12 quantity y of Pb is 0.03 to 0 A magnetic garnet single crystal of about .06 is used.
JP 2001-044026 A JP 2001-044027 A Japanese Examined Patent Publication No. 6-046604

ところが近年の環境保護運動の高まりと共に、全ての工業製品で環境負荷物質であるPbの含有量を削減する努力がなされている。従って、LPE法により育成する磁性ガーネット単結晶においても、少量ではあるが混入するPbが環境汚染の要因になり得るとして問題になってきた。そこでファラデー回転子を構成する材料である磁性ガーネット単結晶に含有するPbの量を削減又は除去する必要が生じている。   However, with the recent increase in environmental protection movement, efforts are being made to reduce the content of Pb, which is an environmentally hazardous substance, in all industrial products. Therefore, even in a magnetic garnet single crystal grown by the LPE method, a small amount of Pb mixed therein has become a problem because it can cause environmental pollution. Therefore, it is necessary to reduce or remove the amount of Pb contained in the magnetic garnet single crystal that is a material constituting the Faraday rotator.

本発明の目的は、Pbの含有量を削減した磁性ガーネット単結晶及びその製造方法並びにそれを用いた光学素子を提供することにある。   An object of the present invention is to provide a magnetic garnet single crystal with a reduced Pb content, a method for producing the same, and an optical element using the same.

上記目的は、化学式BiαNaβM13−α−βFe5-γM2γ12(M1はY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素、M2はSi、Ge、Tiから選択される少なくとも1種類以上の元素であり、0.5<α≦2.0、0<β≦0.8、0.2≦3−α−β<2.5、0<γ≦1.6)で示されることを特徴とする磁性ガーネット単結晶によって達成される。 The above object has the formula Bi α Na β M1 3-α -β Fe 5-γ M2 γ O 12 (M1 is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, At least one element selected from Tm, Yb, Lu, M2 is at least one element selected from Si, Ge, Ti, 0.5 <α ≦ 2.0, 0 <β ≦ 0.8, 0.2 ≦ 3-α−β <2.5, 0 <γ ≦ 1.6). This is achieved by a magnetic garnet single crystal.

上記本発明の磁性ガーネット単結晶であって、前記γは、0.007≦γ≦1.6であることを特徴とする。   In the magnetic garnet single crystal of the present invention, γ is 0.007 ≦ γ ≦ 1.6.

また上記目的は、上記本発明の磁性ガーネット単結晶を用いて作製されることを特徴とする光学素子によって達成される。   Further, the above object is achieved by an optical element produced using the magnetic garnet single crystal of the present invention.

さらに上記目的は、Na、Fe、M1及びM2(M1はY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素、M2はSi、Ge、Tiから選択される少なくとも1種類以上の元素)を含む材料から融液を生成し、前記融液を用いて磁性ガーネット単結晶を育成することを特徴とする磁性ガーネット単結晶の製造方法によって達成される。   Further, the object is to provide at least one selected from Na, Fe, M1 and M2 (M1 is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) It is characterized in that a melt is generated from a material containing at least one kind of element, M2 being at least one element selected from Si, Ge, and Ti, and a magnetic garnet single crystal is grown using the melt. This is achieved by a method for producing a magnetic garnet single crystal.

上記本発明の磁性ガーネット単結晶の製造方法であって、前記材料における前記M2のFeに対するモル比は、0.004以上であることを特徴とする。   In the method for producing a magnetic garnet single crystal of the present invention, a molar ratio of the M2 to Fe in the material is 0.004 or more.

上記本発明の磁性ガーネット単結晶であって、前記β及びγは、0<β≦0.1、0<γ≦0.2であることを特徴とする。さらには、前記β及びγは、0<β≦0.05、0<γ≦0.1であることを特徴とする。また、前記M2は、少なくともSiを含む1種類以上の元素であることを特徴とする。
さらに上記目的は、化学式BiαNaβM13−α−βFe5-γ-σM2γM3δ12(M1はY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素、M2はSi、Ge、Tiから選択される少なくとも1種類以上の元素、M3はPtであり、0.5<α≦2.0、0<β≦0.8、0.2≦3−α−β<2.5、0<γ+δ≦1.6、0≦γ<1.6、0<δ<0.16)で示されることを特徴とする磁性ガーネット単結晶によって達成される。
また上記目的は、上記本発明の磁性ガーネット単結晶から作製されることを特徴とするファラデー回転子によって達成される。
In the magnetic garnet single crystal of the present invention, β and γ are 0 <β ≦ 0.1 and 0 <γ ≦ 0.2. Furthermore, the β and γ are 0 <β ≦ 0.05 and 0 <γ ≦ 0.1. The M2 is one or more kinds of elements including at least Si.
Further above object, the chemical formula Bi α Na β M1 3-α -β Fe 5-γ-σ M2 γ M3 δ O 12 (M1 is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy , Ho, Er, Tm, Yb, Lu, M2 is at least one element selected from Si, Ge, Ti, M3 is Pt, and 0.5 <α ≦ 2.0, 0 <β ≦ 0.8, 0.2 ≦ 3-α−β <2.5, 0 <γ + δ ≦ 1.6, 0 ≦ γ <1.6, 0 <δ <0.16 It is achieved by a magnetic garnet single crystal characterized by the following.
The above-mentioned object is achieved by a Faraday rotator which is produced from the magnetic garnet single crystal of the present invention.

本発明によれば、磁性ガーネット単結晶に含まれるPb量を削減し、あるいは完全に除去することができる。   According to the present invention, the amount of Pb contained in the magnetic garnet single crystal can be reduced or completely removed.

〔第1の実施の形態〕
本発明の第1の実施の形態による磁性ガーネット単結晶及びその製造方法並びにそれを用いた光学素子について図1及び図2を用いて説明する。本実施の形態では、従来の溶媒に含まれるPbをナトリウム(Na)で代替し、Na及び鉄(Fe)を含む溶媒から磁性ガーネット単結晶を育成する。Naと酸素とを含有する物質は他の酸化物に比べて低い温度で溶解するものが多いため、磁性ガーネット単結晶を育成する際の溶媒としても有効である。例えば水酸化ナトリウム(NaOH)を含む溶媒から育成された磁性ガーネット単結晶は、欠陥や割れのない優れた品質が得られる。そのため溶媒の材料からPbOを除外し、Naを含む物質とBi及びBを溶媒に用いることにより、従来磁性ガーネット単結晶に微量含まれていたPbをほぼ完全に除去できる。
[First Embodiment]
A magnetic garnet single crystal according to a first embodiment of the present invention, a manufacturing method thereof, and an optical element using the same will be described with reference to FIGS. In this embodiment, Pb contained in a conventional solvent is replaced with sodium (Na), and a magnetic garnet single crystal is grown from a solvent containing Na and iron (Fe). Since many substances containing Na and oxygen dissolve at a lower temperature than other oxides, they are also effective as solvents for growing magnetic garnet single crystals. For example, a magnetic garnet single crystal grown from a solvent containing sodium hydroxide (NaOH) has excellent quality without defects or cracks. Therefore, by removing PbO from the solvent material and using a substance containing Na and Bi 2 O 3 and B 2 O 3 as the solvent, it is possible to almost completely remove Pb that has been contained in a trace amount in the conventional magnetic garnet single crystal.

ところが、Naを含む溶媒から育成したガーネット単結晶は、光通信で使用される1300〜1600nmの波長帯域での光吸収が極めて大きいということが判明した。大きな光吸収を持つガーネット単結晶を加工してファラデー回転子等の光学素子を作製すると、光学素子の光損失(挿入損失)が高くなってしまうという問題が生じ得る。したがって、Pbがほぼ完全に除去された光学素子の光損失を低減させるために、Naを含む溶媒を用いて育成されるガーネット単結晶の光吸収を減少させる必要がある。   However, it has been found that a garnet single crystal grown from a solvent containing Na has extremely large light absorption in a wavelength band of 1300 to 1600 nm used in optical communication. When an optical element such as a Faraday rotator is manufactured by processing a garnet single crystal having a large light absorption, there may be a problem that the optical loss (insertion loss) of the optical element increases. Therefore, in order to reduce the optical loss of the optical element from which Pb is almost completely removed, it is necessary to reduce the light absorption of the garnet single crystal grown using the solvent containing Na.

ここで、NaOH、Bi及びBを含む溶媒からLPE法により育成した(BiGdYb)Fe12単結晶を加工して、ファラデー回転子を作製した。このファラデー回転子の波長1.55μmの光に対する光損失は3dBであった。また、Pbを含む溶媒からLPE法により育成した(BiGdYb)Fe12単結晶を加工して、別のファラデー回転子を作製した。このファラデー回転子の波長1.55μmの光に対する光損失は0.05dB以下であった。したがって、Naを含む溶媒を用いて作製されたファラデー回転子の光損失は、Pbを含む溶媒を用いて作製されたファラデー回転子の光損失と比較して極めて高いことが分かった。蛍光X線分析で組成を調べたところ、Naを含む溶媒から育成したガーネット単結晶からは100〜300ppm程度のNaが検出された。Bi置換希土類鉄ガーネットを構成するカチオン(陽イオン)は、基本的に3価である。このため、1価が安定な価数であるNaのカチオンがガーネット単結晶中に入ると、電荷のバランスが崩れてガーネット単結晶が半導体となる。これにより、Naを含むガーネット単結晶では光吸収が発生していると考えられる。 Here, a (BiGdYb) 3 Fe 5 O 12 single crystal grown by a LPE method from a solvent containing NaOH, Bi 2 O 3 and B 2 O 3 was processed to produce a Faraday rotator. The optical loss of this Faraday rotator with respect to light having a wavelength of 1.55 μm was 3 dB. In addition, another Faraday rotator was produced by processing a (BiGdYb) 3 Fe 5 O 12 single crystal grown from a solvent containing Pb by the LPE method. The optical loss of this Faraday rotator with respect to light having a wavelength of 1.55 μm was 0.05 dB or less. Therefore, it was found that the optical loss of the Faraday rotator manufactured using the solvent containing Na is extremely higher than the optical loss of the Faraday rotator manufactured using the solvent containing Pb. When the composition was examined by fluorescent X-ray analysis, Na of about 100 to 300 ppm was detected from a garnet single crystal grown from a solvent containing Na. The cation (cation) constituting the Bi-substituted rare earth iron garnet is basically trivalent. For this reason, when a cation of Na, which is a monovalent valence, enters the garnet single crystal, the charge balance is lost and the garnet single crystal becomes a semiconductor. Thereby, it is considered that light absorption occurs in the garnet single crystal containing Na.

本実施の形態では、酸化ケイ素(SiO)、酸化ゲルマニウム(GeO)、酸化チタン(TiO)及び酸化白金(PtO)のうち少なくとも1種をNaと共に配合材料に加え、ガーネット単結晶を育成した。育成したガーネット単結晶をファラデー回転子に加工して光損失を評価したところ、光損失が低下する傾向が認められた。Si、Ge、Ti及びPtはガーネット中で4価のカチオンが安定となるため、ガーネット中に含有されるNaの1価のカチオンを補償することにより、ガーネット単結晶の電荷のバランスがとれるようになったためと考えられる。 In this embodiment, at least one of silicon oxide (SiO 2 ), germanium oxide (GeO 2 ), titanium oxide (TiO 2 ), and platinum oxide (PtO 2 ) is added to the compounding material together with Na, and a garnet single crystal is added. I grew up. When the grown garnet single crystal was processed into a Faraday rotator and the optical loss was evaluated, a tendency for the optical loss to decrease was observed. Since Si, Ge, Ti, and Pt have a stable tetravalent cation in the garnet, the charge of the garnet single crystal can be balanced by compensating for the monovalent cation of Na contained in the garnet. It is thought that it became.

さらに本実施の形態では、Naを含む配合材料にGeOを種々の配合量で加えて、複数種類のガーネット単結晶を育成した。本実施の形態では、配合材料中におけるGeのFeに対するモル比(Ge/Feモル比)をパラメータとして用い、Ge/Feモル比を0〜0.02の範囲内で種々の値に設定した。育成した複数種類のガーネット単結晶をそれぞれファラデー回転子に加工し、光損失を評価した。その結果、配合材料にGeOをわずかに添加するだけでもファラデー回転子の光損失は大幅に低下し、Ge/Feモル比が0.004の配合材料を用いて作製したファラデー回転子の光損失は、0〜0.01dBと極めて低くなることが分かった。Ge/Feモル比を0.004より大きくしても、ファラデー回転子の光損失は0〜0.01dBで変化はなかった。 Further, in this embodiment, by adding GeO 2 in various amounts to the formulation material containing Na, it was grown several types of garnet single crystal. In the present embodiment, the molar ratio of Ge to Fe (Ge / Fe molar ratio) in the blended material was used as a parameter, and the Ge / Fe molar ratio was set to various values within the range of 0 to 0.02. Multiple types of grown garnet single crystals were processed into Faraday rotators, and the optical loss was evaluated. As a result, the optical loss of the Faraday rotator is significantly reduced by adding a small amount of GeO 2 to the compounding material, and the optical loss of the Faraday rotator manufactured using the compounding material having a Ge / Fe molar ratio of 0.004. Was found to be extremely low, 0-0.01 dB. Even when the Ge / Fe molar ratio was larger than 0.004, the optical loss of the Faraday rotator was 0 to 0.01 dB, and there was no change.

Ge/Feモル比が0.004である配合材料から育成したガーネット単結晶を蛍光X線分析及びICP(Inductively Coupled Plasma;高周波誘導結合プラズマ)分析により組成分析したところ、化学式(BiGdYb)2.996Na0.004Fe4.993Ge0.00712が得られた。したがって、Geのようにガーネット中で4価が安定な元素がガーネット単結晶中に入ることによってファラデー回転子の光損失が低下し、特にガーネット単結晶中のGe量を化学式で0.007にするとファラデー回転子の光損失を最低にすることができることが分かった。そしてガーネット単結晶中のGe量をさらに増加させてもファラデー回転子の光損失は最低値のままである。 A garnet single crystal grown from a compound material having a Ge / Fe molar ratio of 0.004 was subjected to compositional analysis by fluorescent X-ray analysis and ICP (Inductively Coupled Plasma) analysis. As a result, chemical formula (BiGdYb) 2.996 Na 0.004 Fe 4.993 Ge 0.007 O 12 was obtained. Therefore, the light loss of the Faraday rotator is reduced when an element that is stable in tetravalence in the garnet, such as Ge, enters the garnet single crystal. In particular, when the amount of Ge in the garnet single crystal is 0.007 in the chemical formula. It has been found that the optical loss of the Faraday rotator can be minimized. Even if the amount of Ge in the garnet single crystal is further increased, the optical loss of the Faraday rotator remains at the minimum value.

Ge以外のSi、Ti及びPtなどのガーネット中で4価が安定な元素についても、上記と同様の条件でファラデー回転子の光損失を低減できることが分かった。また、Ge、Si、Ti及びPtのうち2種以上を組み合わせて用いても、上記と同様の条件でファラデー回転子の光損失を低減できることが分かった。すなわち、Na、Fe及びM2(M2はSi、Ge、Ti、Ptから選択される少なくとも1種類以上の元素)を含む配合材料から育成したガーネット単結晶を用いることにより、低損失のファラデー回転子が得られる。さらに、M2のFeに対するモル比(M2/Feモル比)が0.004以上である配合材料から育成したガーネット単結晶を用いることにより、さらに低損失のファラデー回転子が得られる。   It has been found that the optical loss of the Faraday rotator can be reduced under the same conditions as described above even for elements that are stable in tetravalence in garnets such as Si, Ti, and Pt other than Ge. It was also found that the optical loss of the Faraday rotator can be reduced under the same conditions as described above even when two or more of Ge, Si, Ti and Pt are used in combination. That is, by using a garnet single crystal grown from a compound material containing Na, Fe and M2 (M2 is at least one element selected from Si, Ge, Ti, and Pt), a low-loss Faraday rotator can be obtained. can get. Further, by using a garnet single crystal grown from a blended material having a molar ratio of M2 to Fe (M2 / Fe molar ratio) of 0.004 or more, a further low-loss Faraday rotator can be obtained.

Si、Ge、Ti及びPtなどのガーネット中で4価が安定な元素と、2価の状態でガーネット中に入るPbとで電荷補償させて光損失を低減する技術は、従来から知られている(例えば、特許文献1乃至3参照)。しかし、PbとSi、Ge、Ti及びPtから選択される少なくとも1種の元素とで電荷補償させたガーネット単結晶から作製されるファラデー回転子の光損失は0.01〜0.05dB程度である。それに対し、NaとSi、Ge、Ti及びPtから選択される少なくとも1種の元素とで電荷補償させたガーネット単結晶から得られるファラデー回転子の損失は0〜0.01dBである。したがって本実施の形態によれば、Pbを含む従来のファラデー回転子よりもさらに低損失で優れた特性が得られることが分かった。これは、NaとSi、Ge、Ti及びPtとの組合せの方が完全に電荷を補償できるためと考えられる。   A technique for reducing optical loss by charge compensation by using a tetravalent stable element in a garnet such as Si, Ge, Ti and Pt and Pb entering the garnet in a divalent state has been known. (For example, see Patent Documents 1 to 3). However, the optical loss of a Faraday rotator manufactured from a garnet single crystal that is charge-compensated with Pb and at least one element selected from Si, Ge, Ti, and Pt is about 0.01 to 0.05 dB. . On the other hand, the loss of the Faraday rotator obtained from the garnet single crystal in which charge is compensated with Na and at least one element selected from Si, Ge, Ti and Pt is 0 to 0.01 dB. Therefore, according to the present embodiment, it has been found that excellent characteristics can be obtained with lower loss than the conventional Faraday rotator including Pb. This is presumably because the combination of Na and Si, Ge, Ti and Pt can fully compensate the charge.

Si、Ge、Ti及びPtが所定量以上ガーネット単結晶中に入り電荷のバランスが崩れると、電荷を補償するようにNaがガーネット中に入る。そのためSi、Ge、Ti及びPtでFeを多量に置換した場合でも、Naがガーネットに入ることで電荷は補償される。しかしながら、磁性ガーネット単結晶においてSi、Ge、Ti及びPtの置換量が1.6より大きくなると、キュリー点が室温付近まで低下するためファラデー回転子としての使用が困難になる。したがって、Si、Ge、Ti及びPtの置換量の上限は化学式で1.6となる。4価が安定な元素と1価が安定な元素とが1:2の比率でガーネット単結晶に入れば電荷のバランスをとることができるため、ガーネット単結晶にSi、Ge、Ti及びPtが化学式で1.6だけ入るとき、Naは化学式で0.8だけ入る。すなわち、ファラデー回転子に使用可能な磁性ガーネット単結晶に含まれるNaの上限は化学式で0.8となる。   When Si, Ge, Ti, and Pt enter the garnet single crystal in a predetermined amount or more and the balance of charges is lost, Na enters the garnet so as to compensate for the charges. Therefore, even when a large amount of Fe is substituted with Si, Ge, Ti, and Pt, the charge is compensated by Na entering the garnet. However, when the substitution amount of Si, Ge, Ti, and Pt is larger than 1.6 in the magnetic garnet single crystal, the Curie point is lowered to near room temperature, so that it is difficult to use as a Faraday rotator. Therefore, the upper limit of the substitution amount of Si, Ge, Ti and Pt is 1.6 in the chemical formula. Since the charge balance can be achieved if the tetravalent stable element and the monovalent stable element enter the garnet single crystal in a ratio of 1: 2, Si, Ge, Ti and Pt are represented by the chemical formula in the garnet single crystal. Na enters only 0.8 in the chemical formula. That is, the upper limit of Na contained in the magnetic garnet single crystal usable for the Faraday rotator is 0.8 in the chemical formula.

Naを含む溶媒で磁性ガーネット単結晶を育成する場合には、Naを含まない溶媒に比して溶液の過飽和状態をより安定に保つことができる。そのためBiは、化学式で2.0程度まで安定してガーネット単結晶に入ることができる。一方、ファラデー回転子として十分な回転係数(deg/μm)を得るためには、Biは化学式で0.5以上は必要である。   When a magnetic garnet single crystal is grown with a solvent containing Na, the supersaturated state of the solution can be kept more stable than a solvent containing no Na. Therefore, Bi can enter the garnet single crystal stably up to about 2.0 in chemical formula. On the other hand, in order to obtain a sufficient rotation coefficient (deg / μm) as a Faraday rotator, Bi must be 0.5 or more in chemical formula.

また本実施の形態では、磁性ガーネット単結晶に含まれる希土類元素として、単独又は組合せにより安定してFeとガーネット単結晶を作ることができるイットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)が用いられる。   In the present embodiment, as the rare earth element contained in the magnetic garnet single crystal, yttrium (Y), lanthanum (La), cerium (Ce), which can stably form Fe and garnet single crystals alone or in combination, Praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), Ytterbium (Yb) and lutetium (Lu) are used.

以上説明したように、本実施の形態による磁性ガーネット単結晶は、化学式BiαNaβM13−α−βFe5-γM2γ12(M1はY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素、M2はSi、Ge、Ti、Ptから選択される少なくとも1種類以上の元素であり、0.5<α≦2.0、0<β≦0.8、0.2≦3−α−β<2.5、0<γ≦1.6)で表される。本実施の形態によれば、Pbをほぼ完全に除去した磁性ガーネット単結晶及びそれを用いた光学素子を実現できる。また本実施の形態によれば、光学素子の光損失を低減できる。
以下、本実施の形態による磁性ガーネット単結晶及びその製造方法並びにそれを用いた光学素子について、実施例及び比較例を用いてより具体的に説明する。
As described above, the magnetic garnet single crystal according to this embodiment, the chemical formula Bi α Na β M1 3-α -β Fe 5-γ M2 γ O 12 (M1 is Y, La, Ce, Pr, Nd, Sm , Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, M2 is at least one element selected from Si, Ge, Ti, Pt 0.5 <α ≦ 2.0, 0 <β ≦ 0.8, 0.2 ≦ 3-α−β <2.5, 0 <γ ≦ 1.6). According to the present embodiment, a magnetic garnet single crystal from which Pb is almost completely removed and an optical element using the same can be realized. Moreover, according to this Embodiment, the optical loss of an optical element can be reduced.
Hereinafter, the magnetic garnet single crystal according to the present embodiment, the manufacturing method thereof, and the optical element using the same will be described more specifically with reference to Examples and Comparative Examples.

(実施例1−1)
図1は、磁性ガーネット単結晶育成工程の一部を示している。まず、金(Au)製のルツボ4にGd、Yb、Fe、GeO、B、Bi、NaOHを充填して、電気炉に配置した。このときのGe/Feモル比を0.006とした。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。融液8から磁性ガーネット単結晶膜を育成するための基板には、引き上げ法により育成したガーネット単結晶のインゴットから作製された単結晶ウエハを用いる。本実施例では単結晶育成用基板10として、CaMgZr置換GGG(ガドリニウム・ガリウム・ガーネット)単結晶基板((GdCa)(GaMgZr)12)を用いている。
(Example 1-1)
FIG. 1 shows a part of the magnetic garnet single crystal growing step. First, a crucible 4 made of gold (Au) was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. . At this time, the molar ratio of Ge / Fe was set to 0.006. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. As a substrate for growing a magnetic garnet single crystal film from the melt 8, a single crystal wafer made from a garnet single crystal ingot grown by a pulling method is used. In this embodiment, a CaMgZr-substituted GGG (gadolinium gallium garnet) single crystal substrate ((GdCa) 3 (GaMgZr) 5 O 12 ) is used as the single crystal growth substrate 10.

CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶膜12を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe4.990Ge0.01012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜12の化学式は(BiGdYb)2.995Na0.005(FeGe)5.00012であることが分かった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。 The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 500 μm was obtained. The single crystal film 12 was grown was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.300 Gd 1.200 Yb 0.500 Fe 4.990 Ge 0.010 O 12, Na could be detected . Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal film 12 was found to be 5.000 O 12 (BiGdYb) 2.995 Na 0.005 (FeGe). The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例1−2)
Au製のルツボ4にGd、Yb、Fe、GeO、B、Bi、NaOHを充填して、電気炉に配置した。このときのGe/Feモル比を0.004とした。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶膜12を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe4.993Ge0.00712であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜12の化学式は(BiGdYb)2.996Na0.004(FeGe)5.00012であることが分かった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 1-2)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio of Ge / Fe was set to 0.004. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 500 μm was obtained. The single crystal film 12 was grown was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.300 Gd 1.200 Yb 0.500 Fe 4.993 Ge 0.007 O 12, Na could be detected . Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, it was found that the chemical formula of the magnetic garnet single crystal film 12 was (BiGdYb) 2.996 Na 0.004 (FeGe) 5.000 O 12 . The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例1−3)
Au製のルツボ4にGd、Yb、Fe、GeO、B、Bi、NaOHを充填して、電気炉に配置した。このときのGe/Feモル比を0.008とした。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶膜12を蛍光X線分析により組成分析したところNaが検出され、組成はBi1.293Gd1.200Yb0.500Na0.007Fe4.987Ge0.01312であった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 1-3)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio of Ge / Fe was set to 0.008. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 500 μm was obtained. The composition of the grown single crystal film 12 was analyzed by fluorescent X-ray analysis. As a result, Na was detected, and the composition was Bi 1.293 Gd 1.200 Yb 0.500 Na 0.007 Fe 4.987 Ge 0.013 O 12 . there were. The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例1−4)
Au製のルツボ4にGd、Yb、Fe、GeO、B、Bi、NaOHを充填して、電気炉に配置した。このときのGe/Feモル比を0.012とした。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶膜12を蛍光X線分析により組成分析したところ、組成はBi1.290Gd1.200Yb0.500Na0.010Fe4.980Ge0.02012であった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 1-4)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The Ge / Fe molar ratio at this time was set to 0.012. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 500 μm was obtained. When the composition of the grown single crystal film 12 was analyzed by fluorescent X-ray analysis, the composition was Bi 1.290 Gd 1.200 Yb 0.500 Na 0.010 Fe 4.980 Ge 0.020 O 12 . The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例1−5)
Au製のルツボ4にGd、Yb、Fe、GeO、B、Bi、NaOHを充填して、電気炉に配置した。このときのGe/Feモル比を0.020とした。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶膜12を蛍光X線分析により組成分析したところ、組成はBi1.283Gd1.200Yb0.500Na0.017Fe4.967Ge0.03312であった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 1-5)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio of Ge / Fe was set to 0.020. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 500 μm was obtained. The composition of the grown single crystal film 12 was analyzed by fluorescent X-ray analysis. As a result, the composition was Bi 1.283 Gd 1.200 Yb 0.500 Na 0.017 Fe 4.967 Ge 0.033 O 12 . The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例1−6)
Au製のルツボ4にGd、Yb、Fe、GeO、B、Bi、NaOHを充填して、電気炉に配置した。このときのGe/Feモル比を0.002とした。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶膜12を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe4.997Ge0.00312であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜12の化学式は(BiGdYb)2.998Na0.002(FeGe)5.00012であることが分かった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0.2〜0.25dBであった。
(Example 1-6)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio of Ge / Fe was set to 0.002. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 500 μm was obtained. The single crystal film 12 was grown was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.300 Gd 1.200 Yb 0.500 Fe 4.997 Ge 0.003 O 12, Na could be detected . Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, it was found that the chemical formula of the magnetic garnet single crystal film 12 was (BiGdYb) 2.998 Na 0.002 (FeGe) 5.000 O 12 . The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0.2 to 0.25 dB.

(実施例1−7)
Au製のルツボ4にGd、Yb、Fe、GeO、B、Bi、NaOHを充填して、電気炉に配置した。このときのGe/Feモル比を0.003とした。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶膜12を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe4.994Ge0.00612であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜12の化学式は(BiGdYb)2.997Na0.003(FeGe)5.00012であることが分かった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0.04〜0.07dBであった。
(Example 1-7)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio of Ge / Fe was set to 0.003. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 500 μm was obtained. The single crystal film 12 was grown was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.300 Gd 1.200 Yb 0.500 Fe 4.994 Ge 0.006 O 12, Na could be detected . Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, it was found that the chemical formula of the magnetic garnet single crystal film 12 was (BiGdYb) 2.997 Na 0.003 (FeGe) 5.000 O 12 . The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0.04 to 0.07 dB.

(実施例1−8)
Au製のルツボ4にGd、Yb、Fe、SiO、B、Bi、NaOHを充填して、電気炉に配置した。このときのSi/Feモル比を0.006とした。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶膜12を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe4.990Si0.01012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜12の化学式は(BiGdYb)2.995Na0.005(FeSi)5.00012であることが分かった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 1-8)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , SiO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The Si / Fe molar ratio at this time was 0.006. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 500 μm was obtained. The single crystal film 12 was grown was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.300 Gd 1.200 Yb 0.500 Fe 4.990 Si 0.010 O 12, Na could be detected . Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal film 12 was found to be 5.000 O 12 (BiGdYb) 2.995 Na 0.005 (FeSi). The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例1−9)
Au製のルツボ4にGd、Yb、Fe、TiO、B、Bi、NaOHを充填して、電気炉に配置した。このときのTi/Feモル比を0.006とした。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶膜12を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe4.990Ti0.01012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜12の化学式は(BiGdYb)2.995Na0.005(FeTi)5.00012であることが分かった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 1-9)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , TiO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The Ti / Fe molar ratio at this time was 0.006. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 500 μm was obtained. The single crystal film 12 was grown was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.300 Gd 1.200 Yb 0.500 Fe 4.990 Ti 0.010 O 12, Na could be detected . Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal film 12 was found to be 5.000 O 12 (BiGdYb) 2.995 Na 0.005 (FeTi). The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例1−10)
Au製のルツボ4にGd、Yb、Fe、PtO、B、Bi、NaOHを充填して、電気炉に配置した。このときのPt/Feモル比を0.006とした。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶膜12を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe4.990Pt0.01012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜12の化学式は(BiGdYb)2.995Na0.005(FePt)5.00012であることが分かった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 1-10)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , PtO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The Pt / Fe molar ratio at this time was 0.006. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 500 μm was obtained. The single crystal film 12 was grown was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.300 Gd 1.200 Yb 0.500 Fe 4.990 Pt 0.010 O 12, Na could be detected . Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal film 12 was found to be 5.000 O 12 (BiGdYb) 2.995 Na 0.005 (FePt). The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(比較例1−1)
Au製のルツボ4にGd、Yb、Fe、B、Bi、NaOHを充填して、電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶膜12を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe5.00012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdYb)2.998Na0.002Fe5.00012であることが分かった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は3.0〜3.5dBであり、極めて高損失であった。
(Comparative Example 1-1)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 500 μm was obtained. When the composition of the grown single crystal film 12 was analyzed by fluorescent X-ray analysis, the composition was Bi 1.300 Gd 1.200 Yb 0.500 Fe 5.000 O 12 and Na could not be detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, it was found that the chemical formula of the magnetic garnet single crystal was (BiGdYb) 2.998 Na 0.002 Fe 5.000 O 12 . The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 3.0 to 3.5 dB, which was extremely high loss.

図2は、上記の実施例及び比較例について、配合材料のM2/Feモル比、育成したガーネット単結晶のNa量β及びM2量γ、並びに作製したファラデー回転子の光損失(dB)をまとめて示している。図2に示すように、Na及びM2を含む磁性ガーネット単結晶を用いたファラデー回転子(実施例1−1乃至1−10)では、Naを含みM2を含まない磁性ガーネット単結晶を用いたファラデー回転子(比較例1−1)よりも光損失を低減できることが分かる。特に、磁性ガーネット単結晶のM2量γが0.007以上である場合(実施例1−1乃至1−5及び1−8乃至1−10)、Pbを含む溶媒から育成した磁性ガーネット単結晶を用いて作製した従来のファラデー回転子(例えば光損失0.05dB以下)と比較しても極めて低損失のファラデー回転子が得られる。   FIG. 2 summarizes the M2 / Fe molar ratio of the blended material, the Na amount β and M2 amount γ of the grown garnet single crystal, and the optical loss (dB) of the manufactured Faraday rotator for the above Examples and Comparative Examples. It shows. As shown in FIG. 2, in the Faraday rotator (Examples 1-1 to 1-10) using the magnetic garnet single crystal containing Na and M2, the Faraday using the magnetic garnet single crystal containing Na and not containing M2. It can be seen that the optical loss can be reduced as compared with the rotor (Comparative Example 1-1). In particular, when the M2 amount γ of the magnetic garnet single crystal is 0.007 or more (Examples 1-1 to 1-5 and 1-8 to 1-10), the magnetic garnet single crystal grown from the solvent containing Pb is used. Even when compared with a conventional Faraday rotator (for example, an optical loss of 0.05 dB or less) manufactured by using the same, a very low loss Faraday rotator can be obtained.

また、Na、Fe、M1及びM2を含む材料から育成した磁性ガーネット単結晶を用いることによって、低損失のファラデー回転子が得られることが分かる。特に、M2/Feモル比が0.004以上である場合には、極めて低損失のファラデー回転子が得られる。   It can also be seen that a low-loss Faraday rotator can be obtained by using a magnetic garnet single crystal grown from a material containing Na, Fe, M1, and M2. In particular, when the M2 / Fe molar ratio is 0.004 or more, a very low loss Faraday rotator can be obtained.

〔第2の実施の形態〕
本発明の第2の実施の形態による磁性ガーネット単結晶及びその製造方法並びにそれを用いた光学素子について図1及び図3を用いて説明する。Naは希土類やBiと比べてイオン半径が大きな元素であり、ガーネットの結晶構造で希土類、Biと同じサイトを占める。ガーネット膜の育成では単結晶割れを防ぐため、基板と膜の格子定数をほぼ同じにする必要がある。そこでNaがガーネット中に入った場合に格子定数を一定の値に維持するため、BiやGd、Tbなどの比較的大きなイオン半径を持つ元素の量を減らし、Yb、Ho、Yなどの比較的小さなイオン半径を持つ元素を増やす必要が出てくる。Biは回転子の厚さに大きな影響を与え、GdやTbなどは回転子の飽和磁界に影響を与える。そこでガーネット中のNa量が増えると格子定数を一定に保つため、希土類、Biの組成が変わることになり、飽和磁界や厚さなどの回転子の特性がPbを含有する従来の回転子と異なってくる。Pb含有の従来回転子は同じ特性を持つ非鉛回転子で代替することが望ましい。そのためにはNa量βは少ない方が好ましく、実用的には少なくとも0.1以下とすることが必要となる。さらに非鉛の回転子の特性を従来の回転子に同等まで近づけるにはNa量βは0.05以下とすることがさらに望ましい。また、Si、Ge、Tiの中でもSiはイオン半径の小さな元素であり、Siをガーネットに加えると大きなイオン半径を持つNaがガーネットに入る効果を緩和する効果がある。そのためSiをガーネット中に添加して電荷補償することが望ましい。PtはSi、Ge、Tiと同じく4価が安定な陽イオンの状態でガーネット中のNaと電荷補償し光吸収を抑制する効果がある。しかし、Ptは安定な複合酸化物を作りやすい元素であり、Pt量δが0.16より大きいガーネット膜の育成を試みると、ガーネット膜の育成と同時に溶液中でPtを含有する複合酸化物の析出が起き、溶液の過飽和状態を安定に維持できなくなる。そのためファラデー回転子の作製に必要な厚さ数百μmで結晶欠陥の少ないガーネット膜を育成することは困難となる。従って、Pt量δは0.16より小さいことが望ましい。
以下、本実施の形態による磁性ガーネット単結晶及びその製造方法並びにそれを用いた光学素子について、実施例及び比較例を用いてより具体的に説明する。
[Second Embodiment]
A magnetic garnet single crystal according to a second embodiment of the present invention, a manufacturing method thereof, and an optical element using the same will be described with reference to FIGS. Na is an element having a larger ionic radius than rare earth and Bi, and occupies the same site as rare earth and Bi in the crystal structure of garnet. In growing a garnet film, the lattice constant of the substrate and the film must be substantially the same in order to prevent single crystal cracking. Therefore, in order to maintain a constant lattice constant when Na enters the garnet, the amount of elements having a relatively large ionic radius such as Bi, Gd, and Tb is reduced, and Yb, Ho, Y, etc. It is necessary to increase the number of elements with a small ion radius. Bi greatly affects the thickness of the rotor, and Gd, Tb, and the like affect the saturation magnetic field of the rotor. Therefore, as the amount of Na in the garnet increases, the composition of the rare earth and Bi changes to keep the lattice constant constant, and the rotor characteristics such as saturation magnetic field and thickness are different from those of conventional rotors containing Pb. Come. It is desirable to replace the conventional rotor containing Pb with a lead-free rotor having the same characteristics. For this purpose, it is preferable that the amount of Na is small, and it is necessary to set it to practically at least 0.1 or less. Further, in order to bring the characteristics of the lead-free rotor to the same level as that of a conventional rotor, the Na amount β is more preferably 0.05 or less. Further, among Si, Ge, and Ti, Si is an element having a small ion radius, and adding Si to the garnet has an effect of alleviating the effect of Na having a large ion radius entering the garnet. Therefore, it is desirable to compensate the charge by adding Si into the garnet. Pt, like Si, Ge, and Ti, has an effect of suppressing light absorption by charge-compensating with Na in garnet in the state of a tetravalent stable cation. However, Pt is an element that makes it easy to form a stable composite oxide. If an attempt is made to grow a garnet film having a Pt amount δ of greater than 0.16, the growth of the garnet film simultaneously with the growth of the composite oxide containing Pt in the solution. Precipitation occurs and the supersaturated state of the solution cannot be stably maintained. For this reason, it is difficult to grow a garnet film having a thickness of several hundred μm and few crystal defects necessary for manufacturing a Faraday rotator. Accordingly, the Pt amount δ is desirably smaller than 0.16.
Hereinafter, the magnetic garnet single crystal according to the present embodiment, the manufacturing method thereof, and the optical element using the same will be described more specifically with reference to Examples and Comparative Examples.

(実施例2−1)
Au製のルツボ4にGd、Yb、Fe、GeO、SiO、B、Bi、NaOHを充填して、電気炉に配置した。このときのGe、SiとFeのモル比(Ge+Si)/Feは0.006である。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶を蛍光X線分析により組成分析したところ、組成はBi1.000Gd1.610Yb0.390Fe4.990Ge0.005Si0.00512であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜12の化学式は(BiGdYb)2.995Na0.005(FeGeSi)5.00012であることが分かった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。回転子の厚さは410μm、1mm角の形状での飽和磁界は618Oeであった。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 2-1)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , SiO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio of Ge, Si and Fe (Ge + Si) / Fe is 0.006. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 500 μm was obtained. Composition analysis of the grown single crystal by X-ray fluorescence analysis revealed that the composition was Bi 1.000 Gd 1.610 Yb 0.390 Fe 4.990 Ge 0.005 Si 0.005 O 12 and Na could not be detected. There wasn't. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal film 12 was found to be 5.000 O 12 (BiGdYb) 2.995 Na 0.005 (FeGeSi). The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. The thickness of the rotor was 410 μm, and the saturation magnetic field in a 1 mm square shape was 618 Oe. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例2−2)
Au製のルツボ4にGd、Yb、Fe、GeO、SiO、B、Bi、NaOHを充填して、電気炉に配置した。このときのGe、SiとFeのモル比(Ge+Si)/Feは0.004である。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶を蛍光X線分析により組成分析したところ、組成はBi1.000Gd1.610Yb0.390(FeGeSi)5.00012であり、GeとSi量は確定できずNaは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdYb)2.996Na0.004Fe4.993Ge0.004Si0.00312であることが分かった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。回転子の厚さは410μm、1mm角の形状での飽和磁界は618Oeであった。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 2-2)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , SiO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio of Ge, Si and Fe (Ge + Si) / Fe is 0.004. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. The composition of the grown single crystal was analyzed by fluorescent X-ray analysis. The composition was Bi 1.000 Gd 1.610 Yb 0.390 (FeGeSi) 5.000 O 12 , and the amounts of Ge and Si could not be determined. It was not detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, it was found that the chemical formula of the magnetic garnet single crystal was (BiGdYb) 2.996 Na 0.004 Fe 4.993 Ge 0.004 Si 0.003 O 12 . The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. The thickness of the rotor was 410 μm, and the saturation magnetic field in a 1 mm square shape was 618 Oe. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例2−3)
Au製のルツボ4にGd、Yb、Fe、GeO、SiO、B、Bi、NaOHを充填して、電気炉に配置した。このときのGe、SiとFeのモル比(Ge+Si)/Feは0.008である。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶を蛍光X線分析により組成分析したところNaが検出され、組成はBi0.990Gd1.610Yb0.393Na0.007Fe4.987Ge0.008Si0.00512であった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。回転子の厚さは413μm、1mm角の形状での飽和磁界は618Oeであった。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 2-3)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , SiO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio of Ge, Si and Fe (Ge + Si) / Fe is 0.008. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. When the grown single crystal was subjected to composition analysis by fluorescent X-ray analysis, Na was detected, and the composition was Bi 0.990 Gd 1.610 Yb 0.393 Na 0.007 Fe 4.987 Ge 0.008 Si 0.005 O. It was 12 . The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. The thickness of the rotor was 413 μm, and the saturation magnetic field in a 1 mm square shape was 618 Oe. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例2−4)
Au製のルツボ4にGd、Yb、Fe、GeO、SiO、B、Bi、NaOHを充填して、電気炉に配置した。このときのGe、SiとFeのモル比(Ge+Si)/Feは0.012である。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶を蛍光X線分析により組成分析したところ、組成はBi0.986Gd1.610Yb0.394Na0.010Fe4.980Ge0.015Si0.00512であった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。回転子の厚さは415μm、1mm角の形状での飽和磁界は617Oeであった。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 2-4)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , SiO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio of Ge, Si and Fe (Ge + Si) / Fe is 0.012. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. The composition of the grown single crystal was analyzed by fluorescent X-ray analysis, and the composition was Bi 0.986 Gd 1.610 Yb 0.394 Na 0.010 Fe 4.980 Ge 0.015 Si 0.005 O 12 . . The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. The thickness of the rotor was 415 μm, and the saturation magnetic field in a 1 mm square shape was 617 Oe. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例2−5)
Au製のルツボ4にGd、Yb、Fe、GeO、SiO、B、Bi、NaOHを充填して、電気炉に配置した。このときのGe、SiとFeのモル比(Ge+Si)/Feは0.020である。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶を蛍光X線分析により組成分析したところ、組成はBi0.990Gd1.590Yb0.403Na0.017Fe4.967Ge0.028Si0.00512であった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。回転子の厚さは413μm、1mm角の形状での飽和磁界は626Oeであった。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 2-5)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , SiO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio of Ge, Si and Fe (Ge + Si) / Fe is 0.020. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. The composition of the grown single crystal was analyzed by fluorescent X-ray analysis, and the composition was Bi 0.990 Gd 1.590 Yb 0.403 Na 0.017 Fe 4.967 Ge 0.028 Si 0.005 O 12 . . The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. The thickness of the rotor was 413 μm, and the saturation magnetic field in a 1 mm square shape was 626 Oe. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例2−6)
Au製のルツボ4にGd、Yb、Fe、GeO、SiO、B、Bi、NaOHを充填して、電気炉に配置した。このときのGe、SiとFeのモル比(Ge+Si)/Feは0.060である。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶を蛍光X線分析により組成分析したところ、組成はBi9.500Gd1.580Yb0.420Na0.050Fe4.900Ge0.080Si0.02012であった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。回転子の厚さは431μm、1mm角の形状での飽和磁界は631Oeであった。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 2-6)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , SiO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio of Ge, Si and Fe (Ge + Si) / Fe is 0.060. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. The composition of the grown single crystal was analyzed by X-ray fluorescence analysis, and the composition was Bi 9.500 Gd 1.580 Yb 0.420 Na 0.050 Fe 4.900 Ge 0.080 Si 0.020 O 12 . . The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. The thickness of the rotor was 431 μm, and the saturation magnetic field in a 1 mm square shape was 631 Oe. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例2−7)
Au製のルツボ4にGd、Yb、Fe、GeO、SiO、B、Bi、NaOHを充填して、電気炉に配置した。このときのGe、SiとFeのモル比(Ge+Si)/Feは0.120である。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶を蛍光X線分析により組成分析したところ、組成はBi0.923Gd1.510Yb0.467Na0.100Fe4.800Ge0.160Si0.04012であった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。回転子の厚さは443μm、1mm角の形状での飽和磁界は662Oeであった。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 2-7)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , SiO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio of Ge, Si and Fe (Ge + Si) / Fe is 0.120. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. When the composition of the grown single crystal was analyzed by fluorescent X-ray analysis, the composition was Bi 0.923 Gd 1.510 Yb 0.467 Na 0.100 Fe 4.800 Ge 0.160 Si 0.040 O 12 . . The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. The thickness of the rotor was 443 μm, and the saturation magnetic field in a 1 mm square shape was 662 Oe. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例2−8)
Au製のルツボ4にGd、Yb、Fe、GeO、SiO、B、Bi、NaOHを充填して、電気炉に配置した。このときのGe、SiとFeのモル比(Ge+Si)/Feは0.002である。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶を蛍光X線分析により組成分析したところ、組成はBi1.000Gd1.610Yb0.390(FeGeSi)5.00012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdYb)2.998Na0.002Fe4.997Ge0.002Si0.00112であることが分かった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。回転子の厚さは410μm、1mm角の形状での飽和磁界は618Oeであった。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0.2〜0.25dBであった。Geを添加しない回転子よりは低損失であった。
(Example 2-8)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , SiO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio of Ge, Si and Fe (Ge + Si) / Fe is 0.002. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. Composition analysis of the grown single crystal by fluorescent X-ray analysis revealed that the composition was Bi 1.000 Gd 1.610 Yb 0.390 (FeGeSi) 5.000 O 12 and Na could not be detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, it was found that the chemical formula of the magnetic garnet single crystal was (BiGdYb) 2.998 Na 0.002 Fe 4.997 Ge 0.002 Si 0.001 O 12 . The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. The thickness of the rotor was 410 μm, and the saturation magnetic field in a 1 mm square shape was 618 Oe. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0.2 to 0.25 dB. The loss was lower than that of the rotor without adding Ge.

(実施例2−9)
Au製のルツボ4にGd、Yb、Fe、SiO、B、Bi、NaOHを充填して、電気炉に配置した。このときのSiとFeのモル比Si/Feは0.006である。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶を蛍光X線分析により組成分析したところ、組成はBi1.000Gd1.520Yb0.480Fe4.990Si0.01012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdYb)2.995Na0.005(FeSi)5.00012であることが分かった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。回転子の厚さは410μm、1mm角の形状での飽和磁界は618Oeであった。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 2-9)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , SiO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio Si / Fe between Si and Fe is 0.006. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. Was grown single crystal was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.000 Gd 1.520 Yb 0.480 Fe 4.990 Si 0.010 O 12, Na could be detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal was found to be 5.000 O 12 (BiGdYb) 2.995 Na 0.005 (FeSi). The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. The thickness of the rotor was 410 μm, and the saturation magnetic field in a 1 mm square shape was 618 Oe. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例2−10)
Au製のルツボ4にGd、Yb、Fe、GeO、B、Bi、NaOHを充填して、電気炉に配置した。このときのGeとFeのモル比Ge/Feは0.006である。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶を蛍光X線分析により組成分析したところ、組成はBi1.000Gd1.610Yb0.390Fe4.990Ge0.01012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdYb)2.995Na0.005(FeGe)5.00012であることが分かった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。回転子の厚さは410μm、1mm角の形状での飽和磁界は618Oeであった。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 2-10)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio Ge / Fe of Ge and Fe is 0.006. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. Composition analysis of the grown single crystal by fluorescent X-ray analysis revealed that the composition was Bi 1.000 Gd 1.610 Yb 0.390 Fe 4.990 Ge 0.010 O 12 and Na could not be detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal was found to be 5.000 O 12 (BiGdYb) 2.995 Na 0.005 (FeGe). The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. The thickness of the rotor was 410 μm, and the saturation magnetic field in a 1 mm square shape was 618 Oe. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例2−11)
Au製のルツボ4にGd、Yb、Fe、TiO、B、Bi、NaOHを充填して、電気炉に配置した。このときのTiとFeのモル比Ti/Feは0.006である。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶を蛍光X線分析により組成分析したところ、組成はBi1.000Gd1.610Yb0.390Fe4.990Ti0.01012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdYb)2.995Na0.005(FeTi)5.00012であることが分かった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。回転子の厚さは410μm、1mm角の形状での飽和磁界は618Oeであった。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 2-11)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , TiO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio Ti / Fe of Ti and Fe is 0.006. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. Composition analysis of the grown single crystal by fluorescent X-ray analysis revealed that the composition was Bi 1.000 Gd 1.610 Yb 0.390 Fe 4.990 Ti 0.010 O 12 and Na could not be detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal was found to be 5.000 O 12 (BiGdYb) 2.995 Na 0.005 (FeTi). The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. The thickness of the rotor was 410 μm, and the saturation magnetic field in a 1 mm square shape was 618 Oe. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例2−12)
Au製のルツボ4にGd、Yb、Fe、PtO、B、Bi、NaOHを充填して、電気炉に配置した。このときのPtとFeのモル比Pt/Feは0.006である。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶を蛍光X線分析により組成分析したところ、組成はBi1.000Gd1.610Yb0.390Fe4.990Pt0.01012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdYb)2.995Na0.005(FePt)5.00012であることが分かった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。回転子の厚さは410μm、1mm角の形状での飽和磁界は618Oeであった。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 2-12)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , PtO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio Pt / Fe of Pt and Fe is 0.006. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. Composition analysis of the grown single crystal by fluorescent X-ray analysis revealed that the composition was Bi 1.000 Gd 1.610 Yb 0.390 Fe 4.990 Pt 0.010 O 12 and Na could not be detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal was found to be 5.000 O 12 (BiGdYb) 2.995 Na 0.005 (FePt). The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. The thickness of the rotor was 410 μm, and the saturation magnetic field in a 1 mm square shape was 618 Oe. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(比較例2−1)
Au製のルツボ4にGd、Yb、Fe、B、Bi、NaOHを充填して、電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶を蛍光X線分析により組成分析したところ、組成はBi1.000Gd1.610Yb0.390Fe5.00012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdYb)2.998Na0.002Fe5.00012であることが分かった。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。回転子の厚さは410μm、1mm角の形状での飽和磁界は618Oeであった。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は3.0〜3.5dBであり、極めて高損失であった。
(Comparative Example 2-1)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. The composition of the grown single crystal was analyzed by fluorescent X-ray analysis. As a result, the composition was Bi 1.000 Gd 1.610 Yb 0.390 Fe 5.000 O 12 , and Na could not be detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, it was found that the chemical formula of the magnetic garnet single crystal was (BiGdYb) 2.998 Na 0.002 Fe 5.000 O 12 . The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. The thickness of the rotor was 410 μm, and the saturation magnetic field in a 1 mm square shape was 618 Oe. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 3.0 to 3.5 dB, which was extremely high loss.

(比較例2−2)
Au製のルツボ4にGd、Yb、Fe、PtO、B、Bi、NaOHを充填して、電気炉に配置した。このときのPtとFeのモル比Pt/Feは0.100である。950℃まで炉温を上げてルツボ4内の材料を溶解して融液8を生成し、Au製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10をAu製の固定冶具2に取り付けて炉内に投入し、850℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。育成した表面に多数の結晶欠陥のある膜厚365μmの磁性ガーネット単結晶膜が得られた。育成した単結晶を蛍光X線分析により組成分析したところ、組成はBi0.950Gd1.590Yb0.380Na0.080Fe4.840Pt0.16012であった。単結晶膜の厚さが不足したため、波長1.55μmの光に対して回転角45degとなる単結晶板は作製できなかった。
(Comparative Example 2-2)
A crucible 4 made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , PtO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the molar ratio Pt / Fe of Pt and Fe is 0.100. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible 4 to produce a melt 8, and the melt 8 was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate 10 was attached to the Au fixing jig 2 and placed in the furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a film thickness of 365 μm having many crystal defects on the grown surface was obtained. The composition of the grown single crystal was analyzed by fluorescent X-ray analysis. As a result, the composition was Bi 0.950 Gd 1.590 Yb 0.380 Na 0.080 Fe 4.840 Pt 0.160 O 12 . Since the thickness of the single crystal film was insufficient, a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm could not be produced.

図3は、上記の実施例及び比較例について、配合材料の(M2+M3)/Feモル比、育成したガーネット単結晶のNa量β、M2量γ、及びM3量δ、並びに作製したファラデー回転子の光損失(dB)をまとめて示している。図3に示すように、Na、M2及びM3を含む磁性ガーネット単結晶を用いたファラデー回転子(実施例2−1乃至2−12)では、M2及びM3を含まない磁性ガーネット単結晶を用いたファラデー回転子(比較例2−1)よりも光損失を低減できることが分かる。特に、磁性ガーネット単結晶のNa量βが0.1以下であってGe及びSiからなるM2量γ(M3量δ=0)が0.2以下である場合(実施例2−1乃至2−8)、好ましくはNa量βが0.05以下であって、M2量γ(M3量δ=0)が0.1以下である場合(実施例2−1乃至2−6及び2−8)極めて低損失のファラデー回転子が得られる。   FIG. 3 shows the (M2 + M3) / Fe molar ratio of the blended material, the Na amount β, the M2 amount γ, and the M3 amount δ of the grown garnet single crystal, and the prepared Faraday rotator for the above Examples and Comparative Examples. The optical loss (dB) is shown together. As shown in FIG. 3, in the Faraday rotator (Examples 2-1 to 2-12) using the magnetic garnet single crystal containing Na, M2, and M3, the magnetic garnet single crystal not containing M2 and M3 was used. It can be seen that the optical loss can be reduced as compared with the Faraday rotator (Comparative Example 2-1). In particular, when the Na amount β of the magnetic garnet single crystal is 0.1 or less and the M2 amount γ (M3 amount δ = 0) made of Ge and Si is 0.2 or less (Examples 2-1 to 2- 8) Preferably, when Na amount β is 0.05 or less and M2 amount γ (M3 amount δ = 0) is 0.1 or less (Examples 2-1 to 2-6 and 2-8) An extremely low loss Faraday rotator is obtained.

単結晶育成工程の一部を示す図である。It is a figure which shows a part of single crystal growth process. 本発明の第1の実施の形態の実施例1−1乃至1−10及び比較例1−1のM2/Feモル比、Na量β、M2量γ、及び光損失をまとめて示す表である。It is a table | surface which shows collectively the M2 / Fe molar ratio, Na amount (beta), M2 amount (gamma), and optical loss of Example 1-1 thru | or 1-10 of the 1st Embodiment of this invention, and Comparative Example 1-1. . 本発明の第2の実施の形態の実施例2−1乃至2−12及び比較例2−1及び2−2の(M2+M3)/Feモル比、Na量β、(M2+M3)量(γ+δ)、及び光損失をまとめて示す表である。(M2 + M3) / Fe molar ratio, Na amount β, (M2 + M3) amount (γ + δ) of Examples 2-1 to 2-12 and Comparative Examples 2-1 and 2-2 of the second embodiment of the present invention, It is a table | surface which shows and optical loss collectively.

符号の説明Explanation of symbols

2 固定冶具
4 ルツボ
8 融液
10 基板
12 単結晶膜
2 Fixing jig 4 Crucible 8 Melt 10 Substrate 12 Single crystal film

Claims (10)

化学式BiαNaβM13−α−βFe5-γM2γ12(M1はY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素、M2はSi、Ge、Tiから選択される少なくとも1種類以上の元素であり、0.5<α≦2.0、0<β≦0.8、0.2≦3−α−β<2.5、0<γ≦1.6)
で示されること
を特徴とする磁性ガーネット単結晶。
Formula Bi α Na β M1 3-α -β Fe 5-γ M2 γ O 12 (M1 is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, At least one element selected from Lu, M2 is at least one element selected from Si, Ge, Ti, 0.5 <α ≦ 2.0, 0 <β ≦ 0.8, 0.2 ≦ 3-α−β <2.5, 0 <γ ≦ 1.6)
A magnetic garnet single crystal characterized by the following:
請求項1記載の磁性ガーネット単結晶であって、
前記γは、0.007≦γ≦1.6であること
を特徴とする磁性ガーネット単結晶。
The magnetic garnet single crystal according to claim 1,
The magnetic garnet single crystal, wherein γ is 0.007 ≦ γ ≦ 1.6.
請求項1又は2に記載の磁性ガーネット単結晶を用いて作製されることを特徴とする光学素子。   An optical element manufactured using the magnetic garnet single crystal according to claim 1. Na、Fe、M1及びM2(M1はY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素、M2はSi、Ge、Tiから選択される少なくとも1種類以上の元素)を含む材料から融液を生成し、
前記融液を用いて磁性ガーネット単結晶を育成すること
を特徴とする磁性ガーネット単結晶の製造方法。
Na, Fe, M1 and M2 (M1 is at least one element selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, M2 generates a melt from a material containing at least one element selected from Si, Ge, and Ti,
A method for producing a magnetic garnet single crystal, comprising growing a magnetic garnet single crystal using the melt.
請求項4記載の磁性ガーネット単結晶の製造方法であって、
前記材料における前記M2のFeに対するモル比は、0.004以上であること
を特徴とする磁性ガーネット単結晶の製造方法。
A method for producing a magnetic garnet single crystal according to claim 4,
The method for producing a magnetic garnet single crystal, wherein the molar ratio of M2 to Fe in the material is 0.004 or more.
請求項1記載の磁性ガーネット単結晶であって、
前記β及びγは、0<β≦0.1、0<γ≦0.2であること
を特徴とする磁性ガーネット単結晶。
The magnetic garnet single crystal according to claim 1,
Β and γ are 0 <β ≦ 0.1 and 0 <γ ≦ 0.2. A magnetic garnet single crystal.
請求項6記載の磁性ガーネット単結晶であって、
前記β及びγは、0<β≦0.05、0<γ≦0.1であること
を特徴とする磁性ガーネット単結晶。
A magnetic garnet single crystal according to claim 6,
Β and γ are 0 <β ≦ 0.05 and 0 <γ ≦ 0.1. A magnetic garnet single crystal.
請求項6又は7に記載の磁性ガーネット単結晶であって、
前記M2は、少なくともSiを含む1種類以上の元素であること
を特徴とする磁性ガーネット単結晶。
The magnetic garnet single crystal according to claim 6 or 7,
The magnetic garnet single crystal, wherein M2 is one or more elements including at least Si.
化学式BiαNaβM13−α−βFe5-γ-σM2γM3δ12(M1はY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素、M2はSi、Ge、Tiから選択される少なくとも1種類以上の元素、M3はPtであり、0.5<α≦2.0、0<β≦0.8、0.2≦3−α−β<2.5、0<γ+δ≦1.6、0≦γ<1.6、0<δ<0.16)
で示されること
を特徴とする磁性ガーネット単結晶。
Formula Bi α Na β M1 3-α -β Fe 5-γ-σ M2 γ M3 δ O 12 (M1 is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, At least one element selected from Tm, Yb, Lu, M2 is at least one element selected from Si, Ge, Ti, M3 is Pt, 0.5 <α ≦ 2.0, 0 <β ≦ 0.8, 0.2 ≦ 3-α−β <2.5, 0 <γ + δ ≦ 1.6, 0 ≦ γ <1.6, 0 <δ <0.16)
A magnetic garnet single crystal characterized by the following:
請求項1又は9に記載の磁性ガーネット単結晶から作製されることを特徴とするファラデー回転子。   A Faraday rotator produced from the magnetic garnet single crystal according to claim 1 or 9.
JP2006314086A 2006-01-10 2006-11-21 Magnetic garnet single crystal and optical element using the same Expired - Fee Related JP4802995B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006314086A JP4802995B2 (en) 2006-01-10 2006-11-21 Magnetic garnet single crystal and optical element using the same
US11/647,431 US7695562B2 (en) 2006-01-10 2006-12-29 Magnetic garnet single crystal and method for producing the same as well as optical element using the same
EP07000357.9A EP1806755B1 (en) 2006-01-10 2007-01-09 Magnetic garnet single crystal and method for producing the same as well as optical element using the same
CN2007100022443A CN101000410B (en) 2006-01-10 2007-01-10 Magnetic garnet single crystal and method for producing the same as well as optical element using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006002380 2006-01-10
JP2006002380 2006-03-31
JP2006314086A JP4802995B2 (en) 2006-01-10 2006-11-21 Magnetic garnet single crystal and optical element using the same

Publications (2)

Publication Number Publication Date
JP2007210879A true JP2007210879A (en) 2007-08-23
JP4802995B2 JP4802995B2 (en) 2011-10-26

Family

ID=38489642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006314086A Expired - Fee Related JP4802995B2 (en) 2006-01-10 2006-11-21 Magnetic garnet single crystal and optical element using the same

Country Status (1)

Country Link
JP (1) JP4802995B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273776A (en) * 2007-04-27 2008-11-13 Tdk Corp Magnetic garnet single crystal and faraday rotor using the same
WO2012073671A1 (en) * 2010-11-29 2012-06-07 住友金属鉱山株式会社 Bismuth-substituted rare earth iron garnet crystal film and optical isolator
WO2019193950A1 (en) * 2018-04-06 2019-10-10 湖北工業株式会社 Magnetic garnet single crystal and production method for magnetic garnet single crystal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143893A (en) * 1985-12-16 1987-06-27 Matsushita Electric Ind Co Ltd Growth of magneto-optical crystal
WO2002022920A1 (en) * 2000-09-18 2002-03-21 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Rare earth-iron garnet single crystal material and method for preparation thereof and device using rare earth-iron garnet single crystal material
JP2003306397A (en) * 2002-04-16 2003-10-28 Sumitomo Special Metals Co Ltd Functional membrane, and process and apparatus for manufacturing the same
WO2004022920A1 (en) * 2002-09-06 2004-03-18 Drysdale Kenneth William Patte Apparatus, method and software for use with an air conditioning cycle
JP2004083390A (en) * 2002-07-05 2004-03-18 Tdk Corp Magnetic garnet material, faraday rotator, optical device, manufacturing method of bismuth substitution type rare earth iron garnet single crystal film, and single crystal film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143893A (en) * 1985-12-16 1987-06-27 Matsushita Electric Ind Co Ltd Growth of magneto-optical crystal
WO2002022920A1 (en) * 2000-09-18 2002-03-21 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Rare earth-iron garnet single crystal material and method for preparation thereof and device using rare earth-iron garnet single crystal material
JP2003306397A (en) * 2002-04-16 2003-10-28 Sumitomo Special Metals Co Ltd Functional membrane, and process and apparatus for manufacturing the same
JP2004083390A (en) * 2002-07-05 2004-03-18 Tdk Corp Magnetic garnet material, faraday rotator, optical device, manufacturing method of bismuth substitution type rare earth iron garnet single crystal film, and single crystal film
WO2004022920A1 (en) * 2002-09-06 2004-03-18 Drysdale Kenneth William Patte Apparatus, method and software for use with an air conditioning cycle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273776A (en) * 2007-04-27 2008-11-13 Tdk Corp Magnetic garnet single crystal and faraday rotor using the same
WO2012073671A1 (en) * 2010-11-29 2012-06-07 住友金属鉱山株式会社 Bismuth-substituted rare earth iron garnet crystal film and optical isolator
JP2012116673A (en) * 2010-11-29 2012-06-21 Sumitomo Metal Mining Co Ltd Bismuth-substituted rare earth iron garnet crystal film and optical isolator
US9322111B2 (en) 2010-11-29 2016-04-26 Sumitomo Metal Mining Co., Ltd. Bismuth-substituted rare-earth iron garnet crystal film and optical isolator
WO2019193950A1 (en) * 2018-04-06 2019-10-10 湖北工業株式会社 Magnetic garnet single crystal and production method for magnetic garnet single crystal
JP2019182696A (en) * 2018-04-06 2019-10-24 湖北工業株式会社 Magnetic garnet single crystal, and method for manufacturing the same

Also Published As

Publication number Publication date
JP4802995B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4702090B2 (en) Magnetic garnet single crystal and optical element using the same
US7811465B2 (en) Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
JP3959099B2 (en) Method for producing magnetic garnet single crystal
CN104073879B (en) Bismuth displacement rare earth iron garnet single crystal and its manufacture method
US7695562B2 (en) Magnetic garnet single crystal and method for producing the same as well as optical element using the same
JP4802995B2 (en) Magnetic garnet single crystal and optical element using the same
US7758766B2 (en) Magnetic garnet single crystal and Faraday rotator using the same
JP4720730B2 (en) Optical element manufacturing method
JP2001044027A (en) Magnetic garnet single crystal and faraday rotator using the same
JP5568073B2 (en) Bismuth-substituted rare earth iron garnet crystal, method for producing the same, and Faraday rotator
JP4807288B2 (en) Magnetic garnet single crystal, optical element using the same, and method for producing magnetic garnet single crystal
JP4821344B2 (en) Magnetic garnet single crystal and optical element using the same
JP2007165668A (en) Bismuth substituted rare earth iron garnet single crystal and method of manufacturing same
JP2008143738A (en) Magnetic garnet single crystal and its manufacturing method
JP4844464B2 (en) Magnetic garnet single crystal and Faraday rotator using the same
JP4432875B2 (en) Method for producing garnet single crystal
JP4432896B2 (en) Method for producing garnet single crystal
JP4874921B2 (en) Magneto-optical element, manufacturing method thereof, and optical device manufactured using the same
JP2008021691A (en) Process for producing bismuth-substitution rare-earth iron garnet single crystal
JP5507934B2 (en) Faraday rotator and manufacturing method thereof
JP2005247590A (en) Magnetic garnet single crystal and optical element using the same
JP2009147184A (en) Method for manufacturing bismuth-substituted rare-earth iron garnet single crystal
JP2007266152A (en) Method for producing bismuth-substituted rare-earth iron garnet single crystal
JP2005247589A (en) Magnetic garnet single crystal and optical element using the same
JP2004168657A (en) Magnetic garnet single crystal and faraday rotator using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

R150 Certificate of patent or registration of utility model

Ref document number: 4802995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees