JP2007210841A - Porous vanadium oxide and manufacturing method therefor - Google Patents

Porous vanadium oxide and manufacturing method therefor Download PDF

Info

Publication number
JP2007210841A
JP2007210841A JP2006033179A JP2006033179A JP2007210841A JP 2007210841 A JP2007210841 A JP 2007210841A JP 2006033179 A JP2006033179 A JP 2006033179A JP 2006033179 A JP2006033179 A JP 2006033179A JP 2007210841 A JP2007210841 A JP 2007210841A
Authority
JP
Japan
Prior art keywords
gel
vanadium oxide
macropores
manufacturing
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006033179A
Other languages
Japanese (ja)
Inventor
Seiji Tsuji
辻  清治
Toshimi Fukui
俊巳 福井
Ayako Maruta
彩子 丸田
Saori Yamaki
沙織 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2006033179A priority Critical patent/JP2007210841A/en
Publication of JP2007210841A publication Critical patent/JP2007210841A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide porous vanadium oxide which is formed into a structure having a stabilized shape even when fired by achieving shape control for obtaining the intended shape, and to provide a method therefor. <P>SOLUTION: The pH of a vanadium-containing solution is adjusted to ≤2 to form a wet gel, the wet gel is aged, the aged gel is frozen from one direction and a solvent is removed from the frozen gel to form vanadium oxide of a monolithic structure, which has straight micropores of 5-50 μm average pore size and mesopores of 5-25 nm average pore size in a partition wall portion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多孔質酸化バナジウム材料であり、詳しくはセル構造を構成するストレートなマクロ細孔を有する多孔質モノリス構造の酸化バナジウムを提供し、その製造方法に関するものであり、例えば、電池用電極材料等のエネルギーデバイスチップ、触媒を担持する担体、吸着剤として活用し得るものである。 The present invention relates to a porous vanadium oxide material, and more particularly to a porous monolithic structure vanadium oxide having straight macropores constituting a cell structure, and to a method for producing the same, for example, a battery electrode It can be used as an energy device chip for materials, a carrier for supporting a catalyst, and an adsorbent.

粒子形態を制御する研究はシリカ系材料では盛んに行われており、例えば、粒子配列を制御したデバイス材料、カラムの充填剤、吸着剤やフィルターとしての応用が期待される。また、シリカは三次元的な無機骨格構造を形成し、またゾルーゲル法などでの合成では反応速度を制御しやすく、シリカあるいはシリカを主成分とした材料では球状、繊維状、薄膜状、多角形状などの様々な粒子形態を形成する合成方法が見出されている。これらの形態に加え、ミクロ孔、メソ孔、マクロ孔のようにナノメーターからミクロンメーターサイズまでの範囲にわたって細孔の大きさを制御した多孔質体を形成しやすいため、シリカ系材料を中心に研究開発が進められている(例えば、特許文献1、特許文献2参照)。   Research on controlling particle morphology has been actively conducted on silica-based materials. For example, application as device materials, column packing materials, adsorbents, and filters with controlled particle arrangement is expected. In addition, silica forms a three-dimensional inorganic skeleton structure, and the reaction rate is easy to control in the synthesis by the sol-gel method, and in the case of silica or silica-based material, it is spherical, fibrous, thin film, polygonal. Synthetic methods have been found to form various particle morphologies such as In addition to these forms, it is easy to form a porous body with a controlled pore size ranging from nanometer to micrometer size, such as micropores, mesopores, and macropores. Research and development are underway (see, for example, Patent Document 1 and Patent Document 2).

特開2002−274835号公報JP 2002-274835 A 特開2004−307294号公報JP 2004-307294 A

しかしながら、シリカ系材料では、例えば、遷移金属酸化物系で有する電気伝導性、超伝導性等の特性発現が得られず、また酸化還元反応を利用する用途では反応が困難であり、シリカ系で扱えないことも多い。シリカ系以外の金属酸化物多孔体における形態制御が実現されると、シリカ系材料では発現し得ないあるいは発現が難しい様々な特性を持つ材料の開発が可能となる。それらの特性を利用して、電子デバイス材料、光機能材料、触媒材料、磁性材料、センサー材料等への応用が期待できる。 However, in silica-based materials, for example, it is difficult to obtain characteristics such as electrical conductivity and superconductivity possessed by transition metal oxides, and it is difficult to react in applications using redox reactions. There are many cases that cannot be handled. If the shape control in the metal oxide porous body other than the silica-based material is realized, it becomes possible to develop a material having various characteristics that cannot be expressed or difficult to be expressed in the silica-based material. Utilizing these characteristics, application to electronic device materials, optical functional materials, catalyst materials, magnetic materials, sensor materials, etc. can be expected.

酸化バナジウムの場合は、脱硫触媒、酸化触媒などに利用され、光触媒や電池用電極の材料としても見込まれている。電極材料として利用する場合、正極材として利用されるが、正極活物質のエネルギー密度を高めるためには、活物質との接触面積を増大させ、電極のすみずみまでイオンの移動を良好にすることが必要であるが、そのためには正極活物質の表面積を増大させ、細孔径を制御することが有効である。しかしながら、通常酸化バナジウムはサブミクロンまで成長した一次粒子が強凝集した二次凝集物であり、表面積および細孔は小さく、性能を引き出せないのが現状である。また、ガス浄化触媒として利用する場合、酸化バナジウムや酸化ジルコニウムからなる担体上に白金族元素が金属又は酸化物の形態で担持されているものを、例えばコージェライトなどを使用した開孔部が揃ったハニカム状の担体にコーティングしたものが有効利用されている。あるいは酸化バナジウムや酸化ジルコニウムの粒子を使って、担体をモノリス型に成形することも可能である。強度が保持でき、マクロ細孔径が揃った多孔質の担体が形成できれば、触媒成分の担持量を制御でき、より効果的であると考えられる。 In the case of vanadium oxide, it is used as a desulfurization catalyst, an oxidation catalyst, and the like, and is also expected as a material for photocatalysts and battery electrodes. When used as an electrode material, it is used as a positive electrode material, but in order to increase the energy density of the positive electrode active material, the contact area with the active material should be increased to improve ion movement throughout the electrode. In order to achieve this, it is effective to increase the surface area of the positive electrode active material and control the pore diameter. However, in general, vanadium oxide is a secondary agglomerate in which primary particles grown to submicron are strongly agglomerated, and the surface area and pores are small, so that the performance cannot be brought out. In addition, when used as a gas purification catalyst, a platinum group element supported in the form of a metal or oxide on a support made of vanadium oxide or zirconium oxide, for example, has an aperture portion using cordierite or the like. A coated honeycomb carrier is effectively used. Alternatively, the support can be formed into a monolith type using particles of vanadium oxide or zirconium oxide. If a porous carrier having sufficient strength and macropore diameters can be formed, the amount of catalyst component supported can be controlled, which is considered more effective.

シリカを含まない金属酸化物は多孔質体の粒子形態での細孔の孔径の制御は難しく、特にミクロンサイズの巨視的なマクロ細孔の形態制御は構造安定性が低く、製造できていないのが現状である。さらに焼成処理を施さずに、細孔径が揃った、ストレートに貫通したマクロ細孔をもつ構造は特開2004−307294号公報のシリカを製造した方法以外では開示されていない。 Metal oxides that do not contain silica are difficult to control the pore size in the form of porous particles, especially micron-sized macroscopic macropores have low structural stability and cannot be manufactured. Is the current situation. Further, no structure other than the method for producing silica disclosed in Japanese Patent Application Laid-Open No. 2004-307294 is disclosed as a structure having straight macroscopic pores with uniform pore diameters without performing a baking treatment.

本発明は以上のような事情に鑑みてなされたものであり、所望の形状を得るための構造の制御を可能とし、電極材料や触媒を担持する担体、吸着剤などに用いた場合に、活用し得る酸化バナジウムおよびその製造方法を提供することである。   The present invention has been made in view of the circumstances as described above, and enables control of a structure for obtaining a desired shape, which is utilized when used for a carrier, an adsorbent, etc. supporting an electrode material or a catalyst. An object of the present invention is to provide a vanadium oxide that can be produced and a method for producing the same.

本発明者は、所望の形状を得るための構造の制御を可能とし、熱処理を施しても安定な構造体を製造し得る方法を鋭意検討した結果、細孔が秩序よく揃ったミクロンサイズのストレートなマクロ細孔とマクロ細孔の間隙部分にメソ細孔を有する隔壁を持つ酸化バナジウムを形成する方法を見出し、本発明に至った。 As a result of intensive studies on a method capable of producing a stable structure even after heat treatment, the present inventor has made it possible to control the structure for obtaining a desired shape. The present inventors have found a method for forming vanadium oxide having partition walls having mesopores in gap portions between macropores and macropores, and have reached the present invention.

すなわち、本発明は、平均5〜50μmのストレートマクロ細孔を有するモノリス構造を特徴とする酸化バナジウムであることを特徴とし、さらに、そのストレートマクロ細孔を有した構造の隔壁部分のメソ細孔の平均細孔径が5〜25nm、比表面積が100m2/g以上であることを特徴としている。 That is, the present invention is characterized in that it is vanadium oxide characterized by a monolith structure having straight macropores having an average of 5 to 50 μm, and the mesopores of the partition wall portion having the structure having the straight macropores The average pore diameter is 5 to 25 nm, and the specific surface area is 100 m 2 / g or more.

また、本発明は、製造工程が、(1)バナジウム含有溶液をpH2以下に調整してゲル化する工程(2)湿潤ゲルを熟成する工程(3)熟成ゲルを一方向より凍結する工程(4)溶媒を除去する工程からなることを特徴とし、さらに乾燥工程の後に、焼成処理する工程を含む酸化バナジウムの製造方法であることを特徴としている。 In the present invention, the production process includes (1) a step of gelling the vanadium-containing solution at a pH of 2 or less, (2) a step of aging the wet gel, and (3) a step of freezing the ripened gel from one direction (4 ) It is characterized by comprising a step of removing the solvent, and further characterized by being a method for producing vanadium oxide including a step of baking after the drying step.

本発明の製造方法によれば、ミクロンサイズのストレートなマクロ細孔とマクロ細孔の間隙部分にメソ細孔を有する隔壁を持つ酸化バナジウムを製造することができ、例えば、電池用電極材の正極材料、触媒を担持する担体、吸着剤として活用し得るものである。 According to the production method of the present invention, it is possible to produce vanadium oxide having micron-sized straight macropores and partition walls having mesopores in the gaps between the macropores. For example, the positive electrode of a battery electrode material It can be used as a material, a carrier supporting a catalyst, and an adsorbent.

本発明の実施の形態を述べる。本発明では、一方向凍結ゲル化法を用いて酸化バナジウムを作製する。 An embodiment of the present invention will be described. In the present invention, vanadium oxide is produced using a unidirectional freeze gelation method.

まず、ゾルやゲルを凍結する方法は凍結時の溶質成分の濃縮効果を利用したものである。すなわち、流動性のあるゾルや湿潤性のあるゲルを凍結させると水成分と溶質成分の分相が生じて、氷と濃縮された相に分かれる。氷の間隙に集合した溶質成分の粒子同士が反応してゲル化が促進される。氷がテンプレートの役割を果たし、溶媒を除去することで凍結時の形状を保持した構造物が得られるものである。 First, a method of freezing a sol or gel uses the concentration effect of solute components during freezing. That is, when a fluid sol or a wet gel is frozen, a phase separation of a water component and a solute component occurs, which is separated into ice and a concentrated phase. Gelation is promoted by reaction between particles of solute components gathered in the ice gap. Ice serves as a template, and by removing the solvent, a structure that retains the shape when frozen can be obtained.

凍結ゲル化法では、氷がテンプレートとなるため、氷の成長を制御することでゲルの形状や、細孔構造および表面構造を制御できると考えられる。氷の成長を制御する方法としては、一方向凍結法がある。これは、ゲルに方向性を持たせて凍結することで、氷を一方向に柱状に成長させて複数の氷柱を形成し、氷柱の間隙に粒子を集合させる方法である。具体的には、ゲルを容器に仕込み、一定速度で冷媒に挿入すると、冷媒に挿入された部分の氷が、挿入方向にそって柱状に成長する。 In the freeze gelation method, since ice becomes a template, it is considered that the shape, pore structure and surface structure of the gel can be controlled by controlling the growth of ice. One method for controlling ice growth is the one-way freezing method. This is a method in which ice is grown in a columnar shape in one direction to form a plurality of icicles by freezing the gel with directionality, and particles are collected in the gaps between the icicles. Specifically, when the gel is charged in a container and inserted into the refrigerant at a constant speed, the ice in the portion inserted into the refrigerant grows in a columnar shape along the insertion direction.

本発明では、バナジウムを含有する水溶液からの反応によりゲルを形成させる。本発明のゲル化工程は、まず出発の材料として、バナジン酸塩を利用する。バナジン酸塩としては、バナジン酸のアルカリ金属塩、バナジン酸のアンモニウム塩が挙げられるが、好ましくは水への溶解量が高いバナジン酸のアルカリ金属塩がよい。水への溶解量が少なく固形分濃度が低いと凍結時に細孔の間隙に隔壁を形成できなくなり、マクロな細孔を有しなくなる。固形分濃度はV2O5換算で0.5mol/l以上であるのが好ましい。このバナジン酸のアルカリ金属塩を水あるいは温水に溶かした水溶液を調製する。つづいてこの原料を溶解した水溶液に攪拌しながら強酸性タイプのイオン交換樹脂を添加し、溶液のpHが1以下になったらイオン交換樹脂を取り除く。溶液のpHが2以上であるとアルカリ金属成分の残留量が多く、特性を変化させ、さらに焼成処理により構造体の破壊が起きやすくなったため、除去するのが好ましい。pH調整した溶液は室温の状態下においても反応を開始し、粒子同士が成長して次第に流動性を失って湿潤状態のゲルが形成される。モノリス体を形成させるためには、この酸性溶液の入った容器に、例えば、チューブ状の容器を入れて保管するとよい。あるいは、チューブ状の容器に直接注ぎ込んで保管してもよい。 In the present invention, a gel is formed by a reaction from an aqueous solution containing vanadium. The gelation process of the present invention first utilizes vanadate as the starting material. Examples of the vanadate include an alkali metal salt of vanadic acid and an ammonium salt of vanadic acid, and preferably an alkali metal salt of vanadic acid having a high amount of dissolution in water. When the amount dissolved in water is small and the solid content concentration is low, partition walls cannot be formed in the pores during freezing, and macro pores are not formed. The solid content concentration is preferably 0.5 mol / l or more in terms of V 2 O 5 . An aqueous solution in which the alkali metal salt of vanadic acid is dissolved in water or warm water is prepared. Subsequently, a strong acid type ion exchange resin is added to the aqueous solution in which the raw material is dissolved while stirring. When the pH of the solution becomes 1 or less, the ion exchange resin is removed. When the pH of the solution is 2 or more, the residual amount of the alkali metal component is large, the characteristics are changed, and the structure is easily destroyed by the baking treatment. The pH-adjusted solution starts to react even at room temperature, and particles grow and gradually lose fluidity to form a wet gel. In order to form a monolith body, for example, a tube-shaped container may be placed in the container containing the acidic solution and stored. Or you may pour and store directly in a tube-shaped container.

本発明のゲルの熟成工程では、ゲル化工程で生成した湿潤ゲルの状態からでも徐々に反応は進行しており、この湿潤ゲルよりさらに熟成させたゲルを形成させるものである。本発明での熟成はマクロな細孔が形成可能な状態を意味する。熟成が不十分であると凍結時に細孔の間隙に形成する隔壁が連続的に形成されず、最終的にマクロな細孔が形成できなかった。このことは湿潤ゲルの重合反応が不十分であったことによると考えられる。熟成期間は、室温下で熟成する場合は、湿潤ゲルが流動性を失ってから1週間以上熟成するのが望ましい。熟成は加温した状態で操作しても良く熟成期間を短縮できる。特開2004−307294号公報でのシリカの製造方法では、ゲル化直前および直後に凍結を開始した場合はマクロ細孔を持つハニカム形状となり、ゲル化が進行した後に凍結を開始した場合はPolygonal繊維状となることが知られており、本発明の酸化バナジウムとは熟成状態による形状が異なる。 In the gel aging step of the present invention, the reaction gradually proceeds even from the state of the wet gel generated in the gelation step, and a gel further aged than this wet gel is formed. Aging in the present invention means a state in which macroscopic pores can be formed. When the aging was insufficient, the partition walls formed in the pore gaps during freezing were not continuously formed, and finally macro pores could not be formed. This is presumably because the polymerization reaction of the wet gel was insufficient. As for the aging period, when aging is performed at room temperature, it is preferable that the aging is performed for one week or more after the wet gel loses fluidity. Aging may be operated in a warmed state to shorten the aging period. In the method for producing silica in JP-A No. 2004-307294, when freezing is started immediately before and immediately after gelation, a honeycomb shape having macropores is formed. The vanadium oxide of the present invention is different in shape due to the aging state.

本発明の一方向より凍結する工程では、熟成したゲルの入った容器を所定の速度で冷媒中に挿入してゲルを凍結させる。この時、挿入速度はマクロ細孔が形成する速度の領域が存在する。挿入速度が速すぎると、氷が連続して一定方向に柱状に成長しなくなり、目的とするマクロな細孔は形成されず、挿入速度が遅すぎるとゲルの中の水だけが柱状の氷としてその間に隙間を作らないように成長して、同様にマクロな細孔は形成されないと考えられる。マクロな細孔を形成する挿入速度は10mm/h〜200mm/hが好ましい。さらに試料の挿入中は冷媒が蒸発して、凍結界面のぶれにより凍結時に溶質部分が断絶するおそれがあるため、冷媒の液面の高さが常に一定に保たれるように制御することがよい。さらに、凍結後に氷点下の温度で液体状態のアルコールやケトン系の有機溶媒中に、氷柱が残った状態の凍結したゲルを浸漬させるとゲル構造を強固にすることができるので好ましい。 In the process of freezing from one direction of the present invention, the container containing the aged gel is inserted into the refrigerant at a predetermined speed to freeze the gel. At this time, the insertion speed has a region where the macropores are formed. If the insertion speed is too high, the ice will not continuously grow in a columnar shape in a certain direction, and the desired macro pores will not be formed. If the insertion speed is too slow, only the water in the gel will become columnar ice. It grows so that there is no gap between them, and it is considered that macro pores are not formed as well. The insertion speed for forming macroscopic pores is preferably 10 mm / h to 200 mm / h. Furthermore, since the refrigerant evaporates during sample insertion and the solute portion may be interrupted during freezing due to fluctuations in the freezing interface, it is better to control the liquid level of the refrigerant to be kept constant at all times. . Further, it is preferable to immerse a frozen gel with an ice column remaining in a liquid alcohol or ketone organic solvent in a liquid state at a temperature below freezing after freezing because the gel structure can be strengthened.

本発明の溶媒を除去する工程では、冷媒に試料を挿入し終えた段階でゲルは十分に凍結しており、水を除去すればストレートなマクロ細孔を持つ構造体が形成される。形成した構造体から溶媒を除去するときは多孔構造を保持しなければならないため、除去する方法としては凍結乾燥が好ましい。凍結したゲルをそのまま凍結乾燥するか、解凍して大部分の水を除去し、試料中に残留する微量の水分を除去するために有機溶媒に交換して浸漬洗浄してから凍結乾燥させることもできる。マクロ細孔の孔径が大きくなるほど構造体の強度が低下する傾向があり、氷をそのまま凍結乾燥で除去させた場合は部分的に隔壁が潰れることもあるため、凍結乾燥時の溶媒の昇華エネルギーを緩和させるために有機溶媒に置換して凍結乾燥することがより好ましく、残留水分量を減らすために新鮮な溶媒に交換浸漬して洗浄する操作を繰り返すのがより効果的である。本発明で用いられる有機溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール及びブチルアルコール等のアルコール類、アセトン、ジメチルスルホキシド等のケトン類が挙げられる。完全に水分を除去するためには、さらに引き続いて非水系有機溶媒に交換置換することが望ましい。本発明の非水系有機溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタン、トルエンなどを使うとよい。 In the step of removing the solvent of the present invention, the gel is sufficiently frozen at the stage where the sample has been inserted into the refrigerant, and if water is removed, a structure having straight macropores is formed. When removing the solvent from the formed structure, the porous structure must be maintained, and therefore, the lyophilization is preferred as the removal method. The frozen gel can be lyophilized as it is, or it can be thawed to remove most of the water, replaced with an organic solvent to remove traces of water remaining in the sample, washed by immersion, and then lyophilized. it can. As the pore size of macropores increases, the strength of the structure tends to decrease, and when ice is removed by lyophilization, the partition walls may be partially crushed. Therefore, the sublimation energy of the solvent during lyophilization is reduced. In order to relax, it is more preferable to replace with an organic solvent and freeze-dry, and in order to reduce the residual water content, it is more effective to repeat the operation of immersing in fresh solvent and washing. Examples of the organic solvent used in the present invention include alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol, and ketones such as acetone and dimethyl sulfoxide. In order to completely remove the water, it is desirable to subsequently exchange and replace with a non-aqueous organic solvent. As the non-aqueous organic solvent of the present invention, pentane, hexane, cyclohexane, heptane, toluene and the like may be used.

さらに、本発明では、乾燥後に焼成することもできる。焼成温度としては250〜400℃で、1〜5時間程度でよい。結晶化させる時は300℃〜400℃で焼成させるとよい。用途によっては、すなわち、例えばリチウムイオン電池の正極材等の、粒子の層間を利用するような場合は、焼成することは必ずしも必要ではなく、焼成前の乾燥体をそのまま使用することができる。 Furthermore, in this invention, it can also bake after drying. The firing temperature may be 250 to 400 ° C. and about 1 to 5 hours. When crystallizing, it is good to bake at 300 to 400 degreeC. Depending on the application, that is, for example, when using an interlayer of particles such as a positive electrode material of a lithium ion battery, firing is not necessarily required, and a dried body before firing can be used as it is.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例により限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.

得られた多孔質酸化バナジウム構造体について、以下の装置を用いて評価した。 The obtained porous vanadium oxide structure was evaluated using the following apparatus.

電解放射型走査電子顕微鏡(JSM−6700F、日本電子社製)を用いて、試料の形状、マクロ細孔径の大きさを観察した。 Using a field emission scanning electron microscope (JSM-6700F, manufactured by JEOL Ltd.), the shape of the sample and the size of the macropore diameter were observed.

高速比表面積/細孔分布測定装置(ASAP2000、マイクロメリティクス社製)を用い、試料の細孔構造および比表面積を調べた。 Using a high-speed specific surface area / pore distribution measuring device (ASAP2000, manufactured by Micromeritics), the pore structure and specific surface area of the sample were examined.

(実施例1)バナジン酸ナトリウム(ナカライテスク製)をイオン交換水に40℃温浴下で攪拌溶解させ、V2O5濃度0.65mol/lの溶解水溶液を得た。この溶液にイオン交換樹脂(オルガノ製、Amberlyst 15WET)を攪拌しながら添加し、pHを0.6に調整した。イオン交換樹脂を除去後ポリプロピレン製のチューブに注ぎ込み、室温保管した。保管中に反応が進行し、1日以内で流動性を失う湿潤ゲル状物が得られた。得られた湿潤ゲルをさらに2週間室温で保管した。 Example 1 Sodium vanadate (manufactured by Nacalai Tesque) was dissolved in ion-exchanged water with stirring in a 40 ° C. warm bath to obtain a dissolved aqueous solution having a V 2 O 5 concentration of 0.65 mol / l. An ion exchange resin (manufactured by Organo, Amberlyst 15 WET) was added to this solution with stirring, and the pH was adjusted to 0.6. After removing the ion exchange resin, it was poured into a polypropylene tube and stored at room temperature. The reaction proceeded during storage, and a wet gel-like product that lost fluidity within one day was obtained. The resulting wet gel was further stored at room temperature for 2 weeks.

得られた熟成ゲルを100mm/hの速度で液体窒素の入った容器内に挿入してゲル体を凍結させた。この挿入時、液体窒素の液面の高さが常に一定に保たれるように制御した。 The resulting aged gel was inserted into a container containing liquid nitrogen at a rate of 100 mm / h to freeze the gel body. During the insertion, the liquid level of liquid nitrogen was controlled so as to be kept constant.

凍結したゲルを−30℃のフリーザー中のエタノールに浸漬させ、15時間保存した。フリーザーより取り出し、40℃の恒温槽に入れてゲルを解凍した。2時間後ゲルを取り出しt-ブタノールに浸漬して1日間室温保管した。t-ブタノールの上澄み液を除去し、新鮮なt-ブタノールを添加して1日間室温保管した。この操作をさらに1回繰り返した後、シクロヘキサンに溶媒交換し、t-ブタノールと同様に3回浸漬を繰り返した。最後に上澄み液を除去し、液体窒素で凍結させ、減圧乾燥させて非晶質酸化バナジウムのゲル体を得た。 The frozen gel was immersed in ethanol in a freezer at −30 ° C. and stored for 15 hours. The gel was thawed out of the freezer and placed in a constant temperature bath at 40 ° C. After 2 hours, the gel was taken out and immersed in t-butanol and stored at room temperature for 1 day. The supernatant of t-butanol was removed, fresh t-butanol was added and stored at room temperature for 1 day. After repeating this operation once more, the solvent was changed to cyclohexane, and the immersion was repeated three times in the same manner as t-butanol. Finally, the supernatant was removed, frozen with liquid nitrogen, and dried under reduced pressure to obtain an amorphous vanadium oxide gel.

図1に得られた構造体の走査電子顕微鏡写真を示す。得られたゲルは短軸方向の孔直径が20μm、長軸方向の孔直径が50μmを有するストレートマクロ細孔を有するものであった。この構造体の細孔構造について窒素吸着法により調べた細孔径分布結果を図2に示す。隔壁部分のメソ細孔径が10nmであった。BET比表面積は114m2/gであった。さらにこのゲルを350℃で熱処理した。熱処理後もマクロ細孔構造は保持されており、この場合、内壁部分のメソ細孔径が13nmで、BET比表面積が135m2/gであった。 FIG. 1 shows a scanning electron micrograph of the resulting structure. The obtained gel had straight macropores having a pore diameter in the minor axis direction of 20 μm and a pore diameter in the major axis direction of 50 μm. FIG. 2 shows the pore size distribution results obtained by examining the pore structure of this structure by the nitrogen adsorption method. The mesopore diameter of the partition wall was 10 nm. The BET specific surface area was 114 m 2 / g. Furthermore, this gel was heat-treated at 350 ° C. The macropore structure was maintained even after the heat treatment. In this case, the mesopore diameter of the inner wall portion was 13 nm, and the BET specific surface area was 135 m 2 / g.

(実施例2) バナジン酸ナトリウム(ナカライテスク製)をイオン交換水に40℃温浴下で攪拌溶解させ、V2O5濃度0.55mol/lの溶解水溶液を得た。この溶液にイオン交換樹脂(オルガノ製、Amberlyst 15 WET)を攪拌しながら添加し、pHを0.65に調整した。イオン交換樹脂を除去後ポリプロピレン製のチューブに注ぎ込み、室温保管した。保管中に反応が進行し、1日以内で流動性を失う湿潤ゲル状物が得られた。得られた湿潤ゲルをさらに2週間室温で保管した。 Example 2 Sodium vanadate (manufactured by Nacalai Tesque) was dissolved in ion-exchanged water with stirring in a 40 ° C. warm bath to obtain a dissolved aqueous solution having a V 2 O 5 concentration of 0.55 mol / l. An ion exchange resin (manufactured by Organo, Amberlyst 15 WET) was added to this solution while stirring to adjust the pH to 0.65. After removing the ion exchange resin, it was poured into a polypropylene tube and stored at room temperature. The reaction proceeded during storage, and a wet gel-like product that lost fluidity within one day was obtained. The resulting wet gel was further stored at room temperature for 2 weeks.

その後の操作は実施例1と同様に行った。得られたゲルは短軸方向の孔直径が25μm、長軸方向の孔直径が50μmを有するストレートマクロ細孔を有するものであった。この場合、隔壁部分のメソ細孔径が12nmであり、BET比表面積が138m2/gであった。このゲルを結晶化が始まる300℃で熱処理してもマクロ細孔構は保持されていたが、一部隔壁が断絶している部分が見られた。 The subsequent operation was performed in the same manner as in Example 1. The obtained gel had straight macropores having a pore diameter in the minor axis direction of 25 μm and a pore diameter in the major axis direction of 50 μm. In this case, the mesopore diameter of the partition wall portion was 12 nm, and the BET specific surface area was 138 m 2 / g. Even though the gel was heat-treated at 300 ° C. where crystallization started, the macropore structure was maintained, but a part of the partition wall was broken.

(比較例1)バナジン酸ナトリウム(ナカライテスク製)をイオン交換水に40℃温浴下で攪拌溶解させ、V2O5濃度0.65mol/lの溶解水溶液を得た。この溶液にイオン交換樹脂(オルガノ製、Amberlyst 15 WET)を攪拌しながら添加し、pHを0.6に調整した。イオン交換樹脂を除去後ポリプロピレン製のチューブに注ぎ込み、室温保管した。保管中に反応が進行し、1日以内で流動性を失う湿潤ゲル状物が得られた。 (Comparative Example 1) Sodium vanadate (manufactured by Nacalai Tesque) was dissolved in ion-exchanged water with stirring in a 40 ° C. warm bath to obtain a dissolved aqueous solution having a V 2 O 5 concentration of 0.65 mol / l. An ion exchange resin (manufactured by Organo, Amberlyst 15 WET) was added to this solution with stirring, and the pH was adjusted to 0.6. After removing the ion exchange resin, it was poured into a polypropylene tube and stored at room temperature. The reaction proceeded during storage, and a wet gel-like product that lost fluidity within one day was obtained.

得られた湿潤ゲルを100mm/hの速度で液体窒素の入った容器内に挿入してゲル体を凍結させた。この挿入時、液体窒素の液面の高さが常に一定に保たれるように制御した。凍結中にゲルはやや収縮をともなうものであった。 The obtained wet gel was inserted into a container containing liquid nitrogen at a rate of 100 mm / h to freeze the gel body. During the insertion, the liquid level of liquid nitrogen was controlled so as to be kept constant. During freezing, the gel was somewhat contracted.

凍結したゲルを−30℃のフリーザー中のエタノールに浸漬させるとさらにゲルが収縮した。15時間保存し、その後は実施例1と同様に操作して乾燥ゲル体を得た。ゲルは収縮したもので、マクロ細孔は形成しておらず塊状であった。 When the frozen gel was immersed in ethanol in a freezer at −30 ° C., the gel further contracted. The gel was stored for 15 hours, and thereafter operated in the same manner as in Example 1 to obtain a dry gel body. The gel was contracted and did not form macropores and was agglomerated.

(比較例2) V2O5濃度が0.40mol/lの溶解水溶液とした以外は実施例1と同様に実施した。ゲルは収縮したもので、マクロ細孔は形成しておらず塊状であった。 Except that (Comparative Example 2) V 2 O 5 concentration was dissolved aqueous solution of 0.40 mol / l was carried out in the same manner as in Example 1. The gel was contracted and did not form macropores and was agglomerated.

実施例1で作製した乾燥体の断面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the cross section of the dried body produced in Example 1. FIG. 実施例1で作製した乾燥体の窒素吸着法による細孔分布曲線を示す図である。It is a figure which shows the pore distribution curve by the nitrogen adsorption method of the dry body produced in Example 1. FIG.

Claims (4)

平均孔径が5〜50μmのストレートマクロ細孔を有するモノリス構造を特徴とする酸化バナジウム。 Vanadium oxide characterized by a monolith structure having straight macropores having an average pore diameter of 5 to 50 μm. 請求項1に記載の酸化バナジウムの隔壁部分のメソ細孔の平均細孔径が5〜25nm、比表面積が100m2/g以上であることを特徴とする酸化バナジウム。 2. The vanadium oxide according to claim 1, wherein the vanadium oxide partition wall portion has an average pore diameter of 5 to 25 nm and a specific surface area of 100 m 2 / g or more. 製造工程が、(1)バナジウム含有溶液をpH2以下に調整してゲル化する工程(2)湿潤ゲルを熟成する工程(3)熟成ゲルを一方向より凍結する工程(4)溶媒を除去する工程からなることを特徴とする請求項1または請求項2に記載の酸化バナジウムの製造方法。 The manufacturing process includes (1) a step of gelling by adjusting the vanadium-containing solution to pH 2 or lower, (2) a step of aging the wet gel, (3) a step of freezing the ripened gel from one direction, and (4) a step of removing the solvent. It consists of these, The manufacturing method of the vanadium oxide of Claim 1 or Claim 2 characterized by the above-mentioned. 前記の乾燥工程の後に、焼成処理する工程を含む請求項3に記載の酸化バナジウムの製造方法。
The manufacturing method of the vanadium oxide of Claim 3 including the process of baking after the said drying process.
JP2006033179A 2006-02-10 2006-02-10 Porous vanadium oxide and manufacturing method therefor Pending JP2007210841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033179A JP2007210841A (en) 2006-02-10 2006-02-10 Porous vanadium oxide and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033179A JP2007210841A (en) 2006-02-10 2006-02-10 Porous vanadium oxide and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007210841A true JP2007210841A (en) 2007-08-23

Family

ID=38489607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033179A Pending JP2007210841A (en) 2006-02-10 2006-02-10 Porous vanadium oxide and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2007210841A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120129682A1 (en) * 2010-11-23 2012-05-24 Electronics And Telecommunications Research Institute Method of fabricating nanowire porous medium and nanowire porous medium fabricated by the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120129682A1 (en) * 2010-11-23 2012-05-24 Electronics And Telecommunications Research Institute Method of fabricating nanowire porous medium and nanowire porous medium fabricated by the same

Similar Documents

Publication Publication Date Title
Petkovich et al. Controlling macro-and mesostructures with hierarchical porosity through combined hard and soft templating
JP5358454B2 (en) Airgel based on carbon nanotubes
Mukai et al. Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation
CN108346782B (en) Porous copper oxide microsphere/multilayer graphene composite material and preparation method thereof
WO2014186207A2 (en) Mesoporous materials and processes for preparation thereof
JP2009513472A (en) Method for producing manganese oxide nanotubes or nanorods with cathodic aluminum oxide template
WO2009018700A1 (en) A method for quick preparing titanium oxide or precursor thereof with a controllable structure from micropore to mesopore
KR102357190B1 (en) Hierarchically Microporous and Mesoporous Carbon Spheres and Method of Preparing the Same
KR20210067902A (en) Mesoporous carbon and manufacturing method of the same, and polymer electrolyte fuel cell
JP2008013394A (en) Activated carbon and its manufacturing method
JP2006290680A (en) Spherical nanoparticle porous body and method for synthesizing the same
US20160130148A1 (en) Graphene Materials with Controlled Morphology
Mori et al. Synthesis of a hierarchically micro–macroporous structured zeolite monolith by ice-templating
Didi et al. Synthesis of binderless FAU-X (13X) monoliths with hierarchical porosity
CN103739007A (en) Preparation of porous tin dioxide nano structure with controllable size by employing template method
JP4900794B2 (en) Mesoporous inorganic material and method for producing adsorption filter carrying the mesoporous inorganic material
JP2007210841A (en) Porous vanadium oxide and manufacturing method therefor
JP2006213558A (en) Binary porous silica and method for manufacturing the same
JP2008110298A (en) Method for regenerating catalyst for dehydrating glycerin
US20240034631A1 (en) Scalable synthesis of perimorphic carbons
JP5105768B2 (en) Porous precursor production equipment
JP2005262324A (en) Porous carbon material
JP3406635B2 (en) Porous silica in which macropores and micropores are dispersed, and production method
KR101243161B1 (en) Method for preparing porous carbon ball from sugar with hydrothermal treatment
JP6879686B2 (en) Manufacturing method of porous carbon material