JP2007209166A - Inverter, and refrigeration cycle device - Google Patents

Inverter, and refrigeration cycle device Download PDF

Info

Publication number
JP2007209166A
JP2007209166A JP2006027165A JP2006027165A JP2007209166A JP 2007209166 A JP2007209166 A JP 2007209166A JP 2006027165 A JP2006027165 A JP 2006027165A JP 2006027165 A JP2006027165 A JP 2006027165A JP 2007209166 A JP2007209166 A JP 2007209166A
Authority
JP
Japan
Prior art keywords
circuit
voltage
mosfet
power supply
supply circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006027165A
Other languages
Japanese (ja)
Inventor
Shinya Shimizu
慎也 清水
Tomoaki Toshi
年百明 利
Hiroshi Mochikawa
宏 餅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Carrier Corp
Original Assignee
Toshiba Corp
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Carrier Corp filed Critical Toshiba Corp
Priority to JP2006027165A priority Critical patent/JP2007209166A/en
Publication of JP2007209166A publication Critical patent/JP2007209166A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inverter in which safety can be assured when a reverse voltage application circuit causes short circuit fault, by stopping operation of that reverse voltage application circuit, and to provide a refrigeration cycle device. <P>SOLUTION: The inverter 1 comprises a low voltage power supply circuit 50 outputting a low voltage for driving MOSFETs 4u, 4v and 4w and for operating reverse voltage application circuits 6u, 6v and 6w. Output voltage from the low voltage power supply circuit 50 is detected by a protective section 63 and when the detected voltage is lower than a predetermined level, output from the low voltage power supply circuit 50 is stopped by the protective section 63. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、たとえば圧縮機を駆動するインバータ装置、およびそのようなインバータ装置を用いて圧縮機を駆動する冷凍サイクル装置に関する。   The present invention relates to an inverter device that drives a compressor, for example, and a refrigeration cycle device that drives a compressor using such an inverter device.

ブラシレスDCモータのような誘導性負荷を駆動するインバータ装置は、電圧の印加方向に沿って上流側および下流側となる2つのスイッチング素子の直列回路を複数備え、これら直列回路の上流側スイッチング素子と下流側スイッチング素子の相互接続点がブラシレスDCモータの各相巻線に接続される。各スイッチング素子は、還流ダイオード(寄生ダイオードともいう)を有している。   An inverter device for driving an inductive load such as a brushless DC motor includes a plurality of series circuits of two switching elements on the upstream side and the downstream side in the voltage application direction, and the upstream side switching elements of these series circuits and The interconnection point of the downstream switching element is connected to each phase winding of the brushless DC motor. Each switching element has a free wheel diode (also referred to as a parasitic diode).

スイッチング素子としては、最近、IGBTやMOSFETが多く採用されている。MOSFETを用いている場合、MOSFETのオン,オフ速度が速いため高周波スイッチングが可能というメリットがあり、また低電圧出力時のロスが小さいことからファンモータ等の出力の小さいモータを駆動する場合に多用される。   Recently, many IGBTs and MOSFETs have been adopted as switching elements. When a MOSFET is used, there is a merit that high-frequency switching is possible because the on / off speed of the MOSFET is fast, and it is frequently used when driving a motor with a small output such as a fan motor because the loss at low voltage output is small. Is done.

ただし、MOSFETでは、素子製造の過程において同じ素子上に作られる還流ダイオードの逆回復特性が悪いという問題がある。近年、オン時の抵抗が低くてスイッチング特性にすぐれたスーパージャンクションMOSFETが開発されているが、このスーパージャンクションMOSFETにおいては、素子上に形成される還流ダイオードの逆回復特性がますます悪いものとなっている。   However, in MOSFET, there is a problem that reverse recovery characteristics of a free-wheeling diode made on the same element in the process of manufacturing the element are poor. In recent years, super junction MOSFETs have been developed that have low on-state resistance and excellent switching characteristics. However, in this super junction MOSFET, the reverse recovery characteristics of the freewheeling diode formed on the device become worse. ing.

還流ダイオードの逆回復特性が悪いと、次の不具合を生じる。すなわち、MOSFETがオフしたとき、誘導性負荷に蓄えられたエネルギによってMOSFETの還流ダイオードに順方向電流(還流電流ともいう)が流れるが、その状態で、同じ直列回路の他方のスイッチング素子がオンしてMOSFETに直流電圧が加わると、還流ダイオードに蓄えられた電荷による大きな逆回復電流(スパイク電流ともいう)が還流ダイオードに流れる。この逆回復電流は、大きな電力損失となる。また、この電力損失の多くは、MOSFETと対となる他方のスイッチング素子のオン時の発熱となり、これが大きくなると他方のスイッチング素子がその熱によって破壊するという問題がある。   If the reverse recovery characteristic of the freewheeling diode is poor, the following problems occur. That is, when the MOSFET is turned off, the forward current (also called the reflux current) flows to the MOSFET's freewheeling diode due to the energy stored in the inductive load. In this state, the other switching element of the same series circuit is turned on. When a DC voltage is applied to the MOSFET, a large reverse recovery current (also referred to as a spike current) due to the charge stored in the freewheeling diode flows through the freewheeling diode. This reverse recovery current results in a large power loss. In addition, most of the power loss is generated when the other switching element paired with the MOSFET is turned on, and when this is increased, the other switching element is destroyed by the heat.

このようなことから、たとえば空気調和機のコンプレッサモータを駆動するような大きな電流が流れるインバータにMOSFETを採用することは、非常に難しい。   For this reason, it is very difficult to employ a MOSFET for an inverter through which a large current flows, for example, to drive a compressor motor of an air conditioner.

そこで、従来、上記他方のスイッチング素子のオンに先立ってMOSFETの還流ダイオードに逆電圧を印加する逆電圧印加回路を設け、この逆電圧の印加によって還流ダイオードに流れる逆回復電流を防止し、電力損失の低減を図るものがある(例えば、特許文献1)。
特開平10−327585号公報
Therefore, conventionally, a reverse voltage application circuit for applying a reverse voltage to the freewheeling diode of the MOSFET is provided prior to turning on the other switching element, and the reverse recovery current flowing to the freewheeling diode is prevented by the application of the reverse voltage. (For example, Patent Document 1).
Japanese Patent Laid-Open No. 10-327585

上記のような逆電圧印加回路を採用した場合、逆回復電流による電力損失が抑えられるため、コンプレッサモータ駆動用などの大出力モータにもスイッチング素子としてMOSFETの採用が可能となるが、万が一、逆電圧印加回路に破壊や特性劣化等で短絡する故障(短絡故障)が生じると、逆回復電流を防止するための正規のタイミング以外に、MOSFETのオン中に、逆電圧印加回路からMOSFETまたはモータ巻線に電流が流れ続ける。この結果、逆電圧印加回路中の回路素子の異常温度上昇を引き起こし、他の回路を破壊してしまうなどの不具合が発生するおそれがあった。   When the reverse voltage application circuit as described above is adopted, power loss due to reverse recovery current can be suppressed, so that a MOSFET can be adopted as a switching element for a large output motor for driving a compressor motor or the like. If a failure (short-circuit failure) occurs due to breakdown or deterioration of characteristics in the voltage application circuit, the reverse voltage application circuit may turn on the MOSFET or motor winding while the MOSFET is on, in addition to the normal timing for preventing reverse recovery current. Current continues to flow through the wire. As a result, there is a possibility that a malfunction such as an abnormal temperature rise of the circuit element in the reverse voltage application circuit and destruction of other circuits may occur.

この発明は、上記の事情を考慮したもので、逆電圧印加回路が短絡故障を起こした場合にその逆電圧印加回路の動作を停止して安全を確保することができるインバータ装置およびこのインバータ装置を用いた冷凍サイクル装置を提供することを目的とする。   In consideration of the above circumstances, the present invention provides an inverter device capable of stopping the operation of the reverse voltage application circuit and ensuring safety when the reverse voltage application circuit causes a short circuit failure, and the inverter device. It aims at providing the used refrigeration cycle apparatus.

請求項1に係る発明のインバータ装置は、還流ダイオードを有するMOSFETを少なくとも一方に用いた2つのスイッチング素子の直列回路を複数備え、これら直列回路の各スイッチング素子の相互接続点が負荷に接続されるスイッチング回路と、上記各スイッチング素子のオン,オフ動作を制御する制御手段と、上記MOSFETと同じ直列回路の他方のスイッチング素子のオンに先立ち、同MOSFETの還流ダイオードに逆電圧を印加する逆電圧印加回路と、上記MOSFETの駆動用および上記逆電圧印加回路の動作用の低電圧を出力する低電圧電源回路と、この低電圧電源回路の出力電圧を検出し、検出した電圧が所定値以下の場合に、上記低電圧電源回路の出力を停止する保護手段と、を備えている。   The inverter device of the invention according to claim 1 includes a plurality of series circuits of two switching elements using at least one of MOSFETs having a freewheeling diode, and an interconnection point of each switching element of these series circuits is connected to a load. Prior to turning on the other switching element of the same series circuit as the MOSFET, reverse voltage application for applying a reverse voltage to the free-wheeling diode of the MOSFET, switching means, control means for controlling the on / off operation of each switching element A circuit, a low voltage power supply circuit that outputs a low voltage for driving the MOSFET and an operation of the reverse voltage applying circuit, and an output voltage of the low voltage power supply circuit is detected, and the detected voltage is not more than a predetermined value And a protective means for stopping the output of the low-voltage power supply circuit.

この発明のインバータ装置および冷凍サイクル装置によれば、逆電圧印加回路が短絡故障を起こした場合に、その逆電圧印加回路の動作を停止することができる。これにより、逆電圧印加回路中の回路素子の異常温度上昇を回避して、他の回路の破壊を防ぐことができ、十分な安全を確保することができる   According to the inverter device and the refrigeration cycle device of the present invention, when the reverse voltage application circuit causes a short circuit failure, the operation of the reverse voltage application circuit can be stopped. Thereby, an abnormal temperature rise of the circuit element in the reverse voltage application circuit can be avoided, destruction of other circuits can be prevented, and sufficient safety can be ensured.

以下、この発明の一実施形態について図面を参照して説明する。
図1において、Mは冷凍サイクル装置の一種である空気調和機のコンプレッサモータとして使用されるブラシレスDCモータ(負荷)で、星形結線された3つの相巻線Lu,Lv,Lwを有するステータ、および永久磁石を有するロータにより構成されている。相巻線Lu,Lv,Lwに電流が流れることにより生じる磁界と永久磁石が作る磁界との相互作用により、ロータが回転する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, M is a brushless DC motor (load) used as a compressor motor of an air conditioner that is a kind of refrigeration cycle apparatus, and has a stator having three phase windings Lu, Lv, Lw connected in a star shape, And a rotor having permanent magnets. The rotor rotates due to the interaction between the magnetic field generated by the current flowing through the phase windings Lu, Lv, and Lw and the magnetic field generated by the permanent magnet.

このブラシレスDCモータMが動力源として圧縮機20に収容されている。冷房時、この圧縮機20から吐出される冷媒が実線矢印で示すように四方弁21を介して室外熱交換器22に流れ、その室外熱交換器22を経た冷媒が膨張弁23を介して室内熱交換器24に流れる。そして、室内熱交換器24を経た冷媒が、上記四方弁21を介して圧縮機20に吸込まれる。これにより、室外熱交換器22が凝縮器、室内熱交換器24が蒸発器として機能する。暖房時は、四方弁21が切換わることにより、破線矢印で示す方向に冷媒が流れ、室内熱交換器24が凝縮器、室外熱交換器22が蒸発器として機能する。   The brushless DC motor M is accommodated in the compressor 20 as a power source. During cooling, the refrigerant discharged from the compressor 20 flows to the outdoor heat exchanger 22 via the four-way valve 21 as indicated by the solid line arrow, and the refrigerant passing through the outdoor heat exchanger 22 passes through the expansion valve 23 to the room. It flows to the heat exchanger 24. Then, the refrigerant that has passed through the indoor heat exchanger 24 is sucked into the compressor 20 through the four-way valve 21. Thereby, the outdoor heat exchanger 22 functions as a condenser, and the indoor heat exchanger 24 functions as an evaporator. At the time of heating, the four-way valve 21 is switched, whereby the refrigerant flows in the direction indicated by the broken-line arrow, and the indoor heat exchanger 24 functions as a condenser and the outdoor heat exchanger 22 functions as an evaporator.

上記ブラシレスDCモータMに、インバータ装置1が接続されている。このインバータ装置1は、商用交流電源30の電圧を整流する整流回路31、この整流回路31の出力端に接続された平滑コンデンサ32、この平滑コンデンサ32の両端に接続された端子P,N、この端子P,N間の直流電圧(例えば直流280V)Vdを受けて上記相巻線Lu,Lv,Lwに対する通電およびその通電切換を行うスイッチング回路2、このスイッチング回路2を駆動制御する制御部10、端子P,N間の直流電圧Vdからスイッチング回路2や制御部10の動作に必要な低電圧を出力する低電圧電源回路50などにより、構成されている。   An inverter device 1 is connected to the brushless DC motor M. This inverter device 1 includes a rectifier circuit 31 that rectifies the voltage of the commercial AC power supply 30, a smoothing capacitor 32 connected to the output terminal of the rectifier circuit 31, terminals P and N connected to both ends of the smoothing capacitor 32, A switching circuit 2 that receives a DC voltage (for example, DC 280V) Vd between the terminals P and N and performs energization to the phase windings Lu, Lv, and Lw, and switching of the energization, and a control unit 10 that drives and controls the switching circuit 2; The switching circuit 2 and the low voltage power supply circuit 50 that outputs a low voltage necessary for the operation of the control unit 10 from the DC voltage Vd between the terminals P and N are configured.

スイッチング回路2は、直流電圧の印加方向に沿って上流側のスイッチング素子にはMOSFET以外のスイッチング素子、たとえばIGBT(Insulated Gate Bipolar Transistor)を、下流側のスイッチング素子として低損失パワーMOSFET(スーパージャンクションMOSFET等)の直列回路をU,V,Wの三相分有するもので、U相の上流側にIGBT3u、U相の下流側にMOSFET4u、V相の上流側にIGBT32v、V相の下流側にMOSFET4v、W相の上流側にIGBT3w、W相の下流側にMOSFET4wを備えている。そして、IGBT3u,3v,3wに対し、還流ダイオードDu+,Dv+,Dw+がそれぞれ逆並列接続されている。MOSFET4u,4v,4wに対し、還流ダイオードDu−,Dv−,Dw−がそれぞれ逆並列接続されている。これら還流ダイオードは、寄生ダイオードとしてそれぞれ対応するIGBTおよびMOSFETの素子本体に内蔵される。   The switching circuit 2 includes a switching element other than a MOSFET, such as an IGBT (Insulated Gate Bipolar Transistor) as an upstream switching element along a DC voltage application direction, and a low-loss power MOSFET (super junction MOSFET) as a downstream switching element. Etc.) is provided for three phases U, V, and W. The IGBT 3u is upstream of the U phase, the MOSFET 4u is downstream of the U phase, the IGBT 32v is upstream of the V phase, and the MOSFET 4v is downstream of the V phase. The IGBT 3w is provided upstream of the W phase, and the MOSFET 4w is provided downstream of the W phase. The free-wheeling diodes Du +, Dv +, and Dw + are connected in reverse parallel to the IGBTs 3u, 3v, and 3w, respectively. The free-wheeling diodes Du−, Dv−, and Dw− are connected in reverse parallel to the MOSFETs 4u, 4v, and 4w, respectively. These free-wheeling diodes are built in the corresponding IGBT and MOSFET element bodies as parasitic diodes.

上記MOSFET4u,4v,4wの駆動用として、駆動回路34u,34v,34wが設けられている。これら駆動回路34u,34v,34wは、低電圧電源回路50の出力電圧により動作し、制御部10からの指令に応じてMOSFET4u,4v,4wをオン,オフ駆動する。同様に、IGBT3u,3v,3w駆動用の駆動回路33u,3v,3wにも低電圧電源回路50の出力が供給され、これらも制御部10からの指令に応じてIGBT3u,3v,3wをオン,オフ駆動する。   Driving circuits 34u, 34v, 34w are provided for driving the MOSFETs 4u, 4v, 4w. These drive circuits 34u, 34v, 34w are operated by the output voltage of the low voltage power supply circuit 50, and drive the MOSFETs 4u, 4v, 4w on and off in accordance with commands from the control unit 10. Similarly, the outputs of the low-voltage power supply circuit 50 are also supplied to the drive circuits 33u, 3v, 3w for driving the IGBTs 3u, 3v, 3w, and these also turn on the IGBTs 3u, 3v, 3w according to a command from the control unit 10, Drive off.

IGBT3uとMOSFET4uの相互接続点、IGBT3vとMOSFET4vの相互接続点、IGBT3wとMOSFET4wの相互接続点に、上記相巻線Lu,Lv,Lwのそれぞれ非結線端が接続されている。   The non-connected ends of the phase windings Lu, Lv, and Lw are connected to an interconnection point between the IGBT 3u and the MOSFET 4u, an interconnection point between the IGBT 3v and the MOSFET 4v, and an interconnection point between the IGBT 3w and the MOSFET 4w, respectively.

また、スイッチング回路1は、誘導性負荷である相巻線Lu,Lv,Lwに蓄えられたエネルギによって還流ダイオードDu−,Dv−,Dw−に順方向電流(還流電流)が流れた場合に、上流側のIGBT3u,3v,3wのオンに伴って還流ダイオードDu−,Dv−,Dw−に流れる逆回復電流Irrを抑制するため、IGBT3u,3v,3wのそれぞれオンに先立ってMOSFET4u,4v,4wの還流ダイオードDu−,Dv−,Dw−に逆電圧を印加する逆電圧印加回路6u,6v,6wを備えている。   In addition, the switching circuit 1 is configured such that when a forward current (reflux current) flows through the freewheeling diodes Du−, Dv−, and Dw− due to the energy stored in the phase windings Lu, Lv, and Lw that are inductive loads, In order to suppress the reverse recovery current Irr flowing through the free-wheeling diodes Du−, Dv−, Dw− as the upstream IGBTs 3u, 3v, 3w are turned on, the MOSFETs 4u, 4v, 4w are turned on prior to turning on the IGBTs 3u, 3v, 3w, respectively. Are provided with reverse voltage application circuits 6u, 6v, 6w for applying reverse voltages to the free-wheeling diodes Du-, Dv-, Dw-.

逆電圧印加回路6uは、低電圧電源回路50の出力電圧を抵抗41を介して逆電圧印加用コンデンサ42に印加し、その逆電圧印加用コンデンサ42の電圧を逆電圧印加用MOSFET43のドレイン・ソース間、およびダイオード44を介して、MOSFET4uの還流ダイオードDu−に逆電圧として印加する。また、逆電圧印加回路6uは、逆電圧印加用MOSFET43の駆動用として、ゲート駆動回路46を有している。ゲート駆動回路46は、低電圧電源回路50の出力電圧により動作し、制御部10からの指令に応じて逆電圧印加用のパルス信号を生成して出力する。この出力が逆電圧印加用MOSFET43のゲートに供給される。
他の逆電圧印加回路6v,6wも、逆電圧印加回路6uと同じ構成である。よって、その説明は省略する。
The reverse voltage application circuit 6 u applies the output voltage of the low voltage power supply circuit 50 to the reverse voltage application capacitor 42 via the resistor 41, and uses the voltage of the reverse voltage application capacitor 42 as the drain / source of the reverse voltage application MOSFET 43. The reverse voltage is applied to the free-wheeling diode Du− of the MOSFET 4u between and via the diode 44. In addition, the reverse voltage application circuit 6 u has a gate drive circuit 46 for driving the reverse voltage application MOSFET 43. The gate drive circuit 46 operates according to the output voltage of the low voltage power supply circuit 50, and generates and outputs a pulse signal for applying a reverse voltage in response to a command from the control unit 10. This output is supplied to the gate of the reverse voltage application MOSFET 43.
The other reverse voltage application circuits 6v and 6w have the same configuration as the reverse voltage application circuit 6u. Therefore, the description is omitted.

また、IGBTとMOSFETの直列回路におけるMOSFETの下流側に、それぞれ電流検出用の抵抗7u,7v,7wが挿接されている。MOSFET4u,4v,4wを通して流れる電流に応じたレベルの電圧が、これら抵抗7u,7v,7wに生じる。そして、抵抗7u,7v,7wに生じる電圧が、制御部10に供給される。   In addition, current detection resistors 7u, 7v, and 7w are inserted into the downstream side of the MOSFET in the series circuit of the IGBT and the MOSFET, respectively. A voltage of a level corresponding to the current flowing through the MOSFETs 4u, 4v, 4w is generated in these resistors 7u, 7v, 7w. The voltage generated in the resistors 7u, 7v, and 7w is supplied to the control unit 10.

制御部10は、抵抗7u,7v,7wに生じる電圧からブラシレスDCモータMの各相巻線に流れる電流を検出し、検出した電流からブラシレスDCモータMのロータの回転を検出し、検出した回転に基づく所定のタイミングでスイッチング回路1の各IGBT、各MOSFET、および各逆電圧印加回路を駆動するもので、スイッチング回路1における各直列回路のうち、少なくとも1つの直列回路の上流側のIGBTのオン,オフ動作、および別の少なくとも1つの直列回路の下流側のMOSFETのオン,オフ動作による各相巻線への通電を順次に切換える制御手段を有している。   The control unit 10 detects the current flowing through each phase winding of the brushless DC motor M from the voltages generated in the resistors 7u, 7v, and 7w, detects the rotation of the rotor of the brushless DC motor M from the detected current, and detects the detected rotation. Each IGBT, each MOSFET, and each reverse voltage application circuit of the switching circuit 1 are driven at a predetermined timing based on the above. Among the series circuits in the switching circuit 1, the IGBT on the upstream side of at least one series circuit is turned on. , Off operation, and control means for sequentially switching energization to each phase winding by on / off operation of the MOSFET on the downstream side of another at least one series circuit.

上記低電圧電源回路50の具体的な構成を図2に示している。
すなわち、トランス51の一次巻線52aがスイッチング素子たとえばFET54のドレイン・ソース間を介して直流電源の端子P,N間に接続され、そのFET54のゲートが発振制御部61に接続されている。この発振制御部61の発振出力信号によりFET54がオン,オフ動作して、トランス51の二次巻線53a,53bに、端子P,N間の直流電圧Vdよりも低いレベルの交流電圧が生じる。そして、二次巻線53aに生じる交流電圧がダイオード55および平滑コンデンサ56で整流され、整流後の直流電圧、たとえば直流5V程度の出力が制御部(マイクロコンピュータを含む電子回路)10に動作用として供給される。さらに、二次巻線53bに生じる交流電圧がダイオード57および平滑コンデンサ58で整流され、整流後の直流電圧、たとえば直流17V程度の出力が端子Qから上記駆動回路33u,33v,33w,34u,34v,34wおよび各ゲート駆動回路46にそれぞれ駆動用として供給される。
A specific configuration of the low-voltage power supply circuit 50 is shown in FIG.
That is, the primary winding 52 a of the transformer 51 is connected between the terminals P and N of the DC power supply via the switching element, for example, between the drain and source of the FET 54, and the gate of the FET 54 is connected to the oscillation control unit 61. The FET 54 is turned on / off by the oscillation output signal of the oscillation control unit 61, and an AC voltage having a level lower than the DC voltage Vd between the terminals P and N is generated in the secondary windings 53 a and 53 b of the transformer 51. Then, the AC voltage generated in the secondary winding 53a is rectified by the diode 55 and the smoothing capacitor 56, and the DC voltage after rectification, for example, the output of about DC 5V is supplied to the control unit (electronic circuit including the microcomputer) 10 for operation. Supplied. Further, the AC voltage generated in the secondary winding 53b is rectified by the diode 57 and the smoothing capacitor 58, and the rectified DC voltage, for example, an output of about 17V DC is output from the terminal Q to the drive circuits 33u, 33v, 33w, 34u, 34v. , 34w and each gate drive circuit 46 are supplied for driving.

トランス51は検出用の一次巻線(補助巻線)52bを有しており、その一次巻線52bに生じる交流電圧が上記発振制御部61および保護部63に供給される。発振制御部61は、一次巻線52bに生じる交流電圧が予め定められている設定値一定となるよう、発振出力のオン,オフデューティを調節するもので、例えばトランス51の二次側消費電力が増大して一次巻線52bの電圧が低下すると、それを補うために発振出力のオン,オフデューティを増やし、トランス51の二次側消費電力が減少して一次巻線52bの電圧が上昇すると、発振出力のオン,オフデューティを減らす制御を行う。なお、低電圧電源回路50の動作開始時は一次巻線52bに電圧が生じないため、起動部62から供給される出力設定信号に応じて発振制御部61の発振出力のオン,オフデューティが設定される。起動部62は、制御部10から供給されるオン指令に応じて動作する。   The transformer 51 has a primary winding (auxiliary winding) 52b for detection, and an AC voltage generated in the primary winding 52b is supplied to the oscillation control unit 61 and the protection unit 63. The oscillation control unit 61 adjusts the on / off duty of the oscillation output so that the alternating voltage generated in the primary winding 52b is constant at a predetermined set value. For example, the secondary side power consumption of the transformer 51 is reduced. When the voltage of the primary winding 52b decreases and the voltage of the primary winding 52b decreases, the on / off duty of the oscillation output increases to compensate for this, and when the secondary side power consumption of the transformer 51 decreases and the voltage of the primary winding 52b increases, Control to reduce on / off duty of oscillation output. Since no voltage is generated in the primary winding 52b when the operation of the low voltage power supply circuit 50 is started, the on / off duty of the oscillation output of the oscillation control unit 61 is set according to the output setting signal supplied from the starting unit 62. Is done. The starting unit 62 operates in response to an ON command supplied from the control unit 10.

上記保護部63は、一次巻線52bに生じる交流電圧に基づいて当該低電圧電源回路50の出力電圧を検出し、検出した電圧が予め定められた所定値VS2以下の場合に、発振制御部61の発振を停止して、当該低電圧電源回路50の出力を停止する。   The protection unit 63 detects the output voltage of the low-voltage power supply circuit 50 based on the AC voltage generated in the primary winding 52b, and when the detected voltage is equal to or lower than a predetermined value VS2, the oscillation control unit 61 Is stopped and the output of the low-voltage power supply circuit 50 is stopped.

次に、図3を参照しながら、作用について説明する。
低電圧電源回路50の容量は、それほど大きくない。通常は、低電圧電源回路50の発振制御部61は、トランス51の二次側消費電力が増大して一次巻線52bの電圧が低下した場合、つまり当該低電圧電源回路50の出力電圧が低下した場合、それを補うために発振出力のオン,オフデューティを増やす制御を実行する。
Next, the operation will be described with reference to FIG.
The capacity of the low voltage power supply circuit 50 is not so large. Normally, the oscillation control unit 61 of the low voltage power supply circuit 50 reduces the output voltage of the low voltage power supply circuit 50 when the secondary side power consumption of the transformer 51 increases and the voltage of the primary winding 52b decreases. In order to compensate for this, control is performed to increase the on / off duty of the oscillation output.

ただし、本実施形態の低電圧電源回路50の容量は、それほど大きく設定されていない。具体的には、逆電圧印加回路6u,6v,6wのいずれかに短絡電流が生じ、逆電圧印加回路6u,6v,6wからMOSFET4u,4v,4w側に電流が流れ続けた場合には出力電流を供給し続けることができない容量、すなわち、その出力電圧が低下する容量に設定されている。   However, the capacity of the low voltage power supply circuit 50 of the present embodiment is not set so large. Specifically, when a short-circuit current occurs in any of the reverse voltage application circuits 6u, 6v, 6w, and the current continues to flow from the reverse voltage application circuits 6u, 6v, 6w to the MOSFETs 4u, 4v, 4w, the output current Is set to a capacity at which the output voltage cannot be kept, that is, a capacity at which the output voltage decreases.

このため、逆電圧印加回路6u,6v,6wのいずれかに破壊や特性劣化等による短絡故障が生じると、発振制御部61のオン,オフデューティの増大制御にもかかわらず、低電圧電源回路50の出力電圧が大きく低下する。   For this reason, if a short circuit failure occurs due to destruction, characteristic deterioration, or the like in any of the reverse voltage application circuits 6u, 6v, 6w, the low voltage power supply circuit 50 is in spite of the on / off duty increase control of the oscillation control unit 61. The output voltage is greatly reduced.

低電圧電源回路50の保護部63は、一次巻線52bを介して当該低電圧電源回路50の出力電圧を検出しており、その検出電圧が通常よりかなり低い所定値VS2以下に低下すると、直ちに、発振制御部61の発振を停止して、当該低電圧電源回路50の出力を停止する。この停止により、短絡故障した逆電圧印加回路からMOSFETに電流が流れ続けるなどの不具合が解消される。ひいては、短絡故障した逆電圧印加回路中の回路素子の異常温度上昇を防ぐことができ、他の回路の破壊を回避できるなど、十分な安全を確保することができる。   The protection unit 63 of the low voltage power supply circuit 50 detects the output voltage of the low voltage power supply circuit 50 through the primary winding 52b, and immediately when the detected voltage drops below the predetermined value VS2 which is considerably lower than normal. Then, the oscillation of the oscillation control unit 61 is stopped, and the output of the low voltage power supply circuit 50 is stopped. This stop eliminates problems such as a current continuously flowing from the reverse voltage application circuit that has a short circuit failure to the MOSFET. As a result, it is possible to prevent an abnormal temperature rise of the circuit elements in the reverse voltage application circuit in which a short circuit failure has occurred, and to ensure sufficient safety, such as avoiding the destruction of other circuits.

また、低電圧電源回路50の容量を小さく設定し、低電圧電源回路50をMOSFETの駆動電源と兼用しているため、万が一、保護部63が動作しない場合でも、低電圧電源回路50の出力電圧が大きく低下すれば、駆動回路34によるMOSFETの駆動を継続させることができなくなり、停止に至る。MOSFETがオンしなければ、逆電圧印加回路が短絡しても逆電圧印加回路から電流は流れないため、逆電圧印加回路部分が過熱したり、他の回路を破壊する等の悪影響を及ぼすことはない。   Further, since the capacity of the low voltage power supply circuit 50 is set small and the low voltage power supply circuit 50 is also used as a driving power supply for the MOSFET, the output voltage of the low voltage power supply circuit 50 should be avoided even if the protection unit 63 does not operate. If the voltage drops significantly, the driving of the MOSFET by the driving circuit 34 cannot be continued and the operation stops. If the MOSFET is not turned on, current does not flow from the reverse voltage application circuit even if the reverse voltage application circuit is short-circuited. Therefore, adverse effects such as overheating of the reverse voltage application circuit part or destruction of other circuits may occur. Absent.

さらに、制御部10の動作用電源も低電圧電源回路50の出力を用いている。このため、万が一、保護部63が動作しない場合でも、低電圧電源回路50の出力電圧が大きく低下すれば、制御部10の動作が停止し、IGBT、MOSFETへのオン指令が出なくなり、停止に至り、逆電圧印加回路から流れる電流が停止する。要するに、逆電圧印加回路の電源である低電圧電源回路50の容量を適切に設定し、MOSFETの動作電源または制御部10の動作電源と兼用することで、保護部63を設けなくとも逆電圧印加回路の短絡故障時にはインバータ装置1を停止させて逆電圧印加回路から電流が流れなくすることができる。   Furthermore, the operation power supply of the control unit 10 uses the output of the low voltage power supply circuit 50. For this reason, even if the protection unit 63 does not operate, if the output voltage of the low-voltage power supply circuit 50 is greatly reduced, the operation of the control unit 10 is stopped, and the on command to the IGBT and MOSFET is not issued, and the operation is stopped. Thus, the current flowing from the reverse voltage application circuit stops. In short, by setting the capacity of the low voltage power supply circuit 50, which is the power supply of the reverse voltage application circuit, appropriately, and also using the operation power supply of the MOSFET or the operation power supply of the control unit 10, the reverse voltage application can be performed without providing the protection unit 63. In the event of a short circuit fault in the circuit, the inverter device 1 can be stopped so that no current flows from the reverse voltage application circuit.

なお、上記実施形態では、保護部63を低電圧電源回路50内に設ける構成としたが、低電圧電源回路50の外に保護部63を設ける構成としてもよい。また、上記実施形態では、スイッチング素子としてIGBTとMOSFETの両方を用いた例で説明したが、すべての素子をMOSFETで構成してもよい。その他、この発明は、上記実施形態に限定されるものではなく、要旨を変えない範囲で種々変形実施可能である。   In the above embodiment, the protection unit 63 is provided in the low voltage power supply circuit 50. However, the protection unit 63 may be provided outside the low voltage power supply circuit 50. Moreover, although the said embodiment demonstrated by the example using both IGBT and MOSFET as a switching element, you may comprise all the elements by MOSFET. In addition, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible in the range which does not change a summary.

この発明の一実施形態の構成を示すブロック図。The block diagram which shows the structure of one Embodiment of this invention. 同実施形態における低電圧電源回路の具体的な構成を示すブロック図。The block diagram which shows the concrete structure of the low voltage power supply circuit in the embodiment. 同実施形態の作用を説明するための図。The figure for demonstrating the effect | action of the embodiment.

符号の説明Explanation of symbols

1…インバータ装置、2…スイッチング回路、3u,3v,3w…IGBT(上流側のスイッチング素子)、4u,4v,4w…MOSFET(下流側のスイッチング素子)、6u,6v,6w…逆電圧印加回路、Du+,Dv+,Dw+,Du−,Dv−,Dw−…還流ダイオード、10…制御部、42…逆電圧印加用コンデンサ、43…逆電圧印加用MOSFET、50…低電圧電源回路、51…トランス、54…FET、61…発振制御部、63…保護部   DESCRIPTION OF SYMBOLS 1 ... Inverter apparatus, 2 ... Switching circuit, 3u, 3v, 3w ... IGBT (upstream side switching element), 4u, 4v, 4w ... MOSFET (downstream side switching element), 6u, 6v, 6w ... Reverse voltage application circuit , Du +, Dv +, Dw +, Du−, Dv−, Dw−... Freewheeling diode, 10... Control unit, 42 .. reverse voltage applying capacitor, 43 .. reverse voltage applying MOSFET, 50. 54 ... FET, 61 ... oscillation control unit, 63 ... protection unit

Claims (3)

還流ダイオードを有するMOSFETを少なくとも一方に用いた2つのスイッチング素子の直列回路を複数備え、これら直列回路の各スイッチング素子の相互接続点が負荷に接続されるスイッチング回路と、
前記各スイッチング素子のオン,オフ動作を制御する制御手段と、
前記MOSFETと同じ直列回路の他方のスイッチング素子のオンに先立ち、同MOSFETの還流ダイオードに逆電圧を印加する逆電圧印加回路と、
前記MOSFETの駆動用および前記逆電圧印加回路の動作用の低電圧を出力する低電圧電源回路と、
前記低電圧電源回路の出力電圧を検出し、検出した電圧が所定値以下の場合に、前記低電圧電源回路の出力を停止する保護手段と、
を備えていることを特徴とするインバータ装置。
A switching circuit in which a plurality of series circuits of two switching elements each using a MOSFET having a free-wheeling diode are used, and an interconnection point of each switching element of these series circuits is connected to a load;
Control means for controlling the on / off operation of each switching element;
Prior to turning on the other switching element of the same series circuit as the MOSFET, a reverse voltage application circuit for applying a reverse voltage to the free wheel diode of the MOSFET,
A low voltage power supply circuit that outputs a low voltage for driving the MOSFET and for operating the reverse voltage application circuit;
Protecting means for detecting the output voltage of the low-voltage power supply circuit and stopping the output of the low-voltage power supply circuit when the detected voltage is a predetermined value or less;
An inverter device comprising:
還流ダイオードを有するMOSFETを少なくとも一方に用いた2つのスイッチング素子の直列回路を複数備え、これら直列回路の各スイッチング素子の相互接続点が負荷に接続されるスイッチング回路と、
前記各スイッチング素子のオン,オフ動作を制御する制御手段と、
前記MOSFETと同じ直列回路の他方のスイッチング素子のオンに先立ち、同MOSFETの還流ダイオードに逆電圧を印加する逆電圧印加回路と、
前記制御手段および前記逆電圧印加回路の動作用の低電圧を出力する低電圧電源回路と、
前記低電圧電源回路の出力電圧を検出し、検出した電圧が所定値以下の場合に、前記低電圧電源回路の出力を停止する保護手段と、
を備えていることを特徴とするインバータ装置。
A switching circuit in which a plurality of series circuits of two switching elements each using a MOSFET having a free-wheeling diode are used, and an interconnection point of each switching element of these series circuits is connected to a load;
Control means for controlling the on / off operation of each switching element;
Prior to turning on the other switching element of the same series circuit as the MOSFET, a reverse voltage application circuit for applying a reverse voltage to the free wheel diode of the MOSFET,
A low voltage power supply circuit that outputs a low voltage for operation of the control means and the reverse voltage application circuit;
Protecting means for detecting the output voltage of the low-voltage power supply circuit and stopping the output of the low-voltage power supply circuit when the detected voltage is a predetermined value or less;
An inverter device comprising:
請求項1または請求項2に記載のインバータ装置を圧縮機モータの電源として用いることを特徴とする冷凍サイクル装置。 A refrigerating cycle device using the inverter device according to claim 1 or 2 as a power source of a compressor motor.
JP2006027165A 2006-02-03 2006-02-03 Inverter, and refrigeration cycle device Pending JP2007209166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006027165A JP2007209166A (en) 2006-02-03 2006-02-03 Inverter, and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006027165A JP2007209166A (en) 2006-02-03 2006-02-03 Inverter, and refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2007209166A true JP2007209166A (en) 2007-08-16

Family

ID=38488116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027165A Pending JP2007209166A (en) 2006-02-03 2006-02-03 Inverter, and refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2007209166A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119526A1 (en) * 2009-04-15 2010-10-21 三菱電機株式会社 Inverter device, electric motor drive device, refrigeration/air-conditioning device, and electric power generation system
JP2011036079A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Inverter driver and refrigeration and air-conditioning apparatus
JP2011036075A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Inverter driver and refrigeration and air-conditioning equipment
JP2011062039A (en) * 2009-09-14 2011-03-24 Mitsubishi Electric Corp Inverter driving apparatus and refrigeration air conditioner
JP2012065375A (en) * 2010-09-14 2012-03-29 Mitsubishi Electric Corp Inverter drive device and refrigeration air conditioner
JP2016001991A (en) * 2015-07-29 2016-01-07 三菱電機株式会社 Motor drive device and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327585A (en) * 1997-05-23 1998-12-08 Toshiba Corp Power converter
JP2002199722A (en) * 2000-12-25 2002-07-12 Harison Toshiba Lighting Corp Power supply device and copying machine
JP2004205118A (en) * 2002-12-25 2004-07-22 Mitsubishi Electric Corp Control device for air conditioning system
JP2005124252A (en) * 2003-10-14 2005-05-12 Sharp Corp Switching power supply

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327585A (en) * 1997-05-23 1998-12-08 Toshiba Corp Power converter
JP2002199722A (en) * 2000-12-25 2002-07-12 Harison Toshiba Lighting Corp Power supply device and copying machine
JP2004205118A (en) * 2002-12-25 2004-07-22 Mitsubishi Electric Corp Control device for air conditioning system
JP2005124252A (en) * 2003-10-14 2005-05-12 Sharp Corp Switching power supply

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119526A1 (en) * 2009-04-15 2010-10-21 三菱電機株式会社 Inverter device, electric motor drive device, refrigeration/air-conditioning device, and electric power generation system
CN102396144A (en) * 2009-04-15 2012-03-28 三菱电机株式会社 Inverter device, electric motor drive device, refrigeration/air-conditioning device, and electric power generation system
JPWO2010119526A1 (en) * 2009-04-15 2012-10-22 三菱電機株式会社 Inverter device, electric motor drive device, refrigeration air conditioner, and power generation system
US8836258B2 (en) 2009-04-15 2014-09-16 Mitsubishi Electric Corporation Inverter device, motor driving device, refrigerating air conditioner, and power generation system
JP5697591B2 (en) * 2009-04-15 2015-04-08 三菱電機株式会社 Electric motor drive device and refrigeration air conditioner
JP2011036079A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Inverter driver and refrigeration and air-conditioning apparatus
JP2011036075A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Inverter driver and refrigeration and air-conditioning equipment
JP2011062039A (en) * 2009-09-14 2011-03-24 Mitsubishi Electric Corp Inverter driving apparatus and refrigeration air conditioner
JP2012065375A (en) * 2010-09-14 2012-03-29 Mitsubishi Electric Corp Inverter drive device and refrigeration air conditioner
JP2016001991A (en) * 2015-07-29 2016-01-07 三菱電機株式会社 Motor drive device and air conditioner

Similar Documents

Publication Publication Date Title
WO2018074274A1 (en) Power conversion device and air conditioner
JP7104209B2 (en) Power converter and air conditioner equipped with it
JP5724451B2 (en) Power supply device and air conditioner
JP5505528B1 (en) Power consumption reduction device
KR20160052698A (en) Dc power source device, motor drive device, air conditioner, and refrigerator
JP2007209166A (en) Inverter, and refrigeration cycle device
JP4874374B2 (en) Inverter drive device and refrigeration air conditioner
EP1981159A1 (en) Refrigeration cycle device
JP4769587B2 (en) Inverter device
JP4300209B2 (en) Inverter device
JP2003219687A (en) Motor drive unit, blower, compressor, and refrigerating air conditioner
JP2000308353A (en) Power unit
JP5101001B2 (en) Inverter device
JP4208228B2 (en) Brushless motor drive unit for air conditioner fan
JP6762175B2 (en) Motor controller and air conditioner
JP7130568B2 (en) power supply
JP5121906B2 (en) Inverter drive device and refrigeration air conditioner
JP7246259B2 (en) Controllers and air conditioners
JP6884254B2 (en) Power converter and air conditioner
TWI810255B (en) Power conversion device and air conditioner equipped with it
JP7145965B2 (en) Power conversion circuit and air conditioner
JP7313231B2 (en) DC power supply, motor drive and air conditioner
JP2007163012A (en) Outdoor unit of refrigerating cycle device
JP4755915B2 (en) Inverter device
JP2018042294A (en) Electric power conversion system and air conditioner with the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726