JP2007205270A - Hermetic compressor and refrigeration cycle device - Google Patents

Hermetic compressor and refrigeration cycle device Download PDF

Info

Publication number
JP2007205270A
JP2007205270A JP2006025867A JP2006025867A JP2007205270A JP 2007205270 A JP2007205270 A JP 2007205270A JP 2006025867 A JP2006025867 A JP 2006025867A JP 2006025867 A JP2006025867 A JP 2006025867A JP 2007205270 A JP2007205270 A JP 2007205270A
Authority
JP
Japan
Prior art keywords
oil
hermetic compressor
refrigerant
refrigeration cycle
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006025867A
Other languages
Japanese (ja)
Inventor
Akira Morishima
明 森嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2006025867A priority Critical patent/JP2007205270A/en
Publication of JP2007205270A publication Critical patent/JP2007205270A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hermetic compressor improving oil separation efficiency to separate oil content of lubricating oil from compressed gas content, and a refrigeration cycle device provided with the hermetic compressor and sufficiently ensuring a refrigerant amount circulating in a refrigeration cycle. <P>SOLUTION: This hermetic compressor is provided with an oil sump part 20 provided in the inner bottom part of an enclosed case 1 and collectively storing lubricating oil for feeding to a compressing mechanism part 2, and an oil separator S carrying mixed particles including oil content of lubricating oil fed from the oil sump part to the compressing mechanism part and compressed gas content and separating oil content and gas content. The oil separator is composed of a bottomed cylindrical first member 31 arranged in one end part of a rotary shaft 4 or a rotor 6 composing an electric motor 3 and provided with a side wall part W with a refrigerant suction hole 33 arranged and an opening part in its upper surface, and a second member 32 directly attached to a refrigerant discharge pipe Pc or indirectly attached thereto through the other member, abutting on the opening end of the first member, and closing the upper surface opening part of the first member. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、油分離装置を改良した密閉型圧縮機と、この密閉型圧縮機を備えて冷凍サイクルを構成する冷凍サイクル装置に関する。   The present invention relates to a hermetic compressor with an improved oil separator and a refrigeration cycle apparatus that includes this hermetic compressor and constitutes a refrigeration cycle.

冷凍サイクル装置に用いられる、いわゆる縦型の密閉型圧縮機は、密閉ケース内の下部側に圧縮機構部が収容され、上部側に電動機部が収容されていて、これら圧縮機構部と電動機部は回転軸を介して連結される。上記密閉ケースの内底部には潤滑油を集溜する油溜り部が設けられていて、上記圧縮機構部の一部は油溜り部の潤滑油中に浸漬される。
上記電動機部に通電して回転軸が回転駆動されると圧縮機構部が作動し、圧縮機構部に直接冷媒ガスが吸込まれる。圧縮された冷媒ガスは高温高圧化して一旦、密閉ケース内へ吐出される。密閉ケース内に充満する高温高圧の冷媒ガスは、密閉ケースに接続される吐出管から導出され、冷凍サイクルを構成する凝縮器に導かれるようになっている。
A so-called vertical hermetic compressor used in a refrigeration cycle apparatus has a compression mechanism portion housed on the lower side in a hermetic case and an electric motor portion housed on the upper side, and these compression mechanism portion and electric motor portion are It is connected via a rotating shaft. An oil reservoir for collecting lubricating oil is provided at the inner bottom of the sealed case, and a part of the compression mechanism is immersed in the lubricating oil in the oil reservoir.
When the electric motor unit is energized and the rotary shaft is driven to rotate, the compression mechanism unit is operated, and the refrigerant gas is directly sucked into the compression mechanism unit. The compressed refrigerant gas is heated to a high temperature and pressure, and is once discharged into the sealed case. The high-temperature and high-pressure refrigerant gas filled in the sealed case is led out from a discharge pipe connected to the sealed case and led to a condenser constituting a refrigeration cycle.

なお、圧縮機構部から密閉ケース内に吐出される冷媒ガスには、圧縮機構部に給油され潤滑性を保持する潤滑油の油分が含まれている。すなわち、ガス分と油分との混合粒子となって密閉ケース内に吐出されるので、そのままの状態で吐出管から冷凍サイクルへ導出されると、油溜り部の潤滑油が不足を生じ、ついには潤滑性が損なわれてしまう。
そこで、たとえば[特許文献1]あるいは[特許文献2]に開示されるような、油分離器を備えた密閉型圧縮機が提供されるに至った。
Note that the refrigerant gas discharged from the compression mechanism into the sealed case contains an oil component of lubricating oil that is supplied to the compression mechanism and maintains lubricity. That is, mixed particles of gas and oil are discharged into the sealed case, and when led out from the discharge pipe to the refrigeration cycle as they are, the lubricating oil in the oil sump is insufficient. Lubricity will be impaired.
Thus, for example, a hermetic compressor including an oil separator as disclosed in [Patent Document 1] or [Patent Document 2] has been provided.

[特許文献1]では、ロータ上部のエンドリングに回転軸とともに回転する油分離器が、エンドリングと一体成形されて取付けられる。この油分離容器の上面開口部から内部に吐出管が挿入され、下端開口部は容器底面と間隙を存している。この吐出管には油分離器の上面開口部とは間隙を存して油分離板が取付けられている。
[特許文献2]では、ロータ上部に、回転軸上端と間隙を存して閉鎖する凹部を備えた油分離板が取付けられる。回転軸の軸方向に給油通路が貫通形成され、油分離板凹部が給油通路を吐出空間に対し閉鎖する。吐出管は油分離板の凹部内に挿入され、下端開口部は凹部底面と間隙を存している。
実開平2−056891号公報 実開平2−107783号公報
In [Patent Document 1], an oil separator that rotates together with a rotating shaft is attached to an end ring at the top of a rotor by being integrally formed with the end ring. A discharge pipe is inserted into the oil separation container from the upper surface opening, and the lower end opening has a gap with the container bottom. An oil separator plate is attached to the discharge pipe with a gap from the upper opening of the oil separator.
In [Patent Document 2], an oil separation plate having a recess that closes with a gap between the upper end of the rotary shaft is attached to the upper portion of the rotor. An oil supply passage is formed penetrating in the axial direction of the rotary shaft, and the oil separation plate recess closes the oil supply passage with respect to the discharge space. The discharge pipe is inserted into the recess of the oil separation plate, and the lower end opening has a gap with the bottom of the recess.
Japanese Utility Model Publication No. 2-056891 Japanese Utility Model Publication No. 2-107783

いずれの構成も、密閉ケース内部へ圧縮された冷媒ガスが吐出されることによって高圧化し、その影響で油分離器を構成する凹部の上面開口部から内部に混合粒子が導入される。そして、ロータの回転にともなって凹部内の混合粒子に遠心力が作用し、凹部の側壁部に衝突する。このことにより、混合粒子はガス分と油分とに分離される。   In any configuration, the compressed refrigerant gas is discharged into the sealed case to increase the pressure, and as a result, the mixed particles are introduced into the inside from the upper surface opening of the recess constituting the oil separator. As the rotor rotates, centrifugal force acts on the mixed particles in the recess and collides with the side wall of the recess. As a result, the mixed particles are separated into a gas component and an oil component.

ガス分は比重が軽いので、吐出管に吸込まれ冷凍サイクル機器に導かれる。油分は凹部側壁部に付着したまま残るが、油分離器の回転にともない徐々に側壁部上端にまで上昇し、ついには周囲へ飛散する。油分は、密閉ケースと電動機部および圧縮機構部に形成される隙間を介して油溜り部へ流下する。   Since the specific gravity of the gas is light, it is sucked into the discharge pipe and led to the refrigeration cycle equipment. The oil remains attached to the side wall of the recess, but gradually rises to the upper end of the side wall as the oil separator rotates, and finally scatters to the surroundings. The oil component flows down to the oil reservoir through a gap formed in the sealed case, the electric motor unit, and the compression mechanism unit.

このようにして油分離作用がなされるが、いずれの構成も吐出管の端部が密閉ケース内の空間部に直接開口するため、油分離効果が十分ではなく、吐出管から冷凍サイクルへ導出される油量を十分に低減することができなかった。   In this way, the oil separation action is performed, but in either configuration, the end of the discharge pipe opens directly into the space in the sealed case, so the oil separation effect is not sufficient and the discharge pipe is led to the refrigeration cycle. The amount of oil to be removed could not be reduced sufficiently.

本発明は上記事情にもとづきなされたものであり、その目的とするところは、圧縮されたガス分から潤滑油の油分を分離する油分離効率の向上を図った密閉型圧縮機と、この密閉型圧縮機を備えた冷凍サイクルを提供しようとするものである。   The present invention has been made on the basis of the above circumstances, and an object of the present invention is to provide a hermetic compressor for improving the oil separation efficiency for separating the oil component of the lubricating oil from the compressed gas component, and this hermetic compressor. It is intended to provide a refrigeration cycle equipped with a machine.

上記目的を満足するため本発明の密閉型圧縮機は、密閉ケースと、この密閉ケース内に収容されステータとロータとからなる電動機部および、この電動機部と回転軸を介して連結される圧縮機構部と、上記密閉ケースに接続される吐出管と、密閉ケースの内底部に設けられ圧縮機構部に給油するための潤滑油を集溜する油溜り部と、この油溜り部から圧縮機構部に給油された潤滑油と圧縮されたガス冷媒との混合粒子を導き、油分とガス分とを分離する油分離装置とを備え、
上記油分離装置は、回転軸または電動機部を構成するロータの一端部に設けられ冷媒吸込み孔が設けられた側壁部および上面に開口部を備えた有底筒状の第1の部材と、吐出管に直接的もしくは他の部材を介して間接的に取付けられ第1の部材の開口端に当接して、第1の部材の上面開口部を閉塞する第2の部材とからなる。
上記目的を満足するため本発明の冷凍サイクル装置は、上述の密閉型圧縮機とともに、凝縮器と、膨張装置と、蒸発器を備えて冷凍サイクルを構成する。
In order to satisfy the above object, a hermetic compressor according to the present invention includes a hermetic case, an electric motor unit that is housed in the hermetic case and includes a stator and a rotor, and a compression mechanism that is connected to the electric motor unit via a rotating shaft. , A discharge pipe connected to the sealing case, an oil reservoir provided on the inner bottom of the sealing case for collecting lubricating oil for supplying oil to the compression mechanism, and the oil reservoir to the compression mechanism An oil separation device that guides mixed particles of lubricated oil and compressed gas refrigerant and separates the oil and gas components;
The oil separation device includes a bottomed cylindrical first member provided at one end portion of a rotor constituting a rotating shaft or an electric motor portion and provided with a side wall portion provided with a refrigerant suction hole and an opening portion on an upper surface; The second member is attached to the pipe directly or indirectly through another member and abuts against the opening end of the first member to close the upper surface opening of the first member.
In order to satisfy the above object, the refrigeration cycle apparatus of the present invention comprises a condenser, an expansion device, and an evaporator together with the above-described hermetic compressor to constitute a refrigeration cycle.

本発明によれば、油分離効率の向上を図り、潤滑性を向上して信頼性を高める効果を奏する。   According to the present invention, it is possible to improve oil separation efficiency, improve lubricity, and improve reliability.

以下、本発明の実施の形態を、図面にもとづいて説明する。
図1は、密閉型圧縮機Aの断面構造と、この密閉型圧縮機Aを備えた冷凍サイクル装置の概略の構成図である。
はじめに、冷凍サイクル装置の構成から説明すると、密閉型圧縮機Aと、凝縮器Bと、膨張装置Cと、蒸発器Dおよび気液分離器Eを備えていて、これら構成部品は順次、冷媒管Pを介して連通される。後述すように密閉型圧縮機Aで圧縮された冷媒ガスは冷媒管Pに吐出され、以上の構成部品の順に循環して冷凍サイクル作用をなし、再び密閉型圧縮機Aに吸込まれるようになっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a sectional structure of a hermetic compressor A and a refrigeration cycle apparatus including the hermetic compressor A.
First, the configuration of the refrigeration cycle apparatus will be described. A hermetic compressor A, a condenser B, an expansion device C, an evaporator D, and a gas-liquid separator E are provided. Communicate through P. As will be described later, the refrigerant gas compressed by the hermetic compressor A is discharged to the refrigerant pipe P, circulates in the order of the above components, performs the refrigeration cycle, and is sucked into the hermetic compressor A again. It has become.

上記密閉型圧縮機Aにおいて、図中1は、上端が開口する有底筒状のメインケース1aと、このメインケース1aの上端開口部を閉塞するカップ状のアッパケース1bからなる密閉ケースである。この密閉ケース1内の下部には圧縮機構部2が設けられ、上部には電動機部3が設けられる。これら圧縮機構部2と電動機部3は、回転軸4を介して連結される。
上記電動機部3は、たとえばブラシレスDC同期モータ(ACモータもしくは商用モータでもよい)が用いられていて、密閉ケース1の内面に圧入固定されるステータ5と、このステータ5の内側に所定の間隙を存して配置され、上記回転軸4に嵌着されるロータ6とから構成される。
In the above-described hermetic compressor A, reference numeral 1 in the figure denotes a sealed case including a bottomed cylindrical main case 1a having an open upper end and a cup-shaped upper case 1b for closing the upper end opening of the main case 1a. . A compression mechanism portion 2 is provided at the lower portion in the sealed case 1, and an electric motor portion 3 is provided at the upper portion. The compression mechanism unit 2 and the electric motor unit 3 are connected via a rotating shaft 4.
For example, a brushless DC synchronous motor (which may be an AC motor or a commercial motor) is used as the electric motor unit 3, and a stator 5 that is press-fitted and fixed to the inner surface of the sealed case 1 and a predetermined gap inside the stator 5. And a rotor 6 that is disposed on the rotating shaft 4.

上記圧縮機構部2は、第1の圧縮機構部2Aと第2の圧縮機構部2Bとから構成される。上記第1の圧縮機構部2Aは上部側に形成され、第1のシリンダ8Aを備えている。第2の圧縮機構部2Bは第1のシリンダ8Aとは中間仕切り板7を介した下部に形成され、第2のシリンダ8Bを備えている。
これら第1、第2のシリンダ8A,8Bは、互いに外形形状寸法と内径寸法が同一である。第1、第2のシリンダ8A,8Bの外径寸法は密閉ケース1の内径寸法よりも僅かに大に形成され、密閉ケース1内周面に圧入されたうえに、密閉ケース1外部からの溶接加工によって位置決め固定される。
The compression mechanism unit 2 includes a first compression mechanism unit 2A and a second compression mechanism unit 2B. The first compression mechanism 2A is formed on the upper side and includes a first cylinder 8A. The second compression mechanism 2B is formed at the lower part of the first cylinder 8A via the intermediate partition plate 7, and includes a second cylinder 8B.
The first and second cylinders 8A and 8B have the same outer shape and inner diameter. The outer diameters of the first and second cylinders 8A and 8B are slightly larger than the inner diameter of the sealed case 1 and are press-fitted into the inner peripheral surface of the sealed case 1 and then welded from the outside of the sealed case 1 It is positioned and fixed by processing.

第1のシリンダ8Aの上面部に第1の軸受9が重ね合わされ、バルブカバーaとともに取付けボルト10を介して第1のシリンダ8Aに取付け固定される。第2のシリンダ8Bの下面部には第2の軸受11が重ね合わされ、バルブカバーbとともに取付けボルト12を介して第2のシリンダ8Bに取付け固定される。
上記回転軸4は、最下端部が第2の軸受11に回転自在に枢支され、その上部が第1の軸受9に回転自在に枢支される。さらに、回転軸4は各シリンダ8A,8B内部を貫通するとともに、略180°の位相差をもって形成される2つの偏心部4a,4bを一体に備えている。
The first bearing 9 is superimposed on the upper surface of the first cylinder 8A, and is fixed to the first cylinder 8A via the mounting bolt 10 together with the valve cover a. A second bearing 11 is superimposed on the lower surface portion of the second cylinder 8B, and is fixed to the second cylinder 8B via the mounting bolt 12 together with the valve cover b.
The rotary shaft 4 has a lowermost end pivotally supported by the second bearing 11 and an upper portion pivotally supported by the first bearing 9. Further, the rotary shaft 4 penetrates through the cylinders 8A and 8B and is integrally provided with two eccentric portions 4a and 4b formed with a phase difference of about 180 °.

各偏心部4a,4bは互いに同一直径をなし、各シリンダ8A,8B内径部に位置するよう組立てられる。これら偏心部4a,4bの周面には、互いに同一直径をなす偏心ローラ13a,13bが嵌合される。各偏心ローラ13a,13bの軸方向長さは、上記第1のシリンダ8Aと第2のシリンダ8Bの板厚(軸方向長さ)と同一に揃えられる。
上記第1のシリンダ8Aと第2のシリンダ8Bは、上記第1の軸受9と中間仕切り板7および第2の軸受11で上下面が区画され、それぞれの内部に上記偏心ローラ13a,13bが偏心回転自在に収容される第1のシリンダ室14aと第2のシリンダ室14bが形成される。偏心ローラ13a,13bは互いに180°の位相差があるが、第1、第2のシリンダ室14a,14bにおいて偏心回転できる。
The eccentric portions 4a and 4b have the same diameter as each other, and are assembled so as to be located in the inner diameter portions of the cylinders 8A and 8B. Eccentric rollers 13a and 13b having the same diameter are fitted on the peripheral surfaces of the eccentric parts 4a and 4b. The axial lengths of the eccentric rollers 13a and 13b are made equal to the plate thickness (axial length) of the first cylinder 8A and the second cylinder 8B.
The first cylinder 8A and the second cylinder 8B have upper and lower surfaces defined by the first bearing 9, the intermediate partition plate 7, and the second bearing 11, and the eccentric rollers 13a and 13b are eccentric in the respective interiors. A first cylinder chamber 14a and a second cylinder chamber 14b that are rotatably accommodated are formed. Although the eccentric rollers 13a and 13b have a phase difference of 180 ° from each other, they can rotate eccentrically in the first and second cylinder chambers 14a and 14b.

第1、第2のシリンダ8A,8Bには、ブレード室15(第1のシリンダ8Aのみ示す。以下同じ)が設けられている。ブレード室15は各シリンダ室14a,14bに対して開放され、他の部分は密封構造となっている。各ブレード室15にはブレード16およびばね部材17が収容されている。
各ブレード16は、シリンダ室14a,14b側である先端部が平面視で略半円状に形成される。上記ばね部材17は圧縮ばねであって、ブレード16の後端とブレード室15端面との間に介在され、ブレード16に弾性力(背圧)を付与して先端をシリンダ室14a,14bへ突出させ、偏心ローラ13a,13b周面に弾性的に接触させる。
The first and second cylinders 8A and 8B are provided with a blade chamber 15 (only the first cylinder 8A is shown. The same applies hereinafter). The blade chamber 15 is open to the cylinder chambers 14a and 14b, and the other portions have a sealed structure. Each blade chamber 15 accommodates a blade 16 and a spring member 17.
Each blade 16 is formed in a substantially semicircular shape in a plan view at the tip portion on the cylinder chambers 14a, 14b side. The spring member 17 is a compression spring, and is interposed between the rear end of the blade 16 and the end face of the blade chamber 15, and applies an elastic force (back pressure) to the blade 16 so that the tip protrudes into the cylinder chambers 14a and 14b. And elastically contact the circumferential surfaces of the eccentric rollers 13a and 13b.

したがって、上記回転軸4が回転し、偏心部4a,4bが偏心回転して偏心ローラ13a,13bがシリンダ室14a,14bの内周壁に沿って偏心回転したとき、ブレード16はブレード室15に沿って往復運動し、偏心ローラ13a,13bの回転角度にかかわらず線接触してシリンダ室14a,14bを吸込み室と圧縮室に仕切ることとなる。
上記ブレード16は、先端がシリンダ室14a,14b内へ最も突出する部位にあるとき、後端がブレード室15内に位置する長さ寸法に形成される。逆に、偏心ローラ13a,13b周壁がシリンダ室14a,14b周壁およびブレード16の先端と密接状態にあり、ブレード16が最も後退したとき、ブレード16後端とブレード室15端面との間の距離は、上記ばね部材17の最大圧縮長さよりもわずかに大に形成されている。
Therefore, when the rotating shaft 4 rotates, the eccentric portions 4a and 4b rotate eccentrically, and the eccentric rollers 13a and 13b rotate eccentrically along the inner peripheral walls of the cylinder chambers 14a and 14b, the blade 16 moves along the blade chamber 15. The cylinder chambers 14a and 14b are separated into a suction chamber and a compression chamber by line contact regardless of the rotation angle of the eccentric rollers 13a and 13b.
The blade 16 is formed in such a length dimension that the rear end is located in the blade chamber 15 when the front end is at a portion that protrudes most into the cylinder chambers 14 a and 14 b. On the contrary, when the peripheral walls of the eccentric rollers 13a and 13b are in close contact with the peripheral walls of the cylinder chambers 14a and 14b and the tip of the blade 16, the distance between the rear end of the blade 16 and the end face of the blade chamber 15 is as follows. The spring member 17 is formed slightly larger than the maximum compression length.

なお、上記ばね部材17は各シリンダ室14a,14b内が高圧化しても、この圧力に打ち勝って常にブレード16の先端が偏心ローラ13a,13bの周面に弾性的に接触するよう構成される。
上記第1の軸受9と第2の軸受11には、図示しない吐出弁機構が設けられていて、それぞれがシリンダ室14a,14bに連通するとともに、バルブカバーa,bで覆われる。後述するように、各シリンダ室14a,14bで圧縮された冷媒ガスが所定圧に上昇した状態で吐出弁機構は開放され、シリンダ室14a,14bからバルブカバーa,b内へ吐出するようになっている。
The spring member 17 is configured such that even if the pressure in the cylinder chambers 14a and 14b is increased, the pressure of the blade 16 is always overcome and the tip of the blade 16 is elastically in contact with the peripheral surfaces of the eccentric rollers 13a and 13b.
The first bearing 9 and the second bearing 11 are each provided with a discharge valve mechanism (not shown), which communicates with the cylinder chambers 14a and 14b and is covered with valve covers a and b. As will be described later, the discharge valve mechanism is opened in a state where the refrigerant gas compressed in each cylinder chamber 14a, 14b has risen to a predetermined pressure, and discharged from the cylinder chambers 14a, 14b into the valve covers a, b. ing.

上記バルブカバーa,bにおいて圧縮された冷媒ガスは消音と整流作用を受け、ここから密閉ケース1内に直接的に導かれ、もしくは図示しないガス案内路を介して密閉ケース1内に導かれる。上記ロータ6とステータ5との間およびステータ5と密閉ケース1内周壁との間には間隙が、また、ロータ6には軸方向に貫通する貫通孔形成されていて、これらの間隙および貫通孔に第1の圧縮機構部2Aと第2の圧縮機構部2Bで圧縮された冷媒ガスが流通するようになっている。   The refrigerant gas compressed in the valve covers a and b is silenced and rectified, and is led directly into the sealed case 1 from here or is guided into the sealed case 1 through a gas guide path (not shown). A gap is formed between the rotor 6 and the stator 5 and between the stator 5 and the inner peripheral wall of the sealing case 1, and a through hole is formed in the rotor 6 so as to penetrate in the axial direction. The refrigerant gas compressed by the first compression mechanism portion 2A and the second compression mechanism portion 2B is circulated.

上記第1のシリンダ8Aと第2のシリンダ8Bには、吸込み冷媒管Pa,Pbが接続される。各吸込み冷媒管Pa、Paは、密閉ケース1を貫通して第1のシリンダ8Aと第2のシリンダ8Bにおける上記ブレード16で仕切られるシリンダ室14a,14bの一方側に連通されている。なお、上記ブレード16で仕切られるシリンダ室14a,14bの他方側に上記吐出弁機構が設けられる。
各吸込み冷媒管Pa,Pbは、密閉ケース1外部において上記気液分離器Eに連通される。上記吸込み冷媒管Pa,Pbが2本用いられるのは、上記密閉型圧縮機Aが2シリンダタイプであることによる。したがって、冷凍サイクルを構成する気液分離器Eと密閉型圧縮機Aとの間のみ2本の冷媒管で連通されることになる。
Suction refrigerant tubes Pa and Pb are connected to the first cylinder 8A and the second cylinder 8B. Each suction refrigerant pipe Pa, Pa is communicated with one side of cylinder chambers 14a, 14b penetrating the sealed case 1 and partitioned by the blade 16 in the first cylinder 8A and the second cylinder 8B. The discharge valve mechanism is provided on the other side of the cylinder chambers 14a and 14b partitioned by the blade 16.
Each suction refrigerant pipe Pa, Pb communicates with the gas-liquid separator E outside the sealed case 1. Two suction refrigerant tubes Pa and Pb are used because the hermetic compressor A is a two-cylinder type. Therefore, the two refrigerant tubes communicate with each other only between the gas-liquid separator E constituting the refrigeration cycle and the hermetic compressor A.

一方、密閉ケース1の内底部には潤滑油を集溜する油溜り部20が設けられていて、上記圧縮機構部2を構成する第2の圧縮機構部2Bの全部と、第1の圧縮機構部2Aのほとんど大部分が油溜り部20の潤滑油中に浸漬されている。
上記回転軸4の最下端面は第2の軸受11から露出していて、ここに図示しない給油ポンプが設けられる。上記給油ポンプには給油通路が連通していて、回転軸4の回転にともなって給油ポンプが油溜り部20の潤滑油を吸い上げ、上記給油通路に導くようになっている。
On the other hand, an oil reservoir 20 for collecting lubricating oil is provided at the inner bottom of the sealed case 1, and the second compression mechanism 2B constituting the compression mechanism 2 and the first compression mechanism are all provided. Almost most of the portion 2A is immersed in the lubricating oil of the oil reservoir 20.
The lowermost end surface of the rotating shaft 4 is exposed from the second bearing 11, and an oil supply pump (not shown) is provided here. The oil supply passage communicates with the oil pump, and the oil supply pump sucks up the lubricating oil in the oil reservoir 20 as the rotary shaft 4 rotates, and guides it to the oil supply passage.

上記給油通路は、圧縮機構部2の各摺接部へ分岐して設けられる。上記摺接部として、たとえば回転軸4と第1の軸受9との間、回転軸4と第2の軸受11との間、回転軸偏心部4a,4bと各偏心ローラ13a,13bとの間、各偏心ローラ13a,13bと第1、第2のシリンダ室14a,14b周壁との間などがある。
このようにして構成される密閉型圧縮機の密閉ケース1内には、第1の実施の形態としての油分離装置Sが設けられる。つぎに、油分離装置Sについて詳述する。
図2は油分離装置Sを分解した斜視図、図3は油分離装置Sの一部断面図、図4は油分離装置Sの作用を説明する図である。
The oil supply passage is branched to each sliding contact portion of the compression mechanism portion 2. As the sliding contact portion, for example, between the rotating shaft 4 and the first bearing 9, between the rotating shaft 4 and the second bearing 11, between the rotating shaft eccentric portions 4a and 4b and the eccentric rollers 13a and 13b. Between the eccentric rollers 13a and 13b and the peripheral walls of the first and second cylinder chambers 14a and 14b.
In the hermetic case 1 of the hermetic compressor configured as described above, an oil separation device S as a first embodiment is provided. Next, the oil separator S will be described in detail.
2 is an exploded perspective view of the oil separator S, FIG. 3 is a partial cross-sectional view of the oil separator S, and FIG. 4 is a diagram for explaining the operation of the oil separator S.

上記油分離装置Sは、上記電動機部3の上端面から上方へ突出された回転軸4の上端部と、上記密閉ケース1の上端をなすアッパケース1bを貫通する吐出冷媒管Pとの間に設けられる。
油分離装置Sは、回転軸4の上端部に取付けられる第1の部材31と、上記吐出冷媒管Pcに取付けられる第2の部材32とから構成される。なお、上記第1の部材31は、上記電動機3を構成するロータ6の上端部に取付け手段を介して取付けてもよい。第2の部材32は、上記吐出冷媒管Pcに何らかの取付け部材を介して取付けてもよい。
The oil separation device S is provided between the upper end portion of the rotating shaft 4 protruding upward from the upper end surface of the electric motor unit 3 and the discharge refrigerant pipe P penetrating the upper case 1b forming the upper end of the sealed case 1. Provided.
The oil separator S is composed of a first member 31 attached to the upper end portion of the rotating shaft 4 and a second member 32 attached to the discharge refrigerant pipe Pc. The first member 31 may be attached to the upper end portion of the rotor 6 constituting the electric motor 3 via attachment means. The second member 32 may be attached to the discharge refrigerant pipe Pc via some attachment member.

上記第1の部材31は、円板状のディスク鍔部31aを中間にして、下部側にディスクボス部31bと、上部側にディスク円筒部31cが、それぞれ一体に連結される。上記ディスクボス部31bは回転軸4と一体に連結されていて、周壁と下部一部はディスク鍔部31aの板厚と同一の厚みを有する。すなわち、ディスク鍔部31aとディスクボス部31bとで凹部が形成される。
上記ディスク円筒部31cは、ディスクボス部31bの内径よりも若干大きな内径を有し、ディスク鍔部31aの上面に一体に連設される。ディスク円筒部31cは、上記ディスクボス部31bの高さ(軸方向長さ)と略同等、もしくはある程度高く形成された円筒体であり、その上端は内側に折曲形成される。
The first member 31 has a disk-shaped disc flange 31a in the middle, and a disc boss portion 31b on the lower side and a disc cylindrical portion 31c on the upper side are integrally connected. The disk boss part 31b is integrally connected to the rotating shaft 4, and the peripheral wall and a part of the lower part have the same thickness as the thickness of the disk flange part 31a. That is, a concave portion is formed by the disc flange portion 31a and the disc boss portion 31b.
The disc cylindrical portion 31c has an inner diameter slightly larger than the inner diameter of the disc boss portion 31b, and is integrally connected to the upper surface of the disc flange portion 31a. The disc cylindrical portion 31c is a cylindrical body formed substantially equal to or higher than the height (axial length) of the disc boss portion 31b, and its upper end is bent inward.

換言すれば、第1の部材31は上端に開口部が形成され、周壁が段状の有底筒状をなす。このような第1の部材31におけるディスク円筒部31cの周壁を、側壁部Wと呼び、この側壁部Wには複数の冷媒吸込み孔33が周方向に所定間隔を存して設けられる。これら冷媒吸込み孔33は、極く小さい直径(φ3mm程度)であればよい。
それぞれの冷媒吸込み孔33は側壁部Wの外面全周に亘って巻き付けられる網状のフィルタ34で覆われる。ここでは、上記網状のフィルタ34を第1の部材31の側壁部W外面全周に亘って取付けたが、これに限定されるものではなく、内面全周に亘って取付けるようにしてもよく、内外面とも全周に亘って取付けるようにしてもよい。
In other words, the first member 31 has an opening at the upper end, and the peripheral wall has a stepped bottomed cylindrical shape. Such a peripheral wall of the disk cylindrical portion 31c in the first member 31 is referred to as a side wall portion W, and a plurality of refrigerant suction holes 33 are provided in the side wall portion W at predetermined intervals in the circumferential direction. These refrigerant suction holes 33 may have a very small diameter (about φ3 mm).
Each refrigerant suction hole 33 is covered with a net-like filter 34 wound around the entire outer surface of the side wall W. Here, the mesh filter 34 is attached over the entire outer periphery of the side wall W of the first member 31, but is not limited thereto, and may be attached over the entire inner periphery, The inner and outer surfaces may be attached over the entire circumference.

また、上記第1の部材31におけるディスク円筒部31c上端の内側に折曲形成された部位をディスク端摺動面dと呼び、このディスク端摺動面dの上面に上記第2の部材32が載置される。
上記第2の部材32は、上記第1の部材31のディスク端摺動面d上に直接載置されるカバー鍔部32aと、このカバー鍔部32a上面に一体に立設されるカバーボス部32bとから構成される。なお説明すると、カバー鍔部32aの外径は上記第1の部材31のディスク端摺動面d外径よりもわずかに小に形成され、載置可能である。カバー鍔部32aは中心軸に沿って孔部が形成され、この孔部の周面で中心軸方向に沿ってカバーボス部32bが設けられる。
A portion of the first member 31 that is bent inside the upper end of the disk cylindrical portion 31c is called a disk end sliding surface d, and the second member 32 is formed on the upper surface of the disk end sliding surface d. Placed.
The second member 32 includes a cover flange portion 32a that is directly placed on the disk end sliding surface d of the first member 31, and a cover boss portion 32b that stands integrally on the upper surface of the cover flange portion 32a. It consists of. In other words, the outer diameter of the cover flange 32a is formed slightly smaller than the outer diameter of the disk end sliding surface d of the first member 31 and can be placed thereon. The cover flange 32a is formed with a hole along the central axis, and a cover boss 32b is provided along the central axis on the peripheral surface of the hole.

上記カバーボス部32bには周方向に所定間隔を存して複数のスリットeが、カバーボス部32b上端からカバー鍔部32a近傍まで設けられる。したがって、カバーボス部32bは複数の片部に分割されている。カバーボス部32bの上端で、この内周面には、中心軸側へ一体に突出する突起部fが設けられる。
これに対して上記吐出冷媒管Pcは、密閉ケース1内部において第2の部材32上端とは間隙を存した上部にストッパ部35が一体に設けられる。このストッパ部35の外径は、上記第2の部材32のカバーボス部32b外径よりも小に形成されている。ストッパ部35の下部側には副スライド部36と主スライド部37が一体に連設される。
The cover boss portion 32b is provided with a plurality of slits e at predetermined intervals in the circumferential direction from the upper end of the cover boss portion 32b to the vicinity of the cover collar portion 32a. Therefore, the cover boss portion 32b is divided into a plurality of pieces. At the upper end of the cover boss portion 32b, a projection portion f that protrudes integrally to the central axis side is provided on the inner peripheral surface.
On the other hand, the discharge refrigerant pipe Pc is integrally provided with a stopper portion 35 in the upper part of the sealed case 1 with a gap from the upper end of the second member 32. The outer diameter of the stopper portion 35 is formed smaller than the outer diameter of the cover boss portion 32 b of the second member 32. A sub slide portion 36 and a main slide portion 37 are integrally connected to the lower side of the stopper portion 35.

上記副スライド部36は、軸方向の略中間部から下部側が第2の部材32のカバーボス部32b内に挿入され、上部側が第2の部材32上端から上方へ突出する位置にある。そして、副スライド部36の外径はカバーボス部32b上端に形成される突起部fの先端相互の直径よりもわずかに小に形成されている。
上述したように、カバーボス部32bにスリットeが設けられ、カバーボス部32bは複数の片部に形成されるところから、図3に拡大して示すように、副スライド部36が第2の部材32に挿入された状態で突起部f先端が副スライド部36周面に弾性的に当接している。
The sub-slide portion 36 has a lower side inserted from the substantially middle portion in the axial direction into the cover boss portion 32b of the second member 32, and an upper side located at a position protruding upward from the upper end of the second member 32. The sub-slide part 36 has an outer diameter slightly smaller than the diameter of the protrusions f formed at the upper end of the cover boss part 32b.
As described above, since the slit e is provided in the cover boss portion 32b and the cover boss portion 32b is formed in a plurality of pieces, as shown in an enlarged view in FIG. The tip of the protrusion f is in elastic contact with the peripheral surface of the sub-slide part 36 in a state where it is inserted into the auxiliary slide 36.

上記主スライド部37は、第2の部材32内に挿入されるとともに、この下端部は第1の部材31のディスク端摺動面d内径孔から下方に突出している。このような組立構造から、第1の部材31の上面開口部が第2の部材32と吐出冷媒管Pcの主スライド部37によって塞がれ、これらの内部に空間室Hが形成される。
上記主スライド部37の外径φd2は副スライド部36の外径φd1よりもわずかに大に形成されているが、上記カバーボス部32bの内径よりも小に形成される。したがって、第2の部材32は突起部f側から吐出冷媒管Pc下端である主スライド部37に挿入可能である。そのまま第2の部材32を吐出冷媒管Pcの軸方向に沿って上昇移動すれば、突起部fが主スライド部37から副スライド部36に移行する。
The main slide portion 37 is inserted into the second member 32, and the lower end portion projects downward from the inner diameter hole of the disk end sliding surface d of the first member 31. From such an assembly structure, the upper surface opening of the first member 31 is closed by the second member 32 and the main slide portion 37 of the discharge refrigerant pipe Pc, and a space chamber H is formed in these.
The outer diameter φd2 of the main slide portion 37 is slightly larger than the outer diameter φd1 of the auxiliary slide portion 36, but is smaller than the inner diameter of the cover boss portion 32b. Therefore, the second member 32 can be inserted into the main slide portion 37 which is the lower end of the discharge refrigerant pipe Pc from the protrusion f side. If the second member 32 is moved up along the axial direction of the discharge refrigerant pipe Pc as it is, the projecting portion f moves from the main slide portion 37 to the sub slide portion 36.

突起部f先端が副スライド部36に位置した状態で、カバーボス部32b内に主スライド部37が位置することになる。また、第2の部材32は吐出冷媒管Pcの軸方向に沿って自由に移動自在である。図のように組立てられた状態で、第2の部材32のカバー鍔部32aが第1の部材31のディスク端摺動面d上に載置される。
上記第2の部材32の下部に第1の部材31が存在しなければ、当然、第2の部材32は自重で下方に移動して、吐出冷媒管Pc下端から脱落しようとする。しかしながら、主スライド部37の直径は副スライド部36の直径よりもある程度大に形成され、これらの連接部分には段部gが形成されているから、上記突起部fは上記段部gに引っ掛って脱落が規制されるようになっている。
The main slide portion 37 is positioned in the cover boss portion 32b in a state where the tip of the protrusion f is positioned on the sub slide portion 36. Further, the second member 32 is freely movable along the axial direction of the discharge refrigerant pipe Pc. The cover collar 32a of the second member 32 is placed on the disk end sliding surface d of the first member 31 in the assembled state as shown in the figure.
If the first member 31 does not exist below the second member 32, the second member 32 naturally moves downward under its own weight and tends to fall off from the lower end of the discharge refrigerant pipe Pc. However, the diameter of the main slide portion 37 is formed to be somewhat larger than the diameter of the sub-slide portion 36, and the step portion g is formed at these connecting portions. It is designed to prevent dropping out.

その一方で、副スライド部36の上端にはストッパ部35が設けられていて、このストッパ部35の外径は副スライド部36の外径よりも大に形成されている。したがって、第2の部材32を上昇移動しても、この上端がストッパ部35に引っ掛って移動が規制される。換言すれば、第2の部材32は副スライド部36の軸方向長さの範囲内で移動自在である。
また、第2の部材32を吐出冷媒管Pcに掛合するには、吐出冷媒管Pc下端の主スライド部37から挿入して組立てることは勿論である。特に、上記第2の部材32は合成樹脂系材料を用いて形成することが必要である。具体的には、PTFE(エチレン−4弗化エチレン)、PFA(パーフルオロアルコキシ)、PEEK(ポリエーテル−エーテルケトン)のいずれかから選択するとよい。
On the other hand, a stopper portion 35 is provided at the upper end of the auxiliary slide portion 36, and the outer diameter of the stopper portion 35 is formed larger than the outer diameter of the auxiliary slide portion 36. Therefore, even if the second member 32 is moved upward, the upper end is caught by the stopper portion 35 and the movement is restricted. In other words, the second member 32 is movable within the range of the axial length of the auxiliary slide portion 36.
In order to engage the second member 32 with the discharge refrigerant pipe Pc, it goes without saying that the second member 32 is inserted and assembled from the main slide portion 37 at the lower end of the discharge refrigerant pipe Pc. In particular, the second member 32 needs to be formed using a synthetic resin material. Specifically, it may be selected from any of PTFE (ethylene-4 fluoroethylene), PFA (perfluoroalkoxy), and PEEK (polyether-etherketone).

このようにして構成される油分離装置Sを備えた密閉型圧縮機Aであり、電動機部3に通電すると回転軸4が回転駆動され、圧縮機構部2の第1のシリンダ室14aと第2のシリンダ室14b内において偏心ローラ13a,13bが偏心移動する。各シリンダ室14a,14bにおいてブレード16で仕切られ、かつ第1、第2の吸込み冷媒管Pa,Pbが接続される一方室に気液分離器Eで分離された冷媒ガスが各吸込み冷媒管14a,14bを介して吸込まれる。
回転軸4に突設される偏心部4a,4bが180°の位相差が存在するように形成されているところから、冷媒ガスの各吸込み冷媒管Pa,Pbからシリンダ室14a,14b内に吸込まれるタイミングも当然、180°の位相差が存在する。各偏心ローラ13a,13bが偏心移動して吐出弁機構側の室の容積が減少し、その分圧力が上昇する。
The hermetic compressor A includes the oil separation device S configured as described above. When the electric motor unit 3 is energized, the rotary shaft 4 is driven to rotate, and the first cylinder chamber 14a and the second cylinder of the compression mechanism unit 2 are driven. The eccentric rollers 13a and 13b move eccentrically in the cylinder chamber 14b. In each cylinder chamber 14a, 14b, the refrigerant gas separated by the gas-liquid separator E in one chamber is partitioned by the blade 16 and connected to the first and second suction refrigerant tubes Pa, Pb. , 14b.
Since the eccentric portions 4a and 4b protruding from the rotating shaft 4 are formed so as to have a phase difference of 180 °, the refrigerant gas is sucked into the cylinder chambers 14a and 14b from the refrigerant pipes Pa and Pb. Of course, there is a phase difference of 180 °. Each eccentric roller 13a, 13b moves eccentrically, the volume of the chamber on the discharge valve mechanism side decreases, and the pressure increases accordingly.

吐出弁機構側の室の容積がほとんどゼロになったとき、この室で圧縮された冷媒ガスは所定の圧力まで上昇する。同時に吐出弁機構が開放され、圧縮されて高温高圧化した冷媒ガスはバルブカバーa,b内に吐出される。圧縮された冷媒ガスが吐出弁機構へ吐出されるタイミングも180°の位相差が存在する。
圧縮された冷媒ガスは各バルブカバーa,bから直接的、もしくは間接的に密閉ケース1内の圧縮機構部2と電動機部3との間の空間部へ導出される。そして、回転軸4と電動機部3を構成するロータ6との間、ロータ6とステータ5との間、ステータ5と密閉ケース1内周壁との間に形成される間隙を流通し、電動機部3の上部側密閉ケース1内に充満する。
When the volume of the chamber on the discharge valve mechanism side becomes almost zero, the refrigerant gas compressed in this chamber rises to a predetermined pressure. At the same time, the discharge valve mechanism is opened, and the compressed and high-temperature and high-pressure refrigerant gas is discharged into the valve covers a and b. The timing at which the compressed refrigerant gas is discharged to the discharge valve mechanism also has a phase difference of 180 °.
The compressed refrigerant gas is led out from the valve covers a and b directly or indirectly to the space between the compression mechanism 2 and the motor 3 in the sealed case 1. Then, a gap formed between the rotating shaft 4 and the rotor 6 constituting the electric motor unit 3, between the rotor 6 and the stator 5, and between the stator 5 and the inner peripheral wall of the sealed case 1 is circulated. The inside of the upper case 1 is filled.

その一方で、回転軸4の回転にともなって最下端部に設けられる給油ポンプは油溜り部20の潤滑油を吸上げ、給油通路を介して回転軸4と第1の軸受9との間などの各摺接部へ給油する。各摺接部においては、油溜り部20から充分な量の潤滑油が導かれ、潤滑性を保持する。
上記圧縮機構部2の各摺接部に導かれて潤滑をなしたあとの潤滑油は、一部が直接油溜り部20へ戻るが、そのほとんど大部分は各シリンダ室14a,14bで圧縮される冷媒ガスとともにバルブカバーa,bを介して密閉ケース1内部へ吐出される。すなわち、冷媒ガスのガス分と、潤滑油の油分とが混合する混合粒子が、密閉ケース1内の電動機部3上部に充満する。
On the other hand, the oil pump provided at the lowermost end as the rotary shaft 4 rotates sucks up the lubricating oil in the oil reservoir 20 and passes between the rotary shaft 4 and the first bearing 9 through the oil supply passage. Supply oil to each sliding contact part. In each sliding contact portion, a sufficient amount of lubricating oil is guided from the oil reservoir portion 20 to maintain lubricity.
A part of the lubricating oil after being guided to each sliding contact portion of the compression mechanism portion 2 and lubricated returns directly to the oil reservoir portion 20, but most of the lubricating oil is compressed in the cylinder chambers 14a and 14b. The refrigerant gas is discharged into the sealed case 1 through the valve covers a and b. That is, the mixed particles in which the gas component of the refrigerant gas and the oil component of the lubricating oil are mixed fill the upper portion of the electric motor unit 3 in the sealed case 1.

上記油分離装置Sは電動機部3の上部に充満する混合粒子内に位置し、第1の部材31と第2の部材32および吐出冷媒管Pcとで空間室Hが形成される。この空間室Hは、第1の部材31の側壁部Wに設けられる冷媒吸込み孔33を介して第1の部材31の外部である密閉ケース1内部と連通している。
密閉ケース1内に高温高圧の冷媒ガスが吐出されることによって、密閉ケース1内が高圧化し、その影響で油分離装置Sの冷媒吸込み孔33から空間室Hへ油分とガス分の混合粒子が流入しようとする。
The oil separation device S is located in the mixed particles filling the upper part of the electric motor unit 3, and a space chamber H is formed by the first member 31, the second member 32, and the discharge refrigerant pipe Pc. This space chamber H communicates with the inside of the sealed case 1 that is the outside of the first member 31 through the refrigerant suction hole 33 provided in the side wall portion W of the first member 31.
When high-temperature and high-pressure refrigerant gas is discharged into the sealed case 1, the inside of the sealed case 1 is increased in pressure, and as a result, mixed particles of oil and gas from the refrigerant suction hole 33 of the oil separation device S enter the space H. Try to flow in.

しかしながら、第1の部材31は回転軸4に一体に連設されて、回転軸4とともに高速で回転駆動されている。そのため、混合粒子は冷媒吸込み孔33を流通する際に側壁部Wによって叩かれ、油分とガス分とに分離される。さらに、第1の部材31のディスク鍔部31aによって叩かれ、油分とガス分とに分離される。
また、上記冷媒吸込み孔33は網状のフィルタ34で覆われ、第1の部材31と一体に回転しているので、混合粒子はフィルタ34によっても叩かれて、油分とガス分とに分離される。
However, the first member 31 is integrally connected to the rotating shaft 4 and is driven to rotate at a high speed together with the rotating shaft 4. Therefore, the mixed particles are struck by the side wall W when flowing through the refrigerant suction hole 33 and separated into oil and gas. Further, the first member 31 is struck by the disk flange 31a and separated into an oil component and a gas component.
Further, since the refrigerant suction hole 33 is covered with a net-like filter 34 and is rotated integrally with the first member 31, the mixed particles are also hit by the filter 34 and separated into an oil component and a gas component. .

分離された油分はガス分より比重の大きいので、フィルタ34もしくは第1の部材側壁部Wや、ディスク鍔部31aに付着し、さらには第1の部材31の回転にともなって周囲へ飛散される。
上記油分離装置Sで分離された油分は、密閉ケース1内周壁に油滴となって付着し、もしくは電動機部3上端面に油滴となって付着する。そして、油滴が集まって大型化し、上記隙間を流下する。ついには、油溜り部20に導かれ、ここに集溜する潤滑油に合流して再度の給油に供される。
Since the separated oil has a specific gravity greater than that of the gas, it adheres to the filter 34 or the first member side wall W or the disk flange 31a, and further scatters to the surroundings as the first member 31 rotates. .
The oil separated by the oil separator S adheres as oil droplets to the inner peripheral wall of the sealed case 1 or adheres as oil droplets to the upper end surface of the electric motor unit 3. Then, the oil droplets gather and increase in size, and flow down the gap. Eventually, the oil is guided to the oil reservoir 20 and merged with the lubricating oil collected therein to be supplied again.

その一方で、油分から分離されたガス分は比重が小さいので、フィルタ34の網目間を流通し、冷媒吸込み孔33を介して上記空間室Hに流入する。さらに、空間室Hから吐出冷媒管Pcを介して吸込まれ、密閉ケース1内から吐出される。
密閉型圧縮機Aから冷媒管Pに吐出された冷媒ガスは凝縮器Bに導かれて凝縮液化し、膨張装置Cに導かれて断熱膨張し、蒸発器Dに導かれて蒸発し、周囲から蒸発潜熱を奪って冷凍作用をなす。蒸発した冷媒は気液分離器Eに導かれて気液分離され、ガス分のみが密閉型圧縮機Aの圧縮機構部2に吸込まれて再度圧縮される。
On the other hand, since the gas component separated from the oil component has a low specific gravity, it flows through the mesh of the filter 34 and flows into the space H through the refrigerant suction hole 33. Further, the air is sucked from the space chamber H through the discharge refrigerant pipe Pc and discharged from the sealed case 1.
The refrigerant gas discharged from the hermetic compressor A to the refrigerant pipe P is led to the condenser B to be condensed and liquefied, led to the expansion device C to be adiabatically expanded, and led to the evaporator D to be evaporated. Takes away latent heat of vaporization and performs refrigeration. The evaporated refrigerant is guided to the gas-liquid separator E for gas-liquid separation, and only the gas component is sucked into the compression mechanism 2 of the hermetic compressor A and compressed again.

このようにして、上記密閉型圧縮機A内に油分離装置Sを備えて確実に油分離作用をなすことにより、密閉ケース1内部の潤滑油量の減少を確実に防止できる。密閉ケース1内底部に形成される油溜り部20には、常に潤滑に必要な油量(油面高さ位置)が確保される。各摺接部に対する潤滑は安定し、長期に亘って信頼性の高い密閉型圧縮機Aを提供できる。
油分離装置Sを構成する第1の部材31の側壁部Wに冷媒吸込み孔33を設け、内部を空間室Hとして吐出冷媒管Pcを連通させたから、冷媒吸込み孔33を流通しようとする混合粒子から油分とガス分を確実に分離し、油分は周囲に飛散させ、ガス分のみを冷媒吸込み孔33を流通させて空間室Hから吐出冷媒管Pcに導くことができる。
In this way, by providing the oil separation device S in the hermetic compressor A and reliably performing the oil separation action, a decrease in the amount of lubricating oil inside the hermetic case 1 can be reliably prevented. The oil reservoir 20 formed at the inner bottom of the sealed case 1 always secures the amount of oil (oil level height position) necessary for lubrication. Lubrication with respect to each sliding contact portion is stable, and a highly reliable hermetic compressor A can be provided over a long period of time.
Since the refrigerant suction hole 33 is provided in the side wall W of the first member 31 constituting the oil separation device S, and the discharge refrigerant pipe Pc is communicated with the inside as the space chamber H, the mixed particles that attempt to flow through the refrigerant suction hole 33 Thus, the oil and gas components can be reliably separated from each other, the oil components can be scattered to the surroundings, and only the gas components can be circulated through the refrigerant suction hole 33 and guided from the space H to the discharge refrigerant pipe Pc.

そして、冷媒吸込み孔33を網状のフィルタ34で覆ったから、さらに油分離効率の向上を得られる。冷媒吸込み孔33の直径を小(φ3mm以下)としたから、網状のフィルタ34によって分離された油分が冷媒吸込み孔33から空間室Hへ流入し難くなり、さらなる油分離効率の向上を得られる。
第2の部材32のカバーボス部32bに複数のスリットeを設けて複数の片部としたから、密閉型圧縮機Aの組立作業の際に、第2の部材32を吐出冷媒管Pcの最下端部に形成される主スライド部37に挿入し易い。そして、第2の部材32を主スライド部37から副スライド部36に容易に移動でき、第1の部材31に対して第2の部材32は自重で載置する。
Since the refrigerant suction hole 33 is covered with the net-like filter 34, the oil separation efficiency can be further improved. Since the diameter of the refrigerant suction hole 33 is small (φ3 mm or less), the oil component separated by the mesh filter 34 is difficult to flow into the space H from the refrigerant suction hole 33, and further improvement in oil separation efficiency can be obtained.
Since the plurality of slits e are provided in the cover boss portion 32b of the second member 32 to form a plurality of pieces, the second member 32 is connected to the lowermost end of the discharge refrigerant pipe Pc during the assembly operation of the hermetic compressor A. It is easy to insert into the main slide part 37 formed in the part. The second member 32 can be easily moved from the main slide portion 37 to the sub slide portion 36, and the second member 32 is placed by its own weight with respect to the first member 31.

すなわち、第2の部材32は回転軸4と油分離装置Sの軸方向に沿って自由に移動自在となり、軸方向の組立寸法公差である、たとえば密閉ケース1を構成するメインケース1aに対するアッパケース1bの挿入深さのバラツキを吸収する。
そのため、第2の部材32が第1の部材31に無理な力で押し付けることや、逆に隙間が生じたりすることがなくなり、常に安定した接触状態を保持する。密閉型圧縮機における組立性の大幅改善化が得られ、単純な構造で工数低減が可能となり、しかも品質の安定化を図った密閉型圧縮機が得られる。
That is, the second member 32 is freely movable along the axial direction of the rotating shaft 4 and the oil separating device S, and has an assembly dimension tolerance in the axial direction, for example, an upper case with respect to the main case 1a constituting the sealed case 1 Absorbs variations in the insertion depth of 1b.
Therefore, the second member 32 does not press against the first member 31 with an excessive force, and conversely no gap is generated, and a stable contact state is always maintained. Assemblability of the hermetic compressor can be greatly improved, man-hours can be reduced with a simple structure, and a hermetic compressor with stable quality can be obtained.

上記第2の部材32のカバーボス部32bにスリットeを設ける一方で、吐出冷媒管Pcの最下端部に主スライド部37を設け、この上部に主スライド部37の直径(φd2)よりも直径(φd1)の小なる副スライド部36を設けたので、副スライド部36に掛合する第2の部材32は副スライド部36から主スライド部37への移動が確実に規制される。
上記第2の部材32の素材を、PTFE,PFAあるいはPEEKなどの合成樹脂系材から形成したから、第2の部材32と第1の部材31との摺動面の摺動と、第2の部材32と吐出冷媒管Pcのストッパ部35との掛合面の摺動は、わずかな油分の存在で円滑性を保持でき、耐摩耗性や信頼性に優れた油分離装置を提供できる。
While the slit e is provided in the cover boss part 32b of the second member 32, the main slide part 37 is provided at the lowermost end part of the discharge refrigerant pipe Pc, and the diameter (φd2) is larger than the diameter (φd2) of the main slide part 37 at the upper part. Since the sub slide portion 36 having a small φd1) is provided, the movement of the second member 32 engaged with the sub slide portion 36 from the sub slide portion 36 to the main slide portion 37 is reliably restricted.
Since the material of the second member 32 is formed of a synthetic resin material such as PTFE, PFA, or PEEK, sliding of the sliding surface between the second member 32 and the first member 31, The sliding of the engaging surface between the member 32 and the stopper portion 35 of the discharge refrigerant pipe Pc can maintain smoothness even in the presence of a small amount of oil, and can provide an oil separation device having excellent wear resistance and reliability.

なお、以上説明した油分離装置においては第2の部材が自重で第1の部材に載置したが、これに限定されるものではなく、図5に示すような構成であってもよい。
以下、図5にもとづいて第2の実施の形態における油分離装置Saを説明するに、上述した第1の実施の形態と同一の構成部品については、同番号を付して新たな説明を省略する。
上記油分離装置Saは基本的に、回転軸4の上端に設けられる第1の部材41と、密閉ケース1内に挿入される吐出冷媒管Pcの下端部に掛合する第2の部材42とから構成される。
上記第1の部材41は、ディスク鍔部41aの上下部にディスクボス部41bとディスク円筒部41cが略同一直径に形成される。ディスク円筒部41cの側壁部W高さが先に説明したものとは若干の相違があるものの、側壁部Wに冷媒吸込み孔33が設けられ、網状のフィルタ34で覆われることは変りがない。
In the oil separation apparatus described above, the second member is placed on the first member by its own weight, but the present invention is not limited to this, and the configuration shown in FIG. 5 may be used.
Hereinafter, the oil separation device Sa according to the second embodiment will be described with reference to FIG. 5. The same components as those in the first embodiment described above are denoted by the same reference numerals and a new description is omitted. To do.
The oil separator Sa basically includes a first member 41 provided at the upper end of the rotating shaft 4 and a second member 42 engaged with the lower end portion of the discharge refrigerant pipe Pc inserted into the sealed case 1. Composed.
In the first member 41, a disc boss portion 41b and a disc cylindrical portion 41c are formed on the upper and lower portions of the disc flange portion 41a to have substantially the same diameter. Although the height of the side wall W of the disk cylindrical portion 41c is slightly different from that described above, the side wall W is provided with the refrigerant suction hole 33 and is covered with the mesh filter 34.

密閉ケース1内に挿入される吐出冷媒管Pcはストレート状に形成されていて、上述のような一体加工は不要である。第2の部材42は吐出冷媒管Pcに掛合し、第1の部材41の上端に載置され上面開口部を閉成する。したがって、第1の部材41と第2の部材42および吐出冷媒管Pcで囲まれる空間室Hが形成されることになる。
なお、ここでは吐出冷媒管Pcの最下端から所定距離を置いた上部にストッパリング50が嵌着固定される。このストッパリング50と上記第2の部材42上端面との間には圧縮ばね60が介設されていて、第1の部材41に対して第2の部材42を弾性的に押圧付勢している。
The discharge refrigerant pipe Pc inserted into the sealed case 1 is formed in a straight shape, and the above-described integral processing is not necessary. The second member 42 engages with the discharge refrigerant pipe Pc, is placed on the upper end of the first member 41, and closes the upper surface opening. Therefore, the space chamber H surrounded by the first member 41, the second member 42, and the discharge refrigerant pipe Pc is formed.
Here, the stopper ring 50 is fitted and fixed to the upper part at a predetermined distance from the lowermost end of the discharge refrigerant pipe Pc. A compression spring 60 is interposed between the stopper ring 50 and the upper end surface of the second member 42 to elastically press and urge the second member 42 against the first member 41. Yes.

この第2の実施の形態における油分離装置Saは、作用的には第1の実施の形態で説明したのと全く同一である。しかも、油分離装置Saを構成する第2の部材42は自重とともに圧縮ばね60の弾性力をもって第1の部材41に接しているので、互い部材41,42間に隙間の発生がない。このことから、第1の部材41と第2の部材42との間から油分とガス分の混合粒子が侵入する虞れがない。
図に示すような密閉ケース1内の上部側に電動機部3があり、下部側に圧縮機構部2が収容される、いわゆる縦型の密閉型圧縮機Aにおいても充分な効果を有する。そればかりか、回転軸4を水平に向け、この一側部に電動機部3があり、他側部に圧縮機構部2がある、いわゆる横型の密閉型圧縮機において特に有効である。
The oil separation device Sa in the second embodiment is functionally identical to that described in the first embodiment. Moreover, since the second member 42 constituting the oil separation device Sa is in contact with the first member 41 by the elastic force of the compression spring 60 together with its own weight, no gap is generated between the members 41 and 42. Therefore, there is no possibility that mixed particles of oil and gas enter from between the first member 41 and the second member 42.
Also in the so-called vertical hermetic compressor A in which the motor part 3 is provided on the upper side in the hermetic case 1 as shown in the drawing and the compression mechanism part 2 is accommodated on the lower side, the present invention has a sufficient effect. In addition, this is particularly effective in a so-called horizontal hermetic compressor in which the rotating shaft 4 is oriented horizontally, the motor part 3 is located on one side, and the compression mechanism part 2 is located on the other side.

なお、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.

本発明における第1の実施の形態に係る、密閉型圧縮機の縦断面図と、空気調和機の冷凍サイクル構成図。The longitudinal cross-sectional view of the hermetic compressor based on 1st Embodiment in this invention, and the refrigerating cycle block diagram of an air conditioner. 同実施の形態に係る、油分離装置の分解した斜視図。The perspective view which decomposed | disassembled the oil separation apparatus based on the embodiment. 同実施の形態に係る、吐出冷媒管と油分離装置一部の断面図。Sectional drawing of a part of discharge refrigerant pipe and oil separation apparatus based on the embodiment. 同実施の形態に係る、油分離装置の作用を説明する図。The figure explaining the effect | action of the oil separator based on the embodiment. 本発明における第2の実施の形態に係る、密閉型圧縮機の縦断面図。The longitudinal cross-sectional view of the hermetic type compressor based on 2nd Embodiment in this invention.

符号の説明Explanation of symbols

1…密閉ケース、5…ステータ、6…ロータ、3…電動機部、4…回転軸、2…圧縮機構部、Pc…吐出冷媒管、20…油溜り部、S…油分離装置、33…冷媒吸込み孔、W…側壁部、31…第1の部材、32…第2の部材、34…フィルタ、A…密閉型圧縮機、B…凝縮器、C…膨張装置、D…蒸発器。   DESCRIPTION OF SYMBOLS 1 ... Sealing case, 5 ... Stator, 6 ... Rotor, 3 ... Electric motor part, 4 ... Rotating shaft, 2 ... Compression mechanism part, Pc ... Discharge refrigerant pipe, 20 ... Oil reservoir part, S ... Oil separator, 33 ... Refrigerant Suction hole, W ... side wall, 31 ... first member, 32 ... second member, 34 ... filter, A ... hermetic compressor, B ... condenser, C ... expansion device, D ... evaporator.

Claims (4)

密閉ケースと、この密閉ケース内に収容され、ステータとロータとからなる電動機部および、この電動機部と回転軸を介して連結される圧縮機構部と、上記密閉ケースに接続される吐出管とを備えた密閉型圧縮機において、
上記密閉ケースの内底部に設けられ、上記圧縮機構部に給油するための潤滑油を集溜する油溜り部と、
この油溜り部から上記圧縮機構部に給油された潤滑油と圧縮されたガス冷媒との混合粒子を導き、油分とガス分とを分離する油分離装置とを備え、
上記油分離装置は、
上記回転軸または電動機部を構成するロータの一端部に設けられ、冷媒吸込み孔が設けられた側壁部および上面に開口部を備えた有底筒状の第1の部材と、
上記吐出管に直接的、もしくは他の部材を介して間接的に取付けられ、上記第1の部材の開口端に当接して、第1の部材の上面開口部を閉塞する第2の部材とからなることを特徴とする密閉型圧縮機。
An airtight case, an electric motor unit housed in the airtight case and composed of a stator and a rotor, a compression mechanism unit connected to the electric motor unit via a rotating shaft, and a discharge pipe connected to the airtight case In the hermetic compressor provided,
An oil reservoir provided in an inner bottom portion of the hermetic case and collecting lubricating oil for supplying oil to the compression mechanism;
An oil separation device that guides mixed particles of the lubricating oil supplied to the compression mechanism portion and the compressed gas refrigerant from the oil reservoir portion and separates the oil component and the gas component,
The oil separator is
A bottomed cylindrical first member provided at one end of the rotor constituting the rotating shaft or the motor part, having a side wall provided with a refrigerant suction hole and an opening on the upper surface;
A second member that is directly attached to the discharge pipe or indirectly through another member, abuts against the opening end of the first member, and closes the upper surface opening of the first member. A hermetic compressor characterized by
上記第1の部材の側壁部に設けられる冷媒吸込み孔は、網状のフィルタで覆われることを特徴とする請求項1記載の密閉型圧縮機。   2. The hermetic compressor according to claim 1, wherein the refrigerant suction hole provided in the side wall portion of the first member is covered with a net-like filter. 上記第2の部材は、上記吐出管の中心軸方向に沿って移動自在に取付けられることを特徴とする請求項1および請求項2のいずれかに記載の密閉型圧縮機。   The hermetic compressor according to any one of claims 1 and 2, wherein the second member is movably attached along a central axis direction of the discharge pipe. 上記請求項1ないし請求項3記載の密閉型圧縮機とともに、凝縮器と、膨張装置と、蒸発器を備えて冷凍サイクルを構成することを特徴とする冷凍サイクル装置。   A refrigeration cycle apparatus comprising a condenser, an expansion device, and an evaporator together with the hermetic compressor according to any one of claims 1 to 3 to constitute a refrigeration cycle.
JP2006025867A 2006-02-02 2006-02-02 Hermetic compressor and refrigeration cycle device Pending JP2007205270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025867A JP2007205270A (en) 2006-02-02 2006-02-02 Hermetic compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025867A JP2007205270A (en) 2006-02-02 2006-02-02 Hermetic compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2007205270A true JP2007205270A (en) 2007-08-16

Family

ID=38484942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025867A Pending JP2007205270A (en) 2006-02-02 2006-02-02 Hermetic compressor and refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2007205270A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003583A (en) * 2014-06-13 2016-01-12 株式会社マキタ Gas-liquid separator of engine
KR20180108855A (en) * 2016-03-21 2018-10-04 에머슨 클리메이트 테크놀로지즈 인코퍼레이티드 How to remove and assemble compressor oil
EP3401544A1 (en) * 2017-05-12 2018-11-14 LG Electronics Inc. Scroll compressor with oil separation
EP3401543A1 (en) * 2017-05-12 2018-11-14 LG Electronics Inc. Scroll compressor with oil separation
KR20200041519A (en) * 2018-10-12 2020-04-22 엘지전자 주식회사 A compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55135172U (en) * 1979-03-20 1980-09-25
JPS60164681A (en) * 1984-02-03 1985-08-27 Matsushita Electric Ind Co Ltd Oil separator for enclosed rotary compressor
JPS6262818U (en) * 1985-10-07 1987-04-18

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55135172U (en) * 1979-03-20 1980-09-25
JPS60164681A (en) * 1984-02-03 1985-08-27 Matsushita Electric Ind Co Ltd Oil separator for enclosed rotary compressor
JPS6262818U (en) * 1985-10-07 1987-04-18

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003583A (en) * 2014-06-13 2016-01-12 株式会社マキタ Gas-liquid separator of engine
KR20180108855A (en) * 2016-03-21 2018-10-04 에머슨 클리메이트 테크놀로지즈 인코퍼레이티드 How to remove and assemble compressor oil
KR102096884B1 (en) * 2016-03-21 2020-04-06 에머슨 클리메이트 테크놀로지즈 인코퍼레이티드 How to separate and assemble the compressor oil
US10634142B2 (en) 2016-03-21 2020-04-28 Emerson Climate Technologies, Inc. Compressor oil separation and assembly method
EP3401544A1 (en) * 2017-05-12 2018-11-14 LG Electronics Inc. Scroll compressor with oil separation
EP3401543A1 (en) * 2017-05-12 2018-11-14 LG Electronics Inc. Scroll compressor with oil separation
US10895260B2 (en) 2017-05-12 2021-01-19 Lg Electronics Inc. Scroll compressor with oil separation member
US11053938B2 (en) 2017-05-12 2021-07-06 Lg Electronics Inc. Scroll compressor with oil separator
KR20200041519A (en) * 2018-10-12 2020-04-22 엘지전자 주식회사 A compressor
KR102124489B1 (en) * 2018-10-12 2020-06-19 엘지전자 주식회사 A compressor
US11293439B2 (en) 2018-10-12 2022-04-05 Lg Electronics Inc. Compressor

Similar Documents

Publication Publication Date Title
JP4799437B2 (en) Fluid machinery
EP2195535B1 (en) Hermetic compressor
RU2600206C1 (en) Scroll compressor
US20070183916A1 (en) Oil pump for a scroll compressor
JP2004132353A (en) Lubricant for sealed carbon dioxide compressor
JP2004027969A (en) Hermetically sealed compressor
JP2007205270A (en) Hermetic compressor and refrigeration cycle device
JP2007182773A (en) Compressor
US5884727A (en) Hermetic compressor with start-up lubrication
US11781548B2 (en) Oil separation apparatus and horizontal compressor
JP2007085297A (en) Scroll compressor
JP2008169740A (en) Compressor
JP2017025789A (en) Rotary compressor
JP2007192200A (en) Oil separation structure in compressor
JP2009197684A (en) Hermetic compressor and refrigerating cycle device
JP2009174460A (en) Screw compressor
JP4261999B2 (en) Horizontal hermetic compressor
JP2009203862A (en) Hermetic electric compressor and refrigerating cycle device
JP2000097185A (en) Rotary compressor
JP2008151075A (en) Sealed compressor and refrigeration cycle device
JP2000291552A (en) Closed type compressor
JP2013204488A (en) Scroll type fluid machine
JP2009092031A (en) Scroll fluid machine
JP2007247624A (en) Hermetic compressor
JP2000283074A (en) Rotary compressor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A621 Written request for application examination

Effective date: 20080828

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Effective date: 20110222

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802