JP2007204831A - Aluminum material having thick anodic oxide-film, and method for forming anodic oxide film on aluminum material at high speed - Google Patents

Aluminum material having thick anodic oxide-film, and method for forming anodic oxide film on aluminum material at high speed Download PDF

Info

Publication number
JP2007204831A
JP2007204831A JP2006027348A JP2006027348A JP2007204831A JP 2007204831 A JP2007204831 A JP 2007204831A JP 2006027348 A JP2006027348 A JP 2006027348A JP 2006027348 A JP2006027348 A JP 2006027348A JP 2007204831 A JP2007204831 A JP 2007204831A
Authority
JP
Japan
Prior art keywords
film
aluminum material
electrolysis
current density
anodic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006027348A
Other languages
Japanese (ja)
Other versions
JP4888948B2 (en
Inventor
Takayoshi Fujino
▲隆▼由 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Industrial Promotion Organization
Original Assignee
Osaka Industrial Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Industrial Promotion Organization filed Critical Osaka Industrial Promotion Organization
Priority to JP2006027348A priority Critical patent/JP4888948B2/en
Publication of JP2007204831A publication Critical patent/JP2007204831A/en
Application granted granted Critical
Publication of JP4888948B2 publication Critical patent/JP4888948B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum material having such a thick anodic oxide-film as to be endurable to the use in a hostile corrosive environment, and to provide a method for forming such a thick anodic oxide-film on the aluminum material in a short period of time. <P>SOLUTION: In a process of forming the anodic oxide film on the aluminum material by electrolyzing the aluminum material in an acidic solution, the method for obtaining the aluminum material having the anodic oxide film with a film thickness of 150 μm or more formed on the surface includes using a direct current superimposed with an alternating current, and electrolyzing the aluminum material while controlling the current density with time. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、陽極酸化皮膜を有するアルミニウム材及びアルミニウム材の陽極酸化皮膜形成方法に関し、より詳しくは、従来に比して格段に厚い陽極酸化皮膜を有するアルミニウム材及びこのような厚い陽極酸化皮膜をアルミニウム材表面に短時間で形成するための方法に関するものである。
尚、本明細書において、「アルミニウム」という文言は、アルミニウム及びアルミニウム合金の両方を含む意味で用いる。
The present invention relates to an aluminum material having an anodized film and a method for forming an anodized film of an aluminum material. More specifically, the present invention relates to an aluminum material having a much thicker anodized film than in the past and such a thick anodized film. The present invention relates to a method for forming an aluminum material surface in a short time.
In this specification, the term “aluminum” is used to include both aluminum and aluminum alloys.

近年、家電業界や自動車業界等に代表される幅広い業界において、アルミニウムの需要が増大している。このことは、アルミニウムが、軽量、高加工性(高展伸性・高鍛造性)、高熱電導性等の優れた特性を有することに起因している。
しかしながら、アルミニウムは、上記のような優れた特性を有する反面、表面硬度及び耐食性が充分ではないという欠点を有している。
In recent years, demand for aluminum has increased in a wide range of industries such as the home appliance industry and the automobile industry. This is because aluminum has excellent properties such as light weight, high workability (high extensibility and high forgeability), and high thermal conductivity.
However, aluminum has excellent characteristics as described above, but has a drawback that the surface hardness and corrosion resistance are not sufficient.

かかる欠点を解消するための方法として、アルミニウムを陽極酸化処理することにより表面に耐食性の酸化皮膜(陽極酸化皮膜)を形成する方法がアルマイト処理として公知であり、アルマイト処理品は各種分野で幅広く使用されている。   As a method for eliminating such drawbacks, a method of forming a corrosion-resistant oxide film (anodized film) on the surface by anodizing aluminum is known as anodized, and anodized products are widely used in various fields. Has been.

アルミニウムに陽極酸化皮膜を形成する方法としては、酸性浴もしくはアルカリ性浴中で電解を行う方法が一般的に知られている。
中でも、硫酸浴を用いた方法は最も多用されている方法であり、硫酸浴により作製した皮膜は、高い耐食性及び耐摩耗性を示すだけでなく、低コストで作製することが可能であるという利点も有する。また、シュウ酸浴により作製した皮膜は、硫酸浴により作製した皮膜に比べて、高硬度で孔径も大きな陽極酸化皮膜となる。
As a method of forming an anodized film on aluminum, a method of performing electrolysis in an acidic bath or an alkaline bath is generally known.
Among them, the method using a sulfuric acid bath is the most frequently used method, and the film produced by the sulfuric acid bath not only shows high corrosion resistance and wear resistance, but also can be produced at low cost. Also have. Moreover, the film produced by the oxalic acid bath becomes an anodic oxide film having a higher hardness and a larger pore diameter than the film produced by the sulfuric acid bath.

上記したような陽極酸化皮膜形成における電解方法としては、直流電解法、交流電解法、交直重畳法およびパルス電解法が知られており、例えば、下記特許文献1には、直流電圧と交流電圧を重畳して印加して電圧制御を行う交直重畳法により陽極酸化皮膜を形成する構成が開示されている。しかし、この電圧制御手法では、電解時間の経過とともに、電流密度が徐々に低下することが抑制できず、したがって、厚い皮膜の作製が不可能である問題点がある。   As an electrolysis method in forming the anodic oxide film as described above, a DC electrolysis method, an AC electrolysis method, an AC / DC superposition method and a pulse electrolysis method are known. For example, Patent Document 1 below superimposes a DC voltage and an AC voltage. A configuration in which an anodized film is formed by an AC / DC superposition method in which voltage control is performed by applying the voltage is disclosed. However, this voltage control method has a problem that it is impossible to suppress a gradual decrease in current density with the lapse of electrolysis time, and thus it is impossible to produce a thick film.

しかしながら、上記したような従来の電解方法による陽極酸化皮膜形成では、膜厚の増加に伴って皮膜抵抗が大きくなって電圧が上昇することにより、時間の経過とともに成膜の速度が著しく低下してしまうという問題と同時に、電圧の上昇に伴った皮膜表面温度の上昇による生成皮膜の溶解が起こる問題の2つの問題があった。特に、前者の問題は、生成する孔形に原因し、電解開始時に約50nmあった孔径が徐々に小さくなり、電解時間の経過とともに、約30nmとなることに起因している。
そのため、従来の方法では、短時間での厚い膜の生成が困難である上に、作製できる膜厚に限界があり、過酷な腐食環境下で使用されるアルミニウム製品に対する耐食処理としては不十分なものであった。
However, in the anodic oxide film formation by the conventional electrolysis method as described above, the film resistance increases as the film thickness increases and the voltage rises. As a result, the film formation speed decreases remarkably over time. At the same time, there were two problems, namely, a problem that the generated film melts due to an increase in the surface temperature of the film accompanying an increase in voltage. In particular, the former problem is caused by the pore shape to be generated, and the pore diameter which was about 50 nm at the start of electrolysis gradually decreases and becomes about 30 nm as the electrolysis time elapses.
For this reason, it is difficult to produce a thick film in a short time with the conventional method, and there is a limit to the film thickness that can be produced, which is insufficient as a corrosion resistance treatment for aluminum products used in a severe corrosive environment. It was a thing.

特開2003−155595号公報JP 2003-155595 A

本発明は、上記したような従来技術の問題点を解決すべくなされたものであって、過酷な腐食環境下での使用に耐え得る厚い陽極酸化皮膜を有するアルミニウム材及びこのような厚い陽極酸化皮膜を短時間で形成することができるアルミニウム材の陽極酸化皮膜形成方法を提供せんとするものである。   The present invention has been made to solve the above-mentioned problems of the prior art, and has an aluminum material having a thick anodized film that can withstand use in a severe corrosive environment, and such a thick anodized material. It is an object of the present invention to provide a method for forming an anodized film of an aluminum material that can form a film in a short time.

請求項1に係る発明は、表面に膜厚150μm以上の陽極酸化皮膜が形成されてなることを特徴とするアルミニウム材に関する。   The invention according to claim 1 relates to an aluminum material characterized in that an anodized film having a thickness of 150 μm or more is formed on the surface.

請求項2に係る発明は、アルミニウム材を酸性浴中で電解することにより、該アルミニウム材の表面に陽極酸化皮膜を形成するアルミニウム材の陽極酸化皮膜形成方法であって、前記電解を、直流電流に交流電流を重畳させて印加し、経時的に電流密度を制御することにより行うことを特徴とするアルミニウム材の陽極酸化皮膜形成方法に関する。   The invention according to claim 2 is a method for forming an anodic oxide film on an aluminum material by electrolyzing the aluminum material in an acid bath to form an anodic oxide film on the surface of the aluminum material. The present invention relates to a method for forming an anodic oxide film on an aluminum material, wherein an alternating current is applied in a superimposed manner and the current density is controlled over time.

請求項3に係る発明は、前記電解時において、基底電流密度を0.5〜20A/dmの範囲、振幅を0.5〜15A/dmの範囲で夫々変化させることを特徴とする請求項2記載のアルミニウム材の陽極酸化皮膜形成方法に関する。 The invention according to claim 3, which during the electrolysis, base current density of 0.5~20A / dm 2 range, characterized in that to each changing the amplitude in the range of 0.5~15A / dm 2 according The present invention relates to a method for forming an anodized film of an aluminum material according to Item 2.

請求項4に係る発明は、前記酸性浴が硫酸浴であって、前記電解時において、印加電流密度を以下の一般式に従って制御することを特徴とする請求項2又は3記載のアルミニウム材の陽極酸化皮膜形成方法に関する。
i=0.33t−0.32(0<t≦t
i=−0.16t+16.2(t<t≦t
i=5.6(t<t)
(但し、i:電流密度(A/dm)、t:電解時間(分)、周波数:1kHz一定)
The invention according to claim 4 is characterized in that the acidic bath is a sulfuric acid bath and the applied current density is controlled according to the following general formula during the electrolysis. The present invention relates to a method for forming an oxide film.
i = 0.33t−0.32 (0 <t ≦ t 1 )
i = −0.16t + 16.2 (t 1 <t ≦ t 2 )
i = 5.6 (t 2 <t)
(However, i: current density (A / dm 2 ), t: electrolysis time (min), frequency: 1 kHz constant)

請求項5に係る発明は、前記酸性浴がシュウ酸浴であって、前記電解時において、印加電流密度を以下の一般式に従って制御することを特徴とする請求項2又は3記載のアルミニウム材の陽極酸化皮膜形成方法に関する。
i=0.21t−0.20(0<t≦t
i=−0.10t+10.6(t<t≦t
i=3.7(t<t)
(但し、i:電流密度(A/dm)、t:電解時間(分)、周波数:1kHz一定)
The invention according to claim 5 is characterized in that the acidic bath is an oxalic acid bath, and the applied current density is controlled according to the following general formula during the electrolysis. The present invention relates to a method for forming an anodized film.
i = 0.21t−0.20 (0 <t ≦ t 1 )
i = −0.10t + 10.6 (t 1 <t ≦ t 2 )
i = 3.7 (t 2 <t)
(However, i: current density (A / dm 2 ), t: electrolysis time (min), frequency: 1 kHz constant)

請求項1に係る発明は、表面に膜厚150μm以上の陽極酸化皮膜が形成されているアルミニウム材であるから、過酷な腐食環境下での使用に耐え得る高耐食性のアルミニウム材となるだけでなく、今後、カーボンナノチューブ、ナノワイヤー等のテンプレート、ナノリアクターおよびイオン分離膜への適用が可能となる。   Since the invention according to claim 1 is an aluminum material having an anodized film with a film thickness of 150 μm or more formed on the surface, it is not only a highly corrosion-resistant aluminum material that can withstand use in a severe corrosive environment. In the future, it will be possible to apply to templates such as carbon nanotubes and nanowires, nanoreactors and ion separation membranes.

請求項2に係る発明によれば、アルミニウム材を酸性浴中で電解する工程における電解を、直流電流に交流電流を重畳させて印加するとともに電流密度を制御して行うことにより、膜厚の増加に伴う皮膜抵抗の増加が抑制され、時間の経過とともに成膜速度の著しい低下が生じることがない。そのため、従来の方法では困難であった150μm以上の厚い陽極酸化皮膜を短時間で形成することができる。   According to the invention of claim 2, the electrolysis in the step of electrolyzing the aluminum material in the acidic bath is performed by applying an alternating current superimposed on the direct current and controlling the current density, thereby increasing the film thickness. As a result, the increase in film resistance is suppressed, and the film formation rate does not significantly decrease with time. Therefore, it is possible to form a thick anodic oxide film having a thickness of 150 μm or more, which is difficult with the conventional method, in a short time.

請求項3に係る発明によれば、電解時において、基底電流密度を0.5〜20A/dmの範囲、振幅を0.5〜15A/dmの範囲で夫々変化させることにより、膜厚の増加に伴う皮膜抵抗の増加を効果的に抑制できる制御が可能となり、同時に、印加する電流密度を制御するため、電解時に発生するジュール熱の制御も可能となるため、発熱による生成皮膜の溶解を最小限に抑制することができる。 According to the invention of claim 3, during electrolysis, base current density range of 0.5~20A / dm 2, by respectively changing the amplitude in the range of 0.5~15A / dm 2, the thickness It is possible to effectively control the increase in film resistance due to the increase in temperature, and at the same time, the current density to be applied can be controlled, so it is possible to control the Joule heat generated during electrolysis. Can be minimized.

請求項4に係る発明によれば、硫酸浴を用いた電解時において、印加電流密度を所定の数値関数に従って制御することにより、長時間に亘って膜厚を連続的に増加させることができ、高い耐食性及び耐摩耗性を示す陽極酸化皮膜を短時間で非常に厚く形成することが可能となる。また、適切に電流密度が制御されることによって、電流密度の偏りによって生じる焼けや、応力の増加によるクラックの発生を防ぐことができる。   According to the invention of claim 4, during electrolysis using a sulfuric acid bath, by controlling the applied current density according to a predetermined numerical function, the film thickness can be continuously increased over a long period of time, An anodic oxide film exhibiting high corrosion resistance and wear resistance can be formed very thick in a short time. In addition, by appropriately controlling the current density, it is possible to prevent the occurrence of burns caused by current density deviations and cracks due to an increase in stress.

請求項5に係る発明によれば、シュウ酸浴を用いた電解時において、印加電流密度を所定の数値関数に従って制御することにより、長時間に亘って膜厚を連続的に増加させることができ、硫酸浴により作製した皮膜に比べて高硬度で孔径も大きな陽極酸化皮膜を短時間で非常に厚く形成することが可能となる。また、適切に電流密度が制御されることによって、電流密度の偏りによって生じる焼けや、応力の増加によるクラックの発生を防ぐことができる。   According to the invention of claim 5, during electrolysis using an oxalic acid bath, the applied current density is controlled according to a predetermined numerical function, whereby the film thickness can be continuously increased over a long period of time. In addition, it becomes possible to form an anodic oxide film having a high hardness and a large pore diameter in a short time as compared with a film prepared by a sulfuric acid bath. In addition, by appropriately controlling the current density, it is possible to prevent the occurrence of burns caused by current density deviations and cracks due to an increase in stress.

以下、本発明に係る陽極酸化皮膜を有するアルミニウム材及びアルミニウム材の陽極酸化皮膜形成方法の好適な実施形態について、図面を参照しつつ説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of an aluminum material having an anodized film and a method for forming an anodized film of an aluminum material according to the present invention will be described with reference to the drawings.

本発明において用いられるアルミニウム材は、上述の如くアルミニウム材とアルミニウム合金材の両方を含み、具体的には、JISの1000番系(純アルミニウム)、2000番系(Al−Cu系合金)、3000番系(Al−Mn系合金)、4000番系(Al−Si系合金)、5000番系(Al−Mg系合金)、6000番系(Al−Mg−Si系合金)、7000番系(Al−Zn−Mn系合金)、8000番系(上記以外の合金)、9000番系のアルミニウム材及びアルミニウム合金材を含む。   The aluminum material used in the present invention includes both an aluminum material and an aluminum alloy material as described above. Specifically, JIS 1000 series (pure aluminum), 2000 series (Al-Cu alloy), 3000 Number series (Al-Mn series alloy), Series 4000 (Al-Si series alloy), Series 5000 (Al-Mg series alloy), Series 6000 (Al-Mg-Si series alloy), Series 7000 (Al -Zn-Mn alloy), 8000 series (alloys other than the above), 9000 series aluminum materials and aluminum alloy materials.

本発明に係るアルミニウム材は、表面に膜厚150μm以上、より好ましくは200μm以上、更に好ましくは300μm以上の陽極酸化皮膜が形成されてなるものであり、このような厚い陽極酸化皮膜は、以下に説明する本発明に係るアルミニウム材の陽極酸化皮膜形成方法を用いて生成することが可能である。   The aluminum material according to the present invention has an anodic oxide film having a film thickness of 150 μm or more, more preferably 200 μm or more, and even more preferably 300 μm or more formed on the surface. It can be produced by using the method for forming an anodized film of an aluminum material according to the present invention to be described.

本発明に係るアルミニウム材の陽極酸化皮膜形成方法は、上記したようなアルミニウム材を酸性浴中で電解することにより、該アルミニウム材の表面に陽極酸化皮膜を形成する方法であって、酸性浴中での電解を、直流電流に交流電流を重畳させて印加するとともに、電流密度を制御することによって行うものである。   The method for forming an anodized film of an aluminum material according to the present invention is a method for forming an anodized film on the surface of an aluminum material by electrolyzing the aluminum material as described above in an acid bath, Electrolysis is performed by superimposing an alternating current on a direct current and controlling the current density.

酸性浴には、硫酸、シュウ酸、燐酸、硼酸、クロム酸等の水溶液、或いはこれらの混合溶液を用いることができるが、本発明においては、特に、硫酸浴及びシュウ酸浴が好適に用いられる。
硫酸浴を用いる場合、硫酸濃度が0.001〜1.0モル/リットル、硫酸アルミニウム濃度が1.0〜10.0グラム/リットルの混合浴とし、この混合浴の温度を−5〜45℃とすることが好ましい。
シュウ酸浴を用いる場合、シュウ酸濃度を1〜10%、浴の温度を−5〜45℃とすることが好ましい。
For the acidic bath, an aqueous solution of sulfuric acid, oxalic acid, phosphoric acid, boric acid, chromic acid, or a mixed solution thereof can be used. In the present invention, in particular, a sulfuric acid bath and an oxalic acid bath are preferably used. .
When a sulfuric acid bath is used, a mixed bath having a sulfuric acid concentration of 0.001 to 1.0 mol / liter and an aluminum sulfate concentration of 1.0 to 10.0 g / liter is used, and the temperature of the mixing bath is −5 to 45 ° C. It is preferable that
When an oxalic acid bath is used, it is preferable that the oxalic acid concentration is 1 to 10% and the bath temperature is −5 to 45 ° C.

本発明では、このような酸性浴の前処理として、水酸化ナトリウム及び硝酸によりアルミニウム材の脱脂・エッチング・デスマットを行う。
そして、このような前処理を行ったアルミニウム材を酸性浴に浸漬し、白金板あるいはチタン板を対向配置した電極を用いて電解処理を行う。
In the present invention, as a pretreatment for such an acidic bath, the aluminum material is degreased, etched, and desmutted with sodium hydroxide and nitric acid.
And the aluminum material which performed such a pre-treatment is immersed in an acidic bath, and electrolytic treatment is performed using an electrode in which a platinum plate or a titanium plate is disposed oppositely.

図1は、本発明に係る方法において、電解時に印加される電流の基底電流密度、振幅、周波数の関係の一例を示す図であって、基底電流密度を2A/dm、振幅を2A/dm、周波数を1Hz、波形を正弦波としたものである。
本発明においては、電解時において、このように直流電流に交流電流を重畳させて印加した上で電流密度の制御を行う。
FIG. 1 is a diagram showing an example of the relationship between the base current density, amplitude, and frequency of current applied during electrolysis in the method according to the present invention. The base current density is 2 A / dm 2 and the amplitude is 2 A / dm. 2. The frequency is 1 Hz and the waveform is a sine wave.
In the present invention, during electrolysis, the current density is controlled after the alternating current is applied to the direct current in this way.

本発明において行われる電流密度の制御には、電流密度を一定に制御する場合と、電流密度を経時的に変化させる制御を行う場合の両方が含まれる。
電流密度を一定とする場合の例としては、図1に示した例が挙げられる。
電流密度を変化させる場合の例としては、基底電流密度を0.5〜20A/dmの範囲、振幅を0.5〜15A/dmの範囲で夫々変化させる例を挙げることができる。
尚、いずれの場合でも、周波数は1〜100kHzの範囲、好ましくは500〜2000Hzの範囲で設定することができる。また、波形については、正弦波、三角波、矩形波等の任意の波形とすることができる。
The current density control performed in the present invention includes both a case where the current density is controlled to be constant and a case where control is performed to change the current density over time.
As an example in which the current density is constant, the example shown in FIG.
Examples of changing the current density include an example in which the base current density is changed in the range of 0.5 to 20 A / dm 2 and the amplitude is changed in the range of 0.5 to 15 A / dm 2 .
In any case, the frequency can be set in the range of 1 to 100 kHz, preferably in the range of 500 to 2000 Hz. The waveform may be any waveform such as a sine wave, a triangular wave, or a rectangular wave.

本発明においては、このように、酸性浴中での電解を、直流電流に交流電流を重畳させて印加し、電流密度を制御することにより行うことによって、膜厚の増加に伴う皮膜抵抗の増加が抑制されて電圧の上昇が抑えられる結果、時間の経過とともに成膜速度が著しく低下することがない。すなわち、周波数の印加によって電流回復現象を発現させ、電流密度の制御によって電解開始時の孔径が、電解時間の経過とともに小さくなることなく、厚い膜になっても電解初期の孔径を保持し続ける。そのため、従来の方法では困難であった150μm以上の厚い陽極酸化皮膜を短時間で形成することが可能となる。   In the present invention, the electrolysis in the acidic bath is performed by superimposing the alternating current on the direct current and controlling the current density, thereby increasing the film resistance with the increase in the film thickness. As a result of suppressing the rise in voltage by suppressing the film formation rate, the film formation rate does not decrease remarkably over time. That is, a current recovery phenomenon is caused by applying a frequency, and the pore diameter at the start of electrolysis does not decrease with the lapse of electrolysis time by controlling the current density, and the initial pore diameter is maintained even when the film is thick. Therefore, it becomes possible to form a thick anodic oxide film having a thickness of 150 μm or more, which was difficult with the conventional method, in a short time.

電流密度を変化させる制御を行う場合、印加電流密度(基底電流密度)を予め定められた時間関数に従って制御する。
この制御は、電流密度を電解開始から終了まで大きく三段階で印加する。すなわち、電解開始後から一定時間は増加させ、その後一定時間は減少させ、その後は一定に維持するという制御である。
When controlling to change the current density, the applied current density (base current density) is controlled according to a predetermined time function.
In this control, the current density is largely applied in three stages from the start to the end of electrolysis. That is, the control is such that a certain time is increased after the start of electrolysis, the certain time is decreased thereafter, and then maintained constant.

具体的には、硫酸浴を用いて最短時間で300μm以上の皮膜を作製するには、以下の一般式(以下、まとめて式1と称す)に表される時間関数に従って制御することが好ましい。ただし、この式1は好適な一例であって、初期に印加する基底電流密度と振幅などの電解条件の違いによって異なる。
i=0.33t−0.32(0<t≦t
i=−0.16t+16.2(t<t≦t
i=5.6(t<t)
(但し、i:電流密度(A/dm)、t:時間(分)、周波数:1kHz一定)
Specifically, in order to produce a film of 300 μm or more in the shortest time using a sulfuric acid bath, it is preferable to control according to a time function represented by the following general formula (hereinafter collectively referred to as Formula 1). However, this Formula 1 is a suitable example, and differs depending on the difference in electrolysis conditions such as the base current density and amplitude applied in the initial stage.
i = 0.33t−0.32 (0 <t ≦ t 1 )
i = −0.16t + 16.2 (t 1 <t ≦ t 2 )
i = 5.6 (t 2 <t)
(Where i: current density (A / dm 2 ), t: time (minutes), frequency: 1 kHz constant)

また、シュウ酸浴を用いて最短時間で180μm以上の皮膜を作製するには、以下の一般式(以下、まとめて式2と称す)に表される時間関数に従って制御することが好ましい。ただし、この式2は好適な一例であって、初期に印加する基底電流密度と振幅などの電解条件の違いによって異なる。
i=0.21t−0.20(0<t≦t
i=−0.10t+10.6(t<t≦t
i=3.7(t<t)
(但し、i:電流密度(A/dm)、t:時間(分)、周波数:1kHz一定)
In order to produce a film of 180 μm or more in the shortest time using an oxalic acid bath, it is preferable to control according to a time function represented by the following general formula (hereinafter collectively referred to as Formula 2). However, this Formula 2 is a suitable example, and differs depending on the difference in electrolysis conditions such as the base current density and amplitude applied in the initial stage.
i = 0.21t−0.20 (0 <t ≦ t 1 )
i = −0.10t + 10.6 (t 1 <t ≦ t 2 )
i = 3.7 (t 2 <t)
(Where i: current density (A / dm 2 ), t: time (minutes), frequency: 1 kHz constant)

上記した式1及び式2において、t及びtは定数であって、例えば、t=35分、t=65分に設定することができる。しかし、この数値のみに限定されるものではなく、例えばtは35分以上、tは65分以上の範囲で設定することができる。 In the above formulas 1 and 2, t 1 and t 2 are constants, and can be set to t 1 = 35 minutes and t 2 = 65 minutes, for example. However, the present invention is not limited to this numerical value. For example, t 1 can be set in a range of 35 minutes or longer and t 2 can be set in a range of 65 minutes or longer.

式1において、t=35分、t=65分に設定して180分間電解を行った場合、電解時におけるアルミニウム材1dm当たりの電気量の積分値は、電解開始時から35分は12500C、35〜65分は11500C、65〜180分は34000Cに制御される。
但し、本発明においては、上述したように、tは35分以上、tは65分以上の範囲で任意に設定することができ、この場合において、電解開始時からt分は12500C、t〜t分は11500C、t〜180分は34000Cに制御して電解を行うことができる。
In Formula 1, when electrolysis is performed for 180 minutes with t 1 = 35 minutes and t 2 = 65 minutes, the integrated value of the amount of electricity per 1 dm 2 of aluminum material during electrolysis is 35 minutes from the start of electrolysis. 12500C, 35 to 65 minutes are controlled to 11500C, and 65 to 180 minutes are controlled to 34000C.
However, in the present invention, as described above, t 1 can be arbitrarily set in the range of 35 minutes or more, and t 2 can be arbitrarily set in the range of 65 minutes or more. In this case, t 1 minute from the start of electrolysis is 12,500 C, t 1 ~t 2 minutes 11500C, t 2 ~180 minutes can perform electrolysis is controlled to 34000C.

式2において、t=35分、t=65分に設定して80分間電解を行った場合、電解時におけるアルミニウム材1dm当たりの電気量の積分値は、電解開始時から35分は15000C、35〜65分は4800C、65〜80分は3200Cに制御される。
但し、本発明においては、上述したように、tは35分以上、tは65分以上の範囲で任意に設定することができ、この場合において、電解開始時からt分は15000C、t〜t分は4800C、t〜80分は3200Cに制御して電解を行うことができる。
In Formula 2, when electrolysis is performed for 80 minutes with t 1 = 35 minutes and t 2 = 65 minutes, the integrated value of the amount of electricity per 1 dm 2 of aluminum material during electrolysis is 35 minutes from the start of electrolysis. 15000C, 35 to 65 minutes are controlled to 4800C, and 65 to 80 minutes are controlled to 3200C.
However, in the present invention, as described above, t 1 can be arbitrarily set within the range of 35 minutes or more and t 2 can be set within the range of 65 minutes or more. In this case, t 1 minute from the start of electrolysis is 15000 C, t 1 ~t 2 minutes 4800C, t 2 ~80 minutes can perform electrolysis is controlled to 3200C.

電解時において、上記式1、式2に示した電流密度制御を行うことによって、成膜速度を向上させることができるとともに長時間に亘って皮膜の成長を持続させることができ、300μm以上の厚い陽極酸化皮膜を迅速に形成することが可能となる。   During electrolysis, by controlling the current density shown in the above formulas 1 and 2, it is possible to improve the film formation rate and maintain the growth of the film over a long period of time. An anodized film can be rapidly formed.

上記式1と式2の相違点は、式2では電流密度iが式1の2/3に設定されている点である。この設定は、硫酸の皮膜生成定数はK=0.31であるのに対し、シュウ酸の皮膜生成定数はK=0.22であって硫酸の約2/3であることに基づいたものである。
従って、酸性浴に用いる酸として、硫酸及びシュウ酸以外の他の酸を用いる場合には、硫酸の皮膜生成定数を1としたときの他の酸の皮膜生成定数の値を式1に乗じることによって、当該他の酸について印加電流密度を制御するための式(時間関数)を求めることが可能となり、求められた式に従って電解時に印加電流密度を制御すればよいことになる。
The difference between Equation 1 and Equation 2 is that in Equation 2, the current density i is set to 2/3 of Equation 1. This setting is based on the fact that the film formation constant of sulfuric acid is K = 0.31 while the film formation constant of oxalic acid is K = 0.22, which is about 2/3 of sulfuric acid. is there.
Therefore, when an acid other than sulfuric acid and oxalic acid is used as the acid used in the acidic bath, the value of the film formation constant of other acids when the film formation constant of sulfuric acid is 1 is multiplied by Equation 1. Thus, it is possible to obtain an expression (time function) for controlling the applied current density for the other acid, and the applied current density may be controlled during electrolysis according to the obtained expression.

以下、本発明に係る方法と従来の方法を比較した結果を示すことにより、本発明の効果をより明確なものとする。
図2は、本発明に係る方法と従来の方法について、硫酸浴中における電解時間と陽極酸化皮膜の膜厚の関係を示す図であり、(1)は従来の方法の場合、(2)は本発明に係る方法の場合である。
本発明に係る方法では、図1に示すような電流密度を一定にする制御を行い、基底電流密度を1A/dm、振幅を2A/dm、周波数を1kHz、波形を正弦波とした。
一方、従来の方法は、定電流(直流)電解法により行い、定電流密度を1A/dmとした。
Hereinafter, the effect of the present invention will be clarified by showing the result of comparing the method according to the present invention and the conventional method.
FIG. 2 is a diagram showing the relationship between the electrolysis time in the sulfuric acid bath and the film thickness of the anodized film for the method according to the present invention and the conventional method. (1) is the conventional method, (2) is This is the case of the method according to the invention.
In the method according to the present invention, control is performed to make the current density constant as shown in FIG. 1, and the base current density is 1 A / dm 2 , the amplitude is 2 A / dm 2 , the frequency is 1 kHz, and the waveform is a sine wave.
On the other hand, the conventional method is performed by a constant current (DC) electrolytic method, a constant current density was 1A / dm 2.

図2に示されるように、本発明に係る方法では、600分(10時間)経過後も膜厚の成長が持続し、約200μmの厚膜を作製することができた。これに対して、従来の方法では400分を経過した付近から皮膜の成長速度が著しく低下し、その後、皮膜の成長は約140μmで停止した。   As shown in FIG. 2, in the method according to the present invention, the film thickness continued to grow after 600 minutes (10 hours), and a thick film having a thickness of about 200 μm could be produced. On the other hand, in the conventional method, the growth rate of the film was remarkably reduced from around 400 minutes, and thereafter, the film growth stopped at about 140 μm.

図3は、図2の電解処理における電解時間に伴う電圧の変化の測定結果を示す図であり、(1)は従来の方法の場合、(2)は本発明に係る方法の場合である。
本発明に係る方法では、電圧の経時的変化が少なく略一定である。これにより、時間の経過に伴う膜抵抗の増加が殆ど起こらず、その結果、図2に示した如く皮膜成長が停止せず、厚膜化が可能となったものと考えられる。
これに対して、従来の方法では、電解開始直後に電圧が上昇している。これにより、時間とともに膜抵抗が大きくなり、図2に示した如く皮膜成長が停止してしまったものと考えられる。
3A and 3B are diagrams showing measurement results of voltage change with the electrolysis time in the electrolysis process of FIG. 2, wherein FIG. 3 shows the case of the conventional method and FIG. 3 shows the case of the method according to the present invention.
In the method according to the present invention, the change in voltage with time is small and substantially constant. As a result, the increase in film resistance with the passage of time hardly occurs, and as a result, the film growth does not stop as shown in FIG.
On the other hand, in the conventional method, the voltage increases immediately after the start of electrolysis. Thereby, the film resistance increases with time, and it is considered that the film growth stopped as shown in FIG.

図4は、本発明に係る方法と従来の方法について、シュウ酸浴中における電解時間と陽極酸化皮膜の膜厚の関係を示す図であり、(1)は従来の方法の場合、(2)は本発明に係る方法の場合である。
本発明に係る方法は、図1に示すような電流密度を一定とする制御を行い、基底電流密度を3A/dm、振幅を2A/dm、周波数を1kHz、波形を正弦波とした。
一方、従来の方法は、定電流(直流)電解法により行い、定電流密度を3A/dmとした。
FIG. 4 is a diagram showing the relationship between the electrolysis time in the oxalic acid bath and the film thickness of the anodized film for the method according to the present invention and the conventional method. (1) is the case of the conventional method, (2) Is the case of the method according to the invention.
In the method according to the present invention, the current density is controlled to be constant as shown in FIG. 1, and the base current density is 3 A / dm 2 , the amplitude is 2 A / dm 2 , the frequency is 1 kHz, and the waveform is a sine wave.
On the other hand, the conventional method was performed by a constant current (direct current) electrolysis method, and the constant current density was 3 A / dm 2 .

図4に示されるように、本発明に係る方法では、電解開始後約5時間程度で皮膜生成速度は減少したが、その後も皮膜は成長を続け、10時間で皮膜は約180μmに達し、それ以降も皮膜の成長は続いた。
これに対して、従来の方法では、電解開始約6時間後に膜厚が約140μmとなったが、それ以降、皮膜の成長は停止した。
As shown in FIG. 4, in the method according to the present invention, the film formation rate decreased in about 5 hours after the start of electrolysis, but the film continued to grow after that, and the film reached about 180 μm in 10 hours. Since then, film growth has continued.
On the other hand, in the conventional method, the film thickness became about 140 μm after about 6 hours from the start of electrolysis, but thereafter the film growth stopped.

図5は、本発明に係る方法と従来の方法について、硫酸浴中における電解時間と陽極酸化皮膜の膜厚の関係を示す図であり、(1)は従来の方法の場合、(2)は本発明に係る方法の場合である。
本発明に係る方法は、図5中のtにピークをもつ曲線に示すように電流密度を経時的に変化させた制御を行った。この制御は、印加電流密度を式1に従って制御したものであって、t=35分、t=65分、最大電流密度=11A/dm、周波数1000Hzに設定した。電解時におけるアルミニウム材1dm当たりの電気量の積分値は、電解開始時から35分は12500C、35〜65分は11500C、65〜180分は34000Cであった。
一方、従来の方法は、定電流(直流)電解法において、電流密度を式1に従って制御したものであって、t=35分、t=65分、最大電流密度=11A/dm、周波数1000Hzに設定した。
FIG. 5 is a diagram showing the relationship between the electrolysis time in the sulfuric acid bath and the film thickness of the anodized film for the method according to the present invention and the conventional method. (1) is the conventional method, (2) is This is the case of the method according to the invention.
The method according to the invention, control is carried out with time varying the current density as indicated by a curve having a peak at t 1 in FIG. In this control, the applied current density was controlled in accordance with Equation 1, and t 1 = 35 minutes, t 2 = 65 minutes, the maximum current density = 11 A / dm 2 , and the frequency 1000 Hz. The integrated value of the amount of electricity per 1 dm 2 of aluminum material during electrolysis was 12,500 C for 35 minutes from the start of electrolysis, 11500 C for 35 to 65 minutes, and 34000 C for 65 to 180 minutes.
On the other hand, the conventional method is a constant current (direct current) electrolysis method in which the current density is controlled according to Equation 1, and t 1 = 35 minutes, t 2 = 65 minutes, maximum current density = 11 A / dm 2 , The frequency was set to 1000 Hz.

図5に示されるように、本発明に係る方法では、電解開始約150分後に膜厚が約300μmに達した。
これに対して、従来の方法では、電解開始約80分後に膜厚が約140μmとなったが、それ以降、皮膜の成長は停止した。
As shown in FIG. 5, in the method according to the present invention, the film thickness reached about 300 μm after about 150 minutes from the start of electrolysis.
On the other hand, in the conventional method, the film thickness became about 140 μm after about 80 minutes from the start of electrolysis, but thereafter the film growth stopped.

図6は、本発明に係る方法について、シュウ酸浴中における電解時間と陽極酸化皮膜の膜厚の関係を示す図である。
本発明に係る方法は、図6中の山形の曲線に示すように電流密度を経時的に変化させた制御を行った。この制御は、印加電流密度を式2に従って制御したものであって、t=35分、t=65分、最大電流密度=7A/dm、周波数1000Hzに設定した。電解時におけるアルミニウム材1dm当たりの電気量の積分値は、電解開始時から35分は15000C、35〜65分は4800C、65〜180分は3200Cであった。
FIG. 6 is a diagram showing the relationship between the electrolysis time in the oxalic acid bath and the film thickness of the anodized film in the method according to the present invention.
In the method according to the present invention, control was performed by changing the current density over time as indicated by the mountain-shaped curve in FIG. In this control, the applied current density was controlled according to Equation 2, and t 1 = 35 minutes, t 2 = 65 minutes, the maximum current density = 7 A / dm 2 , and the frequency 1000 Hz. The integrated value of the amount of electricity per 1 dm 2 of aluminum material during electrolysis was 15000 C for 35 minutes from the start of electrolysis, 4800 C for 35 to 65 minutes, and 3200 C for 65 to 180 minutes.

図6に示されるように、本発明に係る方法では、電解開始約80分後に膜厚が約100μmに達し、その後も皮膜の成長は続き、150μm以上の膜厚をもつ皮膜が得られた。   As shown in FIG. 6, in the method according to the present invention, the film thickness reached about 100 μm after about 80 minutes from the start of electrolysis, and the film continued to grow, and a film having a film thickness of 150 μm or more was obtained.

図7は、図5及び図6に示した本発明に係る方法で生成された陽極酸化皮膜(1)及び(1)’と従来の方法で生成された陽極酸化皮膜(2)及び(2)’の電子顕微鏡(SEM)による表面観察写真であり、図8はこのうち本発明に係る方法で生成された陽極酸化皮膜の断面観察写真である。尚、図7における従来の方法は、定電流(直流)電解法において、電流密度を式1(硫酸浴の場合)又は式2(シュウ酸浴の場合)に従って制御したものであって、t=35分、t=65分、最大電流密度=11A/dm、周波数1000Hzに設定したものである。 FIG. 7 shows anodized films (1) and (1) ′ produced by the method according to the present invention shown in FIGS. 5 and 6 and anodized films (2) and (2) produced by a conventional method. 8 is a surface observation photograph by an electron microscope (SEM), and FIG. 8 is a sectional observation photograph of the anodized film produced by the method according to the present invention. The conventional method in FIG. 7 is a constant current (direct current) electrolysis method in which the current density is controlled according to Formula 1 (in the case of a sulfuric acid bath) or Formula 2 (in the case of an oxalic acid bath), and t 1 = 35 minutes, t 2 = 65 minutes, maximum current density = 11 A / dm 2 , frequency 1000 Hz.

図7の表面観察写真に示すように、本発明に係る方法の硫酸浴処理及びシュウ酸浴処理ともに表面の溶解が認められなかったのに対して、従来の方法では皮膜表面の溶解が著しく、電解中の表面温度の上昇が伺える。
また、図8の断面観察写真に示すように、本発明に係る方法の硫酸浴処理では、膜厚300μm程度の酸化アルミニウムの層が確認でき、中心にはバリアー層及び金属アルミニウム層(133μm厚)が残存していることが確認できた。また、シュウ酸浴処理による方法では、膜厚140μm程度の酸化アルミニウムの層が確認でき、中心にはバリアー層及び金属アルミニウム層(311μm厚)が残存していることが確認できた。
As shown in the surface observation photograph of FIG. 7, the surface dissolution was not observed in both the sulfuric acid bath treatment and the oxalic acid bath treatment of the method according to the present invention, whereas in the conventional method, the dissolution of the film surface was remarkable, The rise in surface temperature during electrolysis can be seen.
Moreover, as shown in the cross-sectional observation photograph of FIG. 8, in the sulfuric acid bath treatment of the method according to the present invention, an aluminum oxide layer having a film thickness of about 300 μm can be confirmed, with a barrier layer and a metal aluminum layer (thickness of 133 μm) at the center. Was confirmed to remain. Further, in the method using an oxalic acid bath treatment, an aluminum oxide layer having a thickness of about 140 μm was confirmed, and it was confirmed that a barrier layer and a metal aluminum layer (311 μm thickness) remained in the center.

以上のように、本発明に係る方法によれば、従来の方法に比べて、膜厚の増加に伴う皮膜抵抗の増加が少ないため、時間の経過に伴って成膜速度の著しい低下が生じることがなく、その結果として、従来の方法では困難であった150μm以上の厚い陽極酸化皮膜を短時間で形成することが可能であることが実験的に確認された。   As described above, according to the method according to the present invention, since the increase in film resistance accompanying the increase in film thickness is small compared with the conventional method, the film formation rate is significantly decreased with the passage of time. As a result, it was experimentally confirmed that a thick anodic oxide film having a thickness of 150 μm or more, which was difficult with the conventional method, can be formed in a short time.

本発明は、過酷な腐食環境下で使用されるアルミニウム材並びに該アルミニウム材への耐食処理方法として好適に利用され、例えば、カーボンナノチューブ、ナノワイヤー等のテンプレート、ナノリアクターおよびイオン分離膜への適用が可能である。また、本発明により得られる陽極酸化皮膜は、新たな機能性薄膜を作製する上で重要な基板としての利用可能性がある。   INDUSTRIAL APPLICABILITY The present invention is suitably used as an aluminum material used in a severe corrosive environment and a corrosion-resistant treatment method for the aluminum material. For example, the present invention is applied to templates such as carbon nanotubes and nanowires, nanoreactors, and ion separation membranes. Is possible. In addition, the anodic oxide film obtained by the present invention may be used as an important substrate in producing a new functional thin film.

本発明に係る方法において、電解時に印加される電流の基底電流密度、振幅、周波数の関係の一例を示す図である。In the method which concerns on this invention, it is a figure which shows an example of the relationship between the base current density of the electric current applied at the time of electrolysis, an amplitude, and a frequency. 本発明に係る方法と従来の方法について、硫酸浴中における電解時間と陽極酸化皮膜の膜厚の関係を示す図である。It is a figure which shows the relationship between the electrolysis time in a sulfuric acid bath, and the film thickness of an anodized film about the method which concerns on this invention, and the conventional method. 図2の電解処理における電解時間に伴う電圧の変化の測定結果を示す図である。It is a figure which shows the measurement result of the change of the voltage accompanying the electrolysis time in the electrolysis process of FIG. 本発明に係る方法と従来の方法について、シュウ酸浴中における電解時間と陽極酸化皮膜の膜厚の関係を示す図である。It is a figure which shows the relationship between the electrolysis time in an oxalic acid bath, and the film thickness of an anodized film about the method concerning this invention, and the conventional method. 本発明に係る方法と従来の方法について、硫酸浴中における電解時間と陽極酸化皮膜の膜厚の関係を示す図である。It is a figure which shows the relationship between the electrolysis time in a sulfuric acid bath, and the film thickness of an anodized film about the method which concerns on this invention, and the conventional method. 本発明に係る方法について、シュウ酸浴中における電解時間と陽極酸化皮膜の膜厚の関係を示す図である。It is a figure which shows the relationship between the electrolysis time in an oxalic acid bath, and the film thickness of an anodized film about the method which concerns on this invention. 図5及び図6に示した本発明に係る方法で生成された陽極酸化皮膜と従来の方法で生成された陽極酸化皮膜の電子顕微鏡(SEM)による表面観察写真である。It is the surface observation photograph by the electron microscope (SEM) of the anodic oxide film produced | generated by the method based on this invention shown in FIG.5 and FIG.6, and the anodic oxide film produced | generated by the conventional method. 本発明に係る方法で生成された陽極酸化皮膜の電子顕微鏡(SEM)による断面観察写真である。It is a cross-sectional observation photograph by the electron microscope (SEM) of the anodic oxide film produced | generated by the method based on this invention.

Claims (5)

表面に膜厚150μm以上の陽極酸化皮膜が形成されてなることを特徴とするアルミニウム材。   An aluminum material characterized in that an anodized film having a thickness of 150 μm or more is formed on the surface. アルミニウム材を酸性浴中で電解することにより、該アルミニウム材の表面に陽極酸化皮膜を形成するアルミニウム材の陽極酸化皮膜形成方法であって、前記電解を、直流電流に交流電流を重畳させて印加し、経時的に電流密度を制御することにより行うことを特徴とするアルミニウム材の陽極酸化皮膜形成方法。   An aluminum material anodic oxide film forming method for forming an anodic oxide film on a surface of an aluminum material by electrolyzing the aluminum material in an acidic bath, wherein the electrolysis is applied by superimposing an alternating current on a direct current And an anodized film forming method for an aluminum material, characterized by controlling the current density over time. 前記電解時において、基底電流密度を0.5〜20A/dmの範囲、振幅を0.5〜15A/dmの範囲で夫々変化させることを特徴とする請求項2記載のアルミニウム材の陽極酸化皮膜形成方法。 3. The aluminum anode according to claim 2, wherein the base current density is changed in the range of 0.5 to 20 A / dm 2 and the amplitude is changed in the range of 0.5 to 15 A / dm 2 during the electrolysis. Oxide film formation method. 前記酸性浴が硫酸浴であって、前記電解時において、印加電流密度を以下の一般式に従って制御することを特徴とする請求項2又は3記載のアルミニウム材の陽極酸化皮膜形成方法。
i=0.33t−0.32(0<t≦t
i=−0.16t+16.2(t<t≦t
i=5.6(t<t)
(但し、i:電流密度(A/dm)、t:電解時間(分)、周波数:1kHz一定)
4. The method for forming an anodic oxide film on an aluminum material according to claim 2, wherein the acidic bath is a sulfuric acid bath, and the applied current density is controlled according to the following general formula during the electrolysis.
i = 0.33t−0.32 (0 <t ≦ t 1 )
i = −0.16t + 16.2 (t 1 <t ≦ t 2 )
i = 5.6 (t 2 <t)
(However, i: current density (A / dm 2 ), t: electrolysis time (min), frequency: 1 kHz constant)
前記酸性浴がシュウ酸浴であって、前記電解時において、印加電流密度を以下の一般式に従って制御することを特徴とする請求項2又は3記載のアルミニウム材の陽極酸化皮膜形成方法。
i=0.21t−0.20(0<t≦t
i=−0.10t+10.6(t<t≦t
i=3.7(t<t)
(但し、i:電流密度(A/dm)、t:電解時間(分)、周波数:1kHz一定)
4. The method for forming an anodic oxide film on an aluminum material according to claim 2, wherein the acidic bath is an oxalic acid bath, and the applied current density is controlled according to the following general formula during the electrolysis.
i = 0.21t−0.20 (0 <t ≦ t 1 )
i = −0.10t + 10.6 (t 1 <t ≦ t 2 )
i = 3.7 (t 2 <t)
(However, i: current density (A / dm 2 ), t: electrolysis time (min), frequency: 1 kHz constant)
JP2006027348A 2006-02-03 2006-02-03 Method for forming high speed anodized film of aluminum material Expired - Fee Related JP4888948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006027348A JP4888948B2 (en) 2006-02-03 2006-02-03 Method for forming high speed anodized film of aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006027348A JP4888948B2 (en) 2006-02-03 2006-02-03 Method for forming high speed anodized film of aluminum material

Publications (2)

Publication Number Publication Date
JP2007204831A true JP2007204831A (en) 2007-08-16
JP4888948B2 JP4888948B2 (en) 2012-02-29

Family

ID=38484547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027348A Expired - Fee Related JP4888948B2 (en) 2006-02-03 2006-02-03 Method for forming high speed anodized film of aluminum material

Country Status (1)

Country Link
JP (1) JP4888948B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120892A (en) * 2007-11-13 2009-06-04 Sumitomo Electric Ind Ltd Self-supported film of alumina by anodization and production method therefor
JP2010053427A (en) * 2008-08-29 2010-03-11 Kanagawa Acad Of Sci & Technol Anodized porous alumina and method for producing the same
JP2012202428A (en) * 2011-03-24 2012-10-22 Hitachi Automotive Systems Ltd Solenoid valve and valve body structure
US8691403B2 (en) 2008-12-26 2014-04-08 Denso Corporation Method for anodizing aluminum and anodized aluminum
US8999475B2 (en) 2008-01-22 2015-04-07 Tokyo Electron Limited Component of substrate processing apparatus and method for forming a film thereon
JP2015124400A (en) * 2013-12-25 2015-07-06 株式会社豊田中央研究所 Aluminum-based member and anodic oxidation method thereof
JP2015147969A (en) * 2014-02-05 2015-08-20 住友電気工業株式会社 Substrate, and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152391A (en) * 1999-11-25 2001-06-05 Soken:Kk Surface treating method for aluminum and aluminum alloy
JP2005137801A (en) * 2003-11-10 2005-06-02 Soken:Kk Inflammation/odor suppressing member, its surface treatment method, and prosthetic body and shoe using the member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152391A (en) * 1999-11-25 2001-06-05 Soken:Kk Surface treating method for aluminum and aluminum alloy
JP2005137801A (en) * 2003-11-10 2005-06-02 Soken:Kk Inflammation/odor suppressing member, its surface treatment method, and prosthetic body and shoe using the member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120892A (en) * 2007-11-13 2009-06-04 Sumitomo Electric Ind Ltd Self-supported film of alumina by anodization and production method therefor
US8999475B2 (en) 2008-01-22 2015-04-07 Tokyo Electron Limited Component of substrate processing apparatus and method for forming a film thereon
US9828690B2 (en) 2008-01-22 2017-11-28 Tokyo Electron Limited Component of substrate processing apparatus and method for forming a film thereon
JP2010053427A (en) * 2008-08-29 2010-03-11 Kanagawa Acad Of Sci & Technol Anodized porous alumina and method for producing the same
US8691403B2 (en) 2008-12-26 2014-04-08 Denso Corporation Method for anodizing aluminum and anodized aluminum
JP2012202428A (en) * 2011-03-24 2012-10-22 Hitachi Automotive Systems Ltd Solenoid valve and valve body structure
JP2015124400A (en) * 2013-12-25 2015-07-06 株式会社豊田中央研究所 Aluminum-based member and anodic oxidation method thereof
JP2015147969A (en) * 2014-02-05 2015-08-20 住友電気工業株式会社 Substrate, and manufacturing method thereof

Also Published As

Publication number Publication date
JP4888948B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP4888948B2 (en) Method for forming high speed anodized film of aluminum material
JP4868020B2 (en) Aluminum anodizing method and anodized aluminum
EP1774067B1 (en) Method for producing a hard coating with high corrosion resistance on articles made of anodizable metals or alloys
TWI424096B (en) Method for forming anodic oxide film
JP5700235B2 (en) Method of forming alumite film
JP2007154302A (en) Power source system for aluminum alloy anodic oxidation
WO1985001612A1 (en) Process for producing anode foil for use in electrolytic aluminum capacitor
Belozerov et al. The influence of the conditions of microplasma processing (microarc oxidation in anode-cathode regime) of aluminum alloys on their phase composition
JP2007154300A (en) Aluminum alloy anodic oxidation method and power source for aluminum alloy anodic oxidation
JP6212383B2 (en) Method for anodizing aluminum-based members
US11486051B2 (en) Durable white inorganic finish for aluminium articles
JP4365415B2 (en) How to produce high adhesion thick protective coating of valve metal parts by micro arc oxidation
JP2007154301A (en) Aluminum alloy anodic oxidation method and power source for aluminum alloy anodic oxidation
JP2007324252A (en) Method of manufacturing electrode foil for electrolytic capacitor
JP5777939B2 (en) Anodized film generation method
JP2022155917A (en) Anodic oxidation treatment method for aluminum alloy and aluminum alloy material having anodic oxide film
JP5798900B2 (en) Method for forming oxide film and oxide film
JP6108938B2 (en) Formation method of oxide film
KR20100076908A (en) Method for anodizing aluminum and anodized aluminum
WO2013094753A1 (en) Method for manufacturing magnesium-alloy product
JP2006097082A (en) Al-BASED COMPOSITE MEMBER AND ITS PRODUCTION METHOD
RU2228973C2 (en) Method of obtaining thick-layer protective coats at high adhesion on parts made from rectifying metals or their alloys in mode of micro-arc oxidation
JP2018145477A (en) Method of removing oxide film of metal surface
JP4765411B2 (en) Surface treatment method of aluminum and aluminum alloy
KR20240005679A (en) How to Protect Light Metal Substrates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111208

R150 Certificate of patent or registration of utility model

Ref document number: 4888948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees