JP2007203215A - Adsorption system of carbon dioxide and desorption-recovery system - Google Patents

Adsorption system of carbon dioxide and desorption-recovery system Download PDF

Info

Publication number
JP2007203215A
JP2007203215A JP2006025955A JP2006025955A JP2007203215A JP 2007203215 A JP2007203215 A JP 2007203215A JP 2006025955 A JP2006025955 A JP 2006025955A JP 2006025955 A JP2006025955 A JP 2006025955A JP 2007203215 A JP2007203215 A JP 2007203215A
Authority
JP
Japan
Prior art keywords
carbon dioxide
adsorption
powder
gas
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006025955A
Other languages
Japanese (ja)
Inventor
Hidema Furumura
秀磨 古村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2006025955A priority Critical patent/JP2007203215A/en
Publication of JP2007203215A publication Critical patent/JP2007203215A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel system efficiently separating carbon dioxide, which is one of causative substances of the global warming phenomenon, by adsorption effectively utilizing an inexpensive substance dispensing with a special route for obtaining or a substance capable of becoming an industrial waste, further the system being capable of ultimately efficiently reducing the amount of emission of carbon dioxide without carelessly leaking the desorbed carbon dioxide out of the system. <P>SOLUTION: The system is characterized by emitting a gas reduced to a decreased concentration of carbon dioxide from a gas discharging opening by introducing a gas containing carbon dioxide to a gas supplying opening for selectively adsorbing the carbon dioxide to an adsorbent in an adsorption container having the gas supplying opening, the gas discharging opening and a form of a cylinder or a rectangular solid, and filled with a filler comprising an essential component of at least one inorganic powder constituent selected from the group consisting of a bauxite powder, a dried powder of a precipitate by-produced by the Bayer process and a porous powder whose pH of the clear supernatant liquid of its suspension is not lower than 7. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地球温暖化現象の抑止に寄与する二酸化炭素の吸着システムと、その脱着・回収システムに関し、さらに詳しくは、特別な入手ルートを必要としない安価な物質又は産業廃棄物となりうる物質を有効利用して、地球温暖化現象の原因物質の一つである二酸化炭素を効率良く吸着分離し、さらには、脱着させた二酸化炭素を不用意に系外に排出させてしまうことなく回収し、最終的に効率よく二酸化炭素の排出を削減することができる二酸化炭素の吸着システムと、二酸化炭素の脱着・回収システムに関する。   The present invention relates to a carbon dioxide adsorption system that contributes to the suppression of the global warming phenomenon, and its desorption / recovery system. More specifically, the present invention relates to an inexpensive substance that does not require a special acquisition route or a substance that can be industrial waste. Utilizing effectively, carbon dioxide, which is one of the causative substances of global warming phenomenon, is efficiently adsorbed and separated, and further, the desorbed carbon dioxide is recovered without inadvertently discharging out of the system, The present invention relates to a carbon dioxide adsorption system and a carbon dioxide desorption / recovery system that can ultimately reduce carbon dioxide emissions efficiently.

今や、地球温暖化現象の抑止は全地球的な規模で実施すべき重要な課題である。このような中で、地球温暖化現象において温室効果の主要な原因物質といわれている二酸化炭素の大気中への放出を抑制する技術的方法が注目されている。このような方法として、従来より、さまざまな新たな手段が考えられ、また、従来技術の活用法が提案されてきた。これらは、生物学的アプローチ、化学的アプローチ、及び物理学的アプローチの3通りに大別される。   Deterring global warming is now an important issue that should be implemented on a global scale. Under such circumstances, a technical method for suppressing the release of carbon dioxide, which is said to be a main causative substance of the greenhouse effect in the global warming phenomenon, has attracted attention. Conventionally, various new means are conceivable as such methods, and methods for utilizing the prior art have been proposed. These are broadly divided into three categories: biological approaches, chemical approaches, and physical approaches.

ここで、生物学的アプローチとしては、例えば、二酸化炭素を微生物に摂取させて生分解性プラスチック等の有機化合物を生合成させるものである。また、化学的アプローチとしては、二酸化炭素を他の物質と反応させて別の化合物に変換するという化学的手段を講ずるものである。   Here, as a biological approach, for example, carbon dioxide is ingested by microorganisms to biosynthesize organic compounds such as biodegradable plastics. In addition, as a chemical approach, chemical measures are taken in which carbon dioxide is reacted with another substance to convert it into another compound.

さらに、物理学的アプローチとしては、例えば、二酸化炭素を吸着分離する方法を応用させることができる。ところで、吸着分離する方法としては、大気汚染の防止のため吸着性能を有するセラミックスを使用したシートを自動車エンジンルーム内部に組み込むことにより、炭化水素及び一酸化炭素を排ガスから浄化する方法が提案されている。また、二酸化炭素を不純物として含む空気又は合成ガスの精製方法であって、特定の活性アルミナを備える吸着剤に二酸化炭素を吸着させるプロセス(例えば、特許文献1参照)、室内空気の浄化のために用いる吸着性能と脱着性能とを両立させた特定組成の二酸化炭素吸着剤、及びそれを用いた二酸化炭素除去装置(例えば、特許文献2参照)等が開示されている。   Furthermore, as a physical approach, for example, a method of adsorbing and separating carbon dioxide can be applied. By the way, a method for purifying hydrocarbons and carbon monoxide from exhaust gas by incorporating a sheet using ceramics having adsorption performance in order to prevent air pollution into the interior of an automobile engine room has been proposed as an adsorption separation method. Yes. Also, a method for purifying air or synthesis gas containing carbon dioxide as an impurity, a process of adsorbing carbon dioxide on an adsorbent comprising specific activated alumina (for example, see Patent Document 1), for purifying indoor air A carbon dioxide adsorbent having a specific composition that achieves both adsorption performance and desorption performance to be used, a carbon dioxide removal device using the same (for example, see Patent Document 2), and the like are disclosed.

しかしながら、上記生物学的アプローチ及び化学的アプローチは、いずれの場合も他の有機化合物への変換や、二酸化炭素に対して反応性を示す物質の製造のために多大なエネルギーを必要とし、エネルギー的観点から全体としては、かえって二酸化炭素の排出量を増加させてしまうという点で、本質的な課題の解決策にならない方法であった。
また、上記物理学的アプローチにおいては、排出ガス中の二酸化炭素の分離には吸着剤の選定に工夫が必要であったり、また、使用目的が工程用空気の精製プロセス又は室内空気の浄化であるため、脱着させた二酸化炭素を最終的には系外に放出してしまうという点において、地球温暖化現象の抑止に関しては本質的な課題の解決策にならない方法であった。
However, the biological and chemical approaches described above require enormous amounts of energy for conversion to other organic compounds and for the production of substances that are reactive to carbon dioxide. From a point of view as a whole, it was a method that would not be a solution to the essential problem in that it would actually increase carbon dioxide emissions.
In the above physical approach, it is necessary to devise the selection of the adsorbent for the separation of carbon dioxide in the exhaust gas, and the purpose of use is the process air purification process or the indoor air purification. Therefore, in the point that the desorbed carbon dioxide is finally released out of the system, it is a method that does not become a solution to an essential problem regarding the suppression of the global warming phenomenon.

以上のような状況において、エネルギー的観点から全体としての二酸化炭素の収支バランスを考慮することを大前提として、ガス中の二酸化炭素を効率よく吸着分離し、かつ、脱着させた二酸化炭素を不用意に系外に排出させることなく回収し、最終的に効率よく排出を削減することができるシステムが求められている。   Under the circumstances described above, it is important to consider the balance of carbon dioxide as a whole from the energy point of view, and the carbon dioxide in the gas is efficiently adsorbed and separated, and the desorbed carbon dioxide is not prepared. Therefore, there is a need for a system that can be recovered without being discharged to the outside of the system and can be efficiently reduced in the end.

特開平2001−104737号公報(第1〜3頁)JP 2001-104737 A (pages 1 to 3) 特開平2003−19435号公報(第1頁、第2頁)Japanese Unexamined Patent Publication No. 2003-19435 (first page, second page)

本発明の目的は、上記の従来技術の問題点に鑑み、特別な入手ルートを必要としない安価な物質又は産業廃棄物となりうる物質を有効利用して、地球温暖化現象の原因物質の一つである二酸化炭素を効率良く吸着分離し、さらには、脱着させた二酸化炭素を不用意に系外に排出させてしまうことなく回収し、最終的に効率よく二酸化炭素の排出を削減することができる二酸化炭素の吸着システムと、二酸化炭素の脱着・回収システムを提供することにある。   In view of the above-mentioned problems of the prior art, an object of the present invention is to use one of the causative substances of the global warming phenomenon by effectively using an inexpensive substance that does not require a special acquisition route or a substance that can be industrial waste. The carbon dioxide is efficiently adsorbed and separated, and further, the desorbed carbon dioxide can be recovered without inadvertently discharging out of the system, and finally the carbon dioxide emission can be efficiently reduced. The object is to provide a carbon dioxide adsorption system and a carbon dioxide desorption / recovery system.

本発明者は、上記目的を達成するために、二酸化炭素を吸着分離回収するシステムについて、鋭意研究を重ねた結果、特定の無機粉末成分を主成分とする吸着剤を用いた特定の吸着装置を用いたところ、二酸化炭素を効率良く吸着し、さらには、該吸着装置から脱着させた二酸化炭素を不用意に系外に排出させてしまうことなく効率よく二酸化炭素を回収することができ、二酸化炭素の排出量を削減することができることを見出し、本発明を完成した。   In order to achieve the above object, the present inventor has conducted extensive research on a system for adsorbing, separating and recovering carbon dioxide, and as a result, has found a specific adsorption device using an adsorbent mainly composed of a specific inorganic powder component. When used, carbon dioxide can be efficiently adsorbed, and furthermore, carbon dioxide can be efficiently recovered without inadvertently discharging the carbon dioxide desorbed from the adsorption device out of the system. The present invention has been completed by discovering that the amount of emission can be reduced.

すなわち、本発明の第1の発明によれば、ボーキサイト粉末、バイヤー法おいて副生する沈殿物の乾燥粉末、または懸濁液を作製すると上澄液pHが7以上となる多孔質粉末から選ばれる少なくとも1種の無機粉末成分を主成分とする吸着剤を、ガス供給口及びガス排出口を有する吸着容器に充填し、二酸化炭素含有ガスをガス供給口に導入し、吸着容器内で前記吸着剤に二酸化炭素を選択的に吸着させ、ガス排出口から二酸化炭素濃度を減少させたガスを排出させることを特徴とする二酸化炭素吸着システムが提供される。   That is, according to the first invention of the present invention, a bauxite powder, a dry powder of a precipitate produced as a by-product in the Bayer method, or a porous powder having a supernatant pH of 7 or more when a suspension is prepared. The adsorbent mainly composed of at least one inorganic powder component is filled into an adsorption container having a gas supply port and a gas discharge port, and a carbon dioxide-containing gas is introduced into the gas supply port, and the adsorption is performed in the adsorption container. There is provided a carbon dioxide adsorption system characterized in that carbon dioxide is selectively adsorbed on an agent and gas having a reduced carbon dioxide concentration is discharged from a gas outlet.

また、本発明の第2の発明によれば、ボーキサイト粉末、バイヤー法おいて副生する沈殿物の乾燥粉末、または懸濁液を作製すると上澄液pHが7以上となる多孔質粉末から選ばれる少なくとも1種の無機粉末成分を主成分とする吸着剤をシート状に成形したフィルターを、ガス供給口及びガス排出口を有する吸着容器内に嵌入し、二酸化炭素含有ガスを供給口に導入し、容器内で前記吸着剤に二酸化炭素を選択的に吸着させ、ガス排出口から二酸化炭素濃度を減少させたガスを排出させることを特徴とする二酸化炭素吸着システムが提供される。   Further, according to the second invention of the present invention, a bauxite powder, a dry powder of a precipitate produced as a by-product in the Bayer method, or a porous powder having a supernatant pH of 7 or more when a suspension is prepared is selected. A filter formed by adsorbing an adsorbent mainly composed of at least one inorganic powder component into a sheet shape is inserted into an adsorption container having a gas supply port and a gas discharge port, and a carbon dioxide-containing gas is introduced into the supply port. There is provided a carbon dioxide adsorption system characterized in that carbon dioxide is selectively adsorbed on the adsorbent in a container and gas having a reduced carbon dioxide concentration is discharged from a gas outlet.

また、本発明の第3の発明によれば、第1の発明において、前記吸着容器の底部に多孔板を設けた上で、それを介して二酸化炭素含有ガスをガス供給口に導入することを特徴とする二酸化炭素吸着システムが提供される。   According to the third invention of the present invention, in the first invention, a porous plate is provided at the bottom of the adsorption vessel, and a carbon dioxide-containing gas is introduced into the gas supply port through the porous plate. A featured carbon dioxide adsorption system is provided.

また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、前記バイヤー法おいて副生する沈殿物の乾燥粉末は、鉄に代表される遷移金属の酸化物又は水酸化物、アルミノケイ酸ナトリウム、ソーダライト、及び灰かすみ石を含む混合物である赤泥から生成することを特徴とする二酸化炭素吸着システムが提供される。   According to a fourth invention of the present invention, in any one of the first to third inventions, the dry powder of precipitate produced as a by-product in the Bayer method is an oxide of a transition metal typified by iron or A carbon dioxide adsorption system is provided that is produced from red mud, which is a mixture comprising hydroxide, sodium aluminosilicate, sodalite, and ash ore.

また、本発明の第5の発明によれば、第1〜3のいずれかの発明において、前記多孔質粉末は、α−Al(OH)3(ギブサイト)、γ−AlO(OH)(ベーマイト)、α−FeO(OH)(ゲーサイト/針鉄鉱)、α−Fe2O3(ヘマタイト/赤鉄鉱)又は5Fe2O3・9H2O(フェリハイドライト)から選ばれる少なくとも1種を含む天然鉱物の乾燥粉末であることを特徴とする二酸化炭素吸着システムが提供される。   According to a fifth aspect of the present invention, in any one of the first to third aspects, the porous powder is α-Al (OH) 3 (gibbsite), γ-AlO (OH) (boehmite). , Α-FeO (OH) (goethite / goethite), α-Fe 2 O 3 (hematite / hematite) or 5Fe 2 O 3 .9H 2 O (ferrihydrite) A featured carbon dioxide adsorption system is provided.

また、本発明の第6の発明によれば、第1〜5のいずれかの発明において、前記無機粉末成分を主成分とする粉末は、比表面積が100〜500m/gであることを特徴とする二酸化炭素吸着システムが提供される。 According to a sixth invention of the present invention, in any one of the first to fifth inventions, the powder containing the inorganic powder component as a main component has a specific surface area of 100 to 500 m 2 / g. A carbon dioxide adsorption system is provided.

また、本発明の第7の発明によれば、第2の発明において、前記フィルターは、酸化アルミニウムを主成分とする粉末を焼結して得られる多孔質セラミックス板からなることを特徴とする二酸化炭素吸着システムが提供される。   According to a seventh aspect of the present invention, in the second aspect, the filter is made of a porous ceramic plate obtained by sintering a powder mainly composed of aluminum oxide. A carbon adsorption system is provided.

また、本発明の第8の発明によれば、第1〜7のいずれかの発明の二酸化炭素吸着システムに、減圧ポンプと大容量一時吸着容器から構成される回収装置を組み込んだ二酸化炭素の脱着・回収システムであって、二酸化炭素が吸着された二酸化炭素吸着システムのガス排出口に前記減圧ポンプを接続し、二酸化炭素吸着システムから脱着させた二酸化炭素を前記大容量一時吸着容器内に吸着保持することを特徴とする二酸化炭素の脱着・回収システムが提供される。   According to the eighth invention of the present invention, the carbon dioxide adsorption system according to any one of the first to seventh inventions incorporates a recovery device comprising a decompression pump and a large-capacity temporary adsorption container into the carbon dioxide desorption system.・ It is a recovery system, and the decompression pump is connected to the gas outlet of the carbon dioxide adsorption system where carbon dioxide is adsorbed, and the carbon dioxide desorbed from the carbon dioxide adsorption system is adsorbed and held in the large-capacity temporary adsorption vessel A carbon dioxide desorption / recovery system is provided.

本発明の二酸化炭素吸着システムによれば、第1〜7の発明においては、地球温暖化現象の原因物質である二酸化炭素を効率良く吸着することができる粉末を充填した吸着容器、または該粉末をシート状に成形したフィルターを嵌入した吸着装置からなるものであり、しかも、吸着剤として用いるの原料は、特別な入手ルートを必要としない安価な物質、又は産業廃棄物となりうる物質の新規の用途開発及び有効利用を対象としており、吸着剤の準備において特別な製造エネルギーを必要とすることがないので、その工業的価値は極めて大きい。   According to the carbon dioxide adsorption system of the present invention, in the first to seventh inventions, an adsorption container filled with a powder capable of efficiently adsorbing carbon dioxide which is a causative substance of the global warming phenomenon, or the powder is used. It consists of an adsorbing device fitted with a filter formed into a sheet, and the raw material used as the adsorbent is a new use of an inexpensive substance that does not require a special route or a substance that can become industrial waste It is intended for development and effective use, and since it does not require special production energy in the preparation of the adsorbent, its industrial value is extremely large.

また、第8の発明においては、脱着させた二酸化炭素を不用意に系外に排出させてしまうことなく、エネルギー的観点から全体としての二酸化炭素の収支バランスを考慮して効率よく二酸化炭素の排出量を削減することができるので、より有利である。   In the eighth invention, carbon dioxide is efficiently discharged in consideration of the balance of carbon dioxide as a whole from an energy point of view without inadvertently discharging the desorbed carbon dioxide outside the system. This is more advantageous because the amount can be reduced.

以下、本発明の地球温暖化現象の抑止に寄与する二酸化炭素吸着システム及び脱着・回収システムを詳細に説明する。
本発明の二酸化炭素吸着システムは、ボーキサイト粉末、バイヤー法おいて副生する沈殿物の乾燥粉末、または懸濁液を作製すると上澄液pHが7以上となる多孔質粉末から選ばれる少なくとも1種の無機粉末成分を主成分とする吸着剤をガス供給口及びガス排出口を有する吸着容器に充填し、或は、該吸着剤をシート状に成形したフィルター又は酸化アルミニウムを主成分とする粉末を焼結して得られる多孔質セラミックス板からなるフィルターをガス供給口及びガス排出口を有する吸着容器内に嵌入し、二酸化炭素含有ガスを供給口に導入し、容器内で前記吸着剤に二酸化炭素を選択的に吸着させ、ガス排出口から二酸化炭素濃度を減少させたガスを排出させることを特徴とする。
Hereinafter, the carbon dioxide adsorption system and the desorption / recovery system that contribute to the suppression of the global warming phenomenon of the present invention will be described in detail.
The carbon dioxide adsorption system of the present invention is at least one selected from bauxite powder, dry powder of precipitate produced as a by-product in the Bayer method, or porous powder having a supernatant pH of 7 or more when a suspension is prepared. An adsorbent mainly composed of an inorganic powder component is filled in an adsorption container having a gas supply port and a gas exhaust port, or a filter formed by forming the adsorbent into a sheet or a powder mainly composed of aluminum oxide. A filter made of a porous ceramic plate obtained by sintering is inserted into an adsorption container having a gas supply port and a gas discharge port, a carbon dioxide-containing gas is introduced into the supply port, and carbon dioxide is introduced into the adsorbent in the container. Is selectively adsorbed, and the gas having a reduced carbon dioxide concentration is discharged from the gas discharge port.

本発明の二酸化炭素吸着システムを図で説明する。図1は、前記無機粉末成分を主成分とする吸着剤を円筒状又は直方体状の吸着容器に充填した装置の一例を表す。また、図2は、前記無機粉末成分を主成分とする吸着剤をシート状に成形したフィルター、又は酸化アルミニウムを主成分とする粉末を焼結して得られる多孔質セラミックス板からなるフィルターを吸着容器内部に嵌入した吸着装置の一例を表す。   The carbon dioxide adsorption system of the present invention will be described with reference to the drawings. FIG. 1 shows an example of an apparatus in which an adsorbent containing the inorganic powder component as a main component is filled into a cylindrical or rectangular adsorption container. Further, FIG. 2 adsorbs a filter formed of a sheet of an adsorbent containing the inorganic powder component as a main component or a porous ceramic plate obtained by sintering powder containing an aluminum oxide as a main component. An example of the adsorption | suction apparatus inserted in the container inside is represented.

図1において、二酸化炭素含有ガスは、二酸化炭素吸着装置1のガス供給口3から、吸着剤5を内蔵した円筒状又は直方体の吸着容器2に導入され、吸着容器2内に充填された吸着剤5に二酸化炭素が選択的に吸着され、二酸化炭素濃度が減少したガスがガス排出口4から排出される。
また、図1に示す装置を90度回転させ、吸着容器2を垂直状態にして使用することができる。ここで、吸着容器2としては、多孔板等の吸着剤がこぼれ落ちない程度の穴が無数に開いた板をその底板として用い、該底板を介してガス供給口3から二酸化炭素含有ガスが導入される構造が好ましい。この場合、条件によっては吸着容器2内の吸着剤が流動層となり、固気接触反応装置として、導入されたガスとの接触効率をより一層向上させることができる。
In FIG. 1, a carbon dioxide-containing gas is introduced from a gas supply port 3 of a carbon dioxide adsorption device 1 into a cylindrical or rectangular adsorption container 2 containing an adsorbent 5, and the adsorbent filled in the adsorption container 2. The carbon dioxide is selectively adsorbed by the gas 5 and the gas having a reduced carbon dioxide concentration is discharged from the gas outlet 4.
Further, the apparatus shown in FIG. 1 can be rotated 90 degrees to use the adsorption container 2 in a vertical state. Here, as the adsorption container 2, a plate having innumerable holes such as a perforated plate that does not spill out is used as the bottom plate, and the carbon dioxide-containing gas is introduced from the gas supply port 3 through the bottom plate. The structure is preferable. In this case, depending on conditions, the adsorbent in the adsorption vessel 2 becomes a fluidized bed, and the contact efficiency with the introduced gas can be further improved as a solid-gas contact reactor.

図2において、二酸化炭素を含有するガスは、二酸化炭素吸着装置1のガス供給口3から吸着容器6内に導入され、吸着剤5からなるフィルター7を通過し、吸着剤5に二酸化炭素が選択的に吸着され、二酸化炭素濃度が減少したガスがガス排出口4から排出される。   In FIG. 2, a gas containing carbon dioxide is introduced into the adsorption container 6 from the gas supply port 3 of the carbon dioxide adsorption device 1, passes through the filter 7 made of the adsorbent 5, and carbon dioxide is selected as the adsorbent 5. Gas having a reduced carbon dioxide concentration is exhausted from the gas outlet 4.

本発明の二酸化炭素吸着システムは、例えば、自動車排気ガス系統でのエアクリーナー内、住宅の換気システム等の配管系統に取り付けられ、その二酸化炭素含有ガス中の二酸化炭素を選択的に吸着する。吸着剤の量、吸着容器の大きさ、上記2種類の吸着容器の選択は、対象とする二酸化炭素含有ガスの種類、流速及び通過量(体積)により適宜選択することができる。また、前記容器は、吸着剤が二酸化炭素を吸着し吸着量が飽和した時点または飽和する少し前の時点で配管系統から取り外し、後述の回収装置に繋ぎ替えて、吸着剤に吸着された二酸化炭素を回収するようにする。なお、装置によっては、後述の回収装置を全体の装置の中に組み入れ、配管系統を切り替えるだけで吸着剤に吸着された二酸化炭素を回収することができる。
また、本発明の二酸化炭素吸着システムを用いる吸着条件等は、対象とする二酸化炭素含有ガスの条件により任意に決めることができる。
The carbon dioxide adsorption system of the present invention is attached to, for example, an air cleaner in an automobile exhaust gas system or a piping system such as a house ventilation system, and selectively adsorbs carbon dioxide in the carbon dioxide-containing gas. The amount of the adsorbent, the size of the adsorption container, and the selection of the two types of adsorption containers can be appropriately selected depending on the type of carbon dioxide-containing gas, the flow rate, and the passing amount (volume). Further, the container is removed from the piping system when the adsorbent adsorbs carbon dioxide and the amount of adsorption is saturated or just before it is saturated, and is connected to a recovery device described later, so that the carbon dioxide adsorbed by the adsorbent To collect. Note that, depending on the apparatus, carbon dioxide adsorbed by the adsorbent can be recovered simply by incorporating a recovery apparatus described later into the entire apparatus and switching the piping system.
Moreover, the adsorption conditions etc. which use the carbon dioxide adsorption system of this invention can be arbitrarily determined with the conditions of the carbon dioxide containing gas made into object.

本発明の二酸化炭素の脱着・回収システムは、上記二酸化炭素吸着システムに後続して組み込まれた二酸化炭素回収装置のことである。本発明で用いる二酸化炭素の回収装置は、減圧ポンプと大容量一時吸着容器から構成され、二酸化炭素が吸着された二酸化炭素吸着装置のガス排出口に減圧ポンプを接続し、二酸化炭素吸着装置から脱着させた二酸化炭素を大容量一時吸着容器内に吸着保持する装置である。   The carbon dioxide desorption / recovery system of the present invention is a carbon dioxide recovery device incorporated subsequent to the carbon dioxide adsorption system. The carbon dioxide recovery device used in the present invention is composed of a decompression pump and a large-capacity temporary adsorption vessel, and is connected to the gas discharge port of the carbon dioxide adsorption device on which carbon dioxide is adsorbed, and is desorbed from the carbon dioxide adsorption device. It is a device that adsorbs and holds the carbon dioxide that has been absorbed in a large-capacity temporary adsorption vessel.

ここで、本発明の二酸化炭素の回収装置を図で説明する。図3は、二酸化炭素を吸着した吸着剤が充填された吸着装置から二酸化炭素を減圧下で脱着させ、大容量一時吸着容器中の吸着剤に再吸着させる装置である。   Here, the carbon dioxide recovery apparatus of the present invention will be described with reference to the drawings. FIG. 3 shows an apparatus for desorbing carbon dioxide from an adsorbing apparatus filled with an adsorbent adsorbing carbon dioxide under reduced pressure and re-adsorbing the adsorbent in a large-capacity temporary adsorption container.

図3において、二酸化炭素吸着装置のガス排出口4は、二酸化炭素回収装置10の吸引ライン11に繋がれ、減圧ポンプ12により吸引され大容量一時吸着容器13中の吸着剤14に再吸着される。二酸化炭素をほとんど含有しないガスは大気開放口15から排出される。なお、このとき、二酸化炭素吸着装置のガス供給口は閉じた状態にされる。
また、本発明の二酸化炭素回収装置を用いる脱着条件等は、特に限定されず、任意に決めることができる。
In FIG. 3, the gas discharge port 4 of the carbon dioxide adsorption device is connected to the suction line 11 of the carbon dioxide recovery device 10 and is sucked by the decompression pump 12 and re-adsorbed to the adsorbent 14 in the large-capacity temporary adsorption container 13. . A gas containing almost no carbon dioxide is discharged from the air opening 15. At this time, the gas supply port of the carbon dioxide adsorption device is closed.
Moreover, the desorption conditions using the carbon dioxide recovery apparatus of the present invention are not particularly limited, and can be arbitrarily determined.

吸着剤から二酸化炭素を脱着させた上記二酸化炭素吸着装置は、二酸化炭素吸着性能が最初の状態に戻り再度用いることができるが、必要に応じて吸着剤の再生処理を行なうこともできる。   The carbon dioxide adsorbing apparatus in which carbon dioxide is desorbed from the adsorbent can be used again after the carbon dioxide adsorption performance returns to the initial state, but the adsorbent can be regenerated as necessary.

また、大容量吸着容器内の吸着剤に再吸着された二酸化炭素は、必要に応じて、同様の減圧法等の手段により回収されて他の容器又は他の吸引ライン等を経てそれぞれの用途に用いることができる。
大容量吸着容器内の吸着剤は、上記二酸化炭素吸着装置で用いる吸着剤と同様なものを用いることができる。また、その容量等は、用いる二酸化炭素吸着装置等に応じて、任意に決めることができる。
In addition, the carbon dioxide re-adsorbed by the adsorbent in the large-capacity adsorption container is recovered by means of the same decompression method or the like, if necessary, and used for each application through other containers or other suction lines. Can be used.
As the adsorbent in the large-capacity adsorption vessel, the same adsorbent as that used in the carbon dioxide adsorption apparatus can be used. Moreover, the capacity | capacitance etc. can be arbitrarily determined according to the carbon dioxide adsorption apparatus etc. to be used.

本発明の二酸化炭素吸着システムおいて、吸着剤として、ボーキサイト粉末、バイヤー法おいて副生する沈殿物の乾燥粉末、または懸濁液を作製すると上澄液pHが7以上となる多孔質粉末から選ばれる少なくとも1種の無機粉末成分を主成分とする粉末、あるいは該粉末をシート状に成形したフィルター又は酸化アルミニウムを主成分とする粉末を焼結して得られる多孔質セラミックス板を用いることが重要である。これによって、二酸化炭素に対して選択特異的な吸着性能と脱着性能を同時に兼ね備える吸着剤として、二酸化炭素の大気中への放出を抑制することができるとともに、省エネルギー的に吸着性能と脱着性能を制御することができる。しかも、産業廃棄物となりうる物質の新規の用途開発と有効利用を行なうことができる。   In the carbon dioxide adsorption system of the present invention, as an adsorbent, a bauxite powder, a dry powder of a precipitate produced as a by-product in the Bayer method, or a porous powder having a supernatant pH of 7 or more when a suspension is prepared. Use of a powder comprising at least one selected inorganic powder component as a main component, or a filter formed by forming the powder into a sheet or a porous ceramic plate obtained by sintering a powder containing aluminum oxide as a main component is important. As an adsorbent that has both adsorption and desorption performance specific to carbon dioxide at the same time, it can control the release of carbon dioxide into the atmosphere and control the adsorption and desorption performance in an energy-saving manner. can do. In addition, it is possible to develop new uses and effectively use substances that can become industrial waste.

さらに、本発明の脱着・回収システムにおいて、上記吸着システムから脱着させた二酸化炭素を回収する二酸化炭素回収装置を用いることが重要な意義を有する。これによって、脱着させた二酸化炭素を不用意に系外に排出させてしまうことなく、エネルギー的観点から全体としての二酸化炭素の収支バランスを考慮した上で効率よく二酸化炭素の排出を削減することができる。   Furthermore, in the desorption / recovery system of the present invention, it is important to use a carbon dioxide recovery device that recovers carbon dioxide desorbed from the adsorption system. This makes it possible to efficiently reduce carbon dioxide emissions while considering the balance of carbon dioxide as a whole from an energy point of view, without inadvertently discharging the desorbed carbon dioxide outside the system. it can.

ところで、二酸化炭素の大気中への放出を抑制する技術的手段について思料すると、その本質的な問題は二酸化炭素の拡散性にあると思われる。すなわち、二酸化炭素をはじめ、気体状の物質はひとたび大気に開放され拡散されると、時間の経過と共に急激に希釈されてしまうので簡単には全量を回収することができなくなってしまう。例えば、同様の問題の好例としては、大気や海洋・河川において今まで発生してきた公害問題があり、いかなる物質も自然界で希釈され続けるという表面上の現象に油断して有害排出量の総量を見落としてしまった結果ゆえの事態であると捉えることができる。   By the way, considering the technical means to suppress the release of carbon dioxide into the atmosphere, the essential problem seems to be the diffusivity of carbon dioxide. In other words, once carbon dioxide and other gaseous substances are released into the atmosphere and diffused, they are diluted rapidly with time, so that it is not possible to easily recover the entire amount. For example, a good example of a similar problem is the pollution problem that has occurred in the air, oceans and rivers, and overlooked the total amount of harmful emissions by being alert to the superficial phenomenon that any substance continues to dilute in nature. It can be understood that this is the result of the result.

このような問題に対して、本発明の二酸化炭素吸着システム及び脱着・回収システムでは、二酸化炭素を含むガスが放出され拡散し希釈されて回収が事実上不可能になる前に、さまざまな発生源において発生するガスから二酸化炭素をその場で即時的に吸着分離する。その後、減圧又は加温処理等を施すことにより、前記二酸化炭素を脱着させて、工業製品製造のための有用な資源として随時使用できるように貯蔵することができる。また、これによって、吸着システムに用いる吸着剤は長期間にわたってその吸着性能と脱着性能を持続させることができるので、資源循環型社会の構築に貢献する。   In response to such a problem, the carbon dioxide adsorption system and desorption / recovery system of the present invention have various sources before the carbon dioxide-containing gas is released, diffused, diluted and virtually impossible to recover. Carbon dioxide is immediately adsorbed and separated in situ from the gas generated in the process. Thereafter, the carbon dioxide can be desorbed by depressurization or heating treatment, and stored so that it can be used as needed as a useful resource for manufacturing industrial products. This also allows the adsorbent used in the adsorption system to maintain its adsorption performance and desorption performance over a long period of time, contributing to the construction of a resource recycling society.

上記吸着剤の製造方法としては、ボーキサイト粉末、バイヤー法おいて副生する沈殿物粉末、または懸濁時に上澄液pHが7以上となる多孔質粉末から選ばれる少なくとも1種の無機粉末成分を原料として、洗浄、乾燥、加熱等の処理を適切な条件で施せば、吸着性能と脱着性能を同時に兼ね備える微細な活性粉末を省エネルギー的な製造方法で得ることができる。さらに、この粉末を用いて、無機粉末の通常の成形方法を用いてシート状に成形したフィルターが得られる。例えば、上記無機粉末にバインダーを添加して混練した後、ローラー成形機でシートを得る。   The adsorbent production method includes at least one inorganic powder component selected from bauxite powder, precipitate powder by-produced in the Bayer method, or porous powder having a supernatant pH of 7 or more when suspended. If treatments such as washing, drying, and heating are performed as raw materials under appropriate conditions, a fine active powder having both adsorption performance and desorption performance can be obtained by an energy-saving production method. Furthermore, the filter shape | molded into the sheet form using the normal shaping | molding method of inorganic powder using this powder is obtained. For example, after adding a binder to the inorganic powder and kneading, a sheet is obtained with a roller molding machine.

上記ボーキサイト粉末としては、バイヤー法の原料として入手可能な流通品だけでなく、ボーキサイト鉱石の採掘及び運搬時に自然発生する粉砕粉末も用いられるので、特別な入手ルートを必要としないという利点がある。なお、ボーキサイトは、Al・nHOだけでなく、α−AlO(OH)(ダイアスポア)及びγ−AlO(OH)(ベーマイト)等からも構成される。 As the bauxite powder, not only a distribution product that can be obtained as a raw material of the buyer method but also a pulverized powder that is naturally generated when mining and transporting bauxite ore, there is an advantage that a special acquisition route is not required. The bauxite is composed of not only Al 2 O 3 .nH 2 O but also α-AlO (OH) (diaspore), γ-AlO (OH) (boehmite), and the like.

上記バイヤー法において副生する沈殿物の乾燥粉末としては、例えば、バイヤー法において水酸化ナトリウム溶液を用いたアルカリ浸出法によりボーキサイト粉末から副生する赤泥が用いられる。この赤泥は、鉄に代表される遷移金属の酸化物又は水酸化物、アルミノケイ酸ナトリウム、ソーダライト、及び灰かすみ石を含む混合物である。これを乾燥及び粉砕して有効活用する新たな用途を構築することは、工業的に有益である。   As the dry powder of the precipitate produced as a by-product in the Bayer method, for example, red mud produced as a by-product from bauxite powder by an alkali leaching method using a sodium hydroxide solution in the Bayer method is used. This red mud is a mixture containing an oxide or hydroxide of a transition metal typified by iron, sodium aluminosilicate, sodalite, and ash ore. It is industrially beneficial to construct a new application for effective utilization by drying and grinding.

また、上記多孔質粉末としては、例えば、α−Al(OH)3(ギブサイト)、γ−AlO(OH)(ベーマイト)、α−FeO(OH)(ゲーサイト/針鉄鉱)、α−Fe2O3(ヘマタイト/赤鉄鉱)又は5Fe2O3・9H2O(フェリハイドライト)から選ばれる少なくとも1種を含む土壌中に見出される天然鉱物の乾燥粉末があり、特別な入手ルートを必要としない利点がある。   Examples of the porous powder include α-Al (OH) 3 (gibbsite), γ-AlO (OH) (boehmite), α-FeO (OH) (goethite / goethite), α-Fe 2 O 3 ( There is a dry powder of natural minerals found in soil containing at least one selected from hematite / hematite) or 5Fe2O3.9H2O (ferrihydrite), which has the advantage of not requiring a special access route.

上記無機粉末成分を主成分とする粉末の比表面積としては、特に限定されるものではなく、100〜500m/gが好ましい。また、前記粉末の粒子径としては、特に限定されるものではなく、1〜200μmが好ましい。すなわち、これらの範囲において、二酸化炭素を効率的に吸着及び脱着することができる。 It does not specifically limit as a specific surface area of the powder which has the said inorganic powder component as a main component, 100-500 m < 2 > / g is preferable. Further, the particle diameter of the powder is not particularly limited and is preferably 1 to 200 μm. That is, carbon dioxide can be efficiently adsorbed and desorbed within these ranges.

さらに、上記二酸化炭素吸着システムにおいて、上記無機粉末成分を主成分とする吸着剤をシート状に成形したフィルターの代わりに、酸化アルミニウムを主成分とする粉末を焼結して得られる多孔質セラミックス板からなるフィルターを用いることは、この多孔質セラミックス板に吸着剤とフィルターの役割を兼用させることができるので好ましい。   Further, in the carbon dioxide adsorption system, a porous ceramic plate obtained by sintering a powder mainly composed of aluminum oxide instead of a filter formed by forming the adsorbent mainly composed of the inorganic powder component into a sheet shape It is preferable to use a filter made of the above-mentioned because the porous ceramic plate can serve both as an adsorbent and a filter.

上記多孔質セラミックスに用いる酸化アルミニウムを主成分とする粉末としては、特に限定されるものではなく、α−アルミナ、n−アルミナ、θ−アルミナ、γ−アルミナ、η−アルミナ、χ−アルミナ等の酸化アルミニウム以外に、SiO(二酸化ケイ素)、α−Fe2O3(ヘマタイト/赤鉄鉱)、及びアルカリ金属又はアルカリ土類金属から選ばれる少なくとも1種の酸化物から構成される粉末が挙げられる。前記粉末が入手できる原材料としては、アルミナ製品の成形失敗品や、コランダム(鋼玉)に代表されるアルミナ製研磨材の成形失敗品及び研磨残渣等が挙げられる。これらの原料は、特別な入手ルートを必要としない利点がある上に、産業廃棄物となりうる物質を有効活用することができるので好ましい。
上記粉末の焼結方法としては、特に限定されるものではなく、上記酸化アルミニウムを主成分とする粉末から焼結体を製造する通常の方法、例えば、前記粉末の成形体を高温条件下や加圧条件下で焼成する方法等が用いられる。
The powder mainly composed of aluminum oxide used for the porous ceramic is not particularly limited, and α-alumina, n-alumina, θ-alumina, γ-alumina, η-alumina, χ-alumina, etc. In addition to aluminum oxide, there may be mentioned powder composed of at least one oxide selected from SiO 2 (silicon dioxide), α-Fe 2 O 3 (hematite / hematite), and alkali metal or alkaline earth metal. Examples of raw materials from which the powder can be obtained include unsuccessful moldings of alumina products, unsuccessful moldings of alumina abrasives such as corundum (steel balls), and polishing residues. These raw materials are preferable because they have the advantage of not requiring a special acquisition route and can effectively use substances that can become industrial waste.
The method for sintering the powder is not particularly limited, and is an ordinary method for producing a sintered body from the powder containing aluminum oxide as a main component, for example, the powder compact is subjected to high-temperature conditions or processing. A method of firing under pressure is used.

本発明の大容量一時吸着容器から回収された二酸化炭素の用途としては、ビニールハウス等の閉鎖系集約農業の現場において作物の光合成の効率向上に使用したり、消火器の消化剤及びドライアイスの原料として活用する等の有効利用に供せられる。   The carbon dioxide recovered from the large-capacity temporary adsorption container of the present invention can be used to improve the efficiency of photosynthesis in crops in closed-system intensive agriculture such as a greenhouse, and can be used for extinguishing digesters and dry ice. It is used for effective use such as utilization as a raw material.

本発明の二酸化炭素吸着装置及び脱着・回収装置は、住宅業界、自動車業界、電力業界、ガス業界等において発生する二酸化炭素の排出を抑止する手段として用いられる。例えば、具体的には、自動車業界では、自動車排気ガス系統でのエアクリーナー内に上記吸着装置を取り付けることにより排気ガス中の二酸化炭素濃度を低減することができ、また、住宅業界では24時間換気システムに上記吸着装置を組み込むことにより人間活動(暖房、調理、呼吸等)に伴う二酸化炭素の屋外への排出を低減することの可能な住宅を提供することができる。   The carbon dioxide adsorption device and the desorption / recovery device of the present invention are used as means for suppressing the emission of carbon dioxide generated in the housing industry, the automobile industry, the electric power industry, the gas industry, and the like. For example, specifically, in the automobile industry, the carbon dioxide concentration in the exhaust gas can be reduced by mounting the above-described adsorption device in an air cleaner in an automobile exhaust gas system, and in the housing industry, ventilation is performed for 24 hours. By incorporating the above-described adsorption device into the system, it is possible to provide a house that can reduce the discharge of carbon dioxide due to human activities (heating, cooking, breathing, etc.) to the outdoors.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた化学組成の分析、比表面積、代表粒子径(質量基準)及びCO吸着量の評価方法は、以下の通りである。
(1)化学組成の分析:蛍光X線回折法で行った。
(2)比表面積の測定:BET法で行なった。
(3)代表粒子径(質量基準)の測定:光散乱回折法または重力沈降法で行なった。
(4)CO吸着量の測定:微量拡散分析法の改良法(Soil Science and Plant Nutrition(ISSN 0038−0768)、社団法人 日本土壌肥料学会、第41巻、第1号、1995年、P.141−146に記載されている。)で行なった。
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, the analysis method of the chemical composition used in the Examples and Comparative Examples, the specific surface area, the representative particle diameter (mass basis), and the evaluation method of the CO 2 adsorption amount are as follows.
(1) Analysis of chemical composition: It was performed by a fluorescent X-ray diffraction method.
(2) Measurement of specific surface area: The BET method was used.
(3) Measurement of representative particle diameter (mass basis): Measured by light scattering diffraction method or gravity sedimentation method.
(4) Measurement of CO 2 adsorption amount: Improved method of microdiffusion analysis (Soil Science and Plant Nutrition (ISSN 0038-0768), Japan Society of Soil Fertilizer, Vol. 41, No. 1, 1995, p. 141-146).

(実施例1)
図1に示した円筒状吸着容器に、吸着剤として100m/gの比表面積を有するボーキサイト粉末(Al・nHO)1000gを装填し、二酸化炭素含有ガス(CO濃度 1体積%、N濃度 78体積%、O濃度 20体積%、その他ガス(Ar等) 1体積%)を100L/minで給気した。なお、吸着容器に供給されるガスの温度を40℃に調整した。10min通気後、CO吸着量を求めた。結果を表1に示す。
Example 1
1 is charged with 1000 g of bauxite powder (Al 2 O 3 .nH 2 O) having a specific surface area of 100 m 2 / g as an adsorbent, and a carbon dioxide-containing gas (CO 2 concentration 1 volume). %, N 2 concentration 78 volume%, O 2 concentration 20 volume%, and other gases (Ar, etc. 1 volume%) were supplied at 100 L / min. The temperature of the gas supplied to the adsorption vessel was adjusted to 40 ° C. After aeration for 10 min, the CO 2 adsorption amount was determined. The results are shown in Table 1.

(実施例2)
吸着剤として100m/gの比表面積を有する赤泥の乾燥粉末を用いた以外は実施例1と同様に行い、CO吸着量を求めた。結果を表1に示す。
(Example 2)
The amount of CO 2 adsorption was determined in the same manner as in Example 1 except that a dry powder of red mud having a specific surface area of 100 m 2 / g was used as the adsorbent. The results are shown in Table 1.

(実施例3)
吸着剤として200m/gの比表面積を有する赤泥の乾燥粉末を用いた以外は実施例1と同様に行い、CO吸着量を求めた。結果を表1に示す。
(Example 3)
The amount of CO 2 adsorption was determined in the same manner as in Example 1 except that a dry powder of red mud having a specific surface area of 200 m 2 / g was used as the adsorbent. The results are shown in Table 1.

(実施例4)
吸着剤として300m/gの比表面積を有する赤泥の乾燥粉末を用いた以外は実施例1と同様に行い、CO吸着量を求めた。結果を表1に示す。
Example 4
The amount of CO 2 adsorption was determined in the same manner as in Example 1 except that a dry powder of red mud having a specific surface area of 300 m 2 / g was used as the adsorbent. The results are shown in Table 1.

(実施例5)
吸着剤として500m/gの比表面積を有する赤泥の乾燥粉末を用いた以外は実施例1と同様に行い、CO吸着量を求めた。結果を表1に示す。
(Example 5)
The amount of CO 2 adsorption was determined in the same manner as in Example 1 except that a dry powder of red mud having a specific surface area of 500 m 2 / g was used as the adsorbent. The results are shown in Table 1.

(実施例6)
吸着剤として100m/gの比表面積を有するギブサイト(α−Al(OH)3)の乾燥粉末を用いた以外は実施例1と同様に行い、CO吸着量を求めた。結果を表1に示す。
(Example 6)
The amount of CO 2 adsorption was determined in the same manner as in Example 1 except that a dry powder of gibbsite (α-Al (OH) 3) having a specific surface area of 100 m 2 / g was used as the adsorbent. The results are shown in Table 1.

(実施例7)
実施例1における二酸化炭素を吸着した後の吸着装置を、図3に示した方式の二酸化炭素回収装置に接続した。次いで、二酸化炭素吸着装置のガス供給口を閉じた状態にした上で、減圧吸引して大容量一時吸着容器に二酸化炭素を回収した。なお、回収率は吸着された二酸化炭素の98%であった。
(Example 7)
The adsorption device after adsorbing carbon dioxide in Example 1 was connected to a carbon dioxide recovery device of the system shown in FIG. Next, the gas supply port of the carbon dioxide adsorbing device was closed, and suction was performed under reduced pressure to collect carbon dioxide in a large capacity temporary adsorption container. The recovery rate was 98% of the adsorbed carbon dioxide.

(比較例1)
吸着剤として合成ゼオライト(Al:46重量%、SiO:36%、Fe:18重量%)を用いた以外は実施例1と同様に行い、CO吸着量を求めた。結果を表1に示す。
(Comparative Example 1)
The amount of CO 2 adsorption was determined in the same manner as in Example 1 except that synthetic zeolite (Al 2 O 3 : 46% by weight, SiO 2 : 36%, Fe 2 O 3 : 18% by weight) was used as the adsorbent. . The results are shown in Table 1.

Figure 2007203215
Figure 2007203215

表1より、実施例1〜6では、吸着剤としてボーキサイト粉末、バイヤー法おいて副生する沈殿物の乾燥粉末、または懸濁液を作製すると上澄液pHが7以上となる多孔質粉末を内蔵した二酸化炭素吸着システムを用いたので、高い値のCO吸着量が得られ、二酸化炭素を効率良く吸着することができることが分かる。これに対して、比較例1では、吸着剤の種類がこれらの条件に合わないので、低い値のCO吸着量であり満足すべき結果が得られないことが分かる。
また、実施例7では、吸着された二酸化炭素が効率良く回収されることが分かる。
From Table 1, in Examples 1-6, bauxite powder as adsorbent, dry powder of precipitate produced as a by-product in the Bayer method, or porous powder having a supernatant pH of 7 or more when a suspension is prepared. Since the built-in carbon dioxide adsorption system was used, it can be seen that a high amount of CO 2 adsorption can be obtained and carbon dioxide can be adsorbed efficiently. On the other hand, in Comparative Example 1, since the type of the adsorbent does not meet these conditions, it can be seen that the CO 2 adsorption amount is low and satisfactory results cannot be obtained.
Moreover, in Example 7, it turns out that the adsorbed carbon dioxide is efficiently recovered.

以上より明らかなように、本発明の二酸化炭素吸着システムは、住宅業界、自動車業界、電力業界、ガス業界等において、温室効果の主要な原因物質として排出削減が求められている二酸化炭素の削減目標(例えば、京都議定書)の達成に寄与する。また、その他さまざまな用途へ拡大適用することができるので、実質的な資源循環型社会の構築に貢献する技術として有用である。しかも、吸着剤として、特別な入手ルートを必要としない安価な物質又は産業廃棄物となりうる物質を使用することができる。   As is clear from the above, the carbon dioxide adsorption system of the present invention is a carbon dioxide reduction target that is required to reduce emissions as a main cause of the greenhouse effect in the housing industry, automobile industry, electric power industry, gas industry, etc. (For example, contribute to the achievement of the Kyoto Protocol). In addition, since it can be extended to various other uses, it is useful as a technology that contributes to the construction of a substantial resource recycling society. Moreover, as the adsorbent, an inexpensive substance that does not require a special acquisition route or a substance that can be industrial waste can be used.

吸着剤を円筒状又は直方体状の吸着容器に充填した装置の一例を表わす図である。It is a figure showing an example of the apparatus with which the adsorption agent was filled into the adsorption container of cylindrical shape or a rectangular parallelepiped shape. 吸着剤をシート状に成形したフィルター又は酸化アルミニウム(α−アルミナ、n−アルミナ、θ−アルミナ、γ−アルミナ、η−アルミナ、χ−アルミナ等)を主成分とする粉末を焼結して得られる多孔質セラミックス板からなるフィルターを吸着容器に嵌入した装置の一例を表わす図である。Obtained by sintering powders mainly composed of filter or aluminum oxide (α-alumina, n-alumina, θ-alumina, γ-alumina, η-alumina, χ-alumina, etc.) formed by adsorbent in sheet form It is a figure showing an example of the apparatus which inserted the filter which consists of a porous ceramic board manufactured in the adsorption | suction container. 本発明の二酸化炭素回収システムの一例を表わす図である。It is a figure showing an example of the carbon dioxide recovery system of this invention.

符号の説明Explanation of symbols

1 二酸化炭素吸着装置
2 吸着容器
3 ガス供給口
4 ガス排出口
5 吸着剤
6 吸着容器
7 フィルター
10 二酸化炭素回収装置
11 吸引ライン
12 減圧ポンプ
13 大容量一時吸着容器
14 吸着剤
15 大気開放口
DESCRIPTION OF SYMBOLS 1 Carbon dioxide adsorption device 2 Adsorption container 3 Gas supply port 4 Gas discharge port 5 Adsorbent 6 Adsorption vessel 7 Filter 10 Carbon dioxide recovery device 11 Suction line 12 Decompression pump 13 Large capacity temporary adsorption vessel 14 Adsorbent 15 Air release port

Claims (8)

ボーキサイト粉末、バイヤー法おいて副生する沈殿物の乾燥粉末、または懸濁液を作製すると上澄液pHが7以上となる多孔質粉末から選ばれる少なくとも1種の無機粉末成分を主成分とする吸着剤を、ガス供給口及びガス排出口を有する吸着容器に充填し、二酸化炭素含有ガスをガス供給口に導入し、吸着容器内で前記吸着剤に二酸化炭素を選択的に吸着させ、ガス排出口から二酸化炭素濃度を減少させたガスを排出させることを特徴とする二酸化炭素吸着システム。   The main component is at least one inorganic powder component selected from bauxite powder, dry powder of precipitate produced as a by-product in the Bayer method, or porous powder that has a supernatant pH of 7 or higher when a suspension is prepared. The adsorbent is filled in an adsorption container having a gas supply port and a gas discharge port, a carbon dioxide-containing gas is introduced into the gas supply port, and the carbon dioxide is selectively adsorbed by the adsorbent in the adsorption vessel, and the gas discharge is performed. A carbon dioxide adsorption system characterized in that gas having a reduced carbon dioxide concentration is discharged from an outlet. ボーキサイト粉末、バイヤー法おいて副生する沈殿物の乾燥粉末、または懸濁液を作製すると上澄液pHが7以上となる多孔質粉末から選ばれる少なくとも1種の無機粉末成分を主成分とする吸着剤をシート状に成形したフィルターを、ガス供給口及びガス排出口を有する吸着容器内に嵌入し、二酸化炭素含有ガスを供給口に導入し、容器内で前記吸着剤に二酸化炭素を選択的に吸着させ、ガス排出口から二酸化炭素濃度を減少させたガスを排出させることを特徴とする二酸化炭素吸着システム。   The main component is at least one inorganic powder component selected from bauxite powder, dry powder of precipitate produced as a by-product in the Bayer method, or porous powder that has a supernatant pH of 7 or higher when a suspension is prepared. A filter formed by adsorbing the adsorbent into a sheet is inserted into an adsorption container having a gas supply port and a gas discharge port, a carbon dioxide-containing gas is introduced into the supply port, and carbon dioxide is selectively used as the adsorbent in the container. The carbon dioxide adsorption system is characterized in that the gas having a reduced carbon dioxide concentration is discharged from the gas discharge port. 前記吸着容器の底部に多孔板を設けた上で、それを介して二酸化炭素含有ガスをガス供給口に導入することを特徴とする請求項1に記載の二酸化炭素吸着システム。   The carbon dioxide adsorption system according to claim 1, wherein a carbon plate-containing gas is introduced into a gas supply port through a porous plate provided at the bottom of the adsorption container. 前記バイヤー法おいて副生する沈殿物の乾燥粉末は、鉄に代表される遷移金属の酸化物又は水酸化物、アルミノケイ酸ナトリウム、ソーダライト、及び灰かすみ石を含む混合物である赤泥から生成することを特徴とする請求項1〜3のいずれか1項に記載の二酸化炭素吸着システム。   The dry powder of the precipitate formed as a by-product in the Bayer method is produced from red mud, which is a mixture containing an oxide or hydroxide of a transition metal typified by iron, sodium aluminosilicate, sodalite, and ash ore. The carbon dioxide adsorption system according to any one of claims 1 to 3, wherein: 前記多孔質粉末は、α−Al(OH)3(ギブサイト)、γ−AlO(OH)(ベーマイト)、α−FeO(OH)(ゲーサイト/針鉄鉱)、α−Fe2O3(ヘマタイト/赤鉄鉱)又は5Fe2O3・9H2O(フェリハイドライト)から選ばれる少なくとも1種を含む天然鉱物の乾燥粉末であることを特徴とする請求項1〜3のいずれか1項に記載の二酸化炭素吸着システム。   The porous powder includes α-Al (OH) 3 (gibbsite), γ-AlO (OH) (boehmite), α-FeO (OH) (goethite / goethite), α-Fe 2 O 3 (hematite / hematite). Or it is a dry powder of the natural mineral containing at least 1 sort (s) chosen from 5Fe2O3 * 9H2O (ferrihydrite), The carbon dioxide adsorption system of any one of Claims 1-3 characterized by the above-mentioned. 前記無機粉末成分を主成分とする粉末は、比表面積が100〜500m/gであることを特徴とする請求項1〜5のいずれか1項に記載の二酸化炭素吸着システム。 The inorganic powder of the powder component as the main component is carbon dioxide adsorption system according to any one of claims 1 to 5, specific surface area characterized by a 100 to 500 m 2 / g. 前記フィルターは、酸化アルミニウムを主成分とする粉末を焼結して得られる多孔質セラミックス板からなることを特徴とする請求項2に記載の二酸化炭素吸着システム。   The carbon dioxide adsorption system according to claim 2, wherein the filter is made of a porous ceramic plate obtained by sintering powder mainly composed of aluminum oxide. 請求項1〜7のいずれか1項に記載の二酸化炭素吸着システムに、減圧ポンプと大容量一時吸着容器から構成される回収装置を組み込んだ二酸化炭素の脱着・回収システムであって、
二酸化炭素が吸着された二酸化炭素吸着システムのガス排出口に前記減圧ポンプを接続し、二酸化炭素吸着システムから脱着させた二酸化炭素を前記大容量一時吸着容器内に吸着保持することを特徴とする二酸化炭素の脱着・回収システム。
A carbon dioxide desorption / recovery system in which a carbon dioxide adsorption system according to any one of claims 1 to 7 is incorporated with a recovery device composed of a vacuum pump and a large-capacity temporary adsorption vessel,
The carbon dioxide adsorption system to which carbon dioxide has been adsorbed is connected to the gas discharge port of the carbon dioxide adsorption system, and carbon dioxide desorbed from the carbon dioxide adsorption system is adsorbed and held in the large-capacity temporary adsorption vessel. Carbon desorption / recovery system.
JP2006025955A 2006-02-02 2006-02-02 Adsorption system of carbon dioxide and desorption-recovery system Pending JP2007203215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025955A JP2007203215A (en) 2006-02-02 2006-02-02 Adsorption system of carbon dioxide and desorption-recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025955A JP2007203215A (en) 2006-02-02 2006-02-02 Adsorption system of carbon dioxide and desorption-recovery system

Publications (1)

Publication Number Publication Date
JP2007203215A true JP2007203215A (en) 2007-08-16

Family

ID=38483146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025955A Pending JP2007203215A (en) 2006-02-02 2006-02-02 Adsorption system of carbon dioxide and desorption-recovery system

Country Status (1)

Country Link
JP (1) JP2007203215A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2535696C2 (en) * 2008-09-05 2014-12-20 Альстом Текнолоджи Лтд New solids and method of co2 removal from gas flow
JP2016187806A (en) * 2011-02-28 2016-11-04 コーニング インコーポレイテッド Article for capturing carbon dioxide
KR102068253B1 (en) * 2019-11-12 2020-02-11 박희성 System of high-pressure CO2 vlave maniford box line
CN112456678A (en) * 2020-11-18 2021-03-09 浙江省海洋科学院 Equipment for removing carbon dioxide in aquaculture water

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110744A (en) * 1985-11-08 1987-05-21 Chiyoda Chem Eng & Constr Co Ltd Separation of acidic gas by adsorption
JPH06239713A (en) * 1993-02-16 1994-08-30 Kanebo Ltd Antimicrobial zeolite and its production
JPH10137533A (en) * 1996-11-08 1998-05-26 Agency Of Ind Science & Technol Recovery of specific gaseous component in combustion gas
JPH11179136A (en) * 1997-09-30 1999-07-06 Boc Group Inc:The Method for removing carbon dioxide from gas by circulating type pressure swing adsorption process
JPH11244652A (en) * 1998-03-02 1999-09-14 Matsushita Electric Ind Co Ltd Gaseous carbon dioxide adsorbent, gaseous carbon dioxide adsorptive body, removal of gaseous carbon dioxide and device therefor
JP2001104737A (en) * 1999-09-13 2001-04-17 L'air Liquide Method for using activated alumina in order to remove co2 from gas
JP2001278892A (en) * 2000-03-30 2001-10-10 Wako Pure Chem Ind Ltd Method for separating and removing erythromycin f
JP2002253959A (en) * 2000-12-08 2002-09-10 Uop Llc Composite adsorbent for refining hydrocarbon stream
WO2005086843A2 (en) * 2004-03-08 2005-09-22 University Of New Hampshire Method for sequestering carbon dioxide

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110744A (en) * 1985-11-08 1987-05-21 Chiyoda Chem Eng & Constr Co Ltd Separation of acidic gas by adsorption
JPH06239713A (en) * 1993-02-16 1994-08-30 Kanebo Ltd Antimicrobial zeolite and its production
JPH10137533A (en) * 1996-11-08 1998-05-26 Agency Of Ind Science & Technol Recovery of specific gaseous component in combustion gas
JPH11179136A (en) * 1997-09-30 1999-07-06 Boc Group Inc:The Method for removing carbon dioxide from gas by circulating type pressure swing adsorption process
JPH11244652A (en) * 1998-03-02 1999-09-14 Matsushita Electric Ind Co Ltd Gaseous carbon dioxide adsorbent, gaseous carbon dioxide adsorptive body, removal of gaseous carbon dioxide and device therefor
JP2001104737A (en) * 1999-09-13 2001-04-17 L'air Liquide Method for using activated alumina in order to remove co2 from gas
JP2001278892A (en) * 2000-03-30 2001-10-10 Wako Pure Chem Ind Ltd Method for separating and removing erythromycin f
JP2002253959A (en) * 2000-12-08 2002-09-10 Uop Llc Composite adsorbent for refining hydrocarbon stream
WO2005086843A2 (en) * 2004-03-08 2005-09-22 University Of New Hampshire Method for sequestering carbon dioxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2535696C2 (en) * 2008-09-05 2014-12-20 Альстом Текнолоджи Лтд New solids and method of co2 removal from gas flow
JP2016187806A (en) * 2011-02-28 2016-11-04 コーニング インコーポレイテッド Article for capturing carbon dioxide
KR102068253B1 (en) * 2019-11-12 2020-02-11 박희성 System of high-pressure CO2 vlave maniford box line
CN112456678A (en) * 2020-11-18 2021-03-09 浙江省海洋科学院 Equipment for removing carbon dioxide in aquaculture water

Similar Documents

Publication Publication Date Title
JP6194356B2 (en) Renewable sorbent for removing carbon dioxide
KR101770701B1 (en) Carbon dioxide adsorbent comprising barium titanate, carbondioxide capture module comprising the same, and methods for separating carbondioxide using the same
CN1443600A (en) Adsorbent mixture
Tian et al. Hydrothermal synthesis of montmorillonite/hydrochar nanocomposites and application for 17β-estradiol and 17α-ethynylestradiol removal
Yu et al. Hydrothermal preparation of calcium–aluminum carbonate sorbent for high-temperature CO2 capture in fixed-bed reactor
KR101680610B1 (en) Activated carbon adsorbent for acidic gas removal and manufacturing method the same
JP2007203215A (en) Adsorption system of carbon dioxide and desorption-recovery system
Ko et al. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas
Ogenga et al. Sulphur dioxide removal using South African limestone/siliceous materials
EP4194083A1 (en) Solid recovery material for carbon dioxide and method for producing same
Yang et al. Granulation of Mn-based perovskite adsorbent for cyclic Hg0 capture from coal combustion flue gas
KR20140110145A (en) Complex adsorbent and manufacuring method of complex adsorbent
Rzepka et al. Upgrading of raw biogas into biomethane with structured nano-sized zeolite| NaK|-A adsorbents in a PVSA unit
Czuma et al. The influence of binders for the pelletization of fly ash zeolites on sulfur dioxide sorption properties
Aguirre et al. Adsorption of thiocyanate anions from aqueous solution onto adsorbents of various origin
JP2006051420A (en) Adsorbing system, and desorbing/recovering system of carbon dioxide
Esfandiarpour et al. Evaluating the ability of separation and adsorption of SO 2 by nano-CuO-Fe 2 O 3/TiO 2 in high concentrations and moderate temperatures
CN111675520A (en) Inorganic ecological wall material for purifying indoor air and preparation method thereof
US9649619B2 (en) Sodium-calcium-aluminosilicate column for adsorbing CO2
Qin et al. Enhancing SO2 removal efficiency by lime modified with sewage sludge in a novel integrated desulfurization process
Przepiórski et al. Preparation and properties of porous carbon material containing magnesium oxide
Γεωργιάδης et al. Removal of malachite green dye from aqueous solutions by diasporic Greek raw bauxite
JP2021133344A (en) Particulate adsorbent and method for producing the same
Iyer et al. High temperature CO2 capture using engineered eggshells: a route to carbon management
JP2002113361A (en) Absorbing agent for desulfurization and method of manufacturing desulfurizing agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201