JP2007202372A - Distributed power supply device - Google Patents

Distributed power supply device Download PDF

Info

Publication number
JP2007202372A
JP2007202372A JP2006021128A JP2006021128A JP2007202372A JP 2007202372 A JP2007202372 A JP 2007202372A JP 2006021128 A JP2006021128 A JP 2006021128A JP 2006021128 A JP2006021128 A JP 2006021128A JP 2007202372 A JP2007202372 A JP 2007202372A
Authority
JP
Japan
Prior art keywords
generator
distributed power
power supply
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006021128A
Other languages
Japanese (ja)
Other versions
JP4530365B2 (en
Inventor
Yoshihiro Kitauchi
義弘 北内
Koji Yamashita
光司 山下
Hideyuki Kameda
秀之 亀田
Satoshi Kamimura
敏 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2006021128A priority Critical patent/JP4530365B2/en
Publication of JP2007202372A publication Critical patent/JP2007202372A/en
Application granted granted Critical
Publication of JP4530365B2 publication Critical patent/JP4530365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect an individual operation state without giving regular fluctuations of a terminal voltage and reactive power, which cause deterioration in power quality, while paralleling off a generator by detecting the individual operation state only with information on the generator side of a distributed power supply without requiring construction of a communication system such as a transfer relay, and further, to parallel off the generator by surely and quickly detecting the individual operation state. <P>SOLUTION: A distributed power supply device has a damping torque reduction machine 10, which increases a difference between the terminal voltage Ea of the generator 75 and a setting voltage Eas by inputting active power P of generator output and a rotational frequency ω of the generator 75, calculating a transfer function based on a change of each of the active power and the rotational frequency by each of calculation means 101-103 and 104-106, and outputting a subtraction value of results each other obtained by each of the calculation means to an automatic voltage adjuster 79, and detection means 16, 18 for detecting abnormal rotation output of the generator 75 based on the subtraction value of the damping torque reduction machine 10. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、系統に連系された逆潮流ありの分散型電源における単独運転を防止する分散型電源装置に関するものである。   The present invention relates to a distributed power supply apparatus that prevents isolated operation in a distributed power supply with reverse power flow that is connected to a grid.

近年、配電系統には分散型電源を備えた需要家が存在する。そして、この分散型電源には、構内負荷のみならず配電系統の他の負荷も賄える能力を備えたいわゆる逆潮流ありの分散型電源も多く存在する。一方、我国では商用電力系統への分散型電源の連系が進められている。   In recent years, there are customers with distributed power sources in the distribution system. There are many distributed power sources with so-called reverse power flow that have the ability to cover not only local loads but other loads in the power distribution system. On the other hand, in Japan, interconnection of distributed power sources to commercial power systems is underway.

このような分散型電源を有する需要家までの配電系統を図8に簡略に示す。図8に示すように、今までの電力伝送によると、系統発電機71で発電された電力は、変圧器72,配電線路遮断器73を経て需要家である負荷74に供給される経路を辿る。一方、需要家での逆潮流ありの分散型電源75からの電力は、構内負荷76に供給される場合ばかりではなく、連系用遮断器77を介して配電系統の他の負荷にも供給され得る。この場合における分散型電源75は、例えば図8に示す界磁巻線78を有する同期発電機に例示されるように、配電系統の他の需要家への給電のためには、自動電圧調整器(AVRという)79を含めた分散型電源装置80であることが必要である。   A power distribution system up to a consumer having such a distributed power source is simply shown in FIG. As shown in FIG. 8, according to the conventional power transmission, the power generated by the system generator 71 follows the path supplied to the load 74 which is a consumer via the transformer 72 and the distribution line circuit breaker 73. . On the other hand, the power from the distributed power source 75 with reverse power flow at the consumer is supplied not only to the on-site load 76 but also to other loads in the distribution system via the interconnection breaker 77. obtain. The distributed power source 75 in this case is an automatic voltage regulator for supplying power to other consumers in the distribution system, as exemplified by a synchronous generator having a field winding 78 shown in FIG. It is necessary to be a distributed power supply device 80 including 79 (referred to as AVR).

このような分散型電源装置80を備えた需要家81を含む配電系統においては、系統の事故時には、配電線路遮断器73が開いて系統から配電線路への電力供給が停止されることになる。ところが、分散型電源75の出力と構内負荷76及び他の配電線路の負荷74とがある程度バランスする場合には、いわゆる単独運転状態を検出するのが難しく,この状態が継続する。この単独運転状態では、配電線路遮断器73が開いているにも拘らず連系用遮断器77は解列せず、事故復旧工事に際し感電の恐れをもたらす。また地絡事故時の配電線路遮断器73の高速再閉路時では、位相ずれにより過電流が流れる可能性もあり、再度の事故が発生し負荷機器の損傷等の恐れをもたらす。このような問題を除去するためには、単独運転状態の検出によって連系用遮断器77を解列するという単独運転防止対策が必要不可欠である。   In the power distribution system including the customer 81 equipped with such a distributed power supply device 80, the distribution line circuit breaker 73 is opened and the power supply from the system to the distribution line is stopped in the event of a system failure. However, when the output of the distributed power source 75 and the load on the premises 76 and the load 74 of another distribution line are balanced to some extent, it is difficult to detect a so-called single operation state, and this state continues. In this isolated operation state, although the distribution line circuit breaker 73 is open, the interconnection circuit breaker 77 is not disconnected, which may cause an electric shock during the accident recovery work. Moreover, when the distribution line circuit breaker 73 is reclosed at the time of a ground fault, an overcurrent may flow due to a phase shift, which may cause a second accident and damage the load equipment. In order to eliminate such a problem, it is indispensable to take a measure for preventing an isolated operation by disconnecting the interconnection circuit breaker 77 by detecting the isolated operation state.

この単独運転防止対策としては、従来、配電線路遮断器73の開放と共に転送リレー(図示省略)を動作させて、連系用遮断器77を開くという対策が一般的である。   As a measure for preventing this isolated operation, conventionally, a measure is generally taken to open the interconnection circuit breaker 77 by operating a transfer relay (not shown) while opening the distribution line circuit breaker 73.

また、他の単独運転防止技術としては、図8に示す分散型電源装置のAVR79に入力される発電機端子電圧及び無効電力を系統連系時でも常に一定周波数で変動させ、単独運転時に増大する周波数を検出して連系用遮断器77を解列するという方策が提案されている(非特許文献1)。   As another isolated operation prevention technique, the generator terminal voltage and the reactive power input to the AVR 79 of the distributed power supply device shown in FIG. 8 are always fluctuated at a constant frequency even during grid connection, and increased during isolated operation. A method of detecting the frequency and disconnecting the interconnection breaker 77 has been proposed (Non-Patent Document 1).

また、系統の周波数から周波数の変化率(df/dt)を検出し、この極性と大きさに従い発電機電圧を制御する電圧揺動指令を例えば図8に示すAVR79に入力し、単独運転時の周波数異常を検出して連系用遮断器77を解列するという方策も提案されている(非特許文献2)。   Further, the frequency change rate (df / dt) is detected from the frequency of the system, and a voltage fluctuation command for controlling the generator voltage according to the polarity and magnitude is input to, for example, the AVR 79 shown in FIG. A method of detecting a frequency abnormality and disconnecting the interconnection circuit breaker 77 has also been proposed (Non-Patent Document 2).

本橋他「配電線に連系される同期発電機の単独運転検出装置(無効電力変動方式)」電学論B 119、No.1(1999)Motohashi et al. "Self-operating detector for synchronous generators linked to distribution lines (Reactive power fluctuation method)" Electrical Engineering B 119, No.1 (1999) 加藤他「同期発電機用単独運転検出装置の開発」電学論B 120、No.8/9(2000)Kato et al. “Development of a stand-alone detection system for synchronous generators” Denki B 120, No.8 / 9 (2000)

ところが、転送リレーを用いた一般的な従来の単独運転防止技術によると、転送リレー等の通信システムの構築を必要とするため多大の費用がかかる問題がある。   However, according to a general conventional isolated operation prevention technique using a transfer relay, it is necessary to construct a communication system such as a transfer relay.

また、非特許文献1の方策によると、常時、端子電圧及び無効電力を変動させることが必要で、本来無用とする変動を加えることになって電力の質を低下させてしまったり、あるいは複数の分散型電源がある場合には単独運転時にそれら分散型電源間にて変動が相殺されて単独運転の周波数検出が期待できないという問題がある。   In addition, according to the measures of Non-Patent Document 1, it is necessary to constantly change the terminal voltage and reactive power, and the quality of power may be reduced by adding fluctuations that are essentially useless, or a plurality of When there is a distributed power source, there is a problem in that fluctuations are canceled between the distributed power sources during single operation, and frequency detection in the single operation cannot be expected.

また、非特許文献2の方法によると、単独運転の条件である発電機出力と負荷とがバランスしている範囲では、言い換えれば配電線路遮断器73を通過する有効電力及び無効電力がほぼ零の状態では、この遮断器の開放により単独系統の周波数がほとんど変化しないため,この周波数異常が検出し難く、単独運転の速やかな検出ができないという問題がある。   Further, according to the method of Non-Patent Document 2, in a range where the generator output and the load, which are the conditions for the single operation, are balanced, in other words, the active power and the reactive power passing through the distribution line circuit breaker 73 are almost zero. In this state, since the frequency of the single system hardly changes due to the opening of the circuit breaker, this frequency abnormality is difficult to detect, and there is a problem that the single operation cannot be detected promptly.

本発明は、転送リレー等の通信システムの構築を必要とせず、分散型電源の発電機側の情報だけで単独運転状態を検出して発電機を解列できる分散型電源装置の提供を目的とする。また、本発明は、電力の質の低下の原因となる端子電圧及び無効電力の常時変動を与えずに、単独運転状態を検出して発電機を解列できる分散型電源装置の提供を目的とする。さらに、本発明は、単独運転状態を確実かつ速やかに検出して発電機を解列できる分散型電源装置の提供を目的とする。   It is an object of the present invention to provide a distributed power supply device that does not require the construction of a communication system such as a transfer relay and that can detect a single operation state only by information on the generator side of the distributed power supply and disconnect the generator. To do. Another object of the present invention is to provide a distributed power supply device that can detect an isolated operation state and disconnect a generator without constantly changing the terminal voltage and reactive power that cause a reduction in power quality. To do. Furthermore, an object of the present invention is to provide a distributed power supply apparatus that can detect an isolated operation state reliably and promptly and disconnect a generator.

かかる目的を達成するため、請求項1に記載の発明は、配電線路に連系用遮断器を介して接続された分散型電源である発電機を備え、この発電機の端子電圧と設定電圧との差分により前記発電機の界磁電流を制御する自動電圧調整器を備えた分散型電源装置において、前記発電機出力の有効電力と前記発電機の回転数とを入力してそれぞれの変化分に基づく伝達関数をそれぞれの演算手段にて算出しそれぞれの演算手段にて得られる結果同士の減算値を前記自動電圧調整器に出力して前記発電機の端子電圧と設定電圧との差分を増大するダンピングトルク低減器と、このダンピングトルク低減器の前記減算値に基づく前記発電機の異常回転出力を検出して出力する検出手段とを有するようにしている。   In order to achieve such an object, the invention described in claim 1 includes a generator which is a distributed power source connected to a distribution line via an interconnection circuit breaker, and a terminal voltage and a set voltage of the generator In the distributed type power supply device equipped with the automatic voltage regulator for controlling the field current of the generator by the difference of the input, the active power of the generator output and the rotation speed of the generator are inputted to each change amount. The transfer function based on the calculation means is calculated by the respective calculation means, and the subtraction value between the results obtained by the respective calculation means is output to the automatic voltage regulator to increase the difference between the terminal voltage of the generator and the set voltage. A damping torque reducer and detection means for detecting and outputting an abnormal rotation output of the generator based on the subtraction value of the damping torque reducer are provided.

したがって、発電機の有効電力Pと回転数ωとを発電機AVRの補助入力として加えることにより発電機のダンピングトルクを低減させるので、連系時には外乱を加えることはないが、単独運転時には速やかに発電機を加速または減速させて回転数異常検出器あるいは回転数異常検出リレー(またはOF/UFリレー)により発電機の解列を可能とする。   Therefore, since the generator's damping torque is reduced by adding the active power P and the rotational speed ω of the generator as auxiliary inputs to the generator AVR, no disturbance is applied during interconnection, but promptly during single operation. The generator is accelerated or decelerated, and the generator can be disconnected by the rotation speed abnormality detector or the rotation speed abnormality detection relay (or OF / UF relay).

つまり、発電機の機械エネルギー入力がほぼ一定とみなせば、有効電力出力Pが増加した場合には発電機回転数ωは減少し、有効電力出力Pが減少した場合には発電機回転数ωは増加する。このことを利用し、有効電力出力Pが増加または発電機回転数ωが減少した場合に、界磁電圧Efを増加させることにより内部電圧Eを増加させ、有効電力出力Pを増加させることにより発電機回転数ωをより一層減少させる。逆に有効電力出力Pが減少または発電機回転数ωが増加した場合には、界磁電圧Efを減少させ、発電機回転数ωをさらに加速させる。   That is, assuming that the mechanical energy input of the generator is substantially constant, the generator rotational speed ω decreases when the active power output P increases, and the generator rotational speed ω decreases when the active power output P decreases. To increase. Using this, when the active power output P increases or the generator rotational speed ω decreases, the internal voltage E is increased by increasing the field voltage Ef, and the active power output P is increased to generate power. The machine speed ω is further reduced. Conversely, when the active power output P decreases or the generator rotational speed ω increases, the field voltage Ef is decreased to further accelerate the generator rotational speed ω.

そして、発電機の有効電力Pと回転数ωとを発電機AVRの補助入力として加えることでダンピングトルクを低減するようにしているので、発電機が上位系統に連系されている場合には、ほぼ無限大母線とみなせる上位系との接続母線と発電機間のリアクタンスは、発電機の内部電圧から端子電圧までと比較してほぼ無視できるほど小さいため、その強い同期化力と正に維持するダンピングトルクによって安定運転を可能とするが、単独運転状態に陥るとダンピングトルクが低減されているので、周期的な変動(外乱)を与えることなく速やかに発電機の回転数変動を生じさせ、回転数異常検出リレー(またはOF/UFリレー)により発電機を解列させる。   And, since the damping torque is reduced by adding the active power P and the rotational speed ω of the generator as auxiliary inputs to the generator AVR, when the generator is connected to the upper system, The reactance between the generator connected to the host system, which can be regarded as an almost infinite bus, and the generator is almost negligible compared to the internal voltage of the generator to the terminal voltage, so it maintains its strong synchronizing power and positive. Although stable operation is possible with damping torque, the damping torque is reduced when falling into a single operation state, so the generator speed changes quickly without causing periodic fluctuations (disturbances). The generator is disconnected by the number abnormality detection relay (or OF / UF relay).

なお、発電機が上位系統に連系されている場合は、ほぼ無限大母線とみなせる上位系との接続母線と発電機間のリアクタンスは、発電機の内部電圧から端子電圧までと比較してほぼ無視できるほど小さいため、その強い同期化力と正に維持するダンピングトルクによって系統事故時にも安定運転が可能である。   When the generator is connected to the upper system, the reactance between the connection bus and the generator, which can be regarded as an almost infinite bus, is almost the same as the internal voltage of the generator to the terminal voltage. Since it is so small that it can be ignored, stable operation is possible even in the event of a system failure due to its strong synchronizing force and damping torque that is maintained positive.

ここで、ダンピングトルク低減器での変化分に基づく伝達関数の演算手段は、少なくとも変化分を演算するリセット回路と、ゲインを加味した一次遅れ要素とを含む伝達関数モデルを備えるものであることが好ましく、より好ましくはさらに前記発電機の連系時の安定性と単独運転時の不安定性とを調整可能な進み遅れ要素を含むものである。   Here, the transfer function calculation means based on the change in the damping torque reducer may include a transfer function model including at least a reset circuit for calculating the change and a first-order lag element taking gain into account. More preferably, it further includes an advance / delay element capable of adjusting the stability of the generator when connected and the instability of isolated operation.

更に、請求項4に記載の発明は、検出手段が、前記発電機の異常回転数を検出して出力信号を出す回転数異常検出器及び前記発電機の異常周波数を検出して出力信号を出すOF/UFリレーの少なくとも一方からなるものである。   Furthermore, in the invention according to claim 4, the detecting means detects an abnormal rotational speed of the generator and outputs an output signal, and detects an abnormal frequency of the generator and outputs an output signal. It consists of at least one of OF / UF relay.

請求項1記載の発明によれば、設定電圧と端子電圧との差分にて発電機電圧を定電圧に保つという自動電圧調整器本来の役目を利用して、単独運転時の有効電力と回転数とのそれぞれの偏差に基づき前記差分を増大させることにより、発電機回転数が小さい、または有効電力が大きい場合には端子電圧を更に高く、また,発電機回転数が大きい、または有効電力が小さい場合には更に端子電圧を更に低くして、発電機の回転数を一時的に異常とする結果、検出手段によって連系用遮断器を解列することができ、分散型電源の単独運転を発電機側の情報のみで速やかにかつ確実に防止することができる。   According to the invention described in claim 1, the effective power and the number of revolutions in the single operation are utilized by utilizing the original function of the automatic voltage regulator that keeps the generator voltage constant by the difference between the set voltage and the terminal voltage. When the generator rotational speed is small or the active power is large, the terminal voltage is further increased, and the generator rotational speed is large or the active power is small. In some cases, the terminal voltage is further reduced, and the rotational speed of the generator is temporarily made abnormal. As a result, the interconnection circuit breaker can be disconnected by the detection means, and single operation of the distributed power source is generated. It can be prevented promptly and reliably only by the information on the aircraft side.

また、請求項2記載の発明によれば、ダンピングトルク低減器から自動電圧調整器への出力は、有効電力変化あるいは回転出力変化に基づき時定数を加味した伝達関数を求めゲインを加味することで、簡単で的確な単独運転の検出と設定電圧と端子電圧との差分の適切な増大が可能である。   According to the second aspect of the present invention, the output from the damping torque reducer to the automatic voltage regulator is obtained by obtaining a transfer function taking into account a time constant based on a change in active power or a change in rotational output, and adding a gain. It is possible to detect simple and accurate isolated operation and appropriately increase the difference between the set voltage and the terminal voltage.

また、請求項3記載の発明によれば、ダンピングトルク低減器での変化分に基づく伝達関数の演算手段に、さらに発電機の連系時の安定性と単独運転時の不安定性とを調整可能な進み遅れ要素を含むようにしているので、この時定数を変更することによって、発電機が系統に接続されている時の安定性を高めたり、単独運転に移行したときにより素早く発電機を不安定にすることができる。特に、ダンピングトルクの低減の結果、定常状態における発電機の安定性に問題が生じた場合の補償に効果的である。   According to the third aspect of the present invention, the transfer function calculation means based on the change in the damping torque reducer can further adjust the stability when the generators are connected and the instability when operating independently. By changing this time constant, the stability when the generator is connected to the system is improved, or the generator is made unstable more quickly when shifting to independent operation. can do. In particular, it is effective for compensation when a problem occurs in the stability of the generator in a steady state as a result of the reduction of the damping torque.

更に、請求項4記載の発明によれば、単独運転を検出する手段が発電機の異常回転を検出できる手段で良いので、簡単な計器あるいは分散型電源装置に備える既存の計器の利用が可能となり安価である。   Furthermore, according to the invention described in claim 4, since the means for detecting the isolated operation may be a means capable of detecting abnormal rotation of the generator, it becomes possible to use a simple instrument or an existing instrument provided in the distributed power supply device. Inexpensive.

以下、本発明の構成を図面に示す実施形態に基づいて詳細に説明する。尚、本実施形態において図8の従来の技術と同一構成部分には同符号を付し、さらに必要がなければその説明は省略する。   Hereinafter, the configuration of the present invention will be described in detail based on embodiments shown in the drawings. In the present embodiment, the same components as those in the prior art of FIG. 8 are denoted by the same reference numerals, and the description thereof will be omitted unless further necessary.

図1〜図7に本発明の分散型電源装置の一実施形態を示す。図1のブロック図に示すように、配電線路に繋がる需要家にあっては、連系用遮断器77を介して構内負荷76及び分散型電源装置80が接続される。そして、この分散型電源装置80には、例えば同期発電機に代表される発電機75及びこの発電機75の界磁巻線78に接続されて発電機端子電圧を一定に保つためのAVR79が存在する。また、発電機75の出力端子と連系用遮断器77とを接続する出力ライン11は、AVR79の一入力端子に接続されている。またAVR79の他の入力端子は、電圧設定器12に接続されている。従って、AVR79には、発電機75の端子電圧Eaと設定電圧Easとが入力され、AVR79からは、界磁巻線78に励磁電圧Efが出力される。   1 to 7 show an embodiment of a distributed power supply device of the present invention. As shown in the block diagram of FIG. 1, in the consumer connected to the distribution line, the premises load 76 and the distributed power supply device 80 are connected via the interconnection circuit breaker 77. The distributed power supply 80 includes, for example, a generator 75 represented by a synchronous generator and an AVR 79 connected to the field winding 78 of the generator 75 to keep the generator terminal voltage constant. To do. The output line 11 that connects the output terminal of the generator 75 and the interconnection circuit breaker 77 is connected to one input terminal of the AVR 79. The other input terminal of the AVR 79 is connected to the voltage setting device 12. Therefore, the terminal voltage Ea and the set voltage Eas of the generator 75 are input to the AVR 79, and the excitation voltage Ef is output from the AVR 79 to the field winding 78.

AVR79のもう一つの入力端子には、ダンピングトルク低減器(DTRSという:Damping Torque Reduction System)10の出力端子が接続されている。このDTRS10は、発電機75が有するダンピングトルクを、AVR79を介して等価的に低減させる役目を有し、配電線路が配電線路遮断器(図8参照)に連系している状態で発電機75の安定運転に必要とされる最小のダンピングトルクの大きさとなるようにAVR79への入力値(DTRS信号)を出力する機能を有する。このDTRS10の入力端子には、一方で発電機75の例えばシャフトに連結された回転数計13の出力端子が接続され、他方で出力ライン11の端子電圧Eaと出力ライン11に備えた変流器14の検出電流とを取り込んで有効電力Pを出力する有効電力検出器15の出力端子が接続される。従って、DTRS10には、有効電力検出器15からは有効電力Pが入力され、回転数計13からは回転数ωが入力される。   The output terminal of a damping torque reducer (DTRS: Damping Torque Reduction System) 10 is connected to another input terminal of the AVR 79. The DTRS 10 has a function of equivalently reducing the damping torque of the generator 75 via the AVR 79, and the generator 75 is connected to the distribution line circuit breaker (see FIG. 8). Has a function of outputting an input value (DTRS signal) to the AVR 79 so that the minimum damping torque required for stable operation of the AVR 79 is obtained. The input terminal of the DTRS 10 is connected to the output terminal of the tachometer 13 connected to, for example, the shaft of the generator 75 on the one hand, and on the other hand to the terminal voltage Ea of the output line 11 and the current transformer provided in the output line 11. The output terminal of the active power detector 15 that takes in the 14 detected currents and outputs the active power P is connected. Therefore, the active power P is input from the active power detector 15 to the DTRS 10, and the rotational speed ω is input from the rotational speed meter 13.

更に、回転数計13の出力端子は、回転数異常検出器16に接続される。この回転数異常検出器16は、発電機75の回転数ωの上昇し過ぎあるいは下降し過ぎである異常回転出力を検出して出力信号を出す機能を有する。この回転数異常検出器16の出力端子は、連系用遮断器77のトリップ回路17に接続される。このトリップ回路17は、回転数異常検出器16による回転数の異常検出にて連系用遮断器77を開放させる機能を有する。尚、発電機75の回転数異常は、発電機端子電圧の周波数異常となって現れる。したがって、この周波数異常を検出することによりトリップ回路17を作動させても良い。このために出力ライン11にOF/UFリレー18(Over Frequency/Under Frequency:周波数上昇/周波数下降)を接続し、このOF/UFリレー18をトリップ回路17に接続してもよい。これら回転数異常検出器16、OF/UFリレー18等の異常回転出力の検出手段は、少なくとも一つ備える必要がある。ここで、ダンピングトルクとは、発電機諸量の同様を収束させる力をいい、その大きさは発電機自体の定数、発電機の制御系、発電機が接続する系統の定数に依存するものである。   Further, the output terminal of the rotation speed meter 13 is connected to the rotation speed abnormality detector 16. The rotation speed abnormality detector 16 has a function of detecting an abnormal rotation output in which the rotation speed ω of the generator 75 is excessively increased or decreased and outputting an output signal. The output terminal of the rotation speed abnormality detector 16 is connected to the trip circuit 17 of the interconnection circuit breaker 77. The trip circuit 17 has a function of opening the interconnection circuit breaker 77 when the rotational speed abnormality detector 16 detects the rotational speed abnormality. The abnormality in the rotational speed of the generator 75 appears as an abnormality in the frequency of the generator terminal voltage. Therefore, the trip circuit 17 may be operated by detecting this frequency abnormality. For this purpose, an OF / UF relay 18 (Over Frequency / Under Frequency) may be connected to the output line 11 and the OF / UF relay 18 may be connected to the trip circuit 17. It is necessary to provide at least one means for detecting abnormal rotation output such as the rotation speed abnormality detector 16 and the OF / UF relay 18. Here, the damping torque means the force that converges the same quantity of generators, and its magnitude depends on the constants of the generator itself, the control system of the generator, and the constants of the system to which the generator is connected. is there.

このようなブロック構成を有する分散型電源装置80にあって、配電線路との連系時には、連系用遮断器77が投入されており、発電機75が正常に運転され、構内負荷76に電力が供給されている。この場合もDTRS10には、出力ライン11に基づく有効電力検出器15からの有効電力P及び回転数計13からの回転数ωがそれぞれ入力されるが、後述のようにDTRS10の内部構成上これら有効電力Pの変化分あるいは回転数ωの変化分のみ取り込むようになっているので、これらの変化がなければDTRS10の出力は生じない。また、連系時有効電力や回転数の変動が生じた場合、分散型電源装置80に対して上位系統は無限大母線とみなすことができ、この上位系統の接続母線を含む発電機75外部のリアクタンスは、発電機内部のそれと比較して無視できるほど小さいため、発電機出力変化と相差角位相変化との比率が大きくなり、同期化力が大きくなって変動を抑えることができ、また、連系時のダンピングトルクもDTRS10により低減方向に働くとはいえ、少なくとも最小限のダンピングトルクは発電機75に作用する。したがって、連系時に異常が発生して有効電力Pや回転数ωの変動が生じても分散型電源75の安定運転は可能である。   In the distributed power supply device 80 having such a block configuration, the interconnection circuit breaker 77 is turned on at the time of interconnection with the distribution line, the generator 75 is normally operated, and power is supplied to the premises load 76. Is supplied. Also in this case, the active power P from the active power detector 15 based on the output line 11 and the rotational speed ω from the tachometer 13 are input to the DTRS 10 respectively. Since only the change in the electric power P or the change in the rotational speed ω is taken in, the output of the DTRS 10 does not occur without these changes. Further, when a change in the active power and the number of rotations occurs in the interconnection, the upper system can be regarded as an infinite bus with respect to the distributed power supply 80, and the generator 75 including the connection bus of the upper system is connected to the outside of the generator 75. The reactance is negligibly small compared to that inside the generator, so the ratio between the generator output change and the phase difference angle phase change is increased, the synchronization force is increased and fluctuations can be suppressed. Although the damping torque at the time of the system also works in a decreasing direction by the DTRS 10, at least the minimum damping torque acts on the generator 75. Therefore, stable operation of the distributed power source 75 is possible even when an abnormality occurs during interconnection and fluctuations in the active power P and the rotational speed ω occur.

ところが、配電線路遮断器73(図8参照)が開放した時、同期化力はきわめて小さくなり、しかも有効電力や回転数の変動に伴いDTRS10にて発電機75を不安定にさせる程ダンピングトルクが低減されるため、発電機75の異常回転出力が生じ、回転数異常検出器16やOF/UFリレー18にてトリップ回路17を駆動させ、連系用遮断器77が解列させられる。このようにして、分散型電源75の連系時以外の単独運転時には、素早く連系用遮断器77を解列させることができる。   However, when the distribution line circuit breaker 73 (see FIG. 8) is opened, the synchronization force becomes extremely small, and the damping torque becomes so large that the generator 75 becomes unstable in the DTRS 10 due to fluctuations in the effective power and the rotational speed. Therefore, the abnormal rotation output of the generator 75 is generated, the trip circuit 17 is driven by the rotation speed abnormality detector 16 and the OF / UF relay 18, and the interconnection circuit breaker 77 is disconnected. In this way, the interconnection circuit breaker 77 can be quickly disconnected when the distributed power source 75 is operated independently other than during interconnection.

AVR79とDTRS10との具体的な伝達関数モデルを図2に示す。DTRS10の伝達関数モデルでは、有効電力P及び回転数ωを入力としてそれぞれの系にて同じ処理が行われ、それぞれの系の処理結果が加え合せ点100にて減算されDTRS信号としてAVR79に出力される。   A specific transfer function model between the AVR 79 and the DTRS 10 is shown in FIG. In the transfer function model of the DTRS 10, the same processing is performed in each system with the active power P and the rotational speed ω as inputs, and the processing results of each system are added and subtracted at the combination point 100 and output to the AVR 79 as a DTRS signal. The

すなわち、有効電力Pの系については、有効電力Pの入力値が一定の場合には出力が零となり、入力値に変化があった場合にはその変化分だけを出力するリセット回路101(図2では時定数を1.0に固定して例示した)と、時定数T1、T2によって位相を進ませあるいは遅らせて連系時の発電機の安定性あるいは単独運転時の発電機の不安定性を加減するための進み遅れ要素102(図2の実施形態ではT1=T2として機能しないものとして例示している)と、有効電力偏差ゲインKp(図2では1.0)をかけて低周波の信号のみ通過させ高周波の雑音を除去するローパスフィルタとなる一次遅れ(時定数0.1秒)を与える一次遅れ要素並びに過度な信号が発電機のAVRに入力されないように除去する(図2では限度±1.0)リミッタ103からなる各処理が実行される。なお、有効電力偏差ゲインKpは、発電機が系統に接続されている時に安定に運転できる大きさでなくべく大きめに設定されることが好ましい。また、リミッタ103は、あまりに過度な信号が発電機のAVRに入力されないように安全のために設置されたものであり、場合によっては設定しなくとも良い。   That is, for the active power P system, the output is zero when the input value of the active power P is constant, and the reset circuit 101 that outputs only the change when the input value changes (FIG. 2). In this example, the time constant is fixed at 1.0), and the phase is advanced or delayed by the time constants T1 and T2 to adjust the stability of the generator during interconnection or the instability of the generator during single operation. 2 is applied with an active power deviation gain Kp (1.0 in FIG. 2) and only a low-frequency signal. A first-order lag element that gives a first-order lag (a time constant of 0.1 second) that is a low-pass filter that passes through and removes high-frequency noise and an excessive signal are removed so as not to be input to the generator AVR (limit ± 1 in FIG. 2). .0 Each process is executed consisting of the limiter 103. The active power deviation gain Kp is preferably set to be as large as possible rather than a size that allows stable operation when the generator is connected to the grid. The limiter 103 is installed for safety so that an excessive signal is not input to the AVR of the generator, and may not be set in some cases.

回転数ωの系についても有効電力Pの系と同様でリセット回路104、時定数T3、T4の進み遅れ要素105(ここでもT3=T4とした)、発電機回転数偏差ゲインKω(図2では10.0)をかけた一次遅れ要素並びにリミッタ106からなる各処理が実行される。なお、発電機回転数偏差ゲインKωは、発電機が系統に接続されている時に安定に運転できる大きさでなるべく大きめに設定されることが好ましい。   The system of the rotational speed ω is the same as the system of the active power P, and the reset circuit 104, the advance / delay element 105 of the time constants T3 and T4 (here, T3 = T4), the generator rotational speed deviation gain Kω (in FIG. 2). Each process including the first order delay element multiplied by 10.0) and the limiter 106 is executed. The generator rotational speed deviation gain Kω is preferably set as large as possible so that the generator can be stably operated when the generator is connected to the system.

尚、各伝達関数モデルにおいては、リセット回路101,104の時定数を1.0秒とした。これは、時定数が大き過ぎる場合には発電機の出力変更時に不要な電圧変動を引き起こし、小さ過ぎる場合には周期の長い動揺が検出し難いことを考慮したものである。また、本実施形態においては、進み遅れ要素102、105の時定数をT1=T2、T3=T4として実質的に機能しない状態としている。しかしながら、この時定数の変更即ち進み遅れ要素の介装は、殊にダンピングトルクの低減の結果、定常状態における発電機の安定性に問題が生じた場合の補償に効果的である。更に、ゲインKpについては、発電機75が系統に連系されている状態で安定運転ができ系統切り離し時単独運転にならない状態で不安定とならず、速やかに単独が検出できるように例えば1.5〜3程度の範囲で調整することが好ましい。ゲインKωについては、例えば10〜30程度で、定常運転状態および単独運転にならないケースにおいて発電機75が安定運転できる範囲でなるべく大きくすることが好ましい。   In each transfer function model, the time constant of the reset circuits 101 and 104 is set to 1.0 second. This takes into account that if the time constant is too large, an unnecessary voltage fluctuation is caused when the output of the generator is changed, and if it is too small, it is difficult to detect long-period fluctuations. In the present embodiment, the time constants of the advance / delay elements 102 and 105 are set to T1 = T2 and T3 = T4 so that they do not substantially function. However, the change of the time constant, that is, the interposition of the lead / lag element is effective for compensation when a problem occurs in the stability of the generator in the steady state, particularly as a result of the reduction of the damping torque. Further, the gain Kp can be stably operated in a state where the generator 75 is connected to the system, and is not unstable in a state where the generator 75 is not operated independently when the system is disconnected. It is preferable to adjust in the range of about 5 to 3. The gain Kω is, for example, about 10 to 30, and is preferably as large as possible within a range where the generator 75 can be stably operated in a steady operation state and a case where the independent operation is not performed.

AVR79の伝達関数モデルでは、設定電圧Eas、端子電圧Ea、及びDTRS信号が入力される加え合せ点791、ここでは0.3及び2.0の時定数に設定された位相補償器792、たとえばGain40をかけて時定数0.04に設定された一次遅れ要素並びに±10.0のリミッタ793からなる各処理が実行される。そして、発電機が系統に連系されている定常運転状態では、DTRS信号は零かあるいはあっても安定運転に支障がない程度であり端子電圧Eaが設定電圧Easに近づくような界磁電圧Efが出力される。単独運転時にはリセット回路101,104にて変化分を検出して単独運転を検出し、ゲインKp、Kωをかけてリミッタで絞った結果を加え合せ点100にて減算し、AVR79の加え合せ点791に発電機の回転出力が増大した場合には更に増大させ、減少した場合には更に減少させるDTRS信号を出力する。   In the transfer function model of the AVR 79, a summing point 791 to which a set voltage Eas, a terminal voltage Ea, and a DTRS signal are input, here a phase compensator 792 set to a time constant of 0.3 and 2.0, for example, Gain 40 , Each process including the first-order lag element set to the time constant 0.04 and the limiter 793 of ± 10.0 is executed. In the steady operation state where the generator is connected to the grid, the field voltage Ef is such that even if the DTRS signal is zero or stable, there is no problem in stable operation, and the terminal voltage Ea approaches the set voltage Eas. Is output. In the isolated operation, the reset circuit 101, 104 detects the change and detects the isolated operation. The gain Kp, Kω is applied and the result of the limiter is subtracted at the adding point 100, and the adding point 791 of the AVR 79 is subtracted. When the rotational output of the generator is increased, the DTRS signal is further increased, and when it is decreased, the DTRS signal is further decreased.

なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、DTRSモデルにおける各回路の時定数やゲインについては、単独運転の検出の容易性と系統接続時の発電機の運転安定性とを考慮して適宜選定されるものであり、上述の値に限定されないことは言うまでもない。
(実施例)
The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, the time constant and gain of each circuit in the DTRS model are appropriately selected in consideration of the ease of detection of isolated operation and the operational stability of the generator when connected to the system. It goes without saying that it is not limited.
(Example)

次に、図3の電力系統シミュレータを用いて単独運転状態を発生させ、DTRS10の性能を実証試験で確認した。ここで、実証試験は、需要家の分散型電源となる100kVAの発電機75、リアクタンスj0.13の値を採る昇圧変圧器21、リアクタンスj0.24の値を採る負荷用変圧器22,58kWの抵抗負荷23を設定して接続し、変圧器21,22の母線を配電線路遮断器73に当る遮断器24、無限大変圧器25、誘導電圧調整器26を介して無限大母線となる所内電源に接続したシミュレータを設けた。そして、発電機75のAVR,このAVRの入力端子に繋がるDTRSは図4のモデルとした。なお、このDTRSモデルでは進み遅れ回路を省いている。ここで図4において図2と同一部分を同符号にて示す。パラメータとしては、リセット回路101、104の時定数を1とし、一次遅れ要素並びにリミッタ103,106を2ブロックに分けて一次遅れ要素の時定数を0.1に決め、±1.0のリミッタをかけ、ゲインKpを1.0、ゲインKωを10.0とした。また、AVRの位相補償器792、一次遅れ要素及びリミッタ793のパラメータは、図2と同じである。   Next, an isolated operation state was generated using the power system simulator of FIG. 3, and the performance of the DTRS 10 was confirmed by a demonstration test. Here, the verification test is performed on a generator 75 of 100 kVA that serves as a distributed power source for consumers, a step-up transformer 21 that takes a value of reactance j0.13, and a load transformer 22, 58 kW that takes a value of reactance j0.24. A resistive load 23 is set and connected, and the buses of the transformers 21 and 22 are connected to the in-house power source that becomes an infinite bus through the circuit breaker 24 that hits the distribution line circuit breaker 73, the infinite transformer 25, and the induction voltage regulator 26. A connected simulator was provided. The AVR of the generator 75 and the DTRS connected to the input terminal of this AVR are the model shown in FIG. In this DTRS model, the advance / delay circuit is omitted. Here, in FIG. 4, the same parts as those in FIG. As parameters, the time constant of the reset circuits 101 and 104 is set to 1, the primary delay element and the limiters 103 and 106 are divided into two blocks, the time constant of the primary delay element is set to 0.1, and a limiter of ± 1.0 is set. The gain Kp was set to 1.0 and the gain Kω was set to 10.0. The parameters of the AVR phase compensator 792, the first-order lag element, and the limiter 793 are the same as those in FIG.

前記のシミュレータにおいて、三つのケースに分けて試験を行なった。
(ケース1)
このケースは、単独運転状態の検出が最も難しいとされる条件であり、遮断器24の連系点での有効電力P並びに無効電力Qの潮流がほぼ零(P=0.0kW、Q=1.2kVar)の場合である。
(ケース2)
このケースは、連系点での有効電力潮流Pが5.1kW、無効電力潮流Qが1.6kVar(有効電力潮流が+5%)の場合である。
(ケース3)
このケースは、連系点での有効電力潮流Pが−5.3kW、無効電力潮流Qが2.2kVar(有効電力潮流が−5%)の場合である。
In the simulator, the test was divided into three cases.
(Case 1)
In this case, it is the most difficult condition to detect the isolated operation state, and the flow of the active power P and the reactive power Q at the connection point of the circuit breaker 24 is almost zero (P = 0.0 kW, Q = 1). .2 kVar).
(Case 2)
In this case, the active power flow P at the interconnection point is 5.1 kW, and the reactive power flow Q is 1.6 kVar (active power flow is + 5%).
(Case 3)
This case is a case where the active power flow P at the interconnection point is −5.3 kW and the reactive power flow Q is 2.2 kVar (the active power flow is −5%).

各ケース1〜3の試験結果を各々図5、図6、図7に示す。図5〜図7の各々において各特性線図の縦軸は周波数偏差(Hz)を除いて単位法(pu)にて示し、横軸は時間(sec)である。試験結果は、時刻T=0にて遮断器24を開放して系統を切り離すことにより、発電機端子電圧Ea、有効電力出力P、無効電力出力Q、発電機界磁電圧Ef、ダンピングトルク低減器信号DTRSを取得し、50Hzからの周波数偏差(50Hzからのずれ)Δfを取得した。   The test results of cases 1 to 3 are shown in FIGS. 5, 6, and 7, respectively. 5 to 7, the vertical axis of each characteristic diagram is shown in the unit method (pu) except for the frequency deviation (Hz), and the horizontal axis is time (sec). The test results were as follows: generator circuit voltage Ea, active power output P, reactive power output Q, generator field voltage Ef, damping torque reducer by disconnecting the system by opening circuit breaker 24 at time T = 0. The signal DTRS was acquired, and the frequency deviation from 50 Hz (deviation from 50 Hz) Δf was obtained.

ケース1の試験では、図5に示すように、単独運転開始時(T=0sec)、即ち遮断器開放後,DTRS信号が徐々に負の方向に大きくなり,この結果として端子電圧Eaが低下し,周波数偏差Δfが上昇することにより、遮断器開放から2.1秒後に周波数異常の検出により単独運転が検出され、発電機が切り離されている。
ケース2の試験では、図6に示すように、単独運転開始時(T=0sec)、即ち遮断器開放から1.26秒でDTRS信号によって生じる周波数異常によって単独運転が検出され、発電機が切り離されている。
ケース3の試験では、図7に示すように、単独運転開始時(T=0sec)、即ち遮断器開放から1.11秒でDTRS信号によって生じる周波数異常によって単独運転が検出され、発電機が切り離されている。
In the case 1 test, as shown in FIG. 5, the DTRS signal gradually increases in the negative direction at the start of the independent operation (T = 0 sec), that is, after the breaker is opened, and as a result, the terminal voltage Ea decreases. As the frequency deviation Δf increases, the isolated operation is detected by detecting the frequency abnormality 2.1 seconds after the circuit breaker is opened, and the generator is disconnected.
In the test of Case 2, as shown in FIG. 6, the isolated operation is detected at the start of the isolated operation (T = 0 sec), that is, the frequency abnormality caused by the DTRS signal in 1.26 seconds after the breaker is opened, and the generator is disconnected. It is.
In the test of case 3, as shown in FIG. 7, the isolated operation is detected at the start of the isolated operation (T = 0 sec), that is, the frequency abnormality caused by the DTRS signal in 1.11 seconds after the breaker is opened, and the generator is disconnected. It is.

以上のシミュレータでの試験結果により、発電機75の有効電力Pと回転数ωを入力としたDTRSの処理結果をAVRの補助入力として加えることにより、連系時には周期的な変動(外乱)を与えることなく安定運転を継続するが、系統単独運転時にはダンピングトルクを低減し、速やかに発電機の回転数変動を生じさせ、回転異常検出リレーまたはUF/OFにより発電機を解列させることが可能であることが確認された。   Based on the test results in the simulator described above, by adding the DTRS processing result with the active power P of the generator 75 and the rotational speed ω as inputs, as an auxiliary input for AVR, periodic fluctuations (disturbances) are given during interconnection. Although stable operation is continued, it is possible to reduce the damping torque when the system is operating alone, quickly generate fluctuations in the rotational speed of the generator, and disconnect the generator using a rotation abnormality detection relay or UF / OF. It was confirmed that there was.

本発明の分散型電源装置の実施形態である簡略ブロック図である。It is a simplified block diagram which is embodiment of the distributed power supply device of this invention. DTRSとAVRの伝達関数モデルを示すブロック図である。It is a block diagram which shows the transfer function model of DTRS and AVR. シミュレータの概要を示す結線図である。It is a connection diagram which shows the outline | summary of a simulator. シミュレータでのDTRSとAVRの伝達関数モデルを示すブロック図である。It is a block diagram which shows the transfer function model of DTRS and AVR in a simulator. ケース1の試験結果を示す特性図である。FIG. 6 is a characteristic diagram showing test results of case 1. ケース2の試験結果を示す特性図である。FIG. 6 is a characteristic diagram showing test results of Case 2. ケース3の試験結果を示す特性図である。FIG. 6 is a characteristic diagram showing test results of case 3. 分散型電源の連系を表す概略ブロック図である。It is a schematic block diagram showing interconnection of a distributed power supply.

符号の説明Explanation of symbols

10 DTRS(Damping Torque Reduction System:ダンピングトルク低減器)
12 電圧設定器
13 回転数計
15 有効電力検出器
16 回転数異常検出器
18 OF/UFリレー
75 発電機(分散型電源)
77 連系用遮断器
79 AVR(自動電圧調整器)
80 分散型電源装置
100 加え合せ点
101,104 リセット回路
102,105 進み遅れ要素
103、106 一次遅れ要素並びにリミッタ
10 DTRS (Damping Torque Reduction System)
12 Voltage Setting Device 13 Speed Meter 15 Active Power Detector 16 Speed Abnormality Detector 18 OF / UF Relay 75 Generator (Distributed Power Supply)
77 Circuit breaker 79 AVR (automatic voltage regulator)
80 Distributed type power supply device 100 Addition point 101, 104 Reset circuit 102, 105 Advance / delay element 103, 106 First-order lag element and limiter

Claims (4)

配電線路に連系用遮断器を介して接続された分散型電源である発電機を備え、この発電機の端子電圧と設定電圧との差分により前記発電機の界磁電圧を制御する自動電圧調整器を備えた分散型電源装置において、前記発電機出力の有効電力および前記発電機の回転数のそれぞれの変化分に基づく伝達関数をそれぞれ算出してそれぞれの演算結果同士の減算値を前記自動電圧調整器に補助入力として出力して前記発電機の端子電圧と設定電圧との差分を増大することによりダンピングトルクを低減させる低減器と、このダンピングトルク低減器の前記減算値に基づく前記発電機の異常回転出力を検出して出力する検出手段とを有することを特徴とする分散型電源装置。   Automatic voltage adjustment that includes a generator that is a distributed power source connected to a distribution line via a circuit breaker, and controls the field voltage of the generator based on the difference between the terminal voltage of this generator and the set voltage In the distributed power supply device including the generator, a transfer function based on each change in the active power of the generator output and the number of revolutions of the generator is calculated, and a subtraction value between the respective calculation results is calculated as the automatic voltage. A reducer that reduces the damping torque by increasing the difference between the terminal voltage of the generator and the set voltage by outputting to the regulator as an auxiliary input, and the generator based on the subtraction value of the damping torque reducer. A distributed power supply apparatus comprising: a detecting unit that detects and outputs an abnormal rotation output. 前記ダンピングトルク低減器での変化分に基づく伝達関数の演算手段は、少なくとも変化分を演算するリセット回路と、ゲインを加味した一次遅れ要素とを含む伝達関数モデルを備えるものである請求項1記載の分散型電源装置。   2. The transfer function calculation means based on a change in the damping torque reducer includes a transfer function model including at least a reset circuit for calculating the change and a first-order lag element taking a gain into consideration. Distributed power supply. 前記演算手段は、さらに前記発電機の連系時の安定性と単独運転時の不安定性とを調整可能な進み遅れ要素を含むものである請求項2記載の分散型電源装置。   The distributed power supply apparatus according to claim 2, wherein the calculation means further includes an advance / delay element capable of adjusting the stability of the generator when connected and the instability of isolated operation. 前記検出手段は、前記発電機の異常回転数を検出して出力信号を出す回転数異常検出器及び前記発電機の異常周波数を検出して出力信号を出すOF/UFリレーの少なくとも一方からなることを特徴とする請求項1から3のいずれか1つに記載の分散型電源装置。
The detection means comprises at least one of a rotation speed abnormality detector that detects an abnormal rotation speed of the generator and outputs an output signal, and an OF / UF relay that detects an abnormal frequency of the generator and outputs an output signal. The distributed power supply device according to any one of claims 1 to 3.
JP2006021128A 2006-01-30 2006-01-30 Distributed power supply Expired - Fee Related JP4530365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006021128A JP4530365B2 (en) 2006-01-30 2006-01-30 Distributed power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006021128A JP4530365B2 (en) 2006-01-30 2006-01-30 Distributed power supply

Publications (2)

Publication Number Publication Date
JP2007202372A true JP2007202372A (en) 2007-08-09
JP4530365B2 JP4530365B2 (en) 2010-08-25

Family

ID=38456379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006021128A Expired - Fee Related JP4530365B2 (en) 2006-01-30 2006-01-30 Distributed power supply

Country Status (1)

Country Link
JP (1) JP4530365B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048290B1 (en) * 2009-12-18 2011-07-13 한국전기연구원 Active single operation detection method and apparatus of distributed power supply using voltage positive feedback control
CN106058943A (en) * 2016-06-03 2016-10-26 国网河北省电力公司电力科学研究院 Verification method for difference adjustment cooperation of electric generator of extra-high voltage receiving-end power grid
CN114062777A (en) * 2021-11-17 2022-02-18 山东日照发电有限公司 Frequency difference checking method of synchronization device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271689A (en) * 1997-03-25 1998-10-09 Tokyo Electric Power Co Inc:The Detection method of single operation of synchronous generator
JP2000224897A (en) * 1999-01-29 2000-08-11 Hitachi Ltd Generator excitation-controlling device
JP2002218659A (en) * 2001-01-16 2002-08-02 Toshiba Corp System linkage protective device for power generator
JP2002281673A (en) * 2001-03-16 2002-09-27 Toshiba Corp System interconnection protecting device for power generating facility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271689A (en) * 1997-03-25 1998-10-09 Tokyo Electric Power Co Inc:The Detection method of single operation of synchronous generator
JP2000224897A (en) * 1999-01-29 2000-08-11 Hitachi Ltd Generator excitation-controlling device
JP2002218659A (en) * 2001-01-16 2002-08-02 Toshiba Corp System linkage protective device for power generator
JP2002281673A (en) * 2001-03-16 2002-09-27 Toshiba Corp System interconnection protecting device for power generating facility

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048290B1 (en) * 2009-12-18 2011-07-13 한국전기연구원 Active single operation detection method and apparatus of distributed power supply using voltage positive feedback control
CN106058943A (en) * 2016-06-03 2016-10-26 国网河北省电力公司电力科学研究院 Verification method for difference adjustment cooperation of electric generator of extra-high voltage receiving-end power grid
CN106058943B (en) * 2016-06-03 2018-09-21 国网河北省电力公司电力科学研究院 A kind of verification method of extra-high voltage receiving end grid generator tune difference cooperation
CN114062777A (en) * 2021-11-17 2022-02-18 山东日照发电有限公司 Frequency difference checking method of synchronization device
CN114062777B (en) * 2021-11-17 2023-11-14 山东日照发电有限公司 Frequency difference verification method for synchronous device

Also Published As

Publication number Publication date
JP4530365B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
DK176853B1 (en) Method, apparatus and computer program product for injecting power
JP4053890B2 (en) Wind turbine operating method
WO2014132304A1 (en) Power conversion device for connection to grid
JP5508796B2 (en) Power supply system control method and power supply system control apparatus
US20150222122A1 (en) Methods, systems, and computer readable media for adaptive out of step protection for power generators with load resynchronization capability
JP4530365B2 (en) Distributed power supply
JP2009065820A (en) Voltage fluctuation controller for natural energy power generation
WO2016167251A1 (en) Device for stabilizing failure in electrical power system and method for use in same
JP2003348755A (en) Method of restraining three-phase imbalance in power distribution system
JP2008165499A (en) Reactive power compensation device and method
JP5693337B2 (en) Generator control device
JP5016004B2 (en) Method and apparatus for detecting isolated operation of power generation equipment
JP4341028B2 (en) Grid connection protection device for regular power generator
JP3911601B2 (en) Generator motor control device and power generation system using the same
JP3315298B2 (en) Power grid connection protection device
JP2008312370A (en) Reactive power compensating device and control method therefor
JPH0479798A (en) Excitation controller for synchronous machine
JP3751829B2 (en) System interconnection protection device for power generation facilities
JP4202954B2 (en) Grid connection protection device for regular power generator
JP3634645B2 (en) System linkage protection device for power generation facilities
JP2002101562A (en) System interconnection protection device of power generating installation
JP2004048915A (en) Power system stabilization control system
JP3397608B2 (en) Power grid connection protection device
JP5004021B2 (en) Power supply controller
JP4062704B2 (en) Control method and control device for private power generation auxiliary generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

R150 Certificate of patent or registration of utility model

Ref document number: 4530365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees