JP2007201043A - Optical transmitter and optical transceiver - Google Patents

Optical transmitter and optical transceiver Download PDF

Info

Publication number
JP2007201043A
JP2007201043A JP2006015996A JP2006015996A JP2007201043A JP 2007201043 A JP2007201043 A JP 2007201043A JP 2006015996 A JP2006015996 A JP 2006015996A JP 2006015996 A JP2006015996 A JP 2006015996A JP 2007201043 A JP2007201043 A JP 2007201043A
Authority
JP
Japan
Prior art keywords
optical
light emitting
emitting element
optical transmitter
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006015996A
Other languages
Japanese (ja)
Inventor
Yoichi Motosawa
陽一 本澤
Noriki Takeda
准樹 武田
Toru Oyama
徹 大山
Tomonobu Kondo
知信 近藤
Antony Cleitus
クライタス アントニー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Opnext Japan Inc
Original Assignee
Opnext Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Opnext Japan Inc filed Critical Opnext Japan Inc
Priority to JP2006015996A priority Critical patent/JP2007201043A/en
Publication of JP2007201043A publication Critical patent/JP2007201043A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical transmitter of long life which has a stable transmission characteristics for an extended period. <P>SOLUTION: The life of an optical transmitter 500 depends on degradation in characteristics due to aging of a light emitting element 211 mounted on it. In order to correct degradation in characteristics of the light emitting element 211, a self-correction mode is added to the optical transmitter 500 to measure light emission characteristics of the light emitting elements 211. The life of the optical transmitter 500 can be extended by repeating correction of characteristic degradation due to aging of the light emitting element 211. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光送信器および光送受信器に係り、特に長寿命な動作を要求される光送信器および光送受信器に関する。   The present invention relates to an optical transmitter and an optical transmitter / receiver, and more particularly to an optical transmitter and an optical transmitter / receiver that require a long-life operation.

特許文献1には、入力電圧信号を受けて波形整形する差動増幅器、この差動増幅器の出力信号を受けて発光素子を駆動する為の変調電流を発生する差動型電流スイッチ、この差動型電流スイッチの電流振幅を変える可変電流源で構成された変調駆動回路と、この発光素子の直流バイアス電流を供給する平均出力光制御・駆動回路で構成され、このうち可変電流源はレーザダイオードの光出力電力の設定や発光効率特性に応じて調整される光送信器が記載されている。   Patent Document 1 discloses a differential amplifier that receives an input voltage signal and shapes a waveform, a differential current switch that receives a signal output from the differential amplifier and generates a modulation current for driving a light emitting element, and the differential A modulation drive circuit composed of a variable current source that changes the current amplitude of the current switch, and an average output light control / drive circuit that supplies a DC bias current of the light emitting element. An optical transmitter that is adjusted according to the setting of light output power and light emission efficiency characteristics is described.

特開平5−218543号公報JP-A-5-218543

インターネットの普及等による伝送量の増大に伴い、光伝送装置の設置数も増え、それに伴い、その保守に要する費用、時間も増大している。光送受信器の寿命を延ばすことにより、光送受信器が搭載されている光伝送装置の保守費用、時間を低減することが可能となる。光送受信器に搭載されている全ての部品の中で最も経年による特性劣化が大きいものが発光素子である。発光素子の特性劣化によって、光送信器が満足する特性が提供できなくなった時点が光送信器としての寿命となる。発光素子の特性劣化で顕著なものは、スロープ効率の減少と閾値電流の増加である。   As the amount of transmission increases due to the spread of the Internet and the like, the number of installed optical transmission devices also increases, and accordingly, the cost and time required for the maintenance also increase. By extending the lifetime of the optical transceiver, it is possible to reduce the maintenance cost and time of the optical transmission apparatus in which the optical transceiver is mounted. Among all the components mounted on the optical transceiver, the light emitting element has the greatest deterioration in characteristics due to aging. The point in time when the optical transmitter can no longer provide satisfactory characteristics due to the deterioration of the characteristics of the light emitting element is the lifetime of the optical transmitter. What is remarkable in the characteristic deterioration of the light emitting element is a decrease in slope efficiency and an increase in threshold current.

本発明によって、長時間安定した送信特性の得られる光送信器および光送受信器を提供する。   According to the present invention, an optical transmitter and an optical transmitter / receiver which can obtain transmission characteristics stable for a long time are provided.

送信電気信号を変調信号に変換して発光素子を駆動する変調駆動部と、前記発光素子と、前記発光素子の出力をモニタして出力パワー一定制御する出力制御部とからなり、前記制御部は発光素子のスロープ効率を測定する光送信器により、達成できる。   A modulation driving unit that converts a transmission electric signal into a modulation signal to drive a light emitting element, the light emitting element, and an output control unit that monitors the output of the light emitting element and controls output power constant, and the control unit includes: This can be achieved by an optical transmitter that measures the slope efficiency of the light emitting element.

また、送信電気信号を送信光信号に変換する光送信部と、受信光信号を受信電気信号に変換する光受信部で構成し、光送信部の光出力の一部を、光受信部の光入力に戻す光路を有する光送受信器により、達成できる。   Further, the optical transmission unit configured to convert the transmission electrical signal into a transmission optical signal and the optical reception unit configured to convert the reception optical signal into a reception electrical signal, a part of the optical output of the optical transmission unit is used as the light of the optical reception unit. This can be achieved with an optical transceiver having an optical path back to the input.

本発明に拠れば、長時間安定した送信特性を有する光送信器または光送受信器を得ることができる。   According to the present invention, it is possible to obtain an optical transmitter or an optical transmitter / receiver having stable transmission characteristics for a long time.

以下本発明の実施の形態について、実施例を用いて図面を参照して説明する。なお、同一部位には同じ参照番号を振り説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings using examples. Note that the same reference numerals are assigned to the same parts and the description will not be repeated.

実施例1を図1ないし図3を用いて説明する。ここで、図1は、光送信器のブロック図である。図2(a)はスロープ効率の稼動時間依存性を説明する図である。また、図2(b)は閾値電流の稼動時間依存性を説明する図である。図3(a)は初回の自動補正モードを説明する図である。図3(b)は第2回の自動補正モードを説明する図である。   A first embodiment will be described with reference to FIGS. Here, FIG. 1 is a block diagram of an optical transmitter. FIG. 2A is a diagram for explaining the dependence of slope efficiency on the operating time. FIG. 2B is a diagram for explaining the operating time dependency of the threshold current. FIG. 3A illustrates the first automatic correction mode. FIG. 3B is a diagram for explaining the second automatic correction mode.

図1において、光送信器500は、送信電気信号に基づいて発光素子211を駆動する変調駆動回路212と、発光素子211の近傍に置かれたサーミスタを含む発光素子温度モニタ回路216と、発光素子211の後方出力光をモニタするモニタ光受光素子214と、モニタ項受光素子214からの信号を受信し発光素子211の出力を制御する平均光出力制御・駆動回路215と、演算器417と、演算器417と接続された記憶媒体(メモリ)420と、変調駆動回路212の駆動電流を制御する変調駆動電流制御回路213とにより構成される。   In FIG. 1, an optical transmitter 500 includes a modulation driving circuit 212 that drives a light emitting element 211 based on a transmission electric signal, a light emitting element temperature monitor circuit 216 that includes a thermistor placed in the vicinity of the light emitting element 211, and a light emitting element. A monitor light receiving element 214 that monitors the rear output light of 211, an average light output control / drive circuit 215 that receives a signal from the monitor light receiving element 214 and controls the output of the light emitting element 211, an arithmetic unit 417, and an operation And a modulation drive current control circuit 213 that controls the drive current of the modulation drive circuit 212.

ここで、発光素子211は光送信器に搭載前に、初期特性として光送信器の動作保証温度内の複数の温度で、スロープ効率と閾値電流特性を測定しておく。発光素子211の特性は温度に依存するので、多数の温度条件にて測定する必要がある。それぞれの温度でのスロープ効率と閾値電流のデータを記憶媒体420に記録する。ここで温度条件の数は、発光素子の温度変動による特性変動が小さいもののは少なくても構わない。しかし、温度変動による特性変動が大きいものは多くする必要がある。ここで温度条件数を多くすることにより、補正の精度が向上する。   Here, before mounting the light emitting element 211 on the optical transmitter, the slope efficiency and the threshold current characteristic are measured at a plurality of temperatures within the guaranteed operating temperature of the optical transmitter as initial characteristics. Since the characteristics of the light-emitting element 211 depend on temperature, it is necessary to measure under a large number of temperature conditions. Slope efficiency and threshold current data at each temperature are recorded in the storage medium 420. Here, the number of temperature conditions may be small if the characteristic variation due to the temperature variation of the light emitting element is small. However, it is necessary to increase the number of characteristic fluctuations due to temperature fluctuations. Here, the accuracy of correction is improved by increasing the number of temperature conditions.

記憶媒体420には、加えて図2に示す特性劣化曲線を記録する。図2から明らかなようにスロープ効率ηは、稼働時間と共に低下する。一方、閾値電流Ithは、稼働時間と共に増加する。記憶媒体420に記録する劣化特性は、多数の発光素子を測定し、ばらつきを考慮した最悪条件である。記憶媒体420には、さらにスロープ効率の限界値ηlifeと閾値電流の限界値Ithlifeを記録する。   In addition, the characteristic deterioration curve shown in FIG. 2 is recorded in the storage medium 420. As apparent from FIG. 2, the slope efficiency η decreases with the operating time. On the other hand, the threshold current Ith increases with the operating time. The deterioration characteristic recorded in the storage medium 420 is the worst condition in which many light emitting elements are measured and variation is taken into consideration. The storage medium 420 further records a slope efficiency limit value ηlife and a threshold current limit value Ithlife.

光送信器500には、通常モードと自己補正モードとがある。光送信器500が、自己補正モードで動作するのは、外部から演算器417に入力されるモード切替信号を自己補正モードに切替えるかあるいは、前もって決定された条件で演算器内部信号で自己補正モードに切替わった時である。光送信器500の稼動後、初めての自己補正モードでの動作について説明する。   The optical transmitter 500 has a normal mode and a self-correction mode. The optical transmitter 500 operates in the self-correction mode because the mode switching signal input from the outside to the calculator 417 is switched to the self-correction mode, or the self-correction mode is set based on the internal signal of the calculator under a predetermined condition. It is when it switches to. The operation in the first self-correction mode after the operation of the optical transmitter 500 will be described.

自己補正モードに切替わると、まず変調駆動回路212が動作しないように変調駆動電流制御回路213が参照する制御信号bの値を決定する。その後平均出力制御・駆動回路215が参照する制御信号aを変動させ、発光素子のスロープ効率と閾値電流特性の測定を行う。   When the self-correction mode is switched, first, the value of the control signal b referred to by the modulation drive current control circuit 213 is determined so that the modulation drive circuit 212 does not operate. Thereafter, the control signal a referred to by the average output control / drive circuit 215 is varied, and the slope efficiency and threshold current characteristics of the light emitting element are measured.

具体的には、まずモニタ光受光素子214に入力される光が無くなる制御信号aを求める。その後、制御信号aを任意の刻みで変更し、その際のモニタ光受光素子214に入力される光パワー対平均光出力制御・駆動回路215で駆動された電流値を測定する。演算器417は測定した値からスロープ効率と閾値電流を算出する。それらの値と、発光素子温度モニタ回路216でモニタされた温度と、自己補正モードに切替わるまでの積算稼動時間を記憶媒体420に記録する。   Specifically, first, a control signal a that eliminates the light input to the monitor light receiving element 214 is obtained. Thereafter, the control signal a is changed in arbitrary increments, and the current value driven by the average power output control / drive circuit 215 input to the monitor light receiving element 214 at that time is measured. The calculator 417 calculates the slope efficiency and the threshold current from the measured values. These values, the temperature monitored by the light emitting element temperature monitor circuit 216, and the accumulated operation time until switching to the self-correction mode are recorded in the storage medium 420.

算出されたスロープ効率と閾値電流と記憶媒体420に記録していた発光素子温度モニタ回路216でモニタされた温度時あるいは最も近い温度の初期特性とを比較し、その劣化分を演算器417で算出する。その算出値から通常モード時の制御信号bの値の補正を行う。次に、補正された制御信号bの値ので光送受信器が正常な特性を提供できるスロープ効率ηlimit1を求める。   The calculated slope efficiency, threshold current, and initial characteristics at the temperature or the closest temperature monitored by the light emitting element temperature monitor circuit 216 recorded in the storage medium 420 are compared, and the deterioration is calculated by the calculator 417. To do. The value of the control signal b in the normal mode is corrected from the calculated value. Next, the slope efficiency ηlimit1 at which the optical transceiver can provide normal characteristics based on the corrected value of the control signal b is obtained.

記憶媒体420に記録されたスロープ効率の特性劣化曲線を現在のスロープ効率ηnow1に当てはめ、スロープ効率がηlimit1になる稼動積算時間Tηlimit1、スロープ効率がηlifeになる稼動積算時間Tηlifeを算出する。またTηlimit1の値から、次に自己補正モードをする稼動積算時間Tnext1を算出する。Tηlimit1、Tηlife、Tnext1等のデータを記憶媒体420に記録するとともに、そのデータを外部に出力し、通常モードに切替える。制御信号bは自己補正モード時に補正された値となり、発光素子の経年による特性劣化が補正され、送信光信号は稼動前と同等の特性を示す。   A slope efficiency characteristic deterioration curve recorded in the storage medium 420 is applied to the current slope efficiency ηnow1, and an operation integration time Tηlimit1 at which the slope efficiency becomes ηlimit1 and an operation integration time Tηlife at which the slope efficiency becomes ηlife are calculated. Further, from the value of Tηlimit1, the operation integration time Tnext1 for the next self-correction mode is calculated. Data such as Tηlimit1, Tηlife, and Tnext1 is recorded in the storage medium 420, and the data is output to the outside to switch to the normal mode. The control signal b becomes a value corrected in the self-correction mode, the characteristic deterioration due to aging of the light emitting element is corrected, and the transmitted optical signal exhibits the same characteristic as before operation.

積算稼動時間がTnext1になった際、再び、外部から入力されるモード切替信号によって、あるいは自動的に自己補正モードに切替わる。初回と同様な動作を繰り返すが、図3(b)に示すように発光素子の特性劣化曲線を測定したデータより補正し、発光素子の特性に合致させる。同様な動作を2回、3回…N回と繰り返す。   When the integrated operation time reaches Tnext1, the mode is again switched to the self-correction mode by a mode switching signal input from the outside or automatically. The same operation as the first time is repeated, but as shown in FIG. 3B, the characteristic deterioration curve of the light emitting element is corrected based on the measured data to match the characteristic of the light emitting element. The same operation is repeated twice, three times, N times.

なお、実施例1は、図1に示すモニタ光受光素子と平均光出力制御・駆動回路を用いて発光素子を自動パワーコントロール(APC:Automatic Power Control)しているので、閾値電流の特性劣化曲線は、利用していない。
本実施例に拠れば、長時間安定した送信特性を有する光送信器を得ることができる。
In Example 1, the monitor light receiving element and the average light output control / drive circuit shown in FIG. 1 are used to perform automatic power control (APC: Automatic Power Control) of the light emitting element. Is not used.
According to the present embodiment, an optical transmitter having stable transmission characteristics for a long time can be obtained.

実施例2を図3ないし図6を用いて説明する。ここで、図4は光送受信器の構成を示すブロック図である。図5は光送信部の構成を示すブロック図である。図6は発光素子の閾値電流の稼働限界推定を説明する図である。   A second embodiment will be described with reference to FIGS. Here, FIG. 4 is a block diagram showing the configuration of the optical transceiver. FIG. 5 is a block diagram showing the configuration of the optical transmitter. FIG. 6 is a diagram for explaining operation limit estimation of the threshold current of the light emitting element.

図4において、光送受信器101は、光送信部501と、光受信部600と、光送信部501の出力光を95対5の比で分岐する光カプラ401と、光カプラ401からの分岐比5の光を入力として、光カプラ402に出力する光スイッチ403と、受信光を入力され光カプラ402に出力する光スイッチ404と、光スイッチ403と光スイッチ404とからの光をカップリングする光カプラ402とで構成される。光送信部501は光スイッチ403と光スイッチ404とを制御する。また、光送信部501は送信電気信号、モード切替信号光受信部からの平均電流信号を受信する。光受信部600は受信電気信号を出力する。   In FIG. 4, an optical transceiver 101 includes an optical transmitter 501, an optical receiver 600, an optical coupler 401 that branches the output light of the optical transmitter 501 at a ratio of 95: 5, and a branching ratio from the optical coupler 401. 5, an optical switch 403 that outputs to the optical coupler 402, an optical switch 404 that receives received light and outputs it to the optical coupler 402, and a light that couples light from the optical switch 403 and the optical switch 404. And a coupler 402. The optical transmission unit 501 controls the optical switch 403 and the optical switch 404. The optical transmission unit 501 receives the transmission electric signal and the average current signal from the mode switching signal optical reception unit. The optical receiver 600 outputs a received electrical signal.

光送受信器600には、通常モードと自己補正モードとがある。光送受信器600が、自己補正モードで動作するとき、光送信部501は、光スイッチ403をONし、光スイッチ404をOFFする。その結果、光受信部600は光送信部501の出力をモニタすることになる。これについて図5を参照して説明する。   The optical transceiver 600 has a normal mode and a self-correction mode. When the optical transceiver 600 operates in the self-correction mode, the optical transmission unit 501 turns on the optical switch 403 and turns off the optical switch 404. As a result, the optical receiver 600 monitors the output of the optical transmitter 501. This will be described with reference to FIG.

図5において、実施例2は光送信部501内には受光素子がないため、光受信部600を使用する点と、光送信部501がAPC回路を使用していない点が実施例1と異なる。光受信部を使用するために、図4に示す光送信部501の光出力を光受信部600に折り返す光路を有する。自己補正モード時は、図5に示す光スイッチ403をON、光スイッチ404をOFFにし、光受信部600に光送信部501の出力が入力されるようにする。光受信部600に搭載された平均電流検出回路312より、受光素子311に入力される平均光パワー値の計測に使用する。その他動作は、実施例1とほぼ同じである。しかし、図4に示す光送信部501はAPC回路が搭載されていないため、制御信号aの補正も必要となる。制御信号bの補正と同様な方法で制御信号aの補正を行う。   In FIG. 5, the second embodiment is different from the first embodiment in that there is no light receiving element in the optical transmitter 501, so that the optical receiver 600 is used and the optical transmitter 501 does not use an APC circuit. . In order to use the optical receiver, an optical path for turning back the optical output of the optical transmitter 501 shown in FIG. 4 to the optical receiver 600 is provided. In the self-correction mode, the optical switch 403 shown in FIG. 5 is turned on, the optical switch 404 is turned off, and the output of the optical transmitter 501 is input to the optical receiver 600. The average current detection circuit 312 mounted on the optical receiver 600 is used to measure the average optical power value input to the light receiving element 311. Other operations are almost the same as those in the first embodiment. However, since the optical transmission unit 501 shown in FIG. 4 is not equipped with an APC circuit, it is necessary to correct the control signal a. The control signal a is corrected in the same manner as the control signal b.

具体的には、制御信号aの値のまま光送受信器が正常な特性を提供できるスロープ効率ηlimit1と補正可能な限界のスロープ効率ηlife、制御信号aの値のまま光送受信器が正常な特性を提供できる閾値電流Ith1と補正可能な限界の閾値電流Ithlifeを求める。図3(a)において、記憶媒体420に記録されたスロープ効率の特性劣化曲線を現在のスロープ効率ηnow1に当てはめ、スロープ効率がηlimit1になる稼動積算時間Tηlimit1、スロープ効率がηlifeになる稼動積算時間Tηlifeを算出する。   Specifically, the slope efficiency ηlimit1 that can provide the normal characteristic with the value of the control signal a, the slope efficiency ηlife of the limit that can be corrected, the normal characteristic of the optical transceiver with the value of the control signal a. The threshold current Ith1 that can be provided and the limit threshold current Ithlife that can be corrected are obtained. In FIG. 3A, the characteristic degradation curve of the slope efficiency recorded in the storage medium 420 is applied to the current slope efficiency ηnow1, the operation integration time Tηlimit1 at which the slope efficiency becomes ηlimit1, and the operation integration time Tηlife at which the slope efficiency becomes ηlife. Is calculated.

図6(a)において、記憶媒体420に記録された閾値電流の特性劣化曲線を現在の閾値電流Ithnow1に当てはめ、閾値電流がIthlimit1になる稼動積算時間TIthlimit1、閾値電流がIthlifeになる稼動積算時間TIthlifeを算出する。またTηlimit1とTIthlimit1、参考に次に自己補正モードをする稼動積算時間Tnext1を算出する。Tデータは記憶媒体420に記録されるとともに外部に出力し、通常モードに切替わる。制御信号a、制御信号bは自己補正モード時に補正された値となり、発光素子の経年による劣化が補正され、送信光信号は稼動前と同等の特性を示す。   In FIG. 6A, the threshold current characteristic deterioration curve recorded in the storage medium 420 is applied to the current threshold current Ithnow1, and the operation integration time TIthlimit1 at which the threshold current becomes Ithlimit1, and the operation integration time TIthlife at which the threshold current becomes Ithlife. Is calculated. Further, Tηlimit1 and TIthlimit1, and an operation integration time Tnext1 for the next self-correction mode are calculated for reference. The T data is recorded in the storage medium 420 and output to the outside, and the mode is switched to the normal mode. The control signal a and the control signal b are corrected values in the self-correction mode, the deterioration of the light emitting element due to aging is corrected, and the transmitted optical signal exhibits the same characteristics as before operation.

積算稼動時間がTnext1になった際、再び、外部から入力されるモード切替信号によって、あるいは光送受信器内部で自己補正モードに切替わる。初回と同様な動作を繰り返すが、図3(b)または図6(b)に示すように発光素子の特性劣化曲線を測定したデータより補正し、曲線の精度を向上させる。同様な動作を2回、3回…N回と繰り返す。
本実施例に拠れば、長時間安定した送信特性を有する光送受信器を得ることができる。
When the integrated operation time reaches Tnext1, the mode is again switched to the self-correction mode by a mode switching signal input from the outside or inside the optical transceiver. The same operation as the first time is repeated, but the characteristic deterioration curve of the light emitting element is corrected from the measured data as shown in FIG. 3B or 6B to improve the accuracy of the curve. The same operation is repeated 2 times, 3 times, and N times.
According to this embodiment, it is possible to obtain an optical transceiver having transmission characteristics that are stable for a long time.

光送信器の構成を説明するブロック図である。It is a block diagram explaining the structure of an optical transmitter. スロープ効率、閾値電流の稼動時間依存性を説明する図である。It is a figure explaining the operating time dependence of slope efficiency and threshold current. 発光素子のスロープ効率の稼働限界推定を説明する図である。It is a figure explaining the operating limit estimation of the slope efficiency of a light emitting element. 光送受信器の構成を示すブロック図である。It is a block diagram which shows the structure of an optical transmitter / receiver. 光送信部の構成を示すブロック図である。It is a block diagram which shows the structure of an optical transmission part. 発光素子の閾値電流の稼働限界推定を説明する図である。It is a figure explaining the operating limit estimation of the threshold current of a light emitting element.

符号の説明Explanation of symbols

101…光送受信器、211…発光素子、212…変調駆動回路、213…変調駆動制御電流回路、214…モニタ光受光素子、215、217…平均光出力制御・駆動回路、216…発光素子温度モニタ回路、217…演算器、300…光受信部、311…受光素子、312…平均電流検出回路、313…識別回路、401、402…光カプラ、403…スイッチ、404…スイッチ、417…演算器、420…記憶媒体、500…光送信器、501…光送信部、600…光受信部、701…光送受信器。
DESCRIPTION OF SYMBOLS 101 ... Optical transmitter / receiver, 211 ... Light emitting element, 212 ... Modulation drive circuit, 213 ... Modulation drive control current circuit, 214 ... Monitor light receiving element, 215, 217 ... Average light output control / drive circuit, 216 ... Light emitting element temperature monitor Circuits, 217 ... arithmetic units, 300 ... optical receivers, 311 ... light receiving elements, 312 ... average current detection circuits, 313 ... identification circuits, 401, 402 ... optical couplers, 403 ... switches, 404 ... switches, 417 ... arithmetic units, 420 ... Storage medium, 500 ... Optical transmitter, 501 ... Optical transmitter, 600 ... Optical receiver, 701 ... Optical transceiver.

Claims (5)

送信電気信号を変調信号に変換して発光素子を駆動する変調駆動部と、前記発光素子と、前記発光素子の出力をモニタして出力パワー一定制御する出力制御部とからなる光送信器において、
前記発光素子のスロープ効率を測定する制御部を有することを特徴とする光送信器。
In an optical transmitter including a modulation driving unit that converts a transmission electric signal into a modulation signal to drive a light emitting element, the light emitting element, and an output control unit that monitors the output of the light emitting element and controls output power constant.
An optical transmitter comprising a control unit for measuring a slope efficiency of the light emitting element.
請求項1に記載の光送信器であって、
前記制御部は、前記スロープ効率の経年劣化を検出したとき、その劣化量から前記発光素子の制御値を補正することを特徴とする光送信器。
The optical transmitter according to claim 1, wherein
The controller, when detecting the aging deterioration of the slope efficiency, corrects the control value of the light emitting element from the deterioration amount.
請求項2に記載の光送信器であって、
前記制御部は、スロープ効率の経年劣化特性を記録された記憶媒体を有することを特徴とする光送信器。
The optical transmitter according to claim 2, wherein
The said control part has a storage medium with which the aged deterioration characteristic of slope efficiency was recorded, The optical transmitter characterized by the above-mentioned.
送信電気信号を送信光信号に変換する光送信部と、受信光信号を受信電気信号に変換する光受信部で構成する光送受信器において、
前記光送信部の光出力の一部を、前記光受信部の光入力に戻す光路を有することを特徴とする光送受信器。
In an optical transmitter / receiver configured by an optical transmission unit that converts a transmission electrical signal into a transmission optical signal and an optical reception unit that converts a reception optical signal into a reception electrical signal,
An optical transceiver having an optical path for returning a part of the optical output of the optical transmitter to the optical input of the optical receiver.
請求項4に記載の光送受信器であって、
前記光送信部に搭載された発光素子の特性を監視し、その特性から前記発光素子の制御値を補正することを特徴とする光送受信器。
The optical transceiver according to claim 4,
An optical transceiver characterized by monitoring a characteristic of a light emitting element mounted on the optical transmission unit and correcting a control value of the light emitting element based on the characteristic.
JP2006015996A 2006-01-25 2006-01-25 Optical transmitter and optical transceiver Pending JP2007201043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006015996A JP2007201043A (en) 2006-01-25 2006-01-25 Optical transmitter and optical transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006015996A JP2007201043A (en) 2006-01-25 2006-01-25 Optical transmitter and optical transceiver

Publications (1)

Publication Number Publication Date
JP2007201043A true JP2007201043A (en) 2007-08-09

Family

ID=38455345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006015996A Pending JP2007201043A (en) 2006-01-25 2006-01-25 Optical transmitter and optical transceiver

Country Status (1)

Country Link
JP (1) JP2007201043A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818510A (en) * 1994-07-01 1996-01-19 Fujitsu Ltd Optical communication module
JP2006013252A (en) * 2004-06-28 2006-01-12 Hitachi Cable Ltd Method and circuit for controlling laser diode, and optical transmitter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818510A (en) * 1994-07-01 1996-01-19 Fujitsu Ltd Optical communication module
JP2006013252A (en) * 2004-06-28 2006-01-12 Hitachi Cable Ltd Method and circuit for controlling laser diode, and optical transmitter

Similar Documents

Publication Publication Date Title
US20090214198A1 (en) Optical transmitter
JP3957304B2 (en) Temperature compensation device for APD optical receiver
JP2007112237A (en) Lighting control device of lighting fixture for vehicle
JP4574650B2 (en) Laser diode driving device and optical scanning device
JP2006013252A (en) Method and circuit for controlling laser diode, and optical transmitter
JP2013008843A (en) Method of driving semiconductor laser
JP2004096003A (en) Laser driving circuit for extinction ratio compensation
US7239814B2 (en) Driving apparatus of a light-emitting device
US20100109545A1 (en) Automatic Compensation For Degradation Of Optocoupler Light Emitting Diode
JP2008172513A (en) Photo coupler circuit
KR100670829B1 (en) Apparatus and method for maintaing constant extinction ratio of laser diode
JP2006041628A (en) Optical receiving circuit
JP4715198B2 (en) Laser drive device
JP5604076B2 (en) Optical communication module and method for controlling optical communication module
JP2009043784A (en) Laser diode driving circuit and laser diode driving method
JP2007201043A (en) Optical transmitter and optical transceiver
CN111726167A (en) Controller of light emitter
US9306674B1 (en) Field-tunable devices for optical communication
JP2006253266A (en) Circuit and method for driving light emitting device and optical transmission device
JP3810393B2 (en) Laser diode driving apparatus and laser diode driving method
JP4999769B2 (en) Apparatus and method for monitoring laser diode of optical transceiver
WO2018155405A1 (en) Light output module and light emission control method
JP2010045582A (en) Optical communication apparatus, and communication method
JP2009159661A (en) Stabilized power supply and control method therefor
JP4733944B2 (en) Optical transmitter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Effective date: 20111111

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20120327

Free format text: JAPANESE INTERMEDIATE CODE: A02