JP2007199033A - Rare gas extraction method - Google Patents

Rare gas extraction method Download PDF

Info

Publication number
JP2007199033A
JP2007199033A JP2006020924A JP2006020924A JP2007199033A JP 2007199033 A JP2007199033 A JP 2007199033A JP 2006020924 A JP2006020924 A JP 2006020924A JP 2006020924 A JP2006020924 A JP 2006020924A JP 2007199033 A JP2007199033 A JP 2007199033A
Authority
JP
Japan
Prior art keywords
rock core
container
water
evacuation
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006020924A
Other languages
Japanese (ja)
Inventor
Kotaro Nakada
弘太郎 中田
Takuma Hasegawa
琢磨 長谷川
Tomohiro Higashihara
知広 東原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2006020924A priority Critical patent/JP2007199033A/en
Publication of JP2007199033A publication Critical patent/JP2007199033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To extract accurately and efficiently rare gas dissolved in gap water in a rock core by determining rationally a proper evacuation time. <P>SOLUTION: After sealing the rock core 2 sampled from under the ground in a container 3, the container 3 is evacuated by a vacuum pump, and a pressure change in the container is detected, and in a process wherein the pressure in the container 3 is changed stepwise, evacuation is stopped simultaneously when confirming that the change has reached the fourth stage, and thereby the air around the rock core 2 is evacuated surely, and rare gas inside the rock core 2 is diffused in the container 3. Consequently, the air around the rock core 2 can be evacuated sufficiently, and a loss of the He concentration inside the rock core 2 can be suppressed to the minimum. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、希ガス抽出方法に関する。さらに詳述すると、本発明は、岩石コアの間隙水に溶存している希ガスを抽出する希ガス抽出方法に関する。   The present invention relates to a rare gas extraction method. More specifically, the present invention relates to a noble gas extraction method for extracting noble gas dissolved in pore water of a rock core.

地中から採取した岩石コアの間隙水に溶存している希ガス、例えばHeあるいはNe等を測定することにより、地下水の滞留時間を推測することができることが知られている。岩石コアの間隙水に溶存している希ガスを測定する技術としては例えば特許文献1が知られている。この特許文献1の技術は、地中から岩石コアを採取し、その岩石コアを真空容器に封入してからその真空容器を真空ポンプで真空引きし、岩石コアの間隙水に溶存している希ガスを真空容器内で十分に拡散させてから真空容器内の希ガスを測定するといった技術である。
特開2003−262575号
It is known that the residence time of groundwater can be estimated by measuring a rare gas dissolved in the pore water of a rock core collected from the ground, such as He or Ne. For example, Patent Document 1 is known as a technique for measuring a rare gas dissolved in pore water of a rock core. The technique of Patent Document 1 collects a rock core from the ground, seals the rock core in a vacuum vessel, and then evacuates the vacuum vessel with a vacuum pump, so that it is dissolved in the pore water of the rock core. This is a technique of measuring a rare gas in a vacuum container after sufficiently diffusing the gas in the vacuum container.
JP 2003-262575 A

しかしながら、特許文献1の技術は、真空容器を真空引きする時間(以下、真空引き時間と記述)の目安が合理的に示されていない。このように適切な真空引き時間が決定されていない場合には岩石コアの内部から拡散される希ガスの量を正確に把握することができないといった問題が生じる。つまり、真空引き時間が短すぎる場合には真空容器内の岩石コア外部の空気を十分に取り除くことができず、真空引き時間が長すぎる場合には岩石コア内部の希ガスを損失してしまうといった問題が生じる。最適な真空引き時間を決定する方法として、地中から複数の岩石コアを採取し、それらの岩石コアのそれぞれに対して真空引き時間を変えて真空引きを行なうことで最適な真空引き時間を決定する方法も考えられるが、この方法では複数の岩石コアが必要となるため、岩石コアの採取量が限られるような場合には対応することができない。   However, the technique of Patent Document 1 does not provide a reasonable indication of the time for evacuating the vacuum vessel (hereinafter referred to as evacuation time). In this way, when an appropriate evacuation time is not determined, there arises a problem that the amount of rare gas diffused from the inside of the rock core cannot be accurately grasped. In other words, if the evacuation time is too short, the air outside the rock core in the vacuum vessel cannot be removed sufficiently, and if the evacuation time is too long, the rare gas inside the rock core is lost. Problems arise. As a method of determining the optimal evacuation time, multiple rock cores are collected from the ground, and the evacuation time is determined by changing the evacuation time for each of these rock cores. However, since this method requires a plurality of rock cores, it cannot cope with a case where the amount of rock cores to be collected is limited.

そこで本発明は、適切な真空引き時間を合理的に決定することによって岩石コアの間隙水に溶存している希ガスを正確に且つ効率的に抽出することができる岩石コアの希ガス抽出方法を提供することを目的とする。   Therefore, the present invention provides a method for extracting a rare gas from a rock core that can accurately and efficiently extract a rare gas dissolved in pore water of the rock core by rationally determining an appropriate vacuuming time. The purpose is to provide.

かかる目的を達成するために、本発明者等は岩石コアを密封した容器内を真空引きしていく過程で容器内の圧力と間隙水の蒸発量と間隙水中の希ガス濃度とを測定し、これらの相関関係を調べた。   In order to achieve this object, the inventors measured the pressure in the container, the amount of evaporation of the pore water, and the rare gas concentration in the pore water in the process of evacuating the container in which the rock core was sealed, These correlations were examined.

その結果、本発明者等は、真空引きによって容器内の圧力が4つの段階、つまり、真空引きによって容器内の圧力が急激に降下する第1段階、一時的に圧力の下降が収まり圧力が一定になる第2段階、再度圧力が急降下する第3段階、圧力がこれ以上降下することなく圧力が一定になる第4段階の順に変化することを知り得た。また、真空引きによって間隙水の蒸発速度が2つの段階、つまり、急激に蒸発する第1段階、緩やかに蒸発する第2段階の順に変化することを知り得た。そして、容器内の圧力が第3段階から第4段階に変化する時間と蒸発速度が第1段階から第2段階に変化する時間とが一致することを知見するに至った。さらに、容器内の圧力が第4段階に入ると間隙水中の希ガスの濃度低下が顕著になることを知見するに至った。これらの知見は岩石コアの種類を変えた場合にも同じように得ることができた。   As a result, the present inventors have found that the pressure in the container is reduced to four stages by evacuation, that is, the first stage in which the pressure in the container is suddenly reduced by evacuation, and the pressure drop temporarily stops and the pressure is constant. It has been found that the second stage becomes, the third stage where the pressure suddenly drops again, and the fourth stage where the pressure becomes constant without dropping further. In addition, it has been found that the evaporation rate of the pore water changes in the order of two stages, that is, the first stage of rapid evaporation and the second stage of moderate evaporation by evacuation. And it came to discover that the time when the pressure in a container changes from a 3rd step to a 4th step and the time when an evaporation rate changes from a 1st step to a 2nd step correspond. Furthermore, it came to discover that the density | concentration fall of the noble gas in pore water became remarkable when the pressure in a container entered into the 4th step. These findings were obtained in the same way when the rock core types were changed.

本発明はかかる知見に基づいて成されたものである。本発明の希ガス抽出方法は、地中から採取した岩石コアを容器に密封した後に容器内を真空引きすることによって岩石コア中の間隙水から希ガスを抽出するものであり、容器内の圧力変化を検出し、真空引きによって容器内の圧力が段階的に変化していく過程でその変化が4段階目に到達したことを契機に真空引きを停止するようにしている。ここで、岩石コアの表面や表面近傍の水であれば、岩石コアの表面や表面近傍から直接蒸発して排気され、水の蒸発とともに希ガスは気相に移ると考えられるため、岩石コアの表面や表面近傍における水と希ガスとの排気のされ方には大きな差は生じないと考えられる。このことから、真空引きが開始されてから容器内の圧力が4段階目に入るまでの過程、つまり容器内の圧力の第1〜3段階の過程においては水の蒸発は岩石コアの表面や表面近傍で起こるものが支配的であると考えられる。他方、容器内の圧力が第4段階に入ると水の蒸発は岩石コアの内部で起こるものが支配的であると考えられる。岩石コアの内部において水が気化する場合、つまりコア表面へと移動し排気される場合には、先ず岩石コアの内部から表面まで移行するという過程を経る。このとき希ガス分子は水分子に比べて小さいため、岩石の間隙という狭小な空間を通過する際、水分子よりも早く移動することが考えられる。このことから容器内の圧力が第4段階に入ると希ガスの排気される速度が水の排気される速度よりも大きくなり、間隙水の希ガス濃度が顕著に減少すると考えられる。したがって、容器内の圧力が4段階目に到達したことを確認すると同時に真空引きを停止することにより、岩石コア周辺の空気が確実に排気されてから岩石コア内部の希ガスが容器内に拡散される。   The present invention has been made based on such findings. The rare gas extraction method of the present invention extracts a rare gas from pore water in a rock core by evacuating the inside of the container after sealing the rock core collected from the ground in the container, and the pressure in the container The change is detected, and the evacuation is stopped when the change reaches the fourth stage in the process in which the pressure in the container changes stepwise by the evacuation. Here, if the water is near the surface of the rock core or near the surface, it is directly evaporated from the surface of the rock core or near the surface and exhausted. It is considered that there is no significant difference in how the water and the rare gas are exhausted on or near the surface. Therefore, in the process from the start of evacuation until the pressure in the container enters the fourth stage, that is, in the process of the first to third stages of the pressure in the container, the water evaporation occurs on the surface of the rock core and the surface. What happens in the vicinity is considered dominant. On the other hand, when the pressure in the container enters the fourth stage, it is considered that the evaporation of water is predominantly occurring inside the rock core. When water evaporates inside the rock core, that is, when it moves to the core surface and is exhausted, it first passes through the process of moving from the inside of the rock core to the surface. At this time, since the rare gas molecules are smaller than the water molecules, it is considered that the rare gas molecules move faster than the water molecules when passing through a narrow space called a rock gap. From this, it is considered that when the pressure in the container enters the fourth stage, the speed of exhausting the rare gas becomes larger than the speed of exhausting the water, and the rare gas concentration of the pore water is significantly reduced. Therefore, by confirming that the pressure in the container has reached the fourth stage and stopping the evacuation at the same time, the air around the rock core is surely exhausted, and then the rare gas inside the rock core is diffused into the container. The

本発明の希ガス抽出方法によれば、適切な真空引き時間、つまり岩石コア周辺の空気を十分に排気するとともに岩石コア内部の希ガス濃度の損失を最小限に抑えるような真空引き時間を合理的に決定することができるので、岩石コアの間隙水に溶存している希ガスを正確に且つ効率的に抽出することができる。これによって地下水の滞留時間をより一層正確に評価することができるので、例えば高レベル放射性廃棄物を地中に処分する場合にはその地中が処分場として適しているか否かを従来よりも正確に判断することができる。また、温泉の寿命や温泉が存在している場所などをより一層正確に把握することができる。また、岩石コアが1つであってもその岩石コアの間隙水に溶存している希ガスを正確に抽出することができるので、岩石コアの採掘量が限られるような場所、例えば透水性が低く岩石コアを採掘することが難しい場所であってもそこから岩石コアを1つだけ得ることができればそこの地下水の滞留時間を正確に評価することができる。さらに、地中から複数の岩石コアを採掘する必要がないので作業時間の短縮を図ることができる。   According to the noble gas extraction method of the present invention, an appropriate evacuation time, that is, a evacuation time that sufficiently exhausts the air around the rock core and minimizes the loss of the noble gas concentration inside the rock core is rationalized. Therefore, the noble gas dissolved in the pore water of the rock core can be extracted accurately and efficiently. As a result, the residence time of groundwater can be evaluated more accurately. For example, when high-level radioactive waste is disposed in the ground, it is more accurate than in the past whether or not the ground is suitable as a disposal site. Can be judged. In addition, it is possible to more accurately grasp the life of a hot spring and the place where the hot spring exists. Moreover, even if there is only one rock core, it is possible to accurately extract the rare gas dissolved in the pore water of the rock core. Even if it is a place where it is difficult to mine a rock core, it is possible to accurately evaluate the residence time of the groundwater if only one rock core can be obtained therefrom. Furthermore, since it is not necessary to mine a plurality of rock cores from the ground, the working time can be shortened.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

本発明の希ガス抽出方法は、地中から採取した岩石コア2を容器3に密封した後に容器3内を真空ポンプ(図示省略)で真空引きすることによって岩石コア2中の間隙水から希ガスであるヘリウム(以下、Heと記述)を抽出するものであり、容器内の圧力変化を検出し、真空引きによって容器3内の圧力が段階的に変化していく過程でその変化が4段階目に到達したことを契機に真空引きを停止するものである。なお、本実施形態における岩石コアは、ボーリングによって地中から掘削された岩石を岩石整形装置(図示省略)を用いて容器3に封入可能なサイズで且つ一定の大きさに整形されたものを示す。   In the rare gas extraction method of the present invention, the rock core 2 collected from the ground is sealed in the container 3 and then the inside of the container 3 is evacuated by a vacuum pump (not shown) to remove the rare gas from the pore water in the rock core 2. Helium (hereinafter referred to as “He”) is extracted, and the pressure change in the container is detected and the change in the pressure in the container 3 is changed in stages by evacuation. The evacuation is stopped in response to having reached. The rock core in the present embodiment is a rock core excavated from the ground by boring and shaped into a fixed size that can be enclosed in the container 3 using a rock shaping device (not shown). .

図1に本発明の希ガス抽出方法を実施する希ガス抽出装置の一例を示す。希ガス抽出装置1は、岩石コア2の間隙水に溶存しているHeを抽出するものである。この装置1は、岩石コア2を密封する容器3と、この容器3内を真空引きする真空ポンプ(図示省略)と、容器3の上部に形成されている小孔(図示省略)に接続され、容器3と真空ポンプとを接続する真空引き用パイプ4と、この真空引き用パイプ4の途中に取り付けられ、開閉操作を行なうことによって容器3内の気密性を保持したり、その気密状態を解除して容器3内を開放したりするバルブ6と、容器3に取り付けられ、容器3内の圧力を検出する圧力計5とを備えている。岩石コア2を容器3内に密封して容器3内を真空引きする場合、先ず、岩石コア2を容器3の所定位置にセットする。そしてバルブ6を開放状態して真空ポンプによって真空引きを行なう。真空引き後はバルブ6を閉じ状態にする。これによって容器3は密封された状態となり、岩石コア2中の間隙水に溶存しているHeが容器3内に拡散され、Heが抽出可能となる。なお、容器3は気密状態が保持され且つ真空ポンプによる真空引きに耐え得るような構造になっていれば良く、具体的には特許文献1に開示されている真空容器のような構造になっていれば良い。また、本実施形態では容器3内の気密性を保持したり、その気密状態を解除したりするためにバルブ6を用いたが、真空引き用パイプ4を圧潰可能な素材で形成し、真空引き用パイプ4をクランプで強圧することによって容器3内の気密性を保持したり、その気密状態を解除したりするようにしても良い。   FIG. 1 shows an example of a rare gas extraction apparatus for carrying out the rare gas extraction method of the present invention. The rare gas extraction device 1 extracts He dissolved in the pore water of the rock core 2. This device 1 is connected to a container 3 for sealing the rock core 2, a vacuum pump (not shown) for evacuating the inside of the container 3, and a small hole (not shown) formed in the upper part of the container 3. A vacuuming pipe 4 that connects the container 3 and the vacuum pump, and is attached in the middle of the vacuuming pipe 4 to maintain the airtightness in the container 3 or to release the airtight state by performing an opening / closing operation. Then, a valve 6 that opens the inside of the container 3 and a pressure gauge 5 that is attached to the container 3 and detects the pressure in the container 3 are provided. When the rock core 2 is sealed in the container 3 and the container 3 is evacuated, the rock core 2 is first set at a predetermined position of the container 3. Then, the valve 6 is opened and evacuation is performed by a vacuum pump. After evacuation, the valve 6 is closed. As a result, the container 3 is hermetically sealed, and He dissolved in the pore water in the rock core 2 is diffused into the container 3 so that He can be extracted. The container 3 only needs to have a structure that is kept airtight and can withstand vacuuming by a vacuum pump. Specifically, the container 3 has a structure like the vacuum container disclosed in Patent Document 1. Just do it. Further, in this embodiment, the valve 6 is used to maintain the airtightness in the container 3 or to release the airtight state. However, the vacuuming pipe 4 is made of a material that can be crushed, and the vacuuming is performed. You may make it hold | maintain the airtightness in the container 3 by releasing the pipe 4 for a strong pressure with a clamp, or may cancel | release the airtight state.

本発明者等は、上記の装置1を用いて岩石コア2を密封した容器3内を真空引きしていく過程で、容器3内の圧力と、間隙水が真空ポンプによって気化し岩石コア2の外部に排気される量(以下、間隙水の蒸発量)と、間隙水中のHe濃度とを測定し、これらの相関関係を調べた。その結果、本発明者等は、岩石コア2を容器3に密封した後に容器3内を真空ポンプによって真空引きしていくと容器2内の圧力が4つの段階、つまり、真空引きによって容器2内の圧力が急激に降下する第1段階、一時的に圧力の下降が収まり圧力が一定になる第2段階、再度圧力が急降下する第3段階、圧力がこれ以上降下することなく圧力が一定になる第4段階の順に変化することを知り得た。また、真空引きによって間隙水の蒸発速度が2つの段階、つまり、急激に蒸発する第1段階、緩やかに蒸発する第2段階の順に変化することを知り得た。そして、容器3内の圧力が第3段階から第4段階に変化する時間と蒸発速度が第1段階から第2段階に変化する時間とが一致することを知見するに至った。さらに、容器3内の圧力が第4段階に入ると間隙水中のHeの濃度低下が顕著になることを知見するに至った。これらの知見は岩石コア2の種類を変えた場合にも同じように得ることができた。   In the process of evacuating the inside of the container 3 in which the rock core 2 is sealed using the above-described apparatus 1, the present inventors vaporize the pressure in the container 3 and the pore water by the vacuum pump and The amount exhausted to the outside (hereinafter, the amount of evaporation of pore water) and the He concentration in the pore water were measured, and their correlation was investigated. As a result, the present inventors have sealed the rock core 2 in the container 3 and then evacuated the container 3 with a vacuum pump, so that the pressure in the container 2 is divided into four stages, that is, in the container 2 by evacuation. The first stage in which the pressure drops sharply, the second stage in which the pressure drop temporarily stops and the pressure becomes constant, the third stage in which the pressure drops suddenly again, and the pressure becomes constant without further pressure drop I knew that it changed in the order of the 4th stage. In addition, it has been found that the evaporation rate of the pore water changes in the order of two stages, that is, the first stage of rapid evaporation and the second stage of moderate evaporation by evacuation. And it came to discover that the time for the pressure in the container 3 to change from the third stage to the fourth stage coincides with the time for the evaporation rate to change from the first stage to the second stage. Furthermore, when the pressure in the container 3 enters the fourth stage, the inventors have found that the decrease in the concentration of He in the pore water becomes remarkable. These findings were obtained in the same way when the type of the rock core 2 was changed.

上記の知見によれば、岩石コア2の表面や表面近傍の水であれば、岩石コア2の表面や表面近傍から直接蒸発して排気され、水の蒸発とともにHeは気相に移ると考えられるため、岩石コア2の表面や表面近傍における水とHeとの排気のされ方には大きな差は生じないと考えられる。このことから、容器3内の圧力の第1〜3段階の過程においては水の蒸発は岩石コア2の表面や表面近傍で起こるものが支配的であると考えられる。他方、容器3内の圧力が第4段階に入ると水の蒸発は岩石コア2の内部で起こるものが支配的であると考えられる。岩石コア2の内部において水が気化する場合、つまり岩石コア2の表面へと移動し排気される場合には、先ず岩石コア2の内部から表面まで移行するという過程を経る。このときHe分子は水分子に比べて小さいため、岩石の間隙という狭小な空間を通過する際、水分子よりも早く移動することが考えられる。このことから容器3内の圧力が第4段階に入ると希ガスの排気される速度が水の排気される速度よりも大きくなり、間隙水のHe濃度が顕著に減少すると考えられる。したがって、容器3内の圧力が第4段階に入ったことを確認すると同時に真空引きを停止することにより、岩石コア2周辺の空気が確実に排気されてから岩石コア2内部の希ガスが容器3内に拡散される。これによって、岩石コア2周辺の空気を十分に排気し、岩石コア2内部のHe濃度の損失を最小限に抑えることができる。このように岩石コア2から希ガスを抽出するにあたって最適な真空引き時間を合理的に決定することができるので、岩石コア2の間隙水に溶存しているHeを正確に且つ効率的に抽出することができる。   According to the above findings, if the water is near the surface of the rock core 2 or near the surface, the water is directly evaporated from the surface of the rock core 2 or near the surface and exhausted. For this reason, it is considered that there is no significant difference in how water and He are exhausted on the surface of the rock core 2 or in the vicinity of the surface. From this, in the process of the first to third stages of the pressure in the container 3, it is considered that the water evaporation is predominantly occurring on the surface of the rock core 2 or in the vicinity of the surface. On the other hand, when the pressure in the container 3 enters the fourth stage, it is considered that the evaporation of water is predominantly occurring inside the rock core 2. When water is vaporized inside the rock core 2, that is, when it moves to the surface of the rock core 2 and is exhausted, the process first moves from the inside of the rock core 2 to the surface. At this time, since the He molecule is smaller than the water molecule, it may be considered that the He molecule moves faster than the water molecule when passing through a narrow space called a rock gap. From this, it is considered that when the pressure in the container 3 enters the fourth stage, the speed of exhausting the rare gas becomes larger than the speed of exhausting water, and the He concentration of the pore water is significantly reduced. Therefore, after confirming that the pressure in the container 3 has entered the fourth stage, the vacuuming is stopped and the air around the rock core 2 is surely exhausted. Diffused in. Thereby, the air around the rock core 2 can be exhausted sufficiently, and the loss of the He concentration inside the rock core 2 can be minimized. As described above, the optimum evacuation time can be rationally determined for extracting the rare gas from the rock core 2, so that He dissolved in the pore water of the rock core 2 is accurately and efficiently extracted. be able to.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば上述した実施形態では岩石コア2から希ガスであるHeを抽出する例を挙げて説明したが、本発明の希ガス抽出方法は、He以外の希ガス、例えばNeなどの抽出する場合についても適用可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in the above-described embodiment, the example of extracting He, which is a rare gas, from the rock core 2 has been described. However, the rare gas extraction method of the present invention is also applicable to the case of extracting a rare gas other than He, such as Ne. Applicable.

図1に示す装置1を用いて互いに透水性の異なる4種類の岩石コアを対象にして、真空引き時間と、容器内の圧力と、間隙水の挙動と、岩石コアの間隙水中のHeの濃度との相関関係を明らかにするための試験を行なった。上記の4種類の岩石コアとして、北海道幌延地区の幌延泥岩のコアと、吉井砂岩のコアと、来待砂岩のコアと、和泉砂岩のコアとを用いた。これらの岩石コアについて、水やHeの岩石コアからの漏出に関与すると考えられる物性値である空隙率と透水係数を表1に示す。試験を短期間で行なうために全ての岩石コアを厚さ1cm直径5cmの円柱状に整形し、試験用の試料とした。サンプルとして採用したHCD−2孔のボーリングコアの岩種は珪質頁岩であり、深度約300mから泥水掘りされた。採取後のコアの乾燥・変質を防ぐために、採取地で密封してから実験室に移送した岩石コアを実験室内で開封し、試験に供した。なお、本実施例の試験で使用した真空ポンプは、Sato Vacuum Machine 社製SW20のロータリーポンプである。このロータリーポンプの排気量は20リットル/分、最高到達真空度は1.0×10−1Paである。また、容器3は、円筒椀状の厚さが5mm程度のステンレス製のケースと、円板状の厚さが5mm程度のステンレス製の基台とからなる。ケースは基台との間が気密になるように金属パッキン、ボルト、ナット、ばね座金などによって基台に取り付けられている。ケースの上部に形成されている小孔(図示省略)には真空引き用パイプ4が半田付け等によって接続されている。この真空引き用パイプ4は肉厚1mm程度のなまし銅管からなる。また、本実施例では真空引き後は鋼製のクランプで真空引き用パイプ4を圧潰することによって容器3を密封するようにした。 Using the apparatus 1 shown in FIG. 1 for four types of rock cores having different water permeability, the evacuation time, the pressure in the vessel, the behavior of pore water, and the concentration of He in the pore water of the rock core A test was conducted to clarify the correlation. As the above four types of rock cores, the Horonobe mudstone core in the Horonobe area, Yoshii sandstone core, Kimachi sandstone core, and Izumi sandstone core were used. Table 1 shows the porosity and hydraulic conductivity, which are physical properties that are considered to be involved in leakage of water and He from the rock core. In order to perform the test in a short period of time, all the rock cores were shaped into a cylindrical shape having a thickness of 1 cm and a diameter of 5 cm, and used as test samples. The rock type of the drilling core of the HCD-2 hole adopted as a sample is siliceous shale, which was dug from a depth of about 300 m. In order to prevent drying and alteration of the core after collection, the rock core which was sealed at the collection site and then transferred to the laboratory was opened in the laboratory and subjected to the test. The vacuum pump used in the test of this example is a SW20 rotary pump manufactured by Sato Vacuum Machine. The displacement of this rotary pump is 20 liters / minute, and the maximum ultimate vacuum is 1.0 × 10 −1 Pa. The container 3 includes a stainless steel case having a cylindrical bowl-like thickness of about 5 mm and a stainless steel base having a disk-like thickness of about 5 mm. The case is attached to the base with metal packing, bolts, nuts, spring washers, etc. so that the space between the case and the base is airtight. A vacuuming pipe 4 is connected to a small hole (not shown) formed in the upper part of the case by soldering or the like. The evacuation pipe 4 is made of an annealed copper pipe having a thickness of about 1 mm. Further, in this embodiment, after evacuation, the container 3 is sealed by crushing the evacuation pipe 4 with a steel clamp.

先ず、真空引き時間と容器3内の圧力と間隙水の蒸発量との相関関係を明らかにするために下記の手順で試験を行なった。   First, in order to clarify the correlation between the evacuation time, the pressure in the container 3 and the amount of evaporation of the pore water, a test was performed according to the following procedure.

整形した岩石コアの表面の汚れをふき取り、岩石コアを110℃で48時間乾燥させた。この時点で岩石コアの重量を測定し、乾燥時重量を評価した。乾燥させた岩石コアを約半日真空下におき、十分に脱気した。さらに真空引きをしたままの状態で岩石コアを水に浸漬して半日間静置し、岩石コアの間隙を十分に水で飽和させた。   The surface of the shaped rock core was wiped off, and the rock core was dried at 110 ° C. for 48 hours. At this point, the weight of the rock core was measured and the dry weight was evaluated. The dried rock core was placed under vacuum for about half a day and thoroughly degassed. Further, the rock core was immersed in water while being evacuated and allowed to stand for half a day to sufficiently saturate the gap between the rock cores with water.

次に岩石コアの間隙を水で飽和させた岩石コアを水から取り出し、キムタオル(登録商標)で表面の水を拭き取ったあと、この時点における岩石コアの重量を測定した。重量測定後、岩石コアを容器3に封入し、真空ポンプをつないで所定の時間真空引きした。このとき、所定の経過時間毎に容器3に取り付けられた圧力計5の値を記録した。   Next, the rock core in which the gap between the rock cores was saturated with water was taken out of the water, the surface water was wiped off with Kim Towel (registered trademark), and the weight of the rock core at this point was measured. After the weight measurement, the rock core was sealed in the container 3 and evacuated for a predetermined time by connecting a vacuum pump. At this time, the value of the pressure gauge 5 attached to the container 3 was recorded every predetermined elapsed time.

所定の時間経過後、真空ポンプを止めて岩石コアを取り出し、重量を測定した。乾燥時の岩石コアの重量と真空引き後の岩石コアの重量との差から、ある時間真空引きを行った場合の間隙水の蒸発量を評価した。   After a predetermined time elapsed, the vacuum pump was stopped, the rock core was taken out, and the weight was measured. From the difference between the weight of the rock core during drying and the weight of the rock core after evacuation, the amount of pore water evaporated when evacuated for a certain period of time was evaluated.

真空引き時間と、間隙水の蒸発量と、容器3内の圧力変動との関係を図2に示す。図2における横軸の「吸引時間」とは真空引き時間のことを示している。また、左縦軸は容器3内の圧力を示している。右縦軸の「蒸発した水の割合」とは水で飽和したときの間隙水の量を100%としたときの真空引きによる間隙水の蒸発量を示している。また、●のプロットは圧力、■のプロットは蒸発した水の割合を示す。図2から明らかなように、真空引き時間とともに間隙水の蒸発・排気は進行し、10分経過後には最も間隙水の蒸発量の少ない幌延地区の岩石コアでは約10%、最も間隙水の蒸発量の多い吉井砂岩コアでは約30%の間隙水が蒸発し排気されることが分かった。   FIG. 2 shows the relationship between the evacuation time, the amount of evaporation of the interstitial water, and the pressure fluctuation in the container 3. The “suction time” on the horizontal axis in FIG. 2 indicates the evacuation time. The left vertical axis indicates the pressure in the container 3. The “ratio of evaporated water” on the right vertical axis indicates the evaporation amount of pore water by evacuation when the amount of pore water when saturated with water is 100%. Also, the ● plot shows the pressure, and the ■ plot shows the percentage of evaporated water. As is clear from FIG. 2, the evaporation and exhaust of pore water proceeded with the evacuation time, and after 10 minutes, the rock core in the Horonobe area where the amount of pore water evaporation is the smallest is about 10%, and the pore water is evaporated most. It was found that about 30% of the pore water evaporated and exhausted in the Yoshii sandstone core with a large amount.

間隙水が真空引きによって蒸発し、岩石コアの外部へ排気される速度(以下、本実施例では「間隙水の蒸発速度」と記述する)は、全ての種類の岩石コアにおいて2段階に分類することができる。真空引きを開始してから約1〜3分間は図2における「蒸発した水の割合」対「吸引時間」の直線における傾きはそれ以降の傾きに比べて大きく、岩石コアから急激に水が気化し排気されていることが示唆される。一方、1〜3分以降の真空引きにおいては、最初に比べて「蒸発した水の割合」対「吸引時間」の直線の傾きは緩やかになり、間隙水の蒸発速度が緩やかになることが分かる。間隙水の蒸発速度と容器3内の圧力変動とを比較すると、圧力が下降して圧力の平衡値に達する時間と、間隙水の蒸発速度が変化する時間とはほぼ一致していることが分かる。   The speed at which pore water evaporates by evacuation and is exhausted to the outside of the rock core (hereinafter referred to as “pore water evaporation speed” in this embodiment) is classified into two stages in all types of rock cores. be able to. For about 1 to 3 minutes after the start of evacuation, the slope of the “ratio of evaporated water” vs. “suction time” in FIG. 2 is larger than the slope after that, and water suddenly evaporates from the rock core. It is suggested that the gas is exhausted. On the other hand, in the evacuation after 1 to 3 minutes, it can be seen that the slope of the straight line of “ratio of evaporated water” vs. “suction time” becomes gentler than the first, and the evaporation rate of pore water becomes gentler. . Comparing the evaporation rate of the pore water with the pressure fluctuation in the container 3, it can be seen that the time when the pressure drops and the pressure reaches the equilibrium value is substantially the same as the time when the evaporation rate of the pore water changes. .

さらに真空引き中の容器3内の圧力変動の経時変化についてより詳細に測定した代表的な例を図3に示す。さらに、岩石コアを入れない場合、および乾燥した岩石コアを入れた場合の圧力変動を合わせて図4に示す。図3から分かるように、岩石コアを封入して真空引きした場合の容器3の圧力変動には4つの段階α〜δがある。つまり、真空引きによって急激に容器内圧力が降下する第一段階(0〜15秒)α、一旦圧力の下降が収まり圧力が一定になる第二段階(15〜30秒)β、また圧力が急降下する第三段階(30秒〜2分)γ、圧力がこれ以上落ちなくなる第四段階(2分〜10分)δである。このような圧力の変動傾向は試験を行った全ての岩石コアにおいて観察された。他方、図4において容器3に何も入れない、あるいは乾燥した岩石コアを入れた場合の容器3内の圧力は、上述した4つの段階を経ることなく単調に減衰している。このことから、飽和He溶液を含む岩石コアを入れた場合の圧力変動における4つの段階は、岩石コア内の間隙水あるいは溶存ガスの影響によるものであると考えることができる。   Further, FIG. 3 shows a representative example in which the change over time of the pressure fluctuation in the container 3 during evacuation is measured in more detail. Furthermore, FIG. 4 shows the pressure fluctuation when the rock core is not inserted and when the dry rock core is inserted. As can be seen from FIG. 3, there are four stages α to δ in the pressure fluctuation of the container 3 when the rock core is sealed and evacuated. That is, the first stage (0 to 15 seconds) α in which the pressure in the container suddenly drops due to evacuation, the second stage (15 to 30 seconds) β in which the pressure drop once stops and the pressure becomes constant, and the pressure suddenly drops The third stage (30 seconds to 2 minutes) γ, and the fourth stage (2 minutes to 10 minutes) δ at which the pressure does not drop any more. Such pressure fluctuations were observed in all rock cores tested. On the other hand, when nothing is put in the container 3 in FIG. 4 or when a dry rock core is put, the pressure in the container 3 is monotonously attenuated without going through the above four steps. From this, it can be considered that the four stages in the pressure fluctuation when a rock core containing a saturated He solution is put in are due to the influence of pore water or dissolved gas in the rock core.

このような容器3内の圧力変動と間隙水の蒸発速度について以下その関連性を考える。圧力変動における第三段階γが終了する時間と間隙水の蒸発速度が変化する時間は、全ての岩石コアにおいてほぼ一致している。初期の比較的大きな間隙水の蒸発速度は岩石コアの性質に大きな依存性がないが、1〜3分以降の緩やかな蒸発速度は表2に示すように岩石の透水係数が大きいほど増加する傾向にある。このことから、1〜3分以降の緩やかな水の蒸発は岩石内部から水が気化、つまり水が岩石の中を移動して排気される過程を示しており、初期の比較的大きな速度での蒸発は岩石コアの表面から水が気化して排気される過程を示していると推察することができる。なお、表2は蒸発速度と透水係数の関係を示すものであり、ここでCpは透水係数(m/s)、D-1は初期の蒸発速度(%/s)、D-2は1〜3分以降の緩やかな蒸発速度(%/s)を示している。
The relationship between the pressure fluctuation in the container 3 and the evaporation rate of the pore water will be considered below. The time when the third stage γ in the pressure fluctuation is completed and the time when the evaporation rate of the pore water changes are almost the same in all rock cores. The initial relatively large pore water evaporation rate does not depend greatly on the properties of the rock core, but the slow evaporation rate after 1 to 3 minutes tends to increase as the rock permeability increases as shown in Table 2. It is in. From this, the slow evaporation of water after 1 to 3 minutes shows the process of water evaporation from the inside of the rock, that is, the water moves through the rock and is exhausted. It can be inferred that evaporation indicates a process in which water is vaporized and exhausted from the surface of the rock core. Table 2 shows the relationship between the evaporation rate and the permeability coefficient, where Cp is the permeability coefficient (m / s), D-1 is the initial evaporation rate (% / s), and D-2 is 1 to 1. The slow evaporation rate (% / s) after 3 minutes is shown.

このように、間隙水の蒸発速度と圧力変動をあわせて考えると、岩石コアの真空引き中に容器3内では下記のような事象が起きていると推測される。   Thus, when considering the evaporation rate of pore water and pressure fluctuations together, it is presumed that the following events have occurred in the container 3 during evacuation of the rock core.

a)第一段階(0〜15秒):真空引きをスタートし、容器や真空引きするためのホース内部の空気をポンプが排気し急激に系の真空度が上がる。
b)第二段階(15〜30秒):岩石コアの表面に付着した水分およびポンプによる真空引きの影響が及ぶ範囲の水(岩石コアの表面に対してオープンなポアなど)が気化し、発生する水蒸気の量とポンプ排気量とのバランスがとれるため、10〜15秒程度圧力が安定する。
c)第三段階(30秒〜3分):岩石コアの表面に付着した水分およびポンプによる真空引きの影響が及ぶ範囲の水が真空引きによって失われ、気化によって発生する水蒸気の量より排気量が大きくなり、圧力は減少する。
d)第四段階(3分〜10分):容器3内の圧力は、何も入れない、あるいは乾燥した岩石コアを入れたときに到達する最小圧力にまで到達する。これは、岩石コアからの水蒸気の発生量がごくわずかとなり、乾燥した岩石コアを入れた場合とほとんど同じ状態になるためであると考えられる。また、岩石コア内部の間隙水が岩石コアの表面に移動する過程および岩石コア内部への熱輸送が水の気化つまり排気の律速になり、間隙水の蒸発速度が見かけ上遅くなるものと考えられる。
a) First stage (0 to 15 seconds): Starts evacuation, the pump exhausts the air inside the container and the hose for evacuation, and the degree of vacuum of the system increases rapidly.
b) Second stage (15 to 30 seconds): Moisture adhering to the surface of the rock core and water in a range affected by vacuuming by the pump (such as pores open to the surface of the rock core) are vaporized and generated. Since the amount of water vapor to be pumped and the pump exhaust amount can be balanced, the pressure is stabilized for about 10 to 15 seconds.
c) Third stage (30 seconds to 3 minutes): Moisture adhering to the surface of the rock core and water in the range affected by pumping are lost by vacuuming, and the displacement is larger than the amount of water vapor generated by vaporization. Increases and the pressure decreases.
d) Fourth stage (3-10 minutes): The pressure in the vessel 3 reaches the minimum pressure reached when nothing is put in or when a dry rock core is put in. This is thought to be because the amount of water vapor generated from the rock core is very small, almost the same as when a dry rock core is added. In addition, it is thought that the process of the pore water inside the rock core moving to the surface of the rock core and the heat transport to the inside of the rock core become the rate of water vaporization, that is, the rate of exhaust, and the evaporation rate of the pore water appears to be slow. .

上記の結果から分かるように、真空引きを開始した時点から間隙水は真空引きによって排気されはじめ、真空引き時間の増加に伴って排気される間隙水の量は確実に増加する。このため、岩石コア中の間隙水やそこに溶解している希ガスを散逸させないという観点では真空引き時間は短いほど良いことがわかる。他方、大気による汚染を考えると岩石コア周辺の空気の影響が確実に排除されるまで、つまり圧力がなるべく低くなるまで吸引を続けるのが良い。   As can be seen from the above results, the pore water begins to be evacuated by the evacuation from the start of the evacuation, and the amount of the interstitial water to be evacuated increases as the evacuation time increases. For this reason, it can be seen that the shorter the evacuation time, the better, in order not to dissipate the pore water in the rock core and the rare gas dissolved therein. On the other hand, considering air pollution, it is better to continue the suction until the influence of the air around the rock core is surely eliminated, that is, until the pressure is as low as possible.

このように、希ガスの散逸と大気による汚染の双方を最小限に抑えることを考えるため、次の試験ではHe飽和溶液への浸漬によって間隙水をHe飽和溶液とした幌延地区の岩石コアを用いてその岩石コアの間隙水のHe濃度を測定し、その結果と上記の試験で得られた結果とを合わせて最適な真空引き時間の基準を示すことを試みた。   In this way, in order to minimize both rare gas dissipation and air pollution, the next test uses a rock core in the Horonobe area where the pore water is made saturated with He by immersion in He saturated solution. Then, the He concentration of pore water in the rock core was measured, and the result and the result obtained in the above test were combined to try to show the optimum evacuation time standard.

自然に存在する岩石において、間隙水中のHe濃度が既知でありかつ濃度が均一な試料を手に入れることは困難である。そこで本試験においては、He飽和水に幌延泥岩コアを浸漬することで、人工的に間隙水がHe飽和水であるような岩石コアを作製してこれを標準試料として検証のための試験に用いることにした。   In naturally occurring rocks, it is difficult to obtain a sample having a known He concentration in pore water and a uniform concentration. Therefore, in this test, a rock core whose pore water is He-saturated water is artificially prepared by immersing the Horonobe mudstone core in He-saturated water, and this is used as a standard sample for the verification test. It was to be.

整形した岩石コアは、表面の汚れをふき取って一旦110℃で48時間乾燥させた。この後岩石を約半日真空下におき、十分に脱気をした。さらに真空引きをしたままの状態で岩石コアを水に漬けて半日間静置し、十分に水を浸透させた。このあと、水で飽和した岩石コアをHe飽和溶液の中に入れ、10日以上静置した。He飽和溶液はHeガスを水にバブリングし、常に1気圧のHeが水と接するようにして作製した。なお、既行の研究(参考文献;喜多 治之, 岩井 孝幸, 中嶋 悟. (1989) 花崗岩および凝灰岩間隙水中のイオンの拡散係数測定. 応用地質30, 26-32)(参考文献;長谷川 琢磨, 大山 隆弘, 中田 弘太郎. (2005) 平成15年度地層処分技術調査等(地下水年代測定技術調査)報告書)によって岩石コアをHe飽和溶液に1週間浸漬することでHeは十分にコアの内部に拡散し平衡に達することが分かっている。よって、10日以上He飽和水に浸漬した岩石コア内部の間隙水は全てHe飽和水となっていると考えて良い。   The shaped rock core was wiped off the surface dirt and once dried at 110 ° C. for 48 hours. After this, the rocks were placed in a vacuum for about half a day and thoroughly deaerated. Furthermore, the rock core was immersed in water in a vacuum state and allowed to stand for half a day, and the water was sufficiently infiltrated. After that, the rock core saturated with water was put into a He saturated solution and allowed to stand for 10 days or more. The He saturated solution was prepared by bubbling He gas into water so that 1 atm He was always in contact with water. Previous work (reference: Haruyuki Kita, Takayuki Iwai, Satoru Nakajima. (1989) Ion diffusion coefficient measurement in granite and tuff pore water. Applied geology 30, 26-32) (Reference: Takuma Hasegawa, Oyama) Takahiro, Nakata Kotaro. (2005) 2003 Geological Disposal Technology Survey (Report on Groundwater Dating Technology Survey)) When a rock core is immersed in a saturated He solution for one week, He is sufficiently diffused inside the core. It is known that equilibrium is reached. Therefore, it can be considered that all the pore water inside the rock core immersed in He saturated water for 10 days or more is He saturated water.

He飽和水に浸漬した岩石コアについて間隙水のHe濃度を測定するために下記の手順で試験を行なった。   In order to measure the He concentration of pore water with respect to the rock core immersed in He saturated water, the test was performed in the following procedure.

He飽和水に浸漬した試料を取り出し、表面に付着した水をふき取った。間隙水を含んだ岩石コアの重さを定量し、容器3内に静置した。   A sample immersed in He saturated water was taken out, and water adhering to the surface was wiped off. The weight of the rock core containing pore water was quantified and placed in the container 3.

次に岩石コアを入れた容器3を密封し、真空ポンプで容器を所定の時間真空引きした。このとき必要に応じて圧力の変化を時間ごとに記録した。所定の時間経過後、容器3の出口を鉄製のクランプで閉じて密封した。   Next, the container 3 containing the rock core was sealed, and the container was evacuated with a vacuum pump for a predetermined time. At this time, a change in pressure was recorded for each time as necessary. After a predetermined time, the outlet of the container 3 was closed and sealed with an iron clamp.

次に容器3を約2週間静置し、岩石コア内のHeを容器内の空間に十分に拡散させた。2週間が経過して拡散が平衡に達した試料について、希ガス質量分析器の測定に供した。   Next, the container 3 was allowed to stand for about 2 weeks, and the He in the rock core was sufficiently diffused into the space in the container. A sample in which diffusion reached equilibrium after 2 weeks was subjected to measurement by a rare gas mass spectrometer.

測定後、岩石コアを取り出し、乾燥後の重量を測定して間隙水量を算出した。ここで算出した間隙水量と希ガス質量分析器で評価した希ガスの量をあわせて、間隙水中の希ガス濃度を評価した。   After the measurement, the rock core was taken out and the weight after drying was measured to calculate the amount of pore water. The amount of pore water calculated here and the amount of the rare gas evaluated by the rare gas mass spectrometer were combined to evaluate the concentration of the rare gas in the pore water.

岩石コアのサンプルを採取すると同時に岩石コアを浸漬したHe飽和水を銅製のなまし管に採取し、He飽和水に含まれるHe濃度を測定した。He濃度の測定はVG5400とその前処理ラインを合わせた地下水年代測定設備を用いて行った。なお、上記の「VG5400」とは、GV社から販売されている希ガスの質量分析装置の名称である。この質量分析装置は装置内に導入されたガスに含まれる希ガスの重さと存在量を測定するものである。また、上記の「前処理ライン」とは、ガスをVG5400に導入する際の、地下水やコアなどのサンプルからガスだけを取り出し、次いで、取り出されたガスのうち、測定するガスだけを抽出する、という二つの作業を行なうラインのことを示す。また、上記の「地下水年代測定設備」とは「VG5400」と「前処理ライン」とを合わせた総称である。   A sample of the rock core was collected, and at the same time, the He saturated water in which the rock core was immersed was collected in a copper annealing tube, and the concentration of He contained in the He saturated water was measured. The He concentration was measured using a groundwater dating facility that combines VG5400 and its pretreatment line. The above-mentioned “VG5400” is the name of a rare gas mass spectrometer sold by GV. This mass spectrometer measures the weight and abundance of a rare gas contained in a gas introduced into the apparatus. In addition, the above-mentioned “pretreatment line” refers to extracting only gas from a sample such as groundwater or core when introducing gas into the VG 5400, and then extracting only the gas to be measured from the extracted gas. It shows a line that performs two tasks. The above-mentioned “groundwater dating equipment” is a collective term that combines “VG5400” and “pretreatment line”.

吸引時間とコア中の間隙水中のHe濃度について、実験的に定量した結果を表3にまとめる。表3において、CHe‐pは評価された間隙水中のHe濃度(ccSTP/gw)、RsはHe飽和水に対する間隙水He濃度の割合(%)を示している。 Table 3 summarizes the experimentally quantified results of the suction time and the He concentration in the pore water in the core. In Table 3, C He-p represents the evaluated He concentration (ccSTP / gw) in the pore water, and Rs represents the ratio (%) of the pore water He concentration to the He saturated water.

銅管で採取したHe飽和水の値と容器3に封入する方法で評価された岩石コアの間隙水中のHe濃度とを比較すると、吸引時間1〜3分では飽和水に対して99%程度の極めて飽和水に近い値を示すことが分かる。また、5分以内の真空引き時間であれば、真空引きによって生じるHe濃度の低下は3%程度に抑えられる。岩石コアはHeの拡散が平衡に達するまで十分にHe飽和溶液に浸漬してあるので、吸引前の間隙水中のHe濃度は銅管で採取したHeの飽和濃度と等しいと考えて良い。よって、間隙水と飽和水の濃度が等しいというこの結果は、採取した岩石コアを容器3へ封入してHeなどの希ガスを岩石コアの外部へと拡散させて抽出した後、容器3内に拡散した希ガスを評価するという手法によってある程度正確に岩石コアの間隙水中の希ガス特性を評価可能であるということを示唆している。   Comparing the value of He saturated water collected with a copper tube and the He concentration in the pore water of the rock core evaluated by the method of sealing in the container 3, about 99% of the saturated water in the suction time of 1 to 3 minutes It can be seen that the value is very close to saturated water. If the evacuation time is within 5 minutes, the decrease in He concentration caused by evacuation can be suppressed to about 3%. Since the rock core is sufficiently immersed in the He saturated solution until the He diffusion reaches equilibrium, it can be considered that the He concentration in the pore water before suction is equal to the He saturated concentration collected by the copper tube. Therefore, this result that the concentration of pore water and saturated water is equal is that the collected rock core is sealed in the container 3 and extracted by diffusing a rare gas such as He to the outside of the rock core. This suggests that the noble gas characteristics in the pore water of the rock core can be evaluated to some extent accurately by the method of evaluating the diffused noble gas.

表3に基づいて間隙水と飽和水とのHe濃度の差の吸引時間による変化を図5に示す。図5の縦軸は評価された間隙水と飽和水とのHe濃度の差を飽和水の濃度で標準化した結果を示している。図5から明らかなように、幌延泥岩においては吸引開始から3分経過後までは間隙水のHe濃度はほとんどHe飽和濃度と変わりがないが、3分後から徐々に差が大きくなり、5〜10分でその差は顕著に増加する。   Based on Table 3, FIG. 5 shows a change in He concentration difference between pore water and saturated water depending on the suction time. The vertical axis of FIG. 5 shows the result of standardizing the difference in the He concentration between the pore water and the saturated water evaluated with the concentration of the saturated water. As is apparent from FIG. 5, in Horonobe mudstone, the He concentration of pore water is almost the same as the He saturation concentration until 3 minutes after the start of suction, but the difference gradually increases after 3 minutes. The difference increases significantly at 10 minutes.

この試験では、容器3に封入する前の岩石コアの重量と測定後の岩石コアの重量、および乾燥させた後の岩石コアの重量を測定し、乾燥前後の重量差から間隙水量を決定している。このため、真空引きに対して水とHeが全く同じように排気されれば、実際にはHeが岩石コア中から散逸しても結果的に間隙水中He濃度はほとんど変化しない。吸引によって岩石コアから蒸発した間隙水、および間隙水中Heの割合を表4にまとめる。表4における真空引きによって蒸発した間隙水中Heの割合は数式1によって計算した。つまり、真空引きによって蒸発した水と同時に溶存したHeが全て失われたものとした。ここで、数式1のCは飽和溶液中のHe濃度(ccSTP/gw)、Cはある時間における間隙水中のHe濃度(ccSTP/g water)、Wはある時間における蒸発した間隙水の真空引き前の間隙水量に対する割合を示す。
<数1>
(真空引きによって失われた間隙水中Heの割合)=(C−C・W)/C
In this test, the weight of the rock core before sealing in the container 3, the weight of the rock core after measurement, and the weight of the rock core after drying are measured, and the amount of pore water is determined from the weight difference before and after drying. Yes. For this reason, if water and He are exhausted in exactly the same manner for evacuation, the He concentration in the pore water hardly changes as a result even if He is actually dissipated from the rock core. Table 4 summarizes the pore water evaporated from the rock core by suction and the ratio of He in the pore water. The percentage of interstitial water He evaporated by evacuation in Table 4 was calculated according to Equation 1. That is, it was assumed that all of the dissolved He at the same time as the water evaporated by evacuation was lost. Here, the C s of Equation 1 the He concentration saturated solution (ccSTP / gw), C t He concentration (ccSTP / g water) of pore water at a certain time, W t of pore water evaporated at a time The ratio to the amount of pore water before evacuation is shown.
<Equation 1>
(Percentage of Helium in pore water lost by evacuation) = (C s −C t · W t ) / C s

図6は表4における真空引きによって蒸発した間隙水量と真空引きで排気されたHe量の関係を示す。図6の横軸は、表4における真空引きによって蒸発した間隙水量の真空引き前の間隙水量に対する割合(%)を示し、縦軸は真空引きによって蒸発した間隙水中He量の吸引前のHe量に対する割合(%)を示す。なお、間隙水量、He量はともに初期にコア中に存在した量で標準化している。また、図6における直線は水とHeの挙動が一致した場合の結果を表したものである。   FIG. 6 shows the relationship between the amount of pore water evaporated by evacuation and the amount of He exhausted by evacuation in Table 4. The horizontal axis of FIG. 6 shows the ratio (%) of the amount of pore water evaporated by evacuation to the amount of pore water before evacuation in Table 4, and the vertical axis shows the amount of He before suction of the amount of He in the pore water evaporated by evacuation. The ratio (%) is shown. Note that the pore water amount and the He amount are both standardized at the initial amount in the core. Moreover, the straight line in FIG. 6 represents the result when the behaviors of water and He coincide.

表4および図6によれば、真空引き時間が3分以上ではプロットした結果は上記の直線からのずれ始め、5〜10分の吸引時間で水よりも速く容器3からHeが排気されていることを示している。このことから、図5において、濃度が3分以降で減少し始めるのは幌延泥岩コアにおいては水とHeの排気され方が3分以降で顕著に乖離するためであると考えられる。   According to Table 4 and FIG. 6, when the evacuation time is 3 minutes or more, the plotted result starts to deviate from the above straight line, and He is exhausted from the container 3 faster than water in the suction time of 5 to 10 minutes. It is shown that. From this, it can be considered that the concentration starts to decrease after 3 minutes in FIG. 5 because in the Horonobu mudstone core, the way in which water and He are exhausted significantly deviates after 3 minutes.

次に、間隙水の蒸発速度とHeの排気速度の差が3分以降に顕著になる原因について上述の間隙水の蒸発速度と容器内圧力の真空引き時間による変化とをあわせて考察する。   Next, the reason why the difference between the evaporating speed of the interstitial water and the exhaust speed of He becomes conspicuous after 3 minutes will be considered together with the above-described evaporating speed of the interstitial water and the change due to the evacuation time of the pressure in the container.

水の蒸発速度と容器3内の圧力の真空引き時間による変化との関係から、吸引開始から3分程度以前(幌延泥岩において)、つまり第三段階までにおいては水の蒸発は岩石コアの表面や表面近傍で起こるものが支配的であると考えられる。図7(a)(b)に示すように水とHeの蒸発のフロント面7が岩石コアの表面あるいはその近傍であれば、即ち岩石コア表面に付着している水あるいは岩石コア表面の近傍例えば岩石の掘削・成型で岩石を切断したときにその切断表面に対してオープンになっているポア、所謂ダメージゾーン・オープンポアに付着している水であれば、その部分から直接蒸発して排気されると考えられ、また、岩石コアの表面あるいはその近傍は水が圧倒的に多い中に僅かにHeが溶存しているという状態であることから水の蒸発とともにHeは気相に移ると考えられるため、Heとの排気され方に大きな差は生じにくい。なお、図7(a)(b)において、矢印Aは岩石コア表面からの水の蒸発方向を示し、矢印Bはダメージゾーン・オープンポアからの水の蒸発方向を示す。また、図7(c)において、矢印Cは岩石コア内部の水の移動方向を示し、矢印Dは岩石コア内部のHeの移動方向を示す。   From the relationship between the evaporation rate of water and the change in the pressure in the vessel 3 due to the evacuation time, about 3 minutes before the start of suction (in Horonobe mudstone), that is, until the third stage, the water evaporation occurs on the surface of the rock core. What happens near the surface is considered dominant. As shown in FIGS. 7 (a) and 7 (b), if the front surface 7 of the evaporation of water and He is at or near the surface of the rock core, that is, the water adhering to the surface of the rock core or the vicinity of the surface of the rock core. If the water is attached to the so-called damage zone or open pore when the rock is cut by rock excavation or molding, it will be directly evaporated and exhausted. In addition, the surface of the rock core or the vicinity thereof is in a state in which a slight amount of He is dissolved in an overwhelmingly large amount of water, so that it is considered that He moves into the gas phase as the water evaporates. For this reason, it is difficult to cause a large difference in the way the air is exhausted from He. 7A and 7B, arrow A indicates the evaporation direction of water from the rock core surface, and arrow B indicates the evaporation direction of water from the damage zone / open pore. Moreover, in FIG.7 (c), the arrow C shows the movement direction of the water inside a rock core, and the arrow D shows the movement direction of He inside a rock core.

図7(c)に示すように、水とHeの蒸発のフロント面7が岩石コア内部に移った場合つまり水とHeがともに岩石コアの内部で蒸発し、岩石コア表面へと移動し排気される場合、He分子は水分子に比べて小さいため、岩石の間隙という狭小な空間を通過する際、より速く移動すると考えられる。実際にHeが空気中を拡散するときの拡散係数と水蒸気が空気中を拡散する拡散係数とを比較すると、He拡散係数は水分子の拡散係数の3倍もの大きさである(参考文献;大江 修造. (2002) 物性推算法第10章「2成分系における拡散係数の推算」, データブック出版社, 291P)。また、気体で岩石コアを透過する際にHeは希ガスであり岩石コアとほとんど相互作用しないと考えられる一方、水蒸気は岩石コアとの固気界面で電気的・化学的相互作用が生じる可能性がある。これらのことから気体のHeは水蒸気に比べて速く岩石コア中を通過することができると考えられる。このため、水およびHeの気化が支配的に起こる箇所が岩石コアの表面から内部へと移る3分以降にはHe濃度は見かけ上減少し始め、真空引き時間の経過とともに水分とHeが岩石コアのさらに内部から移動するようになる。これによって、岩石コアの外部へとHeの排気される速度は水が排気される速度よりもさらに大きくなり、間隙水のHe濃度は見かけ上さらに大きく減少する。因みに、水やHeが蒸発するためには水やHeの蒸発が起きている気体と液体との界面に岩石コアの表面やその周囲から熱エネルギーが供給されるが、この供給速度とポンプの吸引能力は共に、岩石コアから水やHeが蒸発する際の蒸発速度を決定する要因となる。   As shown in FIG. 7C, when the front surface 7 of water and He evaporates moves into the rock core, that is, both water and He evaporate inside the rock core, move to the rock core surface, and are exhausted. In this case, since the He molecule is smaller than the water molecule, it is considered that the He molecule moves faster when passing through a narrow space called a rock gap. When the diffusion coefficient when He diffuses in the air is actually compared with the diffusion coefficient by which water vapor diffuses in the air, the He diffusion coefficient is three times as large as the diffusion coefficient of water molecules (Reference: Oe) Shuzo. (2002) Chapter 10 “Estimation of diffusion coefficient in two-component system”, Data Book Publisher, 291P). In addition, when gas passes through a rock core, He is a rare gas and hardly interacts with the rock core, while water vapor may cause electrical and chemical interactions at the solid-gas interface with the rock core. There is. From these facts, it is considered that gaseous He can pass through the rock core faster than water vapor. For this reason, the He concentration begins to decrease apparently after 3 minutes when the location where the vaporization of water and He occurs predominantly from the surface of the rock core to the inside, and the moisture and He are mixed with the rock core as the vacuuming time elapses. To move from inside further. As a result, the speed at which the He is exhausted to the outside of the rock core is further greater than the speed at which the water is exhausted, and the He concentration in the pore water is apparently further reduced. Incidentally, in order for water and He to evaporate, thermal energy is supplied from the surface of the rock core and its surroundings to the interface between the gas and liquid where water and He are evaporating. Both capacities are factors that determine the evaporation rate when water or He evaporates from the rock core.

幌延泥岩の試料においては、表3のRsの値から、吸引が3分以内であればHe濃度の減少は2%以内、5分以内であれば4%以内であり、5分以内の真空引きであれば希ガスの評価に十分に耐え得ると考えられる。   For the Horonobe mudstone sample, from the Rs values in Table 3, if the suction is within 3 minutes, the decrease in He concentration is within 2%, within 5 minutes, within 4%, and within 5 minutes under vacuum. If so, it can be considered that it can sufficiently withstand the evaluation of noble gases.

なお、この試験では容器3内に残存する大気による汚染の影響を考慮するため、Heと同時にネオン(以下、Neと記述)を測定した。今回の試験に用いた岩石コアには平均して9.5g程度の間隙水が含まれるので、岩石コア中に存在するHeの量は標準状態において8.27×10−2(ccSTP)である。他方、大気中には体積比で18.2(ppm)のNeが含まれ、容器3の容積が196.2(ccSTP)であることから吸引前の容器3には3.57×10−3(cc)のNeが含まれていることが分かった。このため、ポンプによる排気が十分でなく、空気が残留していた場合にはNeを検出できる可能性がある。しかし、本試験において1分以上の吸引を行った岩石コアにおいては、測定装置が示すNeの出力はすべてバックグランド値以下であった。このことから、今回試験を行った条件下においては、1分以上の吸引で十分に大気の影響を除去できたと考えられる。 In this test, neon (hereinafter referred to as Ne) was measured at the same time as He in order to consider the influence of contamination by the air remaining in the container 3. Since the rock core used in this test contains about 9.5 g of pore water on average, the amount of He present in the rock core is 8.27 × 10 −2 (ccSTP) in the standard state. . On the other hand, the atmosphere contains Ne of 18.2 (ppm) in volume ratio, and the volume of the container 3 is 196.2 (ccSTP), so that the container 3 before suction has 3.57 × 10 −3. It was found that (cc) Ne was contained. For this reason, there is a possibility that Ne can be detected when exhaust by the pump is insufficient and air remains. However, in the rock core that was sucked for 1 minute or more in this test, the output of Ne indicated by the measuring device was all below the background value. From this, it is considered that the influence of the atmosphere could be sufficiently removed by suction for 1 minute or longer under the conditions under which the test was conducted.

以上の試験によれば、容器3内に残存する大気の影響を除外するために容器3を吸引する時間は1〜5分であることが分かった。実際の現場においては岩石の種類やコアの大きさが異なるため、圧力によって決定し、圧力が「第四段階」に入った直後に真空引きを停止すれば良いことが分かった。このように圧力をモニターして第四段階を判断することにより、未知試料の採取でも現場において最適な真空引き時間を決定することができる。また、本実施例ではHeを測定の対象の希ガスとしたが、本発明の希ガス抽出方法を用いることにより他の希ガスについての最適な真空引き時間も決定することができる。   According to the above test, it was found that the time for sucking the container 3 in order to exclude the influence of the air remaining in the container 3 was 1 to 5 minutes. Since the type of rock and the size of the core are different in the actual field, it was determined that it was determined by the pressure, and the vacuuming should be stopped immediately after the pressure entered the “fourth stage”. By monitoring the pressure in this way and judging the fourth stage, the optimum evacuation time can be determined in the field even when an unknown sample is collected. In this embodiment, He is used as a rare gas to be measured. However, by using the rare gas extraction method of the present invention, an optimum evacuation time for other rare gases can be determined.

次に、上記の試験で確立した希ガス抽出方法を北海道幌延地区で掘削したボーリング孔がHCD−2孔の岩石コアに適用し、He(Heの濃度、He/Heの比)の深度分布特性を明らかするための試験を行なった。 Next, boreholes were drilled a rare gas extraction method established in Hokkaido Horonobe area in the test described above was applied to rock cores HCD-2 holes, He of (4 the He concentration, a ratio of 3 He / 4 He) A test was conducted to clarify the depth distribution characteristics.

この試験では上記の試験で確立した希ガス抽出方法を1カ所のボーリングサイトに対して適用し、下記のような手順を経て希ガスの特性を評価した。   In this test, the rare gas extraction method established in the above test was applied to one boring site, and the characteristics of the rare gas were evaluated through the following procedure.

ボーリングによって岩石コアが引き上げられたあと、その岩石コアを観察し、なるべく亀裂の少ない健全部を選んで約9cmにカットした。このとき引き上げられた岩石コアのうち、掘削深度の深い岩石コア健全部を選び、極力掘削水に曝された時間の短い岩石コアを選ぶようにした。   After the rock core was pulled up by boring, the rock core was observed, and a healthy part with as few cracks as possible was selected and cut to about 9 cm. Among the rock cores raised at this time, a rock core with a deep excavation depth was selected, and a rock core with a short exposure time was selected as much as possible.

カットした岩石コアの表面の掘削水・泥をキムタオルで十分に除去したあと、容器3に入れ、容器を密封して真空ポンプにつないだ。   After sufficiently removing the drilling water and mud on the surface of the cut rock core with a Kim towel, it was put in the container 3, and the container was sealed and connected to a vacuum pump.

長さ9cmの岩石コアにおいては、約2分で真空が「第四段階」に達することが分かった。このため、2個の岩石コアをそれぞれ3及び4分間吸引した後、容器3に取り付けられた真空引き用パイプ4をクランプで閉じた。   It was found that the vacuum reached the “fourth stage” in about 2 minutes in a 9 cm long rock core. For this reason, the two rock cores were sucked for 3 and 4 minutes, respectively, and then the vacuuming pipe 4 attached to the container 3 was closed with a clamp.

岩石コア封入後2ヶ月以上が経過した試料について、容器3内に抽出された希ガスの特性を評価した。   The characteristics of the noble gas extracted into the container 3 were evaluated for samples that had passed two months or more after the rock core was enclosed.

今回測定を行った希ガスの特性はHeの絶対量(He)、Heの同位体比(He/He)、Neの絶対量である。ここでNeは空気中に体積比で18.2ppm含まれており、地下中ではほとんど発生しない。このためNeの絶対量は、希ガス抽出の過程における大気による汚染の有無や容器の健全性の指標となる値である。このため、Neの絶対量が1×10−6(ccSTP/gw)を超えるような試料については何らかの原因で空気の汚染があったものと判断し、評価から除外した。また、本試験においては深度550mにおいては既行の研究(参考文献;宮川 公雄, 木方 建造, 金内 昌直.(2004)コントロールボーリング用透水試験・採水複合試験ツールの開発(その2)-幌延地点における適用について-. 日本応用地質学会平成16年度発表会予稿集,77-80)によって開発された手法に基づいて地下水サンプルを取得することができた。このため、地下水の状態で試料を採取した場合の評価結果と岩石コアの状態で試料を採取した場合の評価結果とを比較し、原位置試験においても本試験の適用性を検討した。 The characteristics of the rare gas measured this time are the absolute amount of He ( 4 He), the isotope ratio of He ( 3 He / 4 He), and the absolute amount of Ne. Here, Ne is contained in the air at a volume ratio of 18.2 ppm, and hardly occurs in the underground. For this reason, the absolute amount of Ne is a value that serves as an index of the presence or absence of air pollution and the integrity of the container in the process of rare gas extraction. For this reason, samples whose absolute amount of Ne exceeded 1 × 10 −6 (ccSTP / gw) were judged to have been contaminated with air for some reason and were excluded from the evaluation. In addition, in this test, existing research at a depth of 550 m (reference: Miyagawa, Kimio, Kikata, Kanauchi, Masanao. (2004) Development of a permeability test and sampling test tool for control boring (Part 2)- Application at Horonobe site-Groundwater samples were obtained based on the method developed by the Japan Society of Applied Geology 2004 Preliminary Proceedings, 77-80). Therefore, the applicability of this test was also examined in the in-situ test by comparing the evaluation result when the sample was collected in the state of groundwater and the evaluation result when the sample was collected in the state of the rock core.

図8はHCD−2孔における評価結果を示すものであり、■のプロットはコアサンプルによる評価値を示し、●のプロットは水サンプルによる評価値を示し、▲のプロットはコアサンプル(フェルールに異常)による評価値を示す。また、図8(a)中の直線は大気平衡濃度を示し、図8(b)中の上下の直線のうち、上の直線は大気平衡値、下の直線はU、Thのα崩壊起源を示す。図8(a)から、大気平衡値のHe濃度が約5.0×10−8(ccSTP/gw)であるのに対し、今回評価されたコア間隙水中のHe濃度は2.0×10−6〜1.0×10−5(ccSTP/gw)の範囲にあり、大気平衡値の40〜200倍のHeを含んでいることが分かる。このため、これらの地下水に大気由来のHeだけでなく、地中で発生したHeが蓄積していることは明らかである。また、Heの濃度は深度方向に向かって傾向的に変化をする様子はなく、ほぼ一定、あるいは深度方向に対して微増とみなすことができる。他方、採取したコアから圧縮抽水し、抽水した水の一般水質分析の結果から、HCD−2孔においては地下水の動きは上からの浸透が支配的であることが示唆されている(参考文献;長谷川 琢磨, 大山 隆弘, 中田 弘太郎. (2005) 平成15年度地層処分技術調査等(地下水年代測定技術調査)報告書)。よってHeの濃度分布は、少なくとも300〜500m程度の深度帯においては、地下水はほとんど動いていない、あるいは深度方向に対して非常に緩やかに移動していることを示唆している。 FIG. 8 shows the evaluation results for the HCD-2 hole. The plot of ■ shows the evaluation value by the core sample, the plot of ● shows the evaluation value by the water sample, and the plot of ▲ shows the core sample (abnormality in the ferrule) ) Shows the evaluation value. The straight line in FIG. 8 (a) shows the atmospheric equilibrium concentration. Of the upper and lower straight lines in FIG. 8 (b), the upper straight line is the atmospheric equilibrium value, and the lower straight line is the origin of α decay of U and Th. Show. From FIG. 8A, the He concentration in the atmospheric equilibrium value is about 5.0 × 10 −8 (ccSTP / gw), whereas the He concentration in the core pore water evaluated this time is 2.0 × 10 It can be seen that it is in the range of 6 to 1.0 × 10 −5 (ccSTP / gw) and contains 40 to 200 times He of the atmospheric equilibrium value. For this reason, it is clear that not only He derived from the atmosphere but also He generated in the ground accumulates in these groundwaters. Further, the He concentration does not tend to change in the depth direction, and can be regarded as almost constant or slightly increased in the depth direction. On the other hand, the results of the general water quality analysis of the extracted water from the extracted core and the extracted water suggest that the movement of groundwater is dominant in the HCD-2 hole (references; Takuma Hasegawa, Takahiro Oyama, Kotaro Nakata. (2005) 2003 geological disposal technology survey (report on groundwater dating technology survey)). Therefore, the concentration distribution of He suggests that groundwater hardly moves or moves very slowly in the depth direction at least in the depth range of about 300 to 500 m.

Heが蓄積する要因として、地下水が接する岩石中のウラン(以下、Uと記述)とトリウム(以下、Thと記述)のα崩壊によるHe発生に加え、系によっては外部He源からの流れ込みを考慮する必要がある(参考文献;Torgersen T. and Clarke W. B. (1985) Helium accumulation in groundwater, I: An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim Cosmochim. Acta 49, 1211-1218)。仮に外部からの流れ込みがない場合、その場でのHe蓄積速度はU及びThの濃度を用いて数式2で算出することが可能である。この数式2において、HeacはHeの蓄積速度(ccSTP/gw/y)、φは空隙率、[U]は地下水が接する岩石中のU濃度をppmで表したもの、[Th]は地下水が接する岩石中のTh濃度をppmで表したもの、λHeはHeの放出係数である。なお、岩石中ではすでにHeが飽和していると考えられるため、放出係数を1.0とみなす。
In addition to the generation of He due to alpha decay of uranium (hereinafter referred to as U) and thorium (hereinafter referred to as Th) in rocks that come into contact with groundwater, the accumulation of He takes into account the inflow from external He sources depending on the system. (Reference: Torgersen T. and Clarke WB (1985) Helium accumulation in groundwater, I: An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim Cosmochim. Acta 49, 1211 -1218). If there is no inflow from the outside, the in-situ He accumulation rate can be calculated by Equation 2 using U and Th concentrations. In this equation 2, He ac is the accumulation rate of He (ccSTP / gw / y), φ is the porosity, [U] is the U concentration in the rock in contact with the groundwater in ppm, and [Th] is the groundwater Th concentration in the contacting rock expressed in ppm, λ He is the He release coefficient. In addition, since it is considered that He is already saturated in the rock, the emission coefficient is regarded as 1.0.

試験を行った幌延泥岩においてφ=35.7%、[U]=4.7ppm、[Th]=6.0ppmを数式2に代入して計算すると、Heac=2.5×10−12(ccSTP/gw/y)を得ることができる。この値を基に計算を行うと、幌延泥岩に含まれる地下水の滞留時間は200〜500万年と評価することができる。 In the Horonobu mudstone that was tested, φ = 35.7%, [U] = 4.7 ppm, and [Th] = 6.0 ppm were calculated by substituting into Equation 2, and He ac = 2.5 × 10 −12 ( ccSTP / gw / y) can be obtained. Based on this value, the residence time of groundwater contained in Horonobe mudstone can be evaluated as 2-5 million years.

次に、図8(b)を参照しながらHe/He比について検討する。通常、U及びThのα崩壊によって岩石から発生するHeはHe/He比が10−8オーダーになる(参考文献;馬原 保典. (1997) 溶存希ガスを用いた地下水年代測定法の開発−溶存希ガス地下水調査法の体系化−. 電力中央研究所研究報告U97052.)。今回評価したHe/He比の値は、7〜8×10−7であり、岩石からの発生だけを考えるには高い値を示している。マントル起源のHeの場合、その同位体比は10−5程度に達することもあり、日本列島の火山ガスに含まれる上部マントル期限の同位体比は10×10−5と考えられている(参考文献;Nagao, K., Takaoka N., and Matsybayashi, O. (1981) Rare gas isotopic compositions in natural gases of Japan. Earth Planet Sci. Lett., 53, 175-188 )。石油井戸においては、マントル起源と考えられるこのような高いHe/He比をもったHeが観測されている例は多く紹介されている(参考文献;Kita, I., Nagao K., Taguchi, S., Nitta, K. and Hasegawa H. (1993) Emission of magmatic He with different 3He/4He ratios from Unzen volcanic area, Japan. Geochem. J., 27-251-259. )。今回掘削を行ったボーリングにおいても掘削時に石油が観察されており、サイト全体がマントル起源のHeの影響を受けている可能性が高い。外部からの(マントル由来の)Heの流入を考慮した場合、地下水年代は先に概算した200〜500万年という値よりも小さくなると考えられる。 Next, the 3 He / 4 He ratio will be examined with reference to FIG. Usually, the He generated from rocks due to U and Th α decay has a 3 He / 4 He ratio of the order of 10 −8 (Reference: Yasunori Mahara. (1997) Development of groundwater dating method using dissolved rare gas -Systematization of groundwater survey method for dissolved noble gases-. The value of the 3 He / 4 He ratio evaluated this time is 7 to 8 × 10 −7 , which is a high value when considering only the occurrence from rocks. In the case of He derived from mantle, the isotope ratio may reach about 10 −5 , and the isotope ratio in the upper mantle due to volcanic gas in the Japanese archipelago is considered to be 10 × 10 −5 (reference) (Nagao, K., Takaoka N., and Matsybayashi, O. (1981) Rare gas isotopic compositions in natural gases of Japan. Earth Planet Sci. Lett., 53, 175-188). In oil wells, there are many examples in which He with such a high 3 He / 4 He ratio, which is considered to originate from the mantle, has been observed (references; Kita, I., Nagao K., Taguchi). , S., Nitta, K. and Hasegawa H. (1993) Emission of magmatic He with different 3He / 4He ratios from Unzen volcanic area, Japan. Geochem. J., 27-251-259. In the drilling drilled this time, oil was also observed during the drilling, and it is highly possible that the entire site was affected by mantle-derived He. When considering the inflow of He (from the mantle) from the outside, the groundwater age is considered to be smaller than the estimated value of 2 to 5 million years.

深度550mにおいてHeが脱ガスしないように注意深く取得した地下水サンプルにおける評価値と、コアの状態で取得したサンプルにおける評価値とは、図8(a)(b)に示すようにHe濃度(絶対量)、He/Heともに近い値を示した。これは本発明の希ガス抽出方法を用いて岩石の間隙水に溶存する希ガスの特性値を十分に評価可能であることを示唆する結果である。 As shown in FIGS. 8A and 8B, the evaluation value in the groundwater sample carefully acquired so that He is not degassed at a depth of 550 m and the evaluation value in the sample acquired in the state of the core are the He concentration (absolute amount). ), it showed both the near value 3 He / 4 He. This is a result suggesting that the characteristic value of the noble gas dissolved in the pore water of the rock can be sufficiently evaluated using the noble gas extraction method of the present invention.

本発明の希ガス抽出方法を実施する希ガス抽出装置の構造の要部を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the principal part of the structure of the noble gas extraction apparatus which enforces the noble gas extraction method of this invention. 真空引き時間と蒸発する水の量と容器内の圧力変動との相関関係を示すグラフであり、(a)は幌延泥岩、(b)は吉井砂岩、(c)は来待砂岩、(d)は和泉砂岩に関するグラフである。It is a graph which shows correlation with the amount of water to evaporate, and the pressure fluctuation in a container, (a) Horonobe mudstone, (b) Yoshii sandstone, (c) Kurusu sandstone, (d) Is a graph about Izumi sandstone. 吉井砂岩が容器に封入した場合の真空引き時間と容器内の圧力変動の関係を示すグラフである。It is a graph which shows the relationship between the evacuation time and the pressure fluctuation in a container when Yoshii sandstone is enclosed in a container. (a)は岩石コアを容器に入れない場合の真空引き時間と容器内の圧力変動の関係を示すグラフであり、(b)は乾燥した来待砂岩を容器に封入した場合の真空引き時間と容器内の圧力変動の関係を示すグラフである。(A) is a graph showing the relationship between the evacuation time when the rock core is not put in the container and the pressure fluctuation in the container, and (b) is the evacuation time when the dried incoming sandstone is sealed in the container. It is a graph which shows the relationship of the pressure fluctuation in a container. 真空引き時間と間隙水中He濃度の飽和水He濃度からのずれの関係を示すグラフである。It is a graph which shows the relationship between the evacuation time and the deviation | shift from the saturated water He density | concentration of He concentration of pore water. 蒸発した間隙水量と真空引きで排気されたHe量の関係を示すグラフである。It is a graph which shows the relationship between the amount of evaporated pore water and the amount of He exhausted by evacuation. 第2〜4段階におけるHeと水の挙動を示す概念図であり、(a)は第2段階、(b)は第3段階、(c)は第4段階を示す。It is a conceptual diagram which shows the behavior of He and water in the 2nd-4th stage, (a) shows the 2nd stage, (b) shows the 3rd stage, (c) shows the 4th stage. HCD−2孔におけるHeの鉛直プロファイルであり、(a)はHe(Heの絶対量)と深さの関係を示し、(b)はHe/He比と深さの関係を示す。It is a vertical profile of He in HCD-2 hole, (a) shows the relationship between 4 He (absolute amount of He) and depth, and (b) shows the relationship between 3 He / 4 He ratio and depth.

符号の説明Explanation of symbols

1 希ガス抽出装置
2 岩石コア
3 容器
4 真空引き用パイプ
5 圧力計
6 バルブ
DESCRIPTION OF SYMBOLS 1 Noble gas extraction apparatus 2 Rock core 3 Container 4 Vacuuming pipe 5 Pressure gauge 6 Valve

Claims (1)

地中から採取した岩石コアを容器に密封した後に前記容器内を真空引きすることによって前記岩石コア中の間隙水から希ガスを抽出する希ガス抽出方法において、前記容器内の圧力変化を検出し、前記真空引きによって前記容器内の圧力が段階的に変化していく過程でその変化が4段階目に到達したことを契機に前記真空引きを停止することを特徴とする希ガス抽出方法。
In a rare gas extraction method for extracting a rare gas from pore water in the rock core by evacuating the container after sealing a rock core collected from the ground in a container, a pressure change in the container is detected. The method of extracting a rare gas, wherein the evacuation is stopped when the pressure reaches the fourth stage in the process in which the pressure in the container changes stepwise by the evacuation.
JP2006020924A 2006-01-30 2006-01-30 Rare gas extraction method Pending JP2007199033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006020924A JP2007199033A (en) 2006-01-30 2006-01-30 Rare gas extraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006020924A JP2007199033A (en) 2006-01-30 2006-01-30 Rare gas extraction method

Publications (1)

Publication Number Publication Date
JP2007199033A true JP2007199033A (en) 2007-08-09

Family

ID=38453767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006020924A Pending JP2007199033A (en) 2006-01-30 2006-01-30 Rare gas extraction method

Country Status (1)

Country Link
JP (1) JP2007199033A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058440A (en) * 2007-08-31 2009-03-19 Central Res Inst Of Electric Power Ind Gap water extractor of rock by dilution/dispersion system
CN103969092A (en) * 2013-01-29 2014-08-06 中国科学院寒区旱区环境与工程研究所 A device for obtaining gas from a rock core
CN106840536A (en) * 2017-01-25 2017-06-13 中国地质大学(北京) A kind of shale rock sample device for detecting sealability and its method for conducting leak test
CN108956836A (en) * 2018-05-18 2018-12-07 中国石油化工股份有限公司 The release of hydrocarbon gas and extraction element and method in inclusion enclave
JP7497064B2 (en) 2019-02-21 2024-06-10 ディープ アイソレーション, インコーポレイテッド Groundwater testing for hazardous waste material disposal sites.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308939A (en) * 1989-03-28 1989-12-13 Showa Alum Corp Apparatus for analyzing gas in metallic material
JP2003049418A (en) * 2001-08-06 2003-02-21 Maruyama Kogyo Kk Vacuum soil testing machine
JP2003262575A (en) * 2002-03-11 2003-09-19 Central Res Inst Of Electric Power Ind Method of measuring dissolved rare gas in groundwater and vacuum vessel for encapsulating rock core for use in the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308939A (en) * 1989-03-28 1989-12-13 Showa Alum Corp Apparatus for analyzing gas in metallic material
JP2003049418A (en) * 2001-08-06 2003-02-21 Maruyama Kogyo Kk Vacuum soil testing machine
JP2003262575A (en) * 2002-03-11 2003-09-19 Central Res Inst Of Electric Power Ind Method of measuring dissolved rare gas in groundwater and vacuum vessel for encapsulating rock core for use in the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058440A (en) * 2007-08-31 2009-03-19 Central Res Inst Of Electric Power Ind Gap water extractor of rock by dilution/dispersion system
CN103969092A (en) * 2013-01-29 2014-08-06 中国科学院寒区旱区环境与工程研究所 A device for obtaining gas from a rock core
CN106840536A (en) * 2017-01-25 2017-06-13 中国地质大学(北京) A kind of shale rock sample device for detecting sealability and its method for conducting leak test
CN106840536B (en) * 2017-01-25 2018-12-21 中国地质大学(北京) A kind of shale rock sample device for detecting sealability and its method for conducting leak test
CN108956836A (en) * 2018-05-18 2018-12-07 中国石油化工股份有限公司 The release of hydrocarbon gas and extraction element and method in inclusion enclave
CN108956836B (en) * 2018-05-18 2020-07-14 中国石油化工股份有限公司 Device and method for releasing and extracting hydrocarbon gas in inclusion
JP7497064B2 (en) 2019-02-21 2024-06-10 ディープ アイソレーション, インコーポレイテッド Groundwater testing for hazardous waste material disposal sites.

Similar Documents

Publication Publication Date Title
Gratuze Obsidian characterization by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the Near East: sources and distribution of obsidian within the Aegean and Anatolia
Jean-Baptiste et al. Design and performance of a mass spectrometric facility for measuring helium isotopes in natural waters and for low-level tritium determination by the 3He ingrowth method
US6670605B1 (en) Method and apparatus for the down-hole characterization of formation fluids
AU2002353109B2 (en) Method for measuring adsorbed and interstitial fluids
JP2007199033A (en) Rare gas extraction method
CN101501817B (en) Method and device for removing pollution from a confined environment
Visser et al. A membrane inlet mass spectrometry system for noble gases at natural abundances in gas and water samples
Brennwald et al. Analysis of dissolved noble gases in the porewater of lacustrine sediments
Tomonaga et al. An improved method for the analysis of dissolved noble gases in the porewater of unconsolidated sediments
Stanley et al. A new automated method for measuring noble gases and their isotopic ratios in water samples
JP3304842B2 (en) Soil pore water sampling method and soil contamination survey method
Heck et al. Presolar He and Ne isotopes in single circumstellar SiC grains
EP1333271A1 (en) Method for measuring rate of permeation of vapor through sample
Wen et al. Water recovery rate and isotopic signature of cryogenic vacuum extracted spiked soil water following oven‐drying at different temperatures
JP4007542B2 (en) Method for measuring dissolved rare gas in groundwater and vacuum vessel for sealing rock core used in this method
Sharma et al. Osmium contamination of seawater samples stored in polyethylene bottles
Inguaggiato et al. Dissolved CO2 in natural waters: development of an automated monitoring system and first application to Stromboli volcano (Italy)
Matsumoto et al. A portable membrane contactor sampler for analysis of noble gases in groundwater
Huber et al. In-situ measurement of trapped hydrogen by laser desorption in TEXTOR-94
KR101603636B1 (en) P pencil-shaped cylindrical sampler can be mounted polymer for concentrated organic contaminants
Jenk et al. A new set-up for simultaneous high-precision measurements of CO 2, δ 13 C-CO 2 and δ 18 O-CO 2 on small ice core samples
Witthüser et al. Investigations on diffusion characteristics of granite and chalk rock mass
Miller et al. Reactive mercury flux measurements using cation exchange membranes
Pontau et al. Outgassing of AXF-5Q and other grades of limiter graphites
Ferlin et al. A very simple and fast analytical method for atmospheric particulate-bound mercury determination

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20071003

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A977 Report on retrieval

Effective date: 20110407

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110419

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110823

Free format text: JAPANESE INTERMEDIATE CODE: A02