JP2007198637A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2007198637A
JP2007198637A JP2006015724A JP2006015724A JP2007198637A JP 2007198637 A JP2007198637 A JP 2007198637A JP 2006015724 A JP2006015724 A JP 2006015724A JP 2006015724 A JP2006015724 A JP 2006015724A JP 2007198637 A JP2007198637 A JP 2007198637A
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
heat pump
storage tank
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006015724A
Other languages
Japanese (ja)
Inventor
Kenichi Mizushina
建一 水品
Tsutomu Honda
勉 本多
Masakazu Endo
政和 遠藤
Yoshiaki Inase
圭亮 稲瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2006015724A priority Critical patent/JP2007198637A/en
Publication of JP2007198637A publication Critical patent/JP2007198637A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type water heater capable of preventing inability in boiling up for hot water supply caused by frequent defrosting operations. <P>SOLUTION: In this heat pump type water heater, a heat pump circuit 18 is composed of a compressor 13, a refrigerant-water heat exchanger 14, an air heat exchanger 17 constituting an evaporator, and a blower fan 16, an inflow pipe 12 for supplying water to the refrigerant-water heat exchanger 14, and an outflow pipe 11 for directly supplying the water heated by the refrigerant-water heat exchanger as hot water are disposed, and a bypass circuit 21 is connected between the inflow pipe 12 and the outflow pipe 11 at the windward side of the air distributed by an air blower 16 of the air heat exchanger 17. Thus defrosting can be performed while supplying hot water without stopping the hot water supply by using a part of the secondary-side supplied hot air for defrosting the air heat exchanger 17 in the water heater utilizing the heat pump circuit 18, that is, the defrosting can be surely performed without deteriorating efficiency, and the water heater can be used with ease. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、ヒートポンプを利用した瞬間式あるいは貯湯式の給湯装置に関するものである。   The present invention relates to an instantaneous or hot water storage hot water supply device using a heat pump.

従来よりこの種のものでは、冬期等で外気温度が低下すると、空気熱交換器の結露水が凍結するので、凍結危険状態では圧縮機の吐出側四方弁を切替て、空気熱交換器に加熱冷媒を流すと共に、冷媒−水熱交換器へも継続して加熱冷媒を流して給湯が継続されるようにするものであった。(例えば、特許文献1参照。)
特許3289373号公報
Conventionally, with this type, when the outside air temperature drops in winter, the condensed water in the air heat exchanger freezes. Therefore, in the freezing danger state, the compressor discharge side four-way valve is switched to heat the air heat exchanger. While flowing the refrigerant, the heated refrigerant was continuously flown to the refrigerant-water heat exchanger so that the hot water supply was continued. (For example, refer to Patent Document 1.)
Japanese Patent No. 3289373

ところでこの従来のものでは、熱源側であるヒートポンプ回路の経路を切替て行うので、加熱能力が大幅に低下し、特に冬期では頻繁に除霜運転が行われて、お湯が沸き上がらずに給湯そのものが出来なくなると言う不具合を有するものであった。   By the way, in this conventional system, since the heat pump circuit path on the heat source side is switched, the heating capacity is greatly reduced, especially in winter, defrosting operation is frequently performed, and the hot water supply itself without boiling up The problem was that it could not be done.

この発明はこの点に着目し上記問題点を解決する為、特に請求項1では、圧縮機、冷媒−水熱交換器、蒸発器を構成する空気熱交換器と送風ファンとでヒートポンプ回路を形成し、冷媒−水熱交換器に給水を供給する流入管と、該冷媒−水熱交換器で加熱された給水を給湯水として直接給湯する流出管とで構成したものに於いて、前記流入管と流出管との間には、前記空気熱交換器の送風ファンによる送風の風上側に備えたバイパス回路を接続したものである。   The present invention focuses on this point and solves the above problems. In particular, in claim 1, a heat pump circuit is formed by an air heat exchanger and a blower fan constituting a compressor, a refrigerant-water heat exchanger, and an evaporator. And an inflow pipe for supplying water to the refrigerant-water heat exchanger and an outflow pipe for directly supplying hot water as hot water using the water heated by the refrigerant-water heat exchanger. A bypass circuit provided on the windward side of the air blown by the blower fan of the air heat exchanger is connected between the pipe and the outflow pipe.

又請求項2では、湯水を貯湯する貯湯タンクと、圧縮機、前記貯湯タンクと連通され水を加熱する冷媒−水熱交換器、蒸発器を構成する空気熱交換器を接続したヒートポンプ回路と、前記貯湯タンク内の湯水を該貯湯タンク底部に接続した流入管及び貯湯タンク上部に接続した流出管から成るヒーポン循環回路と、前記ヒーポン循環回路にはヒーポン循環ポンプが備えられ、更に前記貯湯タンク底部に接続された給水管と、貯湯タンク上部に接続された出湯管とを備えたものに於いて、前記ヒーポン循環回路から分岐したバイパス回路を、前記空気熱交換器の送風ファンによる送風の風上側に備えたものである。   Further, in claim 2, a hot water storage tank for storing hot water, a compressor, a refrigerant-water heat exchanger that communicates with the hot water storage tank to heat water, and a heat pump circuit that connects an air heat exchanger that constitutes an evaporator; A heat pump circulation circuit comprising an inflow pipe connected to the bottom of the hot water storage tank and an outflow pipe connected to the top of the hot water storage tank, and a heat pump circulation pump provided in the heat pump circulation circuit, and further the bottom of the hot water storage tank A bypass circuit branched from the heat-pump circulation circuit is connected to a hot water supply pipe connected to the hot water storage tank, and a bypass side branched from the heat pump circulation circuit It is prepared for.

又請求項3では、前記バイパス回路は、流出管に三方弁を介して一端を接続し、他端を流出管のヒーポン循環ポンプ吸引側に接続することで、空気熱交換器の除霜を行うようにしたものである。   According to a third aspect of the present invention, the bypass circuit defrosts the air heat exchanger by connecting one end to the outflow pipe via a three-way valve and connecting the other end to the heat pump circulation pump suction side of the outflow pipe. It is what I did.

又請求項4では、前記バイパス回路は、流出管に貯湯タンク側への流量とバイパス回路側への流量を可変可能とした流量制御弁を介して一端を接続し、他端を流出管のヒーポン循環ポンプ吸引側に接続することで、空気熱交換器の除霜を行うようにしたものである。   According to a fourth aspect of the present invention, the bypass circuit has one end connected to the outflow pipe via a flow rate control valve capable of changing the flow rate to the hot water storage tank side and the flow rate to the bypass circuit side, and the other end to the heat pump of the outflow pipe. By connecting to the circulation pump suction side, the air heat exchanger is defrosted.

この発明の請求項1によれば、ヒートポンプ回路を利用した瞬間式の給湯装置に於いても、二次側の給湯の一部を空気熱交換器の除霜用に使用することで、給湯を停止することなく該給湯をしながら除霜をすることが出来、効率を低下させることなく除霜が確実に行え、安心して使用出来るものである。   According to claim 1 of the present invention, even in an instantaneous hot water supply apparatus using a heat pump circuit, a part of the secondary side hot water supply is used for defrosting of the air heat exchanger, thereby The defrosting can be performed while the hot water is supplied without stopping, and the defrosting can be reliably performed without lowering the efficiency and can be used with confidence.

又請求項2によれば、ヒートポンプ回路を利用した貯湯式の給湯装置に於いても、貯湯運転の途中で貯湯用の温水の一部或いは全部を空気熱交換器の除霜用に使用することで、貯湯タンクへの貯湯を継続しながら除霜することが出来、効率を低下させることなく除霜が確実に行え、安心して使用出来るものである。   According to claim 2, even in a hot water storage type hot water supply device using a heat pump circuit, part or all of hot water for hot water storage is used for defrosting of the air heat exchanger during the hot water storage operation. Thus, defrosting can be performed while hot water storage in the hot water storage tank is continued, and defrosting can be reliably performed without lowering the efficiency, and can be used with peace of mind.

又請求項3によれば、空気熱交換器の除霜は、三方弁で流路が切替られて温度上昇した温水が確実にバイパス回路を流れて行われ、短時間に除霜を完了して直ぐに沸き上げ運転に戻ることが出来、器具の効率を低下させることなく除霜が確実に行え、安心して使用出来るものである。   According to the third aspect of the present invention, the defrosting of the air heat exchanger is performed by surely flowing the hot water whose temperature is increased by switching the flow path by the three-way valve, and the defrosting is completed in a short time. It is possible to immediately return to the boiling operation, perform defrosting reliably without reducing the efficiency of the instrument, and can be used with confidence.

又請求項4によれば、空気熱交換器の除霜の温水量と貯湯タンクへ向かう温水量との調節が出来、除霜の状況に応じて両流路に流す温水量を適宜可変して、更に器具の効率を低下させることなく除霜が確実に行え、安心して使用出来るものである。   According to the fourth aspect of the present invention, the amount of hot water defrosted by the air heat exchanger and the amount of hot water going to the hot water storage tank can be adjusted, and the amount of hot water flowing through both flow paths can be appropriately varied depending on the state of defrosting. Furthermore, defrosting can be reliably performed without lowering the efficiency of the instrument, and it can be used with peace of mind.

次にこの発明の一実施形態を図面に基づいて説明する。
このヒートポンプ式給湯装置は、時間帯別契約電力の電力単価が安価な深夜時間帯に湯水を沸き上げて貯湯し、この貯湯した湯水を給湯に用いるもので、1は湯水を貯湯する貯湯タンク2を備えた貯湯タンクユニット、3は貯湯タンク内の湯水を加熱する加熱手段としてのヒートポンプユニット、4は台所や洗面所等に設けられた給湯栓、5はこの給湯栓4の近傍に設けられた給湯リモコン、6は浴槽、7は浴室に設けられた風呂リモコンである。
Next, an embodiment of the present invention will be described with reference to the drawings.
This heat pump type hot water supply apparatus heats and stores hot water in the midnight hours when the unit price of contracted electric power by time zone is low, and uses the stored hot water for hot water supply. 1 is a hot water storage tank 2 for storing hot water. 3 is a heat pump unit as a heating means for heating the hot water in the hot water storage tank, 4 is a hot water tap provided in a kitchen or a washroom, and 5 is provided in the vicinity of the hot water tap 4 A hot water remote controller, 6 is a bathtub, and 7 is a bath remote controller provided in the bathroom.

前記貯湯タンクユニット1の貯湯タンク2は、上端に出湯管8と、下端に給水管9とが接続され、更に下部にヒーポン循環回路10を構成する流出管11と、上部にヒーポン循環回路10を構成する流入管12とが接続され、前記ヒートポンプユニット3によって流出管11から取り出した貯湯タンク2内の湯水を沸き上げて流入管12から貯湯タンク2内に戻して貯湯され、給水管9からの給水により貯湯タンク2内の湯水が押し上げられて貯湯タンク2内上部の高温水が出湯管8から押し出されて給湯されるものである。   The hot water storage tank 2 of the hot water storage tank unit 1 has a hot water discharge pipe 8 connected to the upper end, a water supply pipe 9 connected to the lower end, an outlet pipe 11 constituting a heat pump circulation circuit 10 at the lower part, and a heat pump circulation circuit 10 at the upper part. The inflow pipe 12 is connected, the hot water in the hot water storage tank 2 taken out from the outflow pipe 11 by the heat pump unit 3 is boiled and returned from the inflow pipe 12 to the hot water storage tank 2 to be stored. Hot water in the hot water storage tank 2 is pushed up by the water supply, and hot water in the upper part of the hot water storage tank 2 is pushed out from the hot water discharge pipe 8 to supply hot water.

前記ヒートポンプユニット3は、圧縮機13と凝縮器としての冷媒−水熱交換器14と減圧器としての電子膨張弁15と送風ファン16の送風空気から熱を奪う蒸発器を構成する空気熱交換器17で形成されたヒートポンプ回路18と、貯湯タンク2内の湯水を前記流出管11及び流入管12を介して冷媒−水熱交換器14に循環させるヒーポン循環ポンプ19と、それらの駆動を制御するヒーポン制御部20とを備えており、ヒートポンプ回路18内には冷媒として二酸化炭素が用いられて超臨界ヒートポンプサイクルを構成しているものである。なお、冷媒に二酸化炭素を用いているので、低温水を電熱ヒータなしで約90℃の高温まで沸き上げることが可能なものである。   The heat pump unit 3 is an air heat exchanger that constitutes an evaporator that removes heat from the blown air of the compressor 13, the refrigerant-water heat exchanger 14 as a condenser, the electronic expansion valve 15 as a decompressor, and the blower fan 16. 17, a heat pump circuit 18 that circulates hot water in the hot water storage tank 2 to the refrigerant-water heat exchanger 14 through the outflow pipe 11 and the inflow pipe 12, and driving of the heat pump circuit 18. The heat pump control unit 20 is provided, and carbon dioxide is used as a refrigerant in the heat pump circuit 18 to constitute a supercritical heat pump cycle. Since carbon dioxide is used as the refrigerant, low-temperature water can be boiled up to a high temperature of about 90 ° C. without an electric heater.

更にヒートポンプ循環回路10を構成する流出管11と流入管12との間にはバイパス回路21が接続され、このバイパス回路21は空気熱交換器17の送風ファン16風上側に備えられて、冷媒−水熱交換器14で高温に沸き上げられた湯水を循環させて空気熱交換器17の除霜を強制的に行うものであり、流入管12との接続側には図2に示すように開閉弁22が備えられ開閉制御されたり、図3に示すように三方弁23を設けて、流入管12の貯湯タンク2側の開閉と、バイパス回路21側の開閉とを切替るようにしたり、図4に示すように流量制御弁24を設けて、貯湯タンク2側及びバイパス回路21側の流量を空気熱交換器17での除霜状況によって可変するようにしており、又除霜制御については、ヒートポンプユニット3の外枠に備えた外気温センサ25が所定温度以下を検知で除霜制御を開始すると共に、前記開閉弁22及び三方弁23及び流量制御弁24についてもヒーポン制御部20を介して制御するものである。   Further, a bypass circuit 21 is connected between the outflow pipe 11 and the inflow pipe 12 constituting the heat pump circulation circuit 10, and this bypass circuit 21 is provided on the upstream side of the blower fan 16 of the air heat exchanger 17. The hot water heated to a high temperature in the water heat exchanger 14 is circulated to forcibly defrost the air heat exchanger 17, and the connection side with the inflow pipe 12 is opened and closed as shown in FIG. As shown in FIG. 3, a three-way valve 23 is provided to switch between opening and closing of the inflow pipe 12 on the hot water storage tank 2 side and opening and closing on the bypass circuit 21 side. 4, the flow rate control valve 24 is provided so that the flow rates on the hot water storage tank 2 side and the bypass circuit 21 side can be varied depending on the defrosting status in the air heat exchanger 17, and the defrosting control is as follows. Of the heat pump unit 3 The outside air temperature sensor 25 provided in the frame starts the defrosting control by detecting a predetermined temperature or less, and controls the on-off valve 22, the three-way valve 23, and the flow rate control valve 24 via the heat pump control unit 20. .

ここで、前記冷媒−水熱交換器14は冷媒と被加熱水たる貯湯タンク2内の湯水とが対向して流れる対向流方式を採用しており、超臨界ヒートポンプサイクルでは熱交換時に於いて冷媒は超臨界状態のまま凝縮されるため効率良く高温まで被加熱水を加熱することが出来、被加熱水の冷媒−水熱交換器14入口温度と冷媒の出口温度との温度差が一定になるように前記電子膨張弁15又は圧縮機13を制御することで、被加熱水の冷媒−水熱交換器14の入口温度が5〜20℃程度の低い温度であるとCOP(エネルギー消費効率)がとても良い状態で被加熱水を加熱することが可能なものであり、冬期では例えばCOP3であった場合に、除霜のためにその内1〜0.5の効率を利用すると言う考え方である。   Here, the refrigerant-water heat exchanger 14 employs a counter flow system in which the refrigerant and hot water in the hot water storage tank 2 that is heated water face each other. In the supercritical heat pump cycle, the refrigerant is used during heat exchange. Is condensed in a supercritical state, so that the water to be heated can be efficiently heated to a high temperature, and the temperature difference between the refrigerant-water heat exchanger 14 inlet temperature and the refrigerant outlet temperature becomes constant. By controlling the electronic expansion valve 15 or the compressor 13 as described above, if the inlet temperature of the refrigerant-water heat exchanger 14 to be heated is a low temperature of about 5 to 20 ° C., COP (energy consumption efficiency) is It is an idea that the water to be heated can be heated in a very good state, and in the winter, for example, when it is COP3, the efficiency of 1 to 0.5 is used for defrosting.

26は前記浴槽6の湯水を加熱するためのステンレス製の蛇管よりなる風呂用熱交換器で、貯湯タンク2のほぼ中間部に備えられ上部の高温水領域を残すようにしているもので、又この風呂用熱交換器26には風呂往き管27および風呂循環ポンプ28を備えた風呂戻り管29が接続されて浴槽6の湯水が循環可能にされ、浴槽6内の湯水が貯湯タンク2内の高温水により加熱されて保温あるいは追焚きが行われるものである。なお、30は風呂戻り管29を循環する浴槽6の湯水の温度を検出する風呂温度センサである。   26 is a bath heat exchanger made of a stainless steel tube for heating the hot water in the bathtub 6, and is provided in a substantially intermediate part of the hot water storage tank 2 so as to leave an upper hot water region. The bath heat exchanger 26 is connected to a bath return pipe 29 having a bath outlet pipe 27 and a bath circulation pump 28 so that hot water in the bathtub 6 can be circulated, and hot water in the bathtub 6 is stored in the hot water storage tank 2. Heating or reheating is performed by heating with high-temperature water. Reference numeral 30 denotes a bath temperature sensor for detecting the temperature of hot water in the bathtub 6 circulating through the bath return pipe 29.

31は貯湯タンク2側壁で上記風呂用熱交換器26と対向する中間位置に接続された中間取り出し管で、前記風呂熱交換器26で風呂側と熱交換して温度低下した中温水や湯と水の境界層付近で温度低下あるいは温度上昇した中温水などの貯湯タンク2の中間位置に貯められている湯水を貯湯タンク2から出湯するものである。   31 is an intermediate take-out pipe connected to the hot water storage tank 2 side wall at an intermediate position facing the heat exchanger 26 for bath. The intermediate heat pipe and the hot water whose temperature is lowered by exchanging heat with the bath side in the bath heat exchanger 26. Hot water stored at an intermediate position of the hot water storage tank 2 such as medium temperature water whose temperature has decreased or increased in the vicinity of the boundary layer of water is discharged from the hot water storage tank 2.

32は前記出湯管8途中で前記中間取り出し管31の下流に設けられた電動ミキシング弁より構成された中間混合弁、33はこの中間混合弁32下流の中間給湯管34に設けた中間温度センサで、貯湯タンク2中間位置付近の中温水と貯湯タンク2上端に接続された出湯管8からの高温水とを給湯リモコン5や風呂リモコン7でユーザーが設定した給湯設定温度より所定温度高い混合目標温度になるように混合比率が制御されるものである。   32 is an intermediate mixing valve constituted by an electric mixing valve provided downstream of the intermediate take-out pipe 31 in the middle of the hot water discharge pipe 8, and 33 is an intermediate temperature sensor provided in an intermediate hot water supply pipe 34 downstream of the intermediate mixing valve 32. The hot water from the hot water supply pipe 8 connected to the upper end of the hot water storage tank 2 and the hot water from the hot water storage tank 2 at the middle position of the hot water storage tank 2 and the hot water set temperature set by the user by the hot water remote controller 5 or the bath remote controller 7 are a predetermined target temperature. The mixing ratio is controlled so that

35は中間混合弁32からの湯水と給水管9から分岐された給水バイパス管36からの低温水を混合する電動ミキシング弁より構成された給湯混合弁であり、その下流の給湯管37に設けた給湯温度センサ38で検出した湯温が給湯リモコン5や風呂リモコン7でユーザーが設定した給湯設定温度になるように混合比率を制御するものである。   A hot water mixing valve 35 is constituted by an electric mixing valve that mixes hot water from the intermediate mixing valve 32 and low temperature water from the water supply bypass pipe 36 branched from the water supply pipe 9, and is provided in a hot water supply pipe 37 downstream thereof. The mixing ratio is controlled so that the hot water temperature detected by the hot water temperature sensor 38 becomes the hot water set temperature set by the user using the hot water remote controller 5 or the bath remote controller 7.

39は中間給湯管34から分岐された分岐中間給湯管40からの湯水と給水管9から分岐された分岐給水バイパス管41からの低温水とを混合する電動ミキシング弁より構成された風呂混合弁であり、その下流側の風呂戻り管29に連通された湯張り管42に設けた湯張り温度センサ43で検出した湯温が給湯リモコン5や風呂リモコン7でユーザーが設定した風呂設定温度になるように混合比率を制御するものである。   39 is a bath mixing valve constituted by an electric mixing valve that mixes hot water from the branch intermediate hot water pipe 40 branched from the intermediate hot water pipe 34 and low temperature water from the branch water supply bypass pipe 41 branched from the water supply pipe 9. Yes, the hot water temperature detected by the hot water temperature sensor 43 provided in the hot water pipe 42 communicated with the bath return pipe 29 on the downstream side thereof becomes the bath set temperature set by the user with the hot water remote controller 5 or the bath remote controller 7. The mixing ratio is controlled.

そして、前記湯張り管42には、浴槽6への湯張りの開始/停止を行う湯張り弁44と、浴槽6への湯張り量をカウントする風呂流量カウンタ45が設けられているものである。   The hot water filling pipe 42 is provided with a hot water filling valve 44 for starting / stopping hot water filling to the bathtub 6 and a bath flow rate counter 45 for counting the amount of hot water filling to the bathtub 6. .

46は貯湯タンク2の上下方向に複数個配置された貯湯温度センサで、この実施形態では5つの貯湯温度センサが配置され上から46a、46b、46c、46d、46eと呼び、この貯湯温度センサ46が検出する温度情報によって、貯湯タンク2内にどれだけの熱量が残っているかを検知し、そして貯湯タンク2内の上下方向の温度分布を検知するものである。   A plurality of hot water storage temperature sensors 46 are arranged in the vertical direction of the hot water storage tank 2. In this embodiment, five hot water storage temperature sensors are arranged and are referred to as 46 a, 46 b, 46 c, 46 d, 46 e from the top. Is used to detect how much heat is left in the hot water storage tank 2 and to detect the temperature distribution in the vertical direction in the hot water storage tank 2.

前記給湯リモコン5および風呂リモコン7には、給湯設定温度を設定する給湯温度設定スイッチ47、及び風呂設定温度を設定する風呂温度設定スイッチ48がそれぞれ設けられていると共に、浴槽6へ風呂設定温度の湯を風呂リモコン7の湯張り量設定スイッチ(図示せず)で設定された湯張り量だけ湯張りし所定時間保温させる風呂自動スイッチ49がそれぞれ設けられ、更に風呂リモコン7には約60℃の高温の湯を差し湯させる高温差し湯スイッチ50が設けられているものである。   The hot water remote controller 5 and the bath remote controller 7 are respectively provided with a hot water supply temperature setting switch 47 for setting the hot water supply set temperature and a bath temperature setting switch 48 for setting the bath set temperature. The bath remote switch 7 is provided with an automatic bath switch 49 that fills the hot water by the amount of hot water set by a hot water filling amount setting switch (not shown) of the bath remote control 7 and keeps it warm for a predetermined time. A hot water hot water switch 50 for pouring hot water is provided.

51は貯湯タンクユニット1内の各センサの入力を受け各アクチュエータの駆動を制御するマイコンを有し制御部を構成する給湯制御部である。この給湯制御部51に前記給湯リモコン5が無線または有線により接続されユーザーが任意の給湯設定温度及び風呂設定温度を設定できるようにしているものである。   A hot water supply control unit 51 includes a microcomputer that receives the input of each sensor in the hot water storage tank unit 1 and controls the driving of each actuator, and constitutes a control unit. The hot water remote controller 5 is connected to the hot water controller 51 by radio or wire so that the user can set arbitrary hot water set temperature and bath set temperature.

前記給湯制御部51は、中間温度センサ33で検出する温度が給湯設定温度あるいは風呂設定温度のうち高い方の設定温度より所定温度高い混合目標温度になるよう中間混合弁32の弁開度をフィードバック制御するようにしているものであると共に、給湯温度センサ38の検出する温度が給湯設定温度になるように給湯混合弁35の弁開度をフィードバック制御するようにしているもので、更に湯張り温度センサ43の検出する温度が風呂設定温度になるように風呂混合弁39の弁開度をフィードバック制御するようにしているものである。   The hot water supply control unit 51 feeds back the valve opening degree of the intermediate mixing valve 32 so that the temperature detected by the intermediate temperature sensor 33 reaches a mixing target temperature that is higher by a predetermined temperature than the higher setting temperature of the hot water supply setting temperature or the bath setting temperature. The valve opening degree of the hot water supply mixing valve 35 is feedback-controlled so that the temperature detected by the hot water supply temperature sensor 38 becomes the hot water supply set temperature. The valve opening degree of the bath mixing valve 39 is feedback-controlled so that the temperature detected by the sensor 43 becomes the bath set temperature.

そして、前記制御部51は中間混合弁32の制御応答速度を給湯混合弁35の制御応答速度よりも遅くなるように設定されているもので、中間混合弁32からの湯水の温度変化に給湯混合弁35のフィードバック制御の制御応答速度が勝り給湯温度のオーバーシュートまたはアンダーシュートを大幅に低減できるものである。   The control unit 51 is set so that the control response speed of the intermediate mixing valve 32 is slower than the control response speed of the hot water supply mixing valve 35. The control response speed of the feedback control of the valve 35 is superior, and the overshoot or undershoot of the hot water supply temperature can be greatly reduced.

52は貯湯タンク2の過圧を逃す過圧逃し弁、53は給水の圧力を減圧する減圧弁、54は給湯する湯水の量をカウントする給湯流量カウンタ、55は浴槽6の湯水が逆流するのを防止する二重に設けられた逆止弁、56は給水の温度を検出する給水温度センサである。   52 is an overpressure relief valve for releasing the overpressure of the hot water storage tank 2, 53 is a pressure reducing valve for reducing the pressure of the water supply, 54 is a hot water supply flow rate counter for counting the amount of hot water to be supplied, and 55 is a backflow of hot water in the bathtub 6. A double check valve 56 for preventing water supply is a feed water temperature sensor for detecting the feed water temperature.

次にこの一実施形態の作動を説明する。
先ず沸き上げ運転について説明すると、深夜電力時間帯になって貯湯温度センサ46が貯湯タンク2内に翌日に必要な熱量が残っていないことを検出すると、給湯制御部51はヒーポン制御部20に対して沸き上げ開始指令を発する。指令を受けたヒーポン制御部20は圧縮機13を起動した後にヒーポン循環ポンプ19を駆動開始し、貯湯タンク2下部に接続された流出管11から取り出した5〜20℃程度の低温水を冷媒−水熱交換器14で70〜90℃程度の高温に加熱し、貯湯タンク2上部に接続された流入管12から貯湯タンク2内に戻し、貯湯タンク2の上部から順次積層して高温水を貯湯していく。貯湯温度センサ46が必要な熱量が貯湯されたことを検出すると、給湯制御部51はヒーポン制御部20に対して沸き上げ停止指令を発し、ヒーポン制御部20は圧縮機13を停止すると共にヒーポン循環ポンプ19も停止して沸き上げ動作を終了するものである。
Next, the operation of this embodiment will be described.
First, the boiling operation will be described. When the hot water storage temperature sensor 46 detects that the required amount of heat does not remain in the hot water storage tank 2 in the midnight power time zone, the hot water supply control unit 51 instructs the heat pump control unit 20. Issue a boiling start command. Upon receiving the command, the heat pump control unit 20 starts driving the compressor 13 and then starts driving the heat pump circulation pump 19, and cools the low temperature water of about 5 to 20 ° C. taken out from the outflow pipe 11 connected to the lower part of the hot water storage tank 2. The water heat exchanger 14 is heated to a high temperature of about 70 to 90 ° C., returned to the hot water tank 2 through the inflow pipe 12 connected to the upper part of the hot water tank 2, and sequentially stacked from the upper part of the hot water tank 2 to store the hot water. I will do it. When the hot water storage temperature sensor 46 detects that the necessary amount of heat has been stored, the hot water supply control unit 51 issues a boiling stop command to the heat pump control unit 20, and the heat pump control unit 20 stops the compressor 13 and heat pump circulation. The pump 19 is also stopped to end the boiling operation.

次に給湯運転について説明すると、給湯栓4を開くと、給水管9からの給水が貯湯タンク2内に流れ込む。そして貯湯タンク2の中間部に貯められた高温水が中間取り出し管31を介して中間混合弁32へ押し出される。なお、貯湯タンク2内には上部に高温水、下部に低温水が貯められることとなるが、その温度差により比重差が発生し、温度境界層を形成して比重の軽い高温水が上部に、比重の重い低温水が下部に位置するので、互いに混じり合うことはないものである。   Next, the hot water supply operation will be described. When the hot water tap 4 is opened, the water supplied from the water supply pipe 9 flows into the hot water storage tank 2. Then, the high temperature water stored in the intermediate portion of the hot water storage tank 2 is pushed out to the intermediate mixing valve 32 through the intermediate take-out pipe 31. In the hot water storage tank 2, high temperature water is stored in the upper part and low temperature water is stored in the lower part. A difference in specific gravity occurs due to the temperature difference, and a high temperature water having a low specific gravity is formed in the upper part by forming a temperature boundary layer. Since the low-temperature water with a high specific gravity is located at the lower part, they do not mix with each other.

ここで、給湯制御部51は中間取り出し管31からの湯水と出湯管8からの湯水を混合して中間混合弁32にて給湯リモコン5又は風呂リモコン7で設定された給湯設定温度より一定温度以上高い混合目標温度となるように中間混合弁32を適当な比率に調整する。なお、ここでは、中間取り出し管31から流入する湯が高温で給湯設定温度より高いため、中間混合弁32の出湯管8側を閉じることとなる。   Here, the hot water supply control unit 51 mixes the hot water from the intermediate take-out pipe 31 and the hot water from the hot water discharge pipe 8, and exceeds the hot water set temperature set by the hot water remote controller 5 or the bath remote controller 7 at the intermediate mixing valve 32 by a certain temperature or more. The intermediate mixing valve 32 is adjusted to an appropriate ratio so as to achieve a high mixing target temperature. Here, since the hot water flowing from the intermediate take-out pipe 31 is hot and higher than the hot water supply set temperature, the hot water pipe 8 side of the intermediate mixing valve 32 is closed.

そして、中間混合弁32から流出した混合目標温度の湯は中間給湯管34を介して給湯混合弁35へ流入し、給水バイパス管36からの低温水と混合され、給湯制御部51が給湯混合弁35の混合比率を調整し給湯設定温度の湯が給湯栓4から給湯される。そして、給湯栓4の閉止によって給湯が終了するものである。   The hot water at the target mixing temperature flowing out from the intermediate mixing valve 32 flows into the hot water supply mixing valve 35 through the intermediate hot water supply pipe 34 and is mixed with the low temperature water from the water supply bypass pipe 36. The mixing ratio of 35 is adjusted and hot water at a hot water supply set temperature is supplied from the hot water tap 4. Then, the hot water supply is completed by closing the hot water tap 4.

次に上記の沸き上げ運転中に、外気温度が氷点下以下に低下しこれを外気温センサ25が検知することで、ヒーポン制御部20によって除霜運転が開始されるもので、バイパス回路21に開閉弁22が備えられたものでは、この開閉弁22が開口されることにより、冷媒−水熱交換器14で加熱された高温水の一部がバイパス回路21を流通し、結露が発生する前の空気熱交換器17を加熱して除霜を行うもので、空気熱交換器17を加熱して温度低下した温水は流出管11に戻り、ヒーポン循環ポンプ19により再び冷媒−水熱交換器14に送られ、順次この循環を繰り返して除霜を行うものであり、又高温水の一部はそのまま貯湯タンク2に送られて沸き上げ運転は継続されるので、効率の良く除霜することが出来るものであり、空気熱交換器17の温度が所定温度に維持されることで、除霜運転は終了するものである。   Next, during the above-described boiling operation, when the outside air temperature falls below the freezing point and this is detected by the outside air temperature sensor 25, the defrosting operation is started by the heat pump controller 20, and the bypass circuit 21 is opened and closed. In the case where the valve 22 is provided, when the on-off valve 22 is opened, a part of the high-temperature water heated by the refrigerant-water heat exchanger 14 circulates through the bypass circuit 21 and before condensation occurs. The air heat exchanger 17 is heated to perform defrosting. The hot water whose temperature has been lowered by heating the air heat exchanger 17 returns to the outflow pipe 11 and is again returned to the refrigerant-water heat exchanger 14 by the heat pump circulation pump 19. The defrosting is performed by sequentially repeating this circulation, and part of the high-temperature water is sent to the hot water storage tank 2 as it is and the boiling operation is continued, so that the defrosting can be performed efficiently. Air heat By the temperature of the exchanger 17 is maintained at a predetermined temperature, the defrosting operation is to terminate.

又バイパス回路21の流入管12への接続部分に三方弁23が備えられている場合には、除霜運転で開口していた流入管12の貯湯タンク2側を閉口すると共に、閉口していたバイパス回路21側を開口することにより、冷媒−水熱交換器14で加熱された高温水を全てバイパス回路21に流し、大量の高温水で空気熱交換器17の除霜が短時間に行われるものであり、除霜運転の終了後は三方弁23が元の状態に切替わって沸き上げ運転が自動的に再開され、除霜の確実性と共に効率良く沸き上げも行われるものである。   Further, when the three-way valve 23 is provided in the connection portion of the bypass circuit 21 to the inflow pipe 12, the hot water storage tank 2 side of the inflow pipe 12 that has been opened in the defrosting operation is closed and closed. By opening the bypass circuit 21 side, all the high-temperature water heated by the refrigerant-water heat exchanger 14 is caused to flow to the bypass circuit 21, and the air heat exchanger 17 is defrosted in a short time with a large amount of high-temperature water. Thus, after the defrosting operation is completed, the three-way valve 23 is switched to the original state, and the boiling operation is automatically restarted, and the boiling is efficiently performed together with the defrosting reliability.

更にバイパス回路21の流入管12への接続部分に流量制御弁24が備えられている場合には、除霜運転開始当初はバイパス回路21側を100%開口とし、流入管12の貯湯タンク2側0%にして、冷媒−水熱交換器14で加熱された高温水を全てバイパス回路21に流し、大量の高温水で空気熱交換器17の除霜を優先させた後、その後除霜の進行状況に応じて流量制御弁24のバイパス回路21側の流量を徐々に絞ると共に、流入管12の貯湯タンク2側の流量を徐々に増加させるようにして、除霜から貯湯タンク2の沸き上げがスムーズに切替られ、更に効率の良い除霜と沸き上げが行われるものである。   Further, when the flow control valve 24 is provided at the connection portion of the bypass circuit 21 to the inflow pipe 12, the bypass circuit 21 side is opened 100% at the beginning of the defrosting operation, and the hot water tank 2 side of the inflow pipe 12 is opened. 0%, all the high-temperature water heated by the refrigerant-water heat exchanger 14 is caused to flow to the bypass circuit 21, and priority is given to defrosting the air heat exchanger 17 with a large amount of high-temperature water, and then the defrosting proceeds. Depending on the situation, the flow rate on the bypass circuit 21 side of the flow rate control valve 24 is gradually reduced and the flow rate on the hot water storage tank 2 side of the inflow pipe 12 is gradually increased so that the hot water storage tank 2 is heated from defrosting. It is switched smoothly and more efficient defrosting and boiling are performed.

尚、この一実施形態では貯湯方式について説明したが、これに限定されることなく、例えば流出管11を直接給水管に接続し、冷媒−水熱交換器14で高温に加熱された温水を途中に給水とのミキシング弁を介して、直接給湯するにした瞬間方式のヒートポンプ式給湯装置でも同様な効果を得られ利用出来るものである。   In addition, although this one embodiment demonstrated the hot water storage system, it is not limited to this, For example, the outflow pipe | tube 11 is directly connected to a water supply pipe | tube, and the hot water heated by the refrigerant-water heat exchanger 14 to the high temperature is halfway In addition, the same effect can be obtained and used even in an instantaneous heat pump type hot water supply apparatus in which hot water is supplied directly via a mixing valve with water supply.

この発明の一実施形態を示すヒートポンプ式給湯装置の概略構成図。The schematic block diagram of the heat pump type hot-water supply apparatus which shows one Embodiment of this invention. 同要部を開閉弁とした状態を示す説明図。Explanatory drawing which shows the state which used the principal part as the on-off valve. 同要部を三方弁とした状態を示す説明図。Explanatory drawing which shows the state which made the principal part the three-way valve. 同要部を流量制御弁とした状態を示す説明図。Explanatory drawing which shows the state which used the principal part as the flow control valve.

符号の説明Explanation of symbols

2 貯湯タンク
11 流出管
12 流入管
13 圧縮機
14 冷媒−水熱交換器
15 減圧器(電子膨張弁)
16 送風ファン
17 空気熱交換器(蒸発器)
18 ヒートポンプ回路
19 ヒートポンプ循環ポンプ
21 バイパス回路
22 開閉弁
23 三方弁
24 流量制御弁
2 Hot water storage tank 11 Outflow pipe 12 Inflow pipe 13 Compressor 14 Refrigerant-water heat exchanger 15 Pressure reducer (electronic expansion valve)
16 Blower 17 Air heat exchanger (evaporator)
18 Heat pump circuit 19 Heat pump circulation pump 21 Bypass circuit 22 On-off valve 23 Three-way valve 24 Flow control valve

Claims (4)

圧縮機、冷媒−水熱交換器、蒸発器を構成する空気熱交換器と送風ファンとでヒートポンプ回路を形成し、冷媒−水熱交換器に給水を供給する流入管と、該冷媒−水熱交換器で加熱された給水を給湯水として直接給湯する流出管とで構成したものに於いて、前記流入管と流出管との間には、前記空気熱交換器の送風ファンによる送風の風上側に備えたバイパス回路を接続した事を特徴とするヒートポンプ式給湯装置。   The compressor, the refrigerant-water heat exchanger, the air heat exchanger constituting the evaporator and the blower fan form a heat pump circuit, an inflow pipe for supplying water to the refrigerant-water heat exchanger, and the refrigerant-water heat An outlet pipe that directly supplies hot water supplied from the exchanger as hot water supply is provided between the inflow pipe and the outflow pipe and is blown up by the blower fan of the air heat exchanger. A heat pump type hot water supply device characterized by connecting a bypass circuit provided in the factory. 湯水を貯湯する貯湯タンクと、圧縮機、前記貯湯タンクと連通され水を加熱する冷媒−水熱交換器、蒸発器を構成する空気熱交換器を接続したヒートポンプ回路と、前記貯湯タンク内の湯水を該貯湯タンク底部に接続した流入管及び貯湯タンク上部に接続した流出管から成るヒーポン循環回路と、前記ヒーポン循環回路にはヒーポン循環ポンプが備えられ、更に前記貯湯タンク底部に接続された給水管と、貯湯タンク上部に接続された出湯管とを備えたものに於いて、前記ヒーポン循環回路から分岐したバイパス回路を、前記空気熱交換器の送風ファンによる送風の風上側に備えた事を特徴とするヒートポンプ式給湯装置。   A hot water storage tank that stores hot water, a compressor, a refrigerant-water heat exchanger that is connected to the hot water storage tank to heat water, a heat pump circuit that connects an air heat exchanger that constitutes an evaporator, and hot water in the hot water storage tank A heat pump circulation circuit comprising an inflow pipe connected to the bottom of the hot water storage tank and an outflow pipe connected to the top of the hot water storage tank, the heat pump circulation circuit comprising a heat pump circulation pump, and a water supply pipe connected to the bottom of the hot water storage tank And a hot water pipe connected to the upper part of the hot water storage tank, wherein a bypass circuit branched from the heat-pump circulation circuit is provided on the windward side of the air blow by the air fan of the air heat exchanger. Heat pump type hot water supply equipment. 前記バイパス回路は、流出管に三方弁を介して一端を接続し、他端を流出管のヒーポン循環ポンプ吸引側に接続することで、空気熱交換器の除霜を行うようにした事を特徴とする請求項2記載のヒートポンプ式給湯装置。   The bypass circuit has one end connected to the outflow pipe via a three-way valve and the other end connected to the suction side of the heat pump circulation pump of the outflow pipe to defrost the air heat exchanger. The heat pump type hot water supply apparatus according to claim 2. 前記バイパス回路は、流出管に貯湯タンク側への流量とバイパス回路側への流量を可変可能とした流量制御弁を介して一端を接続し、他端を流出管のヒーポン循環ポンプ吸引側に接続することで、空気熱交換器の除霜を行うようにした事を特徴とする請求項2記載のヒートポンプ式給湯装置。   The bypass circuit has one end connected to the outflow pipe via a flow rate control valve that can change the flow rate to the hot water storage tank side and the flow rate to the bypass circuit side, and the other end is connected to the heat pump circulation pump suction side of the outflow pipe. The heat pump type hot water supply apparatus according to claim 2, wherein the air heat exchanger is defrosted.
JP2006015724A 2006-01-25 2006-01-25 Heat pump type water heater Pending JP2007198637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006015724A JP2007198637A (en) 2006-01-25 2006-01-25 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006015724A JP2007198637A (en) 2006-01-25 2006-01-25 Heat pump type water heater

Publications (1)

Publication Number Publication Date
JP2007198637A true JP2007198637A (en) 2007-08-09

Family

ID=38453409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006015724A Pending JP2007198637A (en) 2006-01-25 2006-01-25 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP2007198637A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148011A1 (en) * 2008-06-06 2009-12-10 ダイキン工業株式会社 Hot water system
US20100025488A1 (en) * 2008-08-04 2010-02-04 Lg Electronics Inc. Hot water circulation system associated with heat pump and method for controlling the same
JP2011208839A (en) * 2010-03-29 2011-10-20 Rinnai Corp Hot water supply system
CN104864646A (en) * 2014-02-24 2015-08-26 海尔集团公司 Defrosting method for evaporator of air-source heat-pump water heater and air-source heat-pump water heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148011A1 (en) * 2008-06-06 2009-12-10 ダイキン工業株式会社 Hot water system
US20100025488A1 (en) * 2008-08-04 2010-02-04 Lg Electronics Inc. Hot water circulation system associated with heat pump and method for controlling the same
US8794538B2 (en) * 2008-08-04 2014-08-05 Lg Electronics Inc. Hot water circulation system associated with heat pump
JP2011208839A (en) * 2010-03-29 2011-10-20 Rinnai Corp Hot water supply system
CN104864646A (en) * 2014-02-24 2015-08-26 海尔集团公司 Defrosting method for evaporator of air-source heat-pump water heater and air-source heat-pump water heater

Similar Documents

Publication Publication Date Title
JP6226073B2 (en) Hot water system
JP2007322077A (en) Heat pump hot-water supply floor-heating device
JP4839141B2 (en) Heat pump water heater
JP2008096044A (en) Hot water reservoir type hot-water supply device
JP3977241B2 (en) Hot water storage water heater
JP4818780B2 (en) Water heater
JP4875970B2 (en) Heat pump water heater
JP2007198637A (en) Heat pump type water heater
JP4158694B2 (en) Hot water storage type heat pump water heater
JP2006003077A (en) Heat pump type hot water supply apparatus
JP5097054B2 (en) Heat pump water heater
JP2015078773A (en) Hot water storage type water heater
JP4484213B2 (en) Water heater
JP2011141069A (en) Bath device
JP2007198691A (en) Heat pump water heater
JP4148909B2 (en) Heat pump water heater / heater
JP2009068818A (en) Hot water storage type water heater
JP2007147153A (en) Hot-water storage type hot-water supply device
JP2006308123A (en) Storage water heater
JP2007132559A (en) Hot water storage type water heater
JP4354389B2 (en) Hot water storage water heater
JP5571489B2 (en) Hot water storage water heater
JP6734450B2 (en) Heat pump water heater
JP5094217B2 (en) Heat pump water heater
JP2006118752A (en) Storage type water heater