JP2007196206A - Catalyst for methanation of carbon monoxide and method for methanation of carbon monoxide using catalyst - Google Patents

Catalyst for methanation of carbon monoxide and method for methanation of carbon monoxide using catalyst Download PDF

Info

Publication number
JP2007196206A
JP2007196206A JP2006077595A JP2006077595A JP2007196206A JP 2007196206 A JP2007196206 A JP 2007196206A JP 2006077595 A JP2006077595 A JP 2006077595A JP 2006077595 A JP2006077595 A JP 2006077595A JP 2007196206 A JP2007196206 A JP 2007196206A
Authority
JP
Japan
Prior art keywords
catalyst
methanation
concentration
carbon monoxide
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006077595A
Other languages
Japanese (ja)
Other versions
JP4689508B2 (en
Inventor
Takayoshi Mizuno
隆喜 水野
Katsuhiro Kino
勝博 城野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2006077595A priority Critical patent/JP4689508B2/en
Publication of JP2007196206A publication Critical patent/JP2007196206A/en
Application granted granted Critical
Publication of JP4689508B2 publication Critical patent/JP4689508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for removing carbon monoxide enabling methanation of carbon monoxide selectively at high activity even at low temperatures. <P>SOLUTION: The catalyst for methanation of carbon monoxide is provided in which ruthenium is supported on a carrier consisting of two or more kinds of oxides selected from zirconium oxide, nickel oxide, cobalt oxide and cerium oxide, and the content of ruthenium is in a range of 1 to 15% by weight as a Ru metal, wherein the catalyst has a specific surface area in a range of 30 to 200 m<SP>2</SP>/g and a pore volume in a range of 0.10 to 0.45 ml/g. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水素含有ガス中の一酸化炭素除去用触媒および該触媒を用いた一酸化炭素の除去方法に関する。さらに詳しくは、低温でも高活性で選択的に一酸化炭素をメタン化(メタネーション)できる一酸化炭素除去用触媒および該触媒を用いた一酸化炭素の除去方法に関する。   The present invention relates to a catalyst for removing carbon monoxide in a hydrogen-containing gas and a method for removing carbon monoxide using the catalyst. More particularly, the present invention relates to a carbon monoxide removal catalyst that can selectively methanate carbon monoxide with high activity even at low temperatures, and a carbon monoxide removal method using the catalyst.

近年、燃料電池による発電は、低公害でエネルギーロスが少なことから、注目を集めており、実用化に向けた研究開発が進められている。
燃料電池には、燃料や電解質の種類あるいは作動温度等によって種々のタイプのものが知られているが、中でも水素を還元剤(活物質)とし、酸素あるいは空気等を酸化剤とする水素−酸素燃料電池(低温作動型の燃料電池)の開発が最も進んでいる。
In recent years, power generation using fuel cells has been attracting attention because of its low pollution and low energy loss, and research and development for practical use is being promoted.
Various types of fuel cells are known, depending on the type of fuel and electrolyte, operating temperature, etc. Among them, hydrogen-oxygen using hydrogen as a reducing agent (active material) and oxygen or air or the like as an oxidizing agent. The development of fuel cells (low temperature operation type fuel cells) is the most advanced.

水素−酸素燃料電池には電解質の種類や電極等の種類によって種々のタイプのものがあり、その代表的なものとして、例えば、リン酸型燃料電池、固体高分子型燃料電池などがある。このような燃料電池には、多くの場合、電極に白金触媒が使用されている。ところが、電極に用いている白金は一酸化炭素(以下、COともいう。)によって被毒されやすいので、燃料中にCOがあるレベル以上含まれていると発電性能が低下したり、濃度によっては全く発電ができなくなってしまうという重大な問題点がある。   There are various types of hydrogen-oxygen fuel cells depending on the type of electrolyte, the type of electrodes, and the like, and typical examples include phosphoric acid fuel cells and solid polymer fuel cells. In such fuel cells, platinum catalysts are often used for electrodes. However, platinum used in the electrode is easily poisoned by carbon monoxide (hereinafter also referred to as CO). Therefore, if the fuel contains more than a certain level of CO, the power generation performance may be reduced or depending on the concentration. There is a serious problem that power generation becomes impossible.

このCO被毒による触媒の活性劣化は、特に低温ほど著しいので、この問題は、低温作動型の燃料電池の場合に特に深刻となる。
したがって、こうした白金系電極触媒を用いる燃料電池の燃料としては純粋な水素が好ましいが、実用的な点からは安価で貯蔵性等に優れたあるいは既に公共的な供給システムが完備されている各種の燃料、例えば、メタン、天然ガス(LNG)、プロパン、ブタン等の石油ガス(LPG)、ナフサ、ガソリン、灯油、軽油等の各種の炭化水素系燃料あるいはメタノール等のアルコール系燃料、あるいは都市ガス、その他の水素製造用燃料等の水蒸気改質等によって得られる水素含有ガスを用いることが一般的になっており、このような改質設備を組み込んだ燃料電池発電システムの普及が進められている。しかしながら、こうした改質ガス中には、一般に、水素の他にかなりの濃度のCOが含まれているので、このCOを白金系電極触媒に無害なものに転化し、燃料中のCO濃度を減少させる技術の開発が強く望まれている。例えば、固体高分子型燃料電池ではCO濃度を、通常100容量ppm以下、好ましくは50容量ppm以下、更に好ましくは10容量ppm以下という低濃度にまで低減することが望ましいとされている。
The deterioration of the activity of the catalyst due to CO poisoning is particularly remarkable at low temperatures, and this problem becomes particularly serious in the case of a low temperature operation type fuel cell.
Therefore, pure hydrogen is preferable as a fuel for a fuel cell using such a platinum-based electrode catalyst. However, from a practical point of view, it is inexpensive and has excellent storage properties or is already equipped with a public supply system. Fuel, for example, methane, natural gas (LNG), petroleum gas (LPG) such as propane, butane, various hydrocarbon fuels such as naphtha, gasoline, kerosene, light oil, alcohol fuels such as methanol, city gas, It has become common to use hydrogen-containing gas obtained by steam reforming of other fuels for hydrogen production or the like, and fuel cell power generation systems incorporating such reforming equipment are being promoted. However, since these reformed gases generally contain a considerable concentration of CO in addition to hydrogen, this CO is converted into a harmless to the platinum-based electrode catalyst, and the CO concentration in the fuel is reduced. There is a strong demand for the development of technologies that can be used. For example, in a polymer electrolyte fuel cell, it is desirable to reduce the CO concentration to a low concentration of usually 100 ppm by volume or less, preferably 50 ppm by volume or less, more preferably 10 ppm by volume or less.

上記の問題を解決するために、燃料ガス(改質ガス中の水素含有ガス)中のCOの濃度を低減させる手段の一つとして、下記の式(1)で表されるシフト反応(水性ガスシフト反応)を利用する技術が提案されている。   In order to solve the above problem, as one of means for reducing the concentration of CO in the fuel gas (hydrogen-containing gas in the reformed gas), a shift reaction represented by the following formula (1) (water gas shift) A technique using reaction) has been proposed.

CO + H2O = CO2 + H2 (1 )
しかしながら、このシフト反応のみによる反応では、化学平衡上の制約からCO濃度の低減には限界があり、一般に、CO濃度を1%以下にするのは困難であった。そこで、CO濃度をより低濃度まで低減する手段として、改質ガス中に酸素または酸素含有ガス(空気等)を導入し、COをCO2に変換する方法が提案されている。
CO + H 2 O = CO 2 + H 2 (1)
However, in the reaction using only this shift reaction, there is a limit to the reduction of the CO concentration due to restrictions on chemical equilibrium, and it is generally difficult to reduce the CO concentration to 1% or less. Therefore, as a means for reducing the CO concentration to a lower concentration, a method has been proposed in which oxygen or an oxygen-containing gas (air or the like) is introduced into the reformed gas and CO is converted to CO 2 .

しかしながら、この場合改質ガス中には水素が多量存在しているため、COを酸化しよ
うとすると水素も酸化されてしまい、水素がロスするとともにCOの除去が不充分となることがあった。
However, in this case, since a large amount of hydrogen is present in the reformed gas, hydrogen is also oxidized when attempting to oxidize CO, resulting in loss of hydrogen and insufficient removal of CO.

ところで、最近COを水素でメタネーション(以下、メタン化ともいう。)することによりメタンに変換する方法も見直されている。例えば、特開平3−93602号公報(特許文献1)、特開平11−86892号公報(特許文献2)には、γ−アルミナ担体にRuを担持した触媒(Ru/γ−アルミナ触媒)と、COを含有する水素ガスを接触させる方法が開示されている。しかし、水素ガスに二酸化炭素(CO2)が含まれている場合、
副反応である二酸化炭素のメタン化反応も起こり、それだけ水素が消費され望ましくない。したがって、主反応であるCOのメタン化反応の活性が高く、選択率の高い(二酸化炭素のメタン化反応の少ない)触媒の開発が望まれている。
Recently, a method of converting CO to methane by methanation with hydrogen (hereinafter also referred to as methanation) has been reviewed. For example, in JP-A-3-93602 (Patent Document 1) and JP-A-11-86892 (Patent Document 2), a catalyst (Ru / γ-alumina catalyst) in which Ru is supported on a γ-alumina carrier, A method of contacting hydrogen gas containing CO is disclosed. However, if the hydrogen gas contains carbon dioxide (CO 2 ),
Carbon dioxide methanation, which is a side reaction, also occurs and hydrogen is consumed, which is undesirable. Therefore, it is desired to develop a catalyst having a high CO methanation reaction, which is the main reaction, and a high selectivity (less carbon dioxide methanation reaction).

上記問題点を解決するために無機酸化物担体にRu化合物とアルカリ金属化合物および/またはアルカリ土類金属化合物を担持した触媒が提案されている(特許文献3:特開2002−068707号公報)。
特開平3−93602号公報 特開平11−86892号公報 特開2002−068707号公報
In order to solve the above problems, a catalyst in which an Ru compound and an alkali metal compound and / or an alkaline earth metal compound are supported on an inorganic oxide carrier has been proposed (Patent Document 3: JP 2002-068707 A).
Japanese Patent Laid-Open No. 3-93602 JP-A-11-86892 JP 2002-068707 A

しかしながら、上記従来の触媒、特に低温作動型の燃料電池用電極触媒では、活性が不充分であったり、時に暴走反応により反応温度が急激に上昇するなどの問題があった。
すなわち、反応温度が低い場合であっても、主反応である一酸化炭素のメタネーション反応の選択率および活性が高く、水素含有ガス中の一酸化炭素を効果的に除去できる触媒および除去方法を提供することが望まれていた。
However, the above-mentioned conventional catalysts, particularly low temperature operation type fuel cell electrode catalysts, have problems such as insufficient activity and sometimes a rapid increase in reaction temperature due to runaway reaction.
That is, even when the reaction temperature is low, a catalyst and a removal method that can effectively remove carbon monoxide in a hydrogen-containing gas with high selectivity and activity of the methanation reaction of carbon monoxide, which is the main reaction. It was desired to provide.

このような情況のもと、本発明者らは前記課題を解決すべく鋭意検討した結果、酸化ジルコニウム、酸化ニッケル、酸化コバルト、酸化セリウムから選ばれる2種以上の酸化物からなる担体に所定量のルテニウムが担持されてなる触媒は反応温度が低い場合であってもCOのメタン化反応において高い活性および選択性を発現すること見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have intensively studied to solve the above problems, and as a result, a predetermined amount is added to a carrier composed of two or more oxides selected from zirconium oxide, nickel oxide, cobalt oxide, and cerium oxide. It has been found that the catalyst on which ruthenium is supported exhibits high activity and selectivity in the CO methanation reaction even when the reaction temperature is low, and the present invention has been completed.

すなわち、本発明の構成は以下の通りである。
[1]酸化ジルコニウム、酸化ニッケル、酸化コバルト、酸化セリウムから選ばれる2種以
上の酸化物からなる担体にルテニウムが担持されてなり、ルテニウムの含有量がRu金属として1〜15重量%の範囲にある一酸化炭素メタネーション用触媒。
[2]比表面積が30〜200m2/gの範囲にあり、細孔容積が0.10〜0.45ml/gの範囲にある[1]の一酸化炭素メタネーション用触媒。
[3]酸化物担体が、酸化コバルトを必須成分として含む[1]または[2]の一酸化炭素メタネ
ーション用触媒。
[4]酸化物担体が、ZrO2-CeO2-CoO、ZrO2-NiO、ZrO2-CeO2、ZrO2-CoO-NiO、NiO-CoO、CoO-CeO2、NiO-CoO-CeO2、ZrO2-
NiO-CoO-CeO2の組み合わせのいずれかを含む[1]〜[3]のメタネーション用触媒

[5]触媒中のClの含有量が酸化物担体の1.0重量%以下である[1]〜[4]の一酸化炭素
メタネーション用触媒。
[6][1]〜[5]のメタネーション用触媒と一酸化炭素ガス含有水素ガスと接触させる一酸化
炭素のメタネーション方法。
[7]前記接触させる際の温度(反応温度)が120〜200℃の範囲にある[6]のメタネーション方法。
That is, the configuration of the present invention is as follows.
[1] Ruthenium is supported on a support made of two or more oxides selected from zirconium oxide, nickel oxide, cobalt oxide, and cerium oxide, and the content of ruthenium is in the range of 1 to 15% by weight as Ru metal. A catalyst for carbon monoxide methanation.
[2] The catalyst for carbon monoxide methanation having a specific surface area in the range of 30 to 200 m 2 / g and a pore volume in the range of 0.10 to 0.45 ml / g.
[3] The catalyst for carbon monoxide methanation according to [1] or [2], wherein the oxide support contains cobalt oxide as an essential component.
[4] The oxide support is ZrO 2 —CeO 2 —CoO, ZrO 2 —NiO, ZrO 2 —CeO 2 , ZrO 2 —CoO—NiO, NiO—CoO, CoO—CeO 2 , NiO—CoO—CeO 2 , ZrO 2-
A catalyst for methanation of [1] to [3] comprising any combination of NiO—CoO—CeO 2 .
[5] The catalyst for carbon monoxide methanation [1] to [4], wherein the content of Cl in the catalyst is 1.0% by weight or less of the oxide support.
[6] A method for methanation of carbon monoxide in which the catalyst for methanation according to [1] to [5] is brought into contact with hydrogen gas containing carbon monoxide gas.
[7] The methanation method according to [6], wherein a temperature (reaction temperature) for the contact is in a range of 120 to 200 ° C.

本発明によると、特定の無機酸化物からなる担体にRuが所定量担持されているために反応温度が低い場合であっても、主反応である一酸化炭素のメタネーション反応の選択率および活性が高く、水素含有ガス中の一酸化炭素を効果的に除去できる触媒および除去方法を提供することができる。   According to the present invention, the selectivity and activity of the methanation reaction of carbon monoxide, which is the main reaction, even when the reaction temperature is low because a predetermined amount of Ru is supported on a carrier made of a specific inorganic oxide. Therefore, it is possible to provide a catalyst and a removal method that can effectively remove carbon monoxide in a hydrogen-containing gas.

以下、本発明を実施するための形態について説明する。
[触媒]
本発明に係る一酸化炭素メタネーション用触媒は、酸化ジルコニウム、酸化ニッケル、酸化コバルト、酸化セリウムから選ばれる2種以上の酸化物からなる担体にルテニウムが担持されてなり、ルテニウムの含有量がRu金属として1〜15重量%にある。
Hereinafter, modes for carrying out the present invention will be described.
[catalyst]
The catalyst for carbon monoxide methanation according to the present invention comprises ruthenium supported on a carrier composed of two or more oxides selected from zirconium oxide, nickel oxide, cobalt oxide, and cerium oxide, and the content of ruthenium is Ru. 1 to 15% by weight as metal.

ルテニウムは活性成分であり、前記担体に担持されている。触媒中のルテニウム含有量は、Ru金属としてより好ましくは、2〜12重量%の範囲にある。触媒中のルテニウムの含有量が少ないと活性が不充分となることがある。また、多すぎても活性は高いもののCO2のメタネーション反応が起こり、選択性が低下することがある。 Ruthenium is an active ingredient and is supported on the carrier. The ruthenium content in the catalyst is more preferably in the range of 2 to 12% by weight as Ru metal. If the content of ruthenium in the catalyst is low, the activity may be insufficient. If the amount is too large, the activity is high, but the methanation reaction of CO 2 occurs and the selectivity may be lowered.

本発明に用いる担体は酸化ジルコニウム、酸化ニッケル、酸化コバルト、酸化セリウムから選ばれる2種以上の酸化物からなる。特に、酸化コバルトを必須成分として含むことが好ましい。具体的にはZrO2-CoO、ZrO2-NiO、ZrO2-CeO2、ZrO2-
CoO-NiO、NiO-CoO、CoO-CeO2、NiO-CoO-CeO2、ZrO2-N
iO-CoO-CeO2等の組み合わせが好適である。これらは複合酸化物であっても、混
合物であっても、いずれであってもよい。
The carrier used in the present invention comprises two or more oxides selected from zirconium oxide, nickel oxide, cobalt oxide, and cerium oxide. In particular, it is preferable to contain cobalt oxide as an essential component. Specifically, ZrO 2 —CoO, ZrO 2 —NiO, ZrO 2 —CeO 2 , ZrO 2
CoO—NiO, NiO—CoO, CoO—CeO 2 , NiO—CoO—CeO 2 , ZrO 2 —N
A combination such as iO—CoO—CeO 2 is preferable. These may be complex oxides, mixtures, or any of them.

触媒中の酸化コバルトの含有量はCoOとして20〜60重量%、さらには25〜55重量%の範囲にあることが好ましい。触媒中の酸化コバルトの含有量が少ないと、他の担体成分との複合化が不充分であったり、他の担体成分の分散性が不充分となるためか活性が不充分となることがある。   The content of cobalt oxide in the catalyst is preferably 20 to 60% by weight, more preferably 25 to 55% by weight as CoO. If the content of cobalt oxide in the catalyst is low, the activity may be insufficient due to insufficient complexation with other carrier components or insufficient dispersibility of other carrier components. .

触媒中の酸化コバルトの含有量が多すぎても他の担体成分の含有量が不充分となるために活性が不充分となることがある。このような範囲で酸化コバルトが含まれていると、触媒の比表面積が高く、活性、選択性に優れている。   Even if the content of cobalt oxide in the catalyst is too high, the activity may be insufficient because the content of other carrier components is insufficient. When cobalt oxide is contained in such a range, the specific surface area of the catalyst is high and the activity and selectivity are excellent.

触媒中に酸化ジルコニウムを含む場合、その含有量は、ZrO2として30〜75重量
、さらには35〜70重量%の範囲にあることが好ましい。
上記範囲で酸化ジルコニウムが含まれていると、触媒の比表面積が高く、活性、選択性に優れている。
When zirconium oxide is contained in the catalyst, the content thereof is preferably 30 to 75% by weight, more preferably 35 to 70% by weight as ZrO 2 .
When zirconium oxide is contained in the above range, the specific surface area of the catalyst is high and the activity and selectivity are excellent.

他の酸化物成分としては、前記各酸化物を含む場合に、触媒中の酸化ニッケルの含有量はNiOとして2〜40重量%、さらには3〜30重量%の範囲にあることが好ましい。さらに触媒中の酸化セリウムはCeO2として10〜75重量%、さらには40〜70重
量%の範囲にあることが好ましい。
As another oxide component, when each said oxide is included, it is preferable that content of nickel oxide in a catalyst exists in the range of 2-40 weight% as NiO, Furthermore, it is 3-30 weight%. Further cerium oxide in the catalyst is 10 to 75% by weight as CeO 2, and more preferably in the range of 40 to 70 wt%.

上記触媒が酸化セリウムを含む場合は、高活性で反応温度による活性変化が少なく、このため暴走反応(反応温度調整ができない程に発熱反応を伴う)を起こすことのない一酸化炭素除去用触媒を得ることができる。なお、触媒中の酸化セリウムの含有量が上記範囲
にあると反応温度による活性、選択性の変化が小さく、安定的な運転(反応)が可能である。
When the above catalyst contains cerium oxide, a catalyst for removing carbon monoxide that has high activity and little activity change due to the reaction temperature, and therefore does not cause a runaway reaction (with an exothermic reaction that cannot be adjusted). Obtainable. When the content of cerium oxide in the catalyst is in the above range, changes in activity and selectivity depending on the reaction temperature are small, and stable operation (reaction) is possible.

このような触媒は、比表面積が30〜200m2/g、さらには60〜120m2/gの範囲にあることが好ましい。触媒の比表面積が小さい場合は、活性が不充分となり、高いSV(空塔速度)での運転か困難となる。また触媒の比表面積が大きすぎても、長時間運転した場合に活性、選択性の低下が大きくなる傾向にある。 Such a catalyst preferably has a specific surface area of 30 to 200 m 2 / g, more preferably 60 to 120 m 2 / g. When the specific surface area of the catalyst is small, the activity becomes insufficient, and it becomes difficult to operate at a high SV (superficial velocity). Moreover, even if the specific surface area of the catalyst is too large, the activity and selectivity tend to decrease greatly when operated for a long time.

また、触媒の細孔容積は0.10〜0.45ml/g、さらには0.15〜0.30ml/gの範囲にあることが好ましい。触媒の細孔容積が少ない場合は、充分な活性が得られないことがある。触媒の細孔容積が大きいものは、本発明の組成範囲では得ることが困難である。   The pore volume of the catalyst is preferably in the range of 0.10 to 0.45 ml / g, more preferably 0.15 to 0.30 ml / g. When the pore volume of the catalyst is small, sufficient activity may not be obtained. A catalyst having a large pore volume is difficult to obtain in the composition range of the present invention.

本発明に係る一酸化炭素メタネーション用触媒は、担体成分および活性成分が前記した範囲にあり、触媒の比表面積および細孔容積が前記した範囲にあり、一酸化炭素のメタネーションに用いることができれば特に制限はなく従来公知の方法によって製造することができる。   In the catalyst for carbon monoxide methanation according to the present invention, the support component and the active component are in the above-mentioned range, the specific surface area and pore volume of the catalyst are in the above-mentioned range, and used for carbon monoxide methanation. If possible, there is no particular limitation, and it can be produced by a conventionally known method.

例えば、担体成分原料としてジルコニウム塩、ニッケル塩、コバルト塩、セリウム塩の2種以上からなる混合塩水溶液を調製する。
ジルコニウム塩としては硝酸ジルコニウム、塩化ジルコニウム、塩化ジルコニル、硫酸ジルコニウム、酢酸ジルコニウム、硝酸ジルコニル、硫酸ジルコニル、炭酸ジルコニウム等が用いられ、ニッケル塩としては硝酸ニッケル、硫酸ニッケル、塩化ニッケル、酢酸ニッケル、炭酸ニッケル等が用いられ、コバルト塩としては硝酸コバルト、硫酸コバルト、塩化コバルト、酢酸コバルト等が用いられ、セリウム塩としては硝酸セリウム、塩化セリウム、硫酸セリウム等が用いられる。
For example, a mixed salt aqueous solution comprising two or more of a zirconium salt, a nickel salt, a cobalt salt, and a cerium salt is prepared as a carrier component raw material.
Zirconium nitrate, zirconium chloride, zirconyl chloride, zirconium sulfate, zirconium acetate, zirconyl nitrate, zirconyl sulfate, zirconium carbonate, etc. are used. Nickel salts include nickel nitrate, nickel sulfate, nickel chloride, nickel acetate, nickel carbonate. As the cobalt salt, cobalt nitrate, cobalt sulfate, cobalt chloride, cobalt acetate and the like are used, and as the cerium salt, cerium nitrate, cerium chloride, cerium sulfate and the like are used.

混合塩水溶液は、所望の酸化物量比となるように使用される、このとき、合計の酸化物としての濃度が概ね7.5重量%以下の範囲にあることが好ましい。混合塩水溶液の濃度が多いと、触媒の比表面積が小さく、十分な活性が得られないことがある。   The mixed salt aqueous solution is used so as to have a desired oxide amount ratio. At this time, it is preferable that the concentration as a total oxide is in a range of approximately 7.5% by weight or less. When the concentration of the mixed salt aqueous solution is high, the specific surface area of the catalyst is small and sufficient activity may not be obtained.

ついで、混合塩水溶液に塩基性化合物の水溶液を加えて中和し、必要に応じて熟成してヒドロゲルを調製する。塩基性化合物としてはNaOH、KOH等のアルカリ金属水溶液、アンモニア、テトラメチルアンモニウムハイドロオキサイド等を用いることができる。   Next, an aqueous solution of a basic compound is added to the mixed salt aqueous solution to neutralize it, and it is aged as necessary to prepare a hydrogel. As the basic compound, an aqueous alkali metal solution such as NaOH and KOH, ammonia, tetramethylammonium hydroxide and the like can be used.

熟成する際の温度は通常30〜100℃の範囲が好ましく、時間は通常0.5〜24時間程度である。
ついで、ヒドロゲルを濾過し、洗浄する。洗浄方法は副生する塩化ナトリウム等の塩を除去できれば特に制限はなく従来公知の方法を採用することができる。例えば、温水を充分掛ける方法、アンモニア水を掛ける方法、限外濾過膜法等は好適に採用することができる。
The temperature for aging is usually preferably in the range of 30 to 100 ° C., and the time is usually about 0.5 to 24 hours.
The hydrogel is then filtered and washed. The washing method is not particularly limited as long as it can remove by-produced salt such as sodium chloride, and a conventionally known method can be adopted. For example, a method of sufficiently applying warm water, a method of applying ammonia water, an ultrafiltration membrane method and the like can be suitably employed.

濾過洗浄後に得られたゲルから担体を調製する。
調製方法として、主に2つの方法があり、1つは洗浄したゲルを乾燥し、焼成し、得られた混合酸化物粉体は必要に応じて粉砕し、錠剤成型器等で成型する方法である。
A carrier is prepared from the gel obtained after filtration and washing.
There are two main preparation methods. One is to dry the washed gel and calcinate it, and then the resulting mixed oxide powder is pulverized if necessary and molded with a tablet molding machine. is there.

他の1つの方法は、洗浄したゲルを、必要に応じてセルローズ等の成型助剤を加え、水分調整、加熱濃縮、捏和、混練等した後、押出成型器等によりペレットとし、必要に応じてペレットをマルメライザー、転動造粒機等で球状とし、ついで、乾燥し、焼成する方法である。   Another method is to add a molding aid such as cellulose to the washed gel as necessary, adjust the moisture, heat and concentrate, knead, knead, etc., and then form a pellet with an extruder, etc. In this method, the pellets are formed into a spherical shape with a malmerizer, a rolling granulator or the like, then dried and fired.

焼成して得た担体に、ついでルテニウム成分を担持する。担持する方法としては、所定量のルテニウム成分を担持することができれば特に制限はないが、通常、担体の細孔容積に相当するルテニウム塩水溶液を調製し、担体に吸収させ、ついで乾燥する。   The carrier obtained by firing is then loaded with a ruthenium component. The method of supporting is not particularly limited as long as a predetermined amount of the ruthenium component can be supported. Usually, an aqueous ruthenium salt solution corresponding to the pore volume of the support is prepared, absorbed on the support, and then dried.

ルテニウム塩としては塩化ルテニウム、硝酸ルテニウムなどが用いられる。ルテニウム塩水溶液の濃度は、通常、所定量、すなわち得られる触媒中のRuの含有量が1〜15重量%となるようにルテニウムが担持できる濃度とするが、ルテニウム塩水溶液の濃度が低い場合は、吸収および乾燥を繰り返し行うこともできる。   As the ruthenium salt, ruthenium chloride, ruthenium nitrate or the like is used. The concentration of the ruthenium salt aqueous solution is usually a predetermined amount, that is, a concentration at which ruthenium can be supported so that the Ru content in the obtained catalyst is 1 to 15% by weight, but when the concentration of the ruthenium salt aqueous solution is low, The absorption and drying can be repeated.

乾燥条件は特に制限はないが、通常80〜200℃で乾燥する。乾燥した後、還元ガス雰囲気下、100〜700℃、好ましくは150〜400℃で還元して一酸化炭素メタネーション用触媒を得ることができる。   The drying conditions are not particularly limited, but are usually dried at 80 to 200 ° C. After drying, the catalyst for carbon monoxide methanation can be obtained by reduction at 100 to 700 ° C., preferably 150 to 400 ° C. in a reducing gas atmosphere.

なお、ルテニウム塩として特に塩化ルテニウムを用いた場合は、乾燥した後、Clを洗浄して除去することが好ましい。この場合の乾燥温度は100〜200℃の範囲が好ましい。乾燥温度が100℃未満の場合は塩化ルテニウムが担体に固定化されず、洗浄する際に塩化ルテニウムが溶解して脱離し、所定量のルテニウムを担持できないことがある。乾燥温度が200℃を超えると担体の種類によってはClが容易に除去できないことがある。   In particular, when ruthenium chloride is used as the ruthenium salt, it is preferable to remove Cl by washing after drying. The drying temperature in this case is preferably in the range of 100 to 200 ° C. When the drying temperature is less than 100 ° C., ruthenium chloride is not immobilized on the carrier, and ruthenium chloride dissolves and desorbs during washing, and a predetermined amount of ruthenium may not be supported. If the drying temperature exceeds 200 ° C., Cl may not be easily removed depending on the type of support.

洗浄する方法としては、乾燥した担体を温水あるいはアンモニアを含む温水に分散させ、ついで、濾過し、必要に応じてさらに温水あるいはアンモニアを含む温水を掛けて洗浄し、80〜200℃で乾燥する方法が一般的である。   As a method for washing, a method in which a dried carrier is dispersed in warm water or warm water containing ammonia, then filtered, washed with warm water or warm water containing ammonia as necessary, and dried at 80 to 200 ° C. Is common.

洗浄後のClの含有量は酸化物担体重量の1.0重量%以下、さらには0.5重量%以下であることが好ましい。Clの含有量が酸化物担体の1.0重量%を超えると金属Ruの粒子径が大きくなりすぎて活性が大きく低下することがあり、Clの含有量が1.0重量%以下、特に0.5重量%以下であると、還元後の金属Ruの粒子径が小さく、活性に優れた一酸化炭素メタネーション用触媒を得ることができる。   The Cl content after washing is preferably 1.0% by weight or less, more preferably 0.5% by weight or less of the weight of the oxide support. When the Cl content exceeds 1.0% by weight of the oxide support, the particle size of the metal Ru becomes too large and the activity may be greatly reduced, and the Cl content is 1.0% by weight or less, particularly 0%. When the content is 5% by weight or less, a catalyst for carbon monoxide methanation having a small particle size of metal Ru after reduction and excellent activity can be obtained.

還元雰囲気ガスとしては通常、水素ガスあるいは水素ガスと窒素ガス等不活性ガスとの混合ガスが用いられる。
還元する際の温度が100℃未満の場合は、特にRuの還元が不十分となり、十分な活性が得られないことがある。
As the reducing atmosphere gas, hydrogen gas or a mixed gas of hydrogen gas and inert gas such as nitrogen gas is usually used.
If the temperature during the reduction is less than 100 ° C., the reduction of Ru is particularly insufficient, and sufficient activity may not be obtained.

還元する際の温度が700℃を超えると焼結が起こり、得られる触媒の比表面積が小さく、活性が不充分となることがある。
還元する際の時間は温度によっても異なるが、通常0.5〜12時間である。
If the temperature at the time of reduction exceeds 700 ° C., sintering occurs, the specific surface area of the resulting catalyst is small, and the activity may be insufficient.
Although the time for reduction varies depending on the temperature, it is usually 0.5 to 12 hours.

このようにして得られた本発明に係る一酸化炭素メタネーション用触媒は酸化ジルコニウム、酸化ニッケル、酸化コバルト、酸化セリウムから選ばれる2種以上の酸化物からなる担体にルテニウムが担持されてなり、ルテニウムの含有量がRu金属として1〜15重量%、酸化ニッケルがNiOとして2〜40重量%、酸化コバルトがCoOとして20〜60重量%、酸化ジルコニウムがZrO2として30〜75重量%、酸化セリウムがCe
2として30〜75重量%の範囲にあり、比表面積が30〜200m2/gの範囲にあり、細孔容積が0.10〜0.45ml/gの範囲にある。
The thus obtained catalyst for carbon monoxide methanation according to the present invention comprises ruthenium supported on a carrier composed of two or more oxides selected from zirconium oxide, nickel oxide, cobalt oxide and cerium oxide, Ruthenium content is 1 to 15% by weight as Ru metal, nickel oxide is 2 to 40% by weight as NiO, cobalt oxide is 20 to 60% by weight as CoO, zirconium oxide is 30 to 75% by weight as ZrO 2 , cerium oxide Is Ce
O 2 is in the range of 30 to 75% by weight, the specific surface area is in the range of 30 to 200 m 2 / g, and the pore volume is in the range of 0.10 to 0.45 ml / g.

また、一酸化炭素メタネーション用触媒の形状等は特に制限はなく、反応方法、反応条件等によって適宜選択することができ、微粉体をそのまま用いることもでき、微粉体を加
圧成型して用いることもでき、ペレット状に押出成型したもの、さらにはペレットを球状(ビード状)にしたものも好適に用いることができる。
Further, the shape of the catalyst for carbon monoxide methanation is not particularly limited, and can be appropriately selected depending on the reaction method, reaction conditions, etc. The fine powder can be used as it is, and the fine powder is used after being pressure-molded. It is also possible to suitably use a material formed by extrusion molding into a pellet shape, and further a spherical shape (bead shape) of the pellet.

つぎに、本発明に係る一酸化炭素のメタネーション方法について説明する。
本発明に係る一酸化炭素のメタネーション方法は、メタネーション用触媒と一酸化炭素ガス含有水素ガスと接触させることを特徴としている。
Next, the carbon monoxide methanation method according to the present invention will be described.
The methanation method for carbon monoxide according to the present invention is characterized in that the methanation catalyst is brought into contact with a hydrogen gas containing carbon monoxide gas.

メタネーション用触媒としては前記した触媒を用いる。
一酸化炭素ガス含有水素ガスとしては燃料ガス(改質ガス中の水素含有ガス)が用いられ、このガスは通常、水素ガス、一酸化炭素ガス、二酸化炭素ガス、および水蒸気等を含んでおり、メタンを含む場合もある。
As the methanation catalyst, the aforementioned catalyst is used.
As the carbon monoxide gas-containing hydrogen gas, a fuel gas (hydrogen-containing gas in the reformed gas) is used, and this gas usually contains hydrogen gas, carbon monoxide gas, carbon dioxide gas, water vapor, and the like. May contain methane.

本発明に用いる燃料ガス中の水素ガスの濃度は71〜89vol%、一酸化炭素ガス濃度
は0.3〜1.0vol%、二酸化炭素ガス濃度は10〜25vol%、メタンガス濃度0〜3.0vol%(ガス組成)である。さらにその燃料中のガスに対して水蒸気を20vol%〜70vol%の割合で含んでいる。
The hydrogen gas concentration in the fuel gas used in the present invention is 71 to 89 vol%, the carbon monoxide gas concentration is 0.3 to 1.0 vol%, the carbon dioxide gas concentration is 10 to 25 vol%, and the methane gas concentration is 0 to 3.0 vol%. % (Gas composition). Furthermore, it contains water vapor at a ratio of 20 vol% to 70 vol% with respect to the gas in the fuel.

メタネーション用触媒と一酸化炭素ガス含有水素ガスとを接触させる際の温度(以下、反応温度という)は100〜250℃、さらには130〜190℃の範囲にあることが好ましい。   The temperature at which the methanation catalyst and carbon monoxide gas-containing hydrogen gas are brought into contact (hereinafter referred to as reaction temperature) is preferably in the range of 100 to 250 ° C, more preferably 130 to 190 ° C.

反応温度が100℃未満の場合は、反応ガス中に含まれる水蒸気が凝縮し、継続的に反応を行うことが困難である。
反応温度が250℃を超えると、COシフト反応(CO+H2O→CO2+H2)の温度
域となり、COシフト反応により転化することのできる一酸化炭素をメタネーション反応により、メタン化するため、燃料ガス中に含まれる、水素濃度が著しく低下してしまう。
When the reaction temperature is less than 100 ° C., the water vapor contained in the reaction gas is condensed and it is difficult to carry out the reaction continuously.
When the reaction temperature exceeds 250 ° C., it becomes the temperature range of the CO shift reaction (CO + H 2 O → CO 2 + H 2 ), and carbon monoxide that can be converted by the CO shift reaction is methanated by the methanation reaction. The hydrogen concentration contained in the fuel gas is significantly reduced.

このような、本発明に係る一酸化炭素のメタネーション方法で処理された燃料ガスは、一酸化炭素ガス濃度が20ppm以下に除去されている。このため、燃料電池の燃料ガスとして好適である。
[実施例]
以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により限定されるものではない。
[実施例1]
メタネーション用触媒(1)の調製
硝酸コバルト・6水和物31.07g、硝酸ジルコニル水溶液(ZrO2濃度:25重
量%)41.37gおよび硝酸ニッケル・6水和物6.23gを水492.8gに加えて混合水溶液(1)を調製した。
The fuel gas treated by such a carbon monoxide methanation method according to the present invention has a carbon monoxide gas concentration of 20 ppm or less. For this reason, it is suitable as a fuel gas for a fuel cell.
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited by these Examples.
[Example 1]
Preparation of catalyst for methanation (1) 31.07 g of cobalt nitrate hexahydrate, 41.37 g of zirconyl nitrate aqueous solution (ZrO 2 concentration: 25% by weight) and 6.23 g of nickel nitrate hexahydrate were added to 492. In addition to 8 g, a mixed aqueous solution (1) was prepared.

濃度1.224重量%の水酸化ナトリウム水溶液1428.6gを撹拌しながらこれに混合水溶液(1)を添加してヒドロゲルを調製し、ついで、80℃にて2時間熟成した。
熟成したヒドロゲルを濾過し、充分な温水を掛けて洗浄し、120℃で1昼夜乾燥し、ついで、550℃で1時間、大気中にて焼成を行い、酸化コバルト、酸化ニッケルおよび酸化ジルコニウムからなる複合酸化物粉体(1)を得た。
A hydrogel was prepared by adding 1428.6 g of a sodium hydroxide aqueous solution having a concentration of 1.224% by weight with stirring to the mixed aqueous solution (1), and then aged at 80 ° C. for 2 hours.
The aged hydrogel is filtered, washed with sufficient warm water, dried at 120 ° C. for one day and then baked in the air at 550 ° C. for 1 hour, and consists of cobalt oxide, nickel oxide and zirconium oxide. A composite oxide powder (1) was obtained.

ついで、複合酸化物粉体(1)を 錠剤成型器に充填し、50Kg/cm2で加圧成型し、ついで粉砕し、粒度を20〜42メッシュに調整してメタネーション触媒用担体(1)を調製
した。
Next, the complex oxide powder (1) is filled into a tablet molding machine, pressure-molded at 50 kg / cm 2 , then pulverized, and the particle size is adjusted to 20 to 42 mesh to support the methanation catalyst carrier (1). Was prepared.

メタネーション触媒用担体(1)50gに、Ruとしての濃度10.0重量%の塩化ルテ
ニウム水溶液24.9gを吸収させ、充分撹拌し、1時間静置した後、120℃にて4時間乾燥した。ついで、濃度0.1重量%のアンモニア水に分散させ、1時間放置した後、濾過し、温水を充分掛けて洗浄し、再び120℃で4時間乾燥した。
50 g of the methanation catalyst support (1) was absorbed with 24.9 g of a ruthenium chloride aqueous solution having a concentration of 10.0% by weight as Ru, sufficiently stirred, allowed to stand for 1 hour, and then dried at 120 ° C. for 4 hours. . Next, the dispersion was dispersed in ammonia water having a concentration of 0.1% by weight, left for 1 hour, filtered, sufficiently washed with warm water, and dried again at 120 ° C. for 4 hours.

ついで、350℃にて4時間水素気流中にて還元処理を行い、メタネーション用触媒(1)を調製した。活性成分、各担体成分の含有量、比表面積および細孔容積を測定
し、結果を表1に示した。
活性試験
メタネーション用触媒(1)4.2mlを、内径12mmのステンレス製反応管に充填し
、触媒層温度250℃で水素−窒素混合ガス(H2濃度10Vol%)の流通下で再び1時間還元処理し、ついで、触媒層温度を140℃の反応温度にした後、反応用混合ガス(一酸化炭素0.6vol%、二酸化炭素20.0vol%、メタン2.0vol%、水素51.37vol%、水蒸気33.3vol%)をSV=4,000h-1となるように流通させ、約1時間後の定常状
態での生成ガスをガスクロマトグラフィーおよび赤外分光型ガス濃度計で分析し、反応管出口CO濃度、CO2濃度およびCH4濃度を測定した結果を表1に示した。
Subsequently, reduction treatment was performed in a hydrogen stream at 350 ° C. for 4 hours to prepare a methanation catalyst (1). The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in Table 1.
The catalyst for activity test methanation (1) (4.2 ml) is filled into a stainless steel reaction tube having an inner diameter of 12 mm, and again for 1 hour under a flow of hydrogen-nitrogen mixed gas (H 2 concentration 10 Vol%) at a catalyst layer temperature of 250 ° C. Then, after reducing the catalyst layer temperature to 140 ° C., the reaction gas mixture (carbon monoxide 0.6 vol%, carbon dioxide 20.0 vol%, methane 2.0 vol%, hydrogen 51.37 vol%) , Water vapor 33.3 vol%) is circulated so that SV = 4,000 h −1, and the product gas in a steady state after about 1 hour is analyzed by gas chromatography and an infrared spectroscopic gas densitometer. The results of measuring the tube outlet CO concentration, CO 2 concentration, and CH 4 concentration are shown in Table 1.

選択性としては、反応ガス中の二酸化炭素20.0Vol%からのCO2の増減を表1に示し、CO2の増減の少ない場合が選択性に優れるとして評価した。
同様にして、反応温度を160℃、180℃についても実施し、結果を表1に示した。[実施例2]
メタネーション用触媒(2)の調製
実施例1において、Ruとしての濃度5.0重量%の塩化ルテニウム水溶液20.4gを吸収させた以外は同様にしてメタネーション用触媒(2)を調製した。活性成分、各担体
成分の含有量、比表面積および細孔容積を測定し、結果を表1に示した。
As the selectivity, the increase / decrease in CO 2 from 20.0 Vol% of carbon dioxide in the reaction gas is shown in Table 1, and the case where the increase / decrease in CO 2 was small was evaluated as being excellent in selectivity.
Similarly, the reaction was carried out at 160 ° C. and 180 ° C. The results are shown in Table 1. [Example 2]
Preparation of catalyst for methanation (2) A catalyst for methanation (2) was prepared in the same manner as in Example 1 except that 20.4 g of a ruthenium chloride aqueous solution having a concentration of 5.0% by weight as Ru was absorbed. The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in Table 1.

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表1に示した。
[実施例3]
メタネーション用触媒(3)の調製
実施例1において、Ruとしての濃度10重量%の塩化ルテニウム水溶液49.5gを吸収させた以外は同様にしてメタネーション用触媒(3)を調製した。活性成分、各担体成
分の含有量、比表面積および細孔容積を測定し、結果を表1に示した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration are shown in Table 1.
[Example 3]
Preparation of catalyst for methanation (3) A catalyst for methanation (3) was prepared in the same manner as in Example 1 except that 49.5 g of an aqueous ruthenium chloride solution having a concentration of 10% by weight as Ru was absorbed. The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in Table 1.

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表1に示した。
[実施例4]
メタネーション用触媒(4)の調製
実施例1において、硝酸コバルト・6水和物31.04g、硝酸酸化ジルコニウム水溶液(ZrO2濃度:25重量%)25.60gおよび硝酸ニッケル・6水和物21.71
g(6.23g)を水492.8gに加えて調製した混合水溶液を用いた以外は同様にしてメタネーション用触媒(4)を調製した。活性成分、各担体成分の含有量、比表面積およ
び細孔容積を測定し、結果を表1に示した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration are shown in Table 1.
[Example 4]
Preparation of catalyst for methanation (4) In Example 1, 31.04 g of cobalt nitrate hexahydrate, 25.60 g of zirconium nitrate aqueous solution (ZrO 2 concentration: 25% by weight) and nickel nitrate hexahydrate 21 .71
A methanation catalyst (4) was prepared in the same manner except that a mixed aqueous solution prepared by adding g (6.23 g) to 492.8 g of water was used. The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in Table 1.

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表1に示した。
[実施例5]
メタネーション用触媒(5)の調製
実施例1において、硝酸コバルト・6水和物18.32g、硝酸酸化ジルコニウム水溶液(ZrO2濃度:25重量%)54.56gおよび硝酸ニッケル・6水和物6.36g
を水492.8gに加えて調製した混合水溶液を用いた以外は同様にしてメタネーション用触媒(5)を調製した。活性成分、各担体成分の含有量、比表面積および細孔容積を測定
し、結果を表1に示した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration are shown in Table 1.
[Example 5]
Preparation of catalyst for methanation (5) In Example 1, cobalt nitrate hexahydrate 18.32 g, zirconium nitrate aqueous solution (ZrO 2 concentration: 25% by weight) 54.56 g and nickel nitrate hexahydrate 6 .36g
A catalyst for methanation (5) was prepared in the same manner except that a mixed aqueous solution prepared by adding 492.8 g of water was used. The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in Table 1.

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表1に示した。
[実施例6]
メタネーション用触媒(6)の調製
実施例1において、硝酸コバルト・6水和物23.59gおよび硝酸セリウム・6水和物15.35gを水677.2gに加えて調製した混合水溶液を用いた以外は同様にしてメタネーション用触媒(6)を調製した。活性成分、各担体成分の含有量、比表面積および
細孔容積を測定し、結果を表1に示した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration are shown in Table 1.
[Example 6]
Preparation of catalyst for methanation (6) In Example 1, a mixed aqueous solution prepared by adding 23.59 g of cobalt nitrate hexahydrate and 15.35 g of cerium nitrate hexahydrate to 677.2 g of water was used. A methanation catalyst (6) was prepared in the same manner except for the above. The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in Table 1.

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表1に示した。
[実施例7]
メタネーション用触媒(7)の調製
実施例1において、硝酸コバルト・6水和物23.59g、硝酸セリウム・6水和物28.83gを水677.2gに加えて調製した混合水溶液を用いた以外は同様にしてメタネーション用触媒(7)を調製した。活性成分、各担体成分の含有量、比表面積および細孔
容積を測定し、結果を表1に示した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration are shown in Table 1.
[Example 7]
Preparation of catalyst for methanation (7) In Example 1, a mixed aqueous solution prepared by adding 23.59 g of cobalt nitrate hexahydrate and 28.83 g of cerium nitrate hexahydrate to 677.2 g of water was used. A methanation catalyst (7) was prepared in the same manner except that. The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in Table 1.

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表1に示した。
[実施例8]
メタネーション用触媒(8)の調製
実施例1において、硝酸コバルト・6水和物40.67g、硝酸セリウム・6水和物21.61gを水677.2gに加えて調製した混合水溶液を用いた以外は同様にしてメタネーション用触媒(8)を調製した。活性成分、各担体成分の含有量、比表面積および細孔
容積を測定し、結果を表1に示した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration are shown in Table 1.
[Example 8]
Preparation of catalyst for methanation (8) In Example 1, a mixed aqueous solution prepared by adding 40.67 g of cobalt nitrate hexahydrate and 21.61 g of cerium nitrate hexahydrate to 677.2 g of water was used. A catalyst for methanation (8) was prepared in the same manner except for the above. The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in Table 1.

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表1に示した。
[実施例9]
メタネーション用触媒(9)の調製
実施例1において、硝酸コバルト・6水和物31.98g、硝酸酸化ジルコニウム水溶液(ZrO2濃度:25%)25.2gおよび硝酸セリウム・6水和物11.36gを水
677.2gに加えて調製した混合水溶液を用いた以外は同様にしてメタネーション用触媒(9)を調製した。活性成分、各担体成分の含有量、比表面積および細孔容積を測定し、
結果を表1に示した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration are shown in Table 1.
[Example 9]
Preparation of catalyst for methanation (9) In Example 1, 31.98 g of cobalt nitrate hexahydrate, 25.2 g of zirconium nitrate aqueous solution (ZrO 2 concentration: 25%) and cerium nitrate hexahydrate 11. A methanation catalyst (9) was prepared in the same manner except that a mixed aqueous solution prepared by adding 36 g to 677.2 g of water was used. Measure active ingredient, content of each carrier component, specific surface area and pore volume,
The results are shown in Table 1.

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表1に示した。調製した。
[実施例10]
メタネーション用触媒(10)の調製
実施例1において、塩化ルテニウム水溶液を吸収させ、120℃にて4時間乾燥した後、濃度0.1重量%のアンモニア水に代えて濃度0.01重量%のアンモニア水に分散させた以外は同様にしてメタネーション用触媒(10)を調製した。活性成分、各担体成分の含有量、比表面積および細孔容積を測定し、結果を表1に示した。
[参考例]
メタネーション用触媒(11)の調製
実施例1において、塩化ルテニウム水溶液を吸収させ、120℃にて4時間乾燥した後、濃度0.1重量%のアンモニア水に代えて純水に分散させた以外は同様にして洗浄した以外は同様にしてメタネーション用触媒(11)を調製した。活性成分、各担体成分の含有量、比表面積および細孔容積を測定し、結果を表1に示した。
[比較例1]
メタネーション用触媒(R1)の調製
実施例1において、Ruとしての濃度1.0重量%の塩化ルテニウム水溶液25.13gを吸収させた以外は同様にしてメタネーション用触媒(R1)を調製した。活性成分、各担体成分の含有量、比表面積および細孔容積を測定し、結果を表1に示した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration are shown in Table 1. Prepared.
[Example 10]
Preparation of catalyst for methanation (10) In Example 1, after absorbing an aqueous ruthenium chloride solution and drying at 120 ° C. for 4 hours, it was replaced with ammonia water having a concentration of 0.1% by weight and having a concentration of 0.01% by weight. A methanation catalyst (10) was prepared in the same manner except that it was dispersed in aqueous ammonia. The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in Table 1.
[Reference example]
Preparation of catalyst for methanation (11) In Example 1, except that an aqueous ruthenium chloride solution was absorbed, dried at 120 ° C. for 4 hours, and then dispersed in pure water instead of 0.1% by weight ammonia water. A catalyst for methanation (11) was prepared in the same manner except that it was washed in the same manner. The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in Table 1.
[Comparative Example 1]
Preparation of catalyst for methanation (R1) A catalyst for methanation (R1) was prepared in the same manner as in Example 1 except that 25.13 g of a ruthenium chloride aqueous solution having a concentration of 1.0% by weight as Ru was absorbed. The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in Table 1.

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表1に示した。
[比較例2]
メタネーション用触媒(R2)の調製
実施例1において、Ruとしての濃度10重量%の塩化ルテニウム水溶液125.0gを吸収させた後乾燥する工程を4回繰り返して行った以外は同様にしてメタネーション用触媒(R2)を調製した。活性成分、各担体成分の含有量、比表面積および細孔容積を測定し、結果を表1に示した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration are shown in Table 1.
[Comparative Example 2]
Preparation of catalyst for methanation (R2) Methanation was carried out in the same manner as in Example 1 except that the step of drying after absorbing 125.0 g of a ruthenium chloride aqueous solution having a concentration of 10% by weight as Ru was repeated four times. A catalyst for use (R2) was prepared. The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in Table 1.

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表1に示した。
[比較例3]
メタネーション用触媒(R3)の調製
濃度1.224重量%の水酸化ナトリウム水溶液1428.6gを撹拌しながらこれに硝酸ジルコニル水溶液(ZrO2濃度:25%)80.01gを添加してヒドロゲルを調
製し、ついで、80℃にて2時間熟成した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration are shown in Table 1.
[Comparative Example 3]
Preparation of catalyst for methanation (R3) Stirring an aqueous solution of sodium hydroxide with a concentration of 1.224% by weight, 1428.6 g, adding 80.01 g of an aqueous solution of zirconyl nitrate (ZrO 2 concentration: 25%) to prepare a hydrogel Then, it was aged at 80 ° C. for 2 hours.

熟成したヒドロゲルを濾過し、充分な温水を掛けて洗浄し、120℃で1昼夜乾燥し、ついで、550℃で1時間、大気中にて焼成を行い、酸化ジルコニウム粉体を得た。
酸化ジルコニウム粉体を錠剤成型器に充填し、50Kg/cm2で加圧成型し、ついで粉砕し、粒度を20〜42メッシュに調整してメタネーション触媒用担体(R3)を調製した。
The aged hydrogel was filtered, washed with sufficient warm water, dried at 120 ° C. for 1 day, and then fired at 550 ° C. for 1 hour in the air to obtain zirconium oxide powder.
Zirconium oxide powder was filled into a tablet molding machine, pressure molded at 50 kg / cm 2 , then pulverized, and the particle size was adjusted to 20-42 mesh to prepare a methanation catalyst support (R3).

メタネーション触媒用担体(R3)50.0gに、Ruとしての濃度10.0重量%の塩化ルテニウム水溶液24.93gを吸収させ、充分撹拌し、1時間静置した後、120℃にて4時間乾燥した。ついで、濃度0.1重量%のアンモニア水に分散させ、1時間放置した後、濾過し、温水を充分掛けて洗浄し、再び120℃で4時間乾燥した。   24.93 g of a ruthenium chloride aqueous solution having a concentration of 10.0% by weight as Ru was absorbed into 50.0 g of the methanation catalyst support (R3), stirred sufficiently, allowed to stand for 1 hour, and then at 120 ° C. for 4 hours. Dried. Next, the dispersion was dispersed in ammonia water having a concentration of 0.1% by weight, left for 1 hour, filtered, sufficiently washed with warm water, and dried again at 120 ° C. for 4 hours.

ついで、350℃にて4時間水素気流中にて還元処理を行い、メタネーション用触媒(R3)を調製した。活性成分、各担体成分の含有量、比表面積および細孔容積を測定し、結果を表1に示した。   Subsequently, reduction treatment was performed in a hydrogen stream at 350 ° C. for 4 hours to prepare a methanation catalyst (R3). The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in Table 1.

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表1に示した。
[比較例4]
メタネーション用触媒(R4)の調製
濃度1.224重量%の水酸化ナトリウム水溶液1428.6gを撹拌しながらこれに硝酸セリウム・6水和物50.49gを添加してヒドロゲルを調製し、ついで、80℃にて2時間熟成した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration are shown in Table 1.
[Comparative Example 4]
Preparation of catalyst for methanation (R4) A hydrogel was prepared by adding 50.49 g of cerium nitrate hexahydrate to a stirring solution of 1428.6 g of an aqueous sodium hydroxide solution having a concentration of 1.224% by weight. Aging was performed at 80 ° C. for 2 hours.

熟成したヒドロゲルを濾過し、充分な温水を掛けて洗浄し、120℃で1昼夜乾燥し、ついで、550℃で1時間、大気中にて焼成を行い、酸化セリウム粉体を得た。
ついで、酸化セリウム粉体を錠剤成型器に充填し、50Kg/cm2で加圧成型し、ついで粉砕し、粒度を20〜42メッシュに調整してメタネーション触媒用担体(R4)を調製した。
The aged hydrogel was filtered, washed with sufficient warm water, dried at 120 ° C. for one day, and then baked in the air at 550 ° C. for 1 hour to obtain a cerium oxide powder.
Next, the cerium oxide powder was filled in a tablet molding machine, pressure-molded at 50 kg / cm 2 , then pulverized, and the particle size was adjusted to 20 to 42 mesh to prepare a methanation catalyst support (R4).

メタネーション触媒用担体(R4)50.0gに、Ruとしての濃度10.0重量%の塩化ルテニウム水溶液24.93gを吸収させ、充分撹拌し、1時間静置した後、120℃にて4時間乾燥した。ついで、濃度0.1重量%のアンモニア水に分散させ、1時間放置した後、濾過し、温水を充分掛けて洗浄し、再び120℃で4時間乾燥した。   24.93 g of a ruthenium chloride aqueous solution having a concentration of 10.0 wt. Dried. Subsequently, it was dispersed in ammonia water having a concentration of 0.1% by weight, allowed to stand for 1 hour, filtered, sufficiently washed with warm water, and dried again at 120 ° C. for 4 hours.

ついで、350℃にて4時間水素気流中にて還元処理を行い、メタネーション用触媒(R4)を調製した。活性成分、各担体成分の含有量、比表面積および細孔容積を測定し、結果を表1に示した。   Subsequently, reduction treatment was performed in a hydrogen stream at 350 ° C. for 4 hours to prepare a methanation catalyst (R4). The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in Table 1.

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表1に示した。
[比較例5]
メタネーション用触媒(R5)の調製
濃度1.224重量%の水酸化ナトリウム水溶液1428.6gを撹拌しながらこれに硝酸コバルト・6水和物77.61gを水480gに溶解した硝酸コバルト水溶液を添加してヒドロゲルを調製し、ついで、80℃にて2時間熟成した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration are shown in Table 1.
[Comparative Example 5]
Preparation of catalyst for methanation (R5) Stirring aqueous solution of sodium hydroxide with a concentration of 1.224% by weight ( 142.86 g ), cobalt nitrate aqueous solution in which 77.61 g of cobalt nitrate hexahydrate was dissolved in 480 g of water was added. A hydrogel was prepared, and then aged at 80 ° C. for 2 hours.

熟成したヒドロゲルを濾過し、充分な温水を掛けて洗浄し、120℃で1昼夜乾燥し、ついで、350℃で1時間、大気中にて焼成を行い酸化コバルト粉体を得た。
酸化コバルト粉体を錠剤成型器に充填し、50Kg/cm2で加圧成型し、ついで粉砕し、粒度を20〜42メッシュに調整してメタネーション触媒用担体(R5)を調製した。
The aged hydrogel was filtered, washed with sufficient warm water, dried at 120 ° C. for one day, and then baked in the atmosphere at 350 ° C. for 1 hour to obtain a cobalt oxide powder.
Cobalt oxide powder was filled in a tablet molding machine, pressure molded at 50 kg / cm 2 , then pulverized, and the particle size was adjusted to 20 to 42 mesh to prepare a methanation catalyst support (R5).

メタネーション触媒用担体(R5)50.0gに、Ruとしての濃度10.0重量%の塩化ルテニウム水溶液24.93gを吸収させ、充分撹拌し、1時間静置した後、120℃にて4時間乾燥した。ついで、濃度0.1重量%のアンモニア水に分散させ、1時間放置した後、濾過し、温水を充分掛けて洗浄し、再び120℃で4時間乾燥した。   24.93 g of a ruthenium chloride aqueous solution having a concentration of 10.0% by weight as Ru was absorbed into 50.0 g of the methanation catalyst support (R5), sufficiently stirred, allowed to stand for 1 hour, and then at 120 ° C. for 4 hours. Dried. Next, the dispersion was dispersed in ammonia water having a concentration of 0.1% by weight, left for 1 hour, filtered, sufficiently washed with warm water, and dried again at 120 ° C. for 4 hours.

ついで、350℃にて4時間水素気流中にて還元処理を行い、メタネーション用触媒(R5)を調製した。活性成分、各担体成分の含有量、比表面積および細孔容積を測定し、結果を表1に示した。   Subsequently, reduction treatment was performed in a hydrogen stream at 350 ° C. for 4 hours to prepare a methanation catalyst (R5). The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in Table 1.

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表1に
示した。
[比較例6]
メタネーション用触媒(R6)の調製
三塩化ルテニウム(水和物)(Ruの含有量38.03重量%)0.263g及び硝酸カリウム0.026gを3.0ccの水に溶解させ混合溶液を含浸液とした。次いで、ルチル型チタニア粉末(石原産業社製、CR−EL)10gに上記含浸液を含浸した後、120℃にて4時間乾燥した。ついで、濃度0.1重量%のアンモニア水に分散させ、1時間放置した後、濾過し、温水を充分掛けて洗浄し、再び120℃で4時間乾燥した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration are shown in Table 1.
[Comparative Example 6]
Preparation of catalyst for methanation (R6) 0.263 g of ruthenium trichloride (hydrate) (Ru content 38.03 wt%) and 0.026 g of potassium nitrate were dissolved in 3.0 cc of water and the mixed solution was impregnated with the solution. It was. Subsequently, after impregnating the said impregnating liquid in 10 g of rutile type titania powder (CR-EL, manufactured by Ishihara Sangyo Co., Ltd.), it was dried at 120 ° C. for 4 hours. Next, the dispersion was dispersed in ammonia water having a concentration of 0.1% by weight, left for 1 hour, filtered, sufficiently washed with warm water, and dried again at 120 ° C. for 4 hours.

ついで、350℃にて4時間水素気流中にて還元処理を行い、メタネーション用触媒(R6)を調製した。Ruの含有量が3.5重量%、カリウムの含有量はK2Oとして0.5重
量%、酸化チタンの含有量が96.0重量%であった。また、比表面積および細孔容積を測定し、結果を表1に示した。
Subsequently, reduction treatment was performed in a hydrogen stream at 350 ° C. for 4 hours to prepare a methanation catalyst (R6). The Ru content was 3.5% by weight, the potassium content was 0.5% by weight as K 2 O, and the titanium oxide content was 96.0% by weight. The specific surface area and pore volume were measured, and the results are shown in Table 1.

活性試験
実施例1と同様にして活性試験を行い、CO濃度、CO2濃度およびCH4濃度を表1に示した。
Activity test An activity test was conducted in the same manner as in Example 1, and the CO concentration, CO 2 concentration and CH 4 concentration are shown in Table 1.

Figure 2007196206
Figure 2007196206

Claims (7)

酸化ジルコニウム、酸化ニッケル、酸化コバルト、酸化セリウムから選ばれる2種以上の酸化物からなる担体にルテニウムが担持されてなり、ルテニウムの含有量がRu金属として1〜15重量%の範囲にあることを特徴とする一酸化炭素メタネーション用触媒。   Ruthenium is supported on a support made of two or more oxides selected from zirconium oxide, nickel oxide, cobalt oxide and cerium oxide, and the content of ruthenium is in the range of 1 to 15% by weight as Ru metal. Characteristic catalyst for carbon monoxide methanation. 比表面積が30〜200m2/gの範囲にあり、細孔容積が0.10〜0.45ml/
gの範囲にあることを特徴とする請求項1に記載の一酸化炭素メタネーション用触媒。
The specific surface area is in the range of 30 to 200 m 2 / g, and the pore volume is 0.10 to 0.45 ml / g.
The catalyst for carbon monoxide methanation according to claim 1, which is in the range of g.
酸化物担体が、酸化コバルトを必須成分として含むことを特徴とする請求項1または2に記載の一酸化炭素メタネーション用触媒。   The catalyst for carbon monoxide methanation according to claim 1 or 2, wherein the oxide support contains cobalt oxide as an essential component. 酸化物担体が、ZrO2-CeO2-CoO、ZrO2-NiO、ZrO2-CeO2、ZrO2-CoO-NiO、NiO-CoO、CoO-CeO2、NiO-CoO-CeO2、ZrO2-NiO-CoO-CeO2の組み合わせのいずれかを含むことを特徴とする請求項1〜3のい
ずれかに記載のメタネーション用触媒。
The oxide support is ZrO 2 —CeO 2 —CoO, ZrO 2 —NiO, ZrO 2 —CeO 2 , ZrO 2 —CoO—NiO, NiO—CoO, CoO—CeO 2 , NiO—CoO—CeO 2 , ZrO 2 —. methanation catalyst according to claim 1, characterized in that it comprises any combination of NiO-CoO-CeO 2.
触媒中のClの含有量が酸化物担体の1.0重量%以下であることを特徴とする請求項1〜4のいずれかに記載の一酸化炭素メタネーション用触媒。   The catalyst for carbon monoxide methanation according to any one of claims 1 to 4, wherein the content of Cl in the catalyst is 1.0% by weight or less of the oxide support. 請求項1〜5のいずれかに記載のメタネーション用触媒と一酸化炭素ガス含有水素ガスと接触させることを特徴とする一酸化炭素のメタネーション方法。   A methanation method for carbon monoxide, comprising contacting the methanation catalyst according to any one of claims 1 to 5 with a hydrogen gas containing carbon monoxide gas. 前記、接触させる際の温度(反応温度)が120〜200℃の範囲にあることを特徴とする請求項6に記載のメタネーション方法。   The methanation method according to claim 6, wherein the temperature (reaction temperature) at the time of contact is in the range of 120 to 200 ° C.
JP2006077595A 2005-12-28 2006-03-20 Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst Active JP4689508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077595A JP4689508B2 (en) 2005-12-28 2006-03-20 Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005380077 2005-12-28
JP2005380077 2005-12-28
JP2006077595A JP4689508B2 (en) 2005-12-28 2006-03-20 Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst

Publications (2)

Publication Number Publication Date
JP2007196206A true JP2007196206A (en) 2007-08-09
JP4689508B2 JP4689508B2 (en) 2011-05-25

Family

ID=38451324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077595A Active JP4689508B2 (en) 2005-12-28 2006-03-20 Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst

Country Status (1)

Country Link
JP (1) JP4689508B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252988A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
CN102258998A (en) * 2011-05-09 2011-11-30 福州大学 Ammonia synthesis catalyst and preparation method thereof
CN103933994A (en) * 2014-04-18 2014-07-23 昌邑凯特新材料有限公司 Preparation method of high-temperature methanation catalyst applicable to preparation of methane by reacting CO and CO2 with hydrogen
WO2014209237A1 (en) * 2013-06-28 2014-12-31 Agency For Science, Technology And Research Methanation catalyst
US9802872B2 (en) 2013-03-28 2017-10-31 Agency For Science, Technology And Research Methanation catalyst
CN112191252A (en) * 2020-10-28 2021-01-08 南昌大学 Tubular cobaltosic oxide catalyst modified by dispersing nano nickel particles in cerium dioxide and preparation method and application thereof
WO2021201191A1 (en) * 2020-03-31 2021-10-07 大阪瓦斯株式会社 System and method for producing hydrocarbon, and method for operating said system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102142838B1 (en) 2018-08-22 2020-08-10 서강대학교산학협력단 Nb-doped nickel oxide-zirconia composite catalyst and process for preparing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393602A (en) * 1989-09-07 1991-04-18 Asahi Chem Ind Co Ltd Selective removing of carbon monoxide
JPH1186892A (en) * 1997-09-09 1999-03-30 Osaka Gas Co Ltd System and method for carbon monoxide removing
JP2002068707A (en) * 2000-08-31 2002-03-08 Idemitsu Kosan Co Ltd Method for removing carbon monoxide in hydrogen- containing gas
JP2002128507A (en) * 2000-10-23 2002-05-09 Matsushita Electric Ind Co Ltd Hydrogen-purifying unit
WO2005094988A1 (en) * 2004-04-01 2005-10-13 Aisin Seiki Kabushiki Kaisha Carbon monoxide removal catalyst and method for preparation thereof, and apparatus for removing carbon monoxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393602A (en) * 1989-09-07 1991-04-18 Asahi Chem Ind Co Ltd Selective removing of carbon monoxide
JPH1186892A (en) * 1997-09-09 1999-03-30 Osaka Gas Co Ltd System and method for carbon monoxide removing
JP2002068707A (en) * 2000-08-31 2002-03-08 Idemitsu Kosan Co Ltd Method for removing carbon monoxide in hydrogen- containing gas
JP2002128507A (en) * 2000-10-23 2002-05-09 Matsushita Electric Ind Co Ltd Hydrogen-purifying unit
WO2005094988A1 (en) * 2004-04-01 2005-10-13 Aisin Seiki Kabushiki Kaisha Carbon monoxide removal catalyst and method for preparation thereof, and apparatus for removing carbon monoxide

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252988A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
CN102258998A (en) * 2011-05-09 2011-11-30 福州大学 Ammonia synthesis catalyst and preparation method thereof
US9802872B2 (en) 2013-03-28 2017-10-31 Agency For Science, Technology And Research Methanation catalyst
WO2014209237A1 (en) * 2013-06-28 2014-12-31 Agency For Science, Technology And Research Methanation catalyst
JP2016523182A (en) * 2013-06-28 2016-08-08 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ Methanation catalyst
US9908104B2 (en) 2013-06-28 2018-03-06 Agency For Science, Technology And Research Methanation catalyst
CN103933994A (en) * 2014-04-18 2014-07-23 昌邑凯特新材料有限公司 Preparation method of high-temperature methanation catalyst applicable to preparation of methane by reacting CO and CO2 with hydrogen
CN103933994B (en) * 2014-04-18 2015-12-02 昌邑凯特新材料有限公司 A kind of for CO and CO 2the preparation method of the high-temperature methanation catalyst of methane is produced with hydrogen reaction
WO2021201191A1 (en) * 2020-03-31 2021-10-07 大阪瓦斯株式会社 System and method for producing hydrocarbon, and method for operating said system
CN115279718A (en) * 2020-03-31 2022-11-01 大阪瓦斯株式会社 Hydrocarbon production system, production method therefor, and operation method therefor
CN112191252A (en) * 2020-10-28 2021-01-08 南昌大学 Tubular cobaltosic oxide catalyst modified by dispersing nano nickel particles in cerium dioxide and preparation method and application thereof

Also Published As

Publication number Publication date
JP4689508B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4689508B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
Manasilp et al. Selective CO oxidation over Pt/alumina catalysts for fuel cell applications
JP5094028B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
US20020061277A1 (en) Non-pyrophoric water-gas shift reaction catalysts
JP5096712B2 (en) Carbon monoxide methanation method
JP2004522672A (en) Suppression of methanation activity by water gas conversion catalyst
EP1138383B1 (en) Method for oxidising carbon monoxide contained in hydrogen
JP4864688B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP2007252989A (en) Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP4890194B2 (en) Method for producing carbon monoxide removal catalyst
JP4772659B2 (en) Catalyst for removing carbon monoxide and method for producing the same
JP4994686B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP3943902B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP2005066516A (en) Catalyst for reforming dimethyl ether and synthesizing method therefor
JP2006036616A (en) Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JP2004196646A (en) Fuel reforming apparatus
JP4172139B2 (en) CO removal catalyst and CO removal method using the same
JP2004230317A (en) Desulfurization catalyst and desulfurization method for hydrocarbon, and fuel cell system
JP5322733B2 (en) Method for producing catalyst for selective oxidation reaction of carbon monoxide
JP2007254177A (en) Methanation process of carbon monoxide
JP2009166030A (en) Catalyst for selectively oxidizing carbon monoxide, method for decreasing carbon monoxide concentration and fuel cell system
JP4857137B2 (en) Method for producing carbon monoxide removal catalyst
JP2000317307A (en) Catalyst for decomposing nitrous oxide and its using method
JP4057314B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP5958791B2 (en) Oxygen storage room temperature oxidation catalyst and method for removing CO contained in hydrogen, etc.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110216

R150 Certificate of patent or registration of utility model

Ref document number: 4689508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250