JP2007196140A - Esterification catalyst - Google Patents

Esterification catalyst Download PDF

Info

Publication number
JP2007196140A
JP2007196140A JP2006018048A JP2006018048A JP2007196140A JP 2007196140 A JP2007196140 A JP 2007196140A JP 2006018048 A JP2006018048 A JP 2006018048A JP 2006018048 A JP2006018048 A JP 2006018048A JP 2007196140 A JP2007196140 A JP 2007196140A
Authority
JP
Japan
Prior art keywords
catalyst
aluminum
quaternary ammonium
ammonium salt
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006018048A
Other languages
Japanese (ja)
Other versions
JP4810243B2 (en
Inventor
Akihiro Yano
聡宏 矢野
Takuya Sawada
拓也 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2006018048A priority Critical patent/JP4810243B2/en
Publication of JP2007196140A publication Critical patent/JP2007196140A/en
Application granted granted Critical
Publication of JP4810243B2 publication Critical patent/JP4810243B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heterogeneous catalyst excellent in esterification reactivity and a method for producing the same. <P>SOLUTION: [1] The peak top of the pore size distribution of the esterification catalyst obtained by a BJH method is within the range of 0.6-8 nm; and the catalyst includes a silicate containing 0.1-5 mass% of Al. [2] The method for producing the esterification catalyst comprises a process (a) of preparing an aqueous solution of a specific quaternary ammonium salt, a quaternary ammonium salt containing an Al source and a Si source, a process (b) of depositing a complex by heating the aqueous solution at a temperature of 100-160°C, and a process (c) of removing the quaternary ammonium salt by calcining the complex. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はエステル化触媒に関し、詳しくは、エステル化反応活性の優れた不均一触媒、及びその製造方法に関する。   The present invention relates to an esterification catalyst, and more particularly to a heterogeneous catalyst having excellent esterification reaction activity and a method for producing the same.

エステル化反応は、油脂、界面活性剤、その他多くの化学合成等に利用されている工業的に重要な反応である。エステル化反応には、硫酸、パラトルエンスルホン酸、水酸化ナトリウム、水酸化カリウム、酸化スズ等の酸又は塩基からなる均一系触媒が長い間使用されてきた。これらの均一系触媒は、活性に優れるが、反応終了後に煩雑な触媒分離工程が必須である。これに対し、不均一系触媒を使用すれば、反応後の触媒分離が容易となり、工業的に有利であるため、活性に優れる不均一系触媒の探索が続けられてきた。   The esterification reaction is an industrially important reaction that is used for oils and fats, surfactants, and many other chemical synthesis. For the esterification reaction, a homogeneous catalyst comprising an acid or base such as sulfuric acid, paratoluenesulfonic acid, sodium hydroxide, potassium hydroxide, tin oxide has been used for a long time. These homogeneous catalysts are excellent in activity, but a complicated catalyst separation step is essential after the completion of the reaction. On the other hand, use of a heterogeneous catalyst facilitates separation of the catalyst after the reaction and is industrially advantageous. Therefore, the search for a heterogeneous catalyst having excellent activity has been continued.

例えば、無機固体酸を触媒とした例として、ペンタシル型の酸性ゼオライト触媒(特許文献1)や、アルミニウム酸化物及び/又は鉄酸化物を含有する触媒(特許文献2)が提案されている。
しかしながら、特許文献1及び2のような強い酸点を有する固体酸触媒を用いると、エステル化反応のみならず脱水反応も起こり易くなる。例えば、ゼオライトの一種であるモルデナイトを用いた場合には、アルコールの脱水縮合によるエーテルの生成が無視できず、高純度のエステルを得ることは困難である。
For example, as an example using an inorganic solid acid as a catalyst, a pentasil-type acidic zeolite catalyst (Patent Document 1) and a catalyst containing aluminum oxide and / or iron oxide (Patent Document 2) have been proposed.
However, when a solid acid catalyst having a strong acid point as in Patent Documents 1 and 2 is used, not only an esterification reaction but also a dehydration reaction easily occur. For example, when mordenite, which is a kind of zeolite, is used, the production of ether by dehydration condensation of alcohol cannot be ignored, and it is difficult to obtain a high-purity ester.

一方、有機固体酸触媒の例として、イオン交換樹脂触媒(特許文献3)も提案されている。しかしながら、イオン交換樹脂を触媒として用いる場合は、高温での強度低下や、溶剤による膨潤に起因する強度低下など、反応条件面からの制約がある。
また、強い酸点を有しない触媒として、含水酸化ジルコニウムを用いる方法(特許文献4)も提案されている。含水酸化ジルコニウムは比較的選択性はよいが、活性が低いため、必要な反応進行度を得るために、多量の触媒を用いる必要があり、高温の反応条件が必要である等の制約がある。
このように、不均一触媒を用いて効率よくエステルを得る方法としては、いまだ満足できるものはなかった。
On the other hand, an ion exchange resin catalyst (Patent Document 3) has also been proposed as an example of the organic solid acid catalyst. However, when an ion exchange resin is used as a catalyst, there are restrictions from the viewpoint of reaction conditions such as strength reduction at high temperature and strength reduction due to swelling by a solvent.
In addition, a method using hydrous zirconium oxide as a catalyst having no strong acid sites has been proposed (Patent Document 4). Hydrous zirconium oxide has relatively good selectivity, but its activity is low, so that a large amount of catalyst needs to be used in order to obtain the required degree of reaction progress, and there are limitations such as high temperature reaction conditions.
As described above, there has been no satisfactory method for efficiently obtaining an ester using a heterogeneous catalyst.

特開昭61−200943号公報JP 61-200943 A 特開昭61−236749号公報Japanese Patent Laid-Open No. 61-236749 国際公開第98/25876号パンフレットInternational Publication No. 98/25876 Pamphlet 特公平4−28250号公報Japanese Examined Patent Publication No. 4-28250

本発明は、エステル化反応活性の優れた不均一触媒、及びその製造方法を提供することを課題とする。   This invention makes it a subject to provide the heterogeneous catalyst excellent in esterification reaction activity, and its manufacturing method.

本発明者らは、特定の細孔径を有し、特定量のアルミニウムを含有するシリケートを使用すれば、エステル化を効率的に進行し得ることを見出した。
すなわち、本発明は、
〔1〕窒素吸着等温線からBJH法を用いて求めた細孔分布のピークトップが0.6〜8nmの範囲にあり、かつ0.1〜5質量%のアルミニウムを含有するシリケートを含むエステル化触媒、及び
〔2〕(a)一般式(1)及び/又は一般式(2)で表される第四級アンモニウム塩、アルミニウム源及びシリカ源を含む第四級アンモニウム塩水溶液を調製する工程、
[R1(CH33N]+- (1)
[R12(CH32N]+- (2)
(式中、R1及びR2は、それぞれ独立に炭素数4〜22の直鎖状又は分岐鎖状アルキル基を示し、Xはハロゲン原子を示す。)
(b)得られた第四級アンモニウム塩水溶液を100〜160℃の温度で加熱処理して、第四級アンモニウム塩、アルミニウム及びシリカを含む複合体を析出させる工程、及び
(c)得られた複合体を焼成処理し、該複合体から第四級アンモニウム塩を除去する工程、
を含む前記〔1〕のエステル化触媒の製造方法、
を提供する。
The present inventors have found that esterification can proceed efficiently if a silicate having a specific pore size and containing a specific amount of aluminum is used.
That is, the present invention
[1] Esterification including a silicate having a peak top of the pore distribution determined from the nitrogen adsorption isotherm using the BJH method in the range of 0.6 to 8 nm and containing 0.1 to 5% by mass of aluminum A step of preparing an aqueous solution of a quaternary ammonium salt containing a catalyst and [2] (a) a quaternary ammonium salt represented by the general formula (1) and / or the general formula (2), an aluminum source and a silica source;
[R 1 (CH 3 ) 3 N] + X (1)
[R 1 R 2 (CH 3 ) 2 N] + X (2)
(In the formula, R 1 and R 2 each independently represent a linear or branched alkyl group having 4 to 22 carbon atoms, and X represents a halogen atom.)
(B) a step of heat-treating the obtained aqueous quaternary ammonium salt solution at a temperature of 100 to 160 ° C. to precipitate a composite containing a quaternary ammonium salt, aluminum and silica, and (c) obtained. Baking the composite and removing the quaternary ammonium salt from the composite;
A process for producing the esterification catalyst according to [1], comprising:
I will provide a.

本発明のエステル化触媒は、特定の細孔径を有し、特定量のアルミニウムを含有するシリケートを含むので、エステル化活性が優れている。また、本発明の触媒の製造方法によれば、本発明のエステル化触媒を効率的に製造することができる。   Since the esterification catalyst of the present invention includes a silicate having a specific pore diameter and containing a specific amount of aluminum, the esterification activity is excellent. Moreover, according to the manufacturing method of the catalyst of this invention, the esterification catalyst of this invention can be manufactured efficiently.

(エステル化触媒)
本発明のエステル化触媒は、窒素吸着等温線からBJH法を用いて求めた細孔分布のピークトップが0.6〜8nmの範囲にあり、かつ0.1〜5質量%のアルミニウムを含有するシリケートを含むことが特徴である。
本発明の触媒において、シリケートは、触媒の安定性、耐久性の観点から用いられ、アルミニウムは、エステル化活性向上の観点から含有され、かつ触媒の細孔径は、優れたエステル化活性を発揮するように設定される。
(Esterification catalyst)
The esterification catalyst of the present invention has a peak top of the pore distribution determined from the nitrogen adsorption isotherm using the BJH method in the range of 0.6 to 8 nm and contains 0.1 to 5% by mass of aluminum. It is characterized by including silicate.
In the catalyst of the present invention, silicate is used from the viewpoint of catalyst stability and durability, aluminum is contained from the viewpoint of improving esterification activity, and the pore diameter of the catalyst exhibits excellent esterification activity. Is set as follows.

アルミニウムは、アルミニウムの酸化物及び/又は水酸化物として含有される。アルミニウムの酸化物及び/又は水酸化物としては、酸化アルミニウム、水酸化アルミニウム等が挙げられる。
アルミニウムの含有量は、触媒のエステル化活性向上の観点から、0.1〜5質量%であることが必要である。その下限は、好ましくは0.2質量%以上であり、より好ましくは0.25質量%以上である。一方、アルミニウムの含有量を増加させていくと触媒の表面積が低下するため、その上限は、好ましくは4質量%以下であり、より好ましくは3質量%以下であり、特に好ましくは2質量%以下である。
本発明においては、本発明の目的を阻害しない限り、アルミニウム以外の他の酸化物及び/又は水酸化物を含んでいてもよい。かかる他の酸化物又は水酸化物としては、第4族〜第15族のいずれかに含まれる元素からなる酸化物又は水酸化物が挙げられる。
Aluminum is contained as an oxide and / or hydroxide of aluminum. Examples of the oxide and / or hydroxide of aluminum include aluminum oxide and aluminum hydroxide.
From the viewpoint of improving the esterification activity of the catalyst, the aluminum content needs to be 0.1 to 5% by mass. The lower limit is preferably 0.2% by mass or more, and more preferably 0.25% by mass or more. On the other hand, since the surface area of the catalyst decreases as the aluminum content is increased, the upper limit is preferably 4% by mass or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less. It is.
In this invention, unless the objective of this invention is inhibited, oxides other than aluminum and / or a hydroxide may be included. Examples of such other oxides or hydroxides include oxides or hydroxides composed of elements included in any of Groups 4 to 15.

(触媒の細孔分布、BET比表面積)
本発明の触媒は、エステル化活性向上の観点から、窒素吸着等温線からBJH法を用いて求めた細孔分布のピークトップが0.6〜8nmの範囲にあることが特徴である。その下限は、好ましくは0.8nm以上であり、より好ましくは1nm以上である。またその上限は、好ましくは7nm以下であり、より好ましくは6nm以下である。
本発明の触媒のBET比表面積は、500m2/g以上が好ましく、550m2/g以上がより好ましく、600m2/g以上が特に好ましい。通常、触媒のBET比表面積が大きいものほど反応活性が高い。
(Catalyst pore distribution, BET specific surface area)
From the viewpoint of improving esterification activity, the catalyst of the present invention is characterized in that the peak top of the pore distribution determined from the nitrogen adsorption isotherm using the BJH method is in the range of 0.6 to 8 nm. The lower limit is preferably 0.8 nm or more, more preferably 1 nm or more. Moreover, the upper limit becomes like this. Preferably it is 7 nm or less, More preferably, it is 6 nm or less.
BET specific surface area of the catalyst of the present invention is preferably at least 500 meters 2 / g, more preferably at least 550 meters 2 / g, and particularly preferably equal to or greater than 600m 2 / g. Usually, the larger the BET specific surface area of the catalyst, the higher the reaction activity.

細孔分布及びBET比表面積の測定は次のように行うことができる。
Micromeritics社製、比表面積・細孔分布測定装置、商品名「ASAP2020」を使用し、試料を250℃、5時間の加熱前処理を行った後、液体窒素を用いて多点法でBET比表面積を測定し、パラメータCが正になる範囲で値を導出する。
次に、BJH法(Barrett−Joyner−Halenda法)により細孔分布を算出する。本発明におけるピークトップとは、前記で得られた細孔分布のピークトップを意味し、このピークトップを平均細孔径とする。ここで、BJH法とは、他の細孔と連結していない円筒形の細孔をモデルとして計算したもので、窒素ガスの毛管凝縮と多分子層吸着から細孔分布を求める方法である。その詳細は、「島津評論」(第48巻、第1号、第35〜44頁、1991年発行)に記載されている。
The pore distribution and the BET specific surface area can be measured as follows.
Using a specific surface area / pore distribution measuring device manufactured by Micromeritics, Inc., trade name “ASAP2020”, the sample was pre-heated at 250 ° C. for 5 hours, and then the liquid BET specific surface area was measured using a multipoint method. And a value is derived within a range in which the parameter C is positive.
Next, the pore distribution is calculated by the BJH method (Barrett-Joyner-Halenda method). The peak top in the present invention means the peak top of the pore distribution obtained above, and this peak top is defined as the average pore diameter. Here, the BJH method is calculated by using cylindrical pores that are not connected to other pores as a model, and is a method for obtaining pore distribution from capillary condensation of nitrogen gas and multimolecular adsorption. The details are described in “Shimadzu review” (Vol. 48, No. 1, pp. 35-44, published in 1991).

(粉末X線回折における面間隔)
本発明の触媒は、ヘキサゴナル構造を有し、粉末X線回折(XRD)において、(1,0,0)面の面間隔が2〜8nmの範囲にあるものが好ましい。ヘキサゴナル構造は、XRDにおける(1,0,0)面、(1,1,0)面、(2,1,0)面が理論上1:1/√3:1/2の位置に観測され、(1,1,0)面/(1,0,0)面及び(2,0,0)面/(1,0,0)面の強度比が、それぞれ0.05以上であることで確認される。
また、粉末X線回折における最大ピークの回折角(2θ)が1〜10°の範囲にあるものが好ましく、1.2〜8°の範囲にあるものがより好ましい、特に1.5〜6°の範囲にあるものが特に好ましい。
粉末X線回折法は、測定試料をめのう製乳鉢等に入れ、人為的又は機械的方法により粉砕した後、X線回折測定して得られる粉末X線回折プロファイル中の固有ピークの回折角とその大きさ等から、試料の結晶性を定量する方法である。
本発明においては、理学電機工業株式会社製の粉末X線回折装置「RINT2500VPC」を用いて、通常の測定手順に従って、Cu−Kα線を用いて、連続モードで、走査速度4.0°/分、サンプリング幅0.02°の条件で、触媒の最大ピークの回折角(2θ)を測定する。
(Surface spacing in powder X-ray diffraction)
The catalyst of the present invention preferably has a hexagonal structure and has a (1,0,0) plane spacing in the range of 2 to 8 nm in powder X-ray diffraction (XRD). In the hexagonal structure, the (1, 0, 0) plane, (1, 1, 0) plane, and (2, 1, 0) plane in XRD are theoretically observed at the position of 1/1 / √3: 1/2. , (1,1,0) plane / (1,0,0) plane and (2,0,0) plane / (1,0,0) plane have intensity ratios of 0.05 or more, respectively. It is confirmed.
In addition, the maximum peak diffraction angle (2θ) in powder X-ray diffraction is preferably in the range of 1 to 10 °, more preferably in the range of 1.2 to 8 °, particularly 1.5 to 6 °. Those within the range are particularly preferred.
The powder X-ray diffractometry is performed by placing a measurement sample in an agate mortar, pulverizing by an artificial or mechanical method, and then measuring the diffraction angle of the intrinsic peak in the powder X-ray diffraction profile obtained by X-ray diffraction measurement. This is a method for quantifying the crystallinity of a sample from the size or the like.
In the present invention, using a powder X-ray diffractometer “RINT2500VPC” manufactured by Rigaku Denki Kogyo Co., Ltd., according to a normal measurement procedure, using Cu—Kα rays in a continuous mode, a scanning speed of 4.0 ° / min. The diffraction angle (2θ) of the maximum peak of the catalyst is measured under the condition of a sampling width of 0.02 °.

(触媒の製造方法)
本発明で用いる触媒の製造方法については、特に制限はないが、例えばシリカ源とアルミニウム源を用いてアルミノシリケートを合成する方法や含浸法により担持する方法が挙げられる。本発明においては、前記のとおり、特定の性状を有しかつアルミニウムを含有する二酸化ケイ素が好ましく、特にメソ領域の細孔を有するヘキサゴナル構造のメソポーラスアルミノシリケートが好ましい。かかるメソポーラスアルミノシリケートを効率よく製造するためには、以下に示す本発明の方法によることがより好ましい。
すなわち、(a)一般式(1)及び/又は一般式(2)で表される第四級アンモニウム塩、アルミニウム源及びシリカ源を含む第四級アンモニウム塩水溶液を調製する工程、
[R1(CH33N]+- (1)
[R12(CH32N]+- (2)
(式中、R1及びR2は、それぞれ独立に炭素数4〜22の直鎖状又は分岐鎖状アルキル基を示し、Xはハロゲン原子を示す。)
(b)得られた第四級アンモニウム塩水溶液を100〜160℃の温度で加熱処理して、第四級アンモニウム塩、アルミニウム及びシリカを含む複合体を析出させる工程、及び
(c)得られた複合体を焼成処理し、該複合体から第四級アンモニウム塩を除去する工程、
を含むエステル化触媒の製造方法である。
(Catalyst production method)
Although there is no restriction | limiting in particular about the manufacturing method of the catalyst used by this invention, For example, the method of carry | supporting by the method of synthesize | combining an aluminosilicate using a silica source and an aluminum source, and the impregnation method is mentioned. In the present invention, as described above, silicon dioxide having specific properties and containing aluminum is preferable, and hexagonal mesoporous aluminosilicate having pores in the meso region is particularly preferable. In order to efficiently produce such a mesoporous aluminosilicate, the method of the present invention shown below is more preferable.
That is, (a) a step of preparing a quaternary ammonium salt aqueous solution containing a quaternary ammonium salt represented by the general formula (1) and / or the general formula (2), an aluminum source and a silica source,
[R 1 (CH 3 ) 3 N] + X (1)
[R 1 R 2 (CH 3 ) 2 N] + X (2)
(In the formula, R 1 and R 2 each independently represent a linear or branched alkyl group having 4 to 22 carbon atoms, and X represents a halogen atom.)
(B) a step of heat-treating the obtained aqueous quaternary ammonium salt solution at a temperature of 100 to 160 ° C. to precipitate a composite containing a quaternary ammonium salt, aluminum and silica, and (c) obtained. Baking the composite and removing the quaternary ammonium salt from the composite;
Is a process for producing an esterification catalyst.

(a)工程
この工程は、一般式(1)及び/又は一般式(2)で表される第四級アンモニウム塩、アルミニウム源及びシリカ源を含む第四級アンモニウム塩水溶液(以下、単に「アルミ・シリカ源含有水溶液」という)を調製する工程である。
[R1(CH33N]+- (1)
[R12(CH32N]+- (2)
(式中、R1及びR2は、それぞれ独立に炭素数4〜22の直鎖状又は分岐鎖状アルキル基を示し、Xはハロゲン原子を示す)
一般式(1)及び/又は一般式(2)で表される第四級アンモニウム塩は、カチオン性界面活性剤であり、(b)工程で析出する、第四級アンモニウム塩、アルミニウム及びシリカを含む複合体(規則性多孔体)におけるテンプレートとして作用すると考えられる。
(A) Step This step is a quaternary ammonium salt solution (hereinafter simply referred to as “aluminum”) containing a quaternary ammonium salt represented by the general formula (1) and / or the general formula (2), an aluminum source and a silica source. -A silica source-containing aqueous solution ").
[R 1 (CH 3 ) 3 N] + X (1)
[R 1 R 2 (CH 3 ) 2 N] + X (2)
(Wherein R 1 and R 2 each independently represents a linear or branched alkyl group having 4 to 22 carbon atoms, and X represents a halogen atom)
The quaternary ammonium salt represented by the general formula (1) and / or the general formula (2) is a cationic surfactant, and the quaternary ammonium salt, aluminum and silica precipitated in the step (b). It is thought that it acts as a template in the composite (regular porous body) containing.

(一般式(1)及び/又は一般式(2)で表される第四級アンモニウム塩)
一般式(1)で表される第四級アンモニウム塩としては、デシルトリメチルアンモニウムクロリド、ドデシルトリメチルアンモニウムクロリド、テトラデシルトリメチルアンモニウムクロリド、ヘキサデシルトリメチルアンモニウムクロリド、オクタデシルトリメチルアンモニウムクロリド、イコシルトリメチルアンモニウムクロリド、ドコシルトリメチルアンモニウムクロリド、デシルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムブロミド、テトラデシルトリメチルアンモニウムブロミド、ヘキサデシルトリメチルアンモニウムブロミド、オクタデシルトリメチルアンモニウムブロミド、イコシルトリメチルアンモニウムブロミド、及びドコシルトリメチルアンモニウムブロミド等が挙げられる。
また、一般式(2)で表される第四級アンモニウム塩としては、ジオクチルジメチルアンモニウムクロリド、ジデシルジメチルアンモニウムクロリド、ジドデシルジメチルアンモニウムクロリド、ジヘキサデシルジメチルアンモニウムクロリド、ジオクタデシルジメチルアンモニウムクロリド、ジドデシルジメチルアンモニウムブロミド、ジトラデシルジメチルアンモニウムブロミド、ジオクタデシルジメチルアンモニウムブロミド等が挙げられる。
(Quaternary ammonium salt represented by general formula (1) and / or general formula (2))
Examples of the quaternary ammonium salt represented by the general formula (1) include decyltrimethylammonium chloride, dodecyltrimethylammonium chloride, tetradecyltrimethylammonium chloride, hexadecyltrimethylammonium chloride, octadecyltrimethylammonium chloride, icosyltrimethylammonium chloride, Examples include docosyltrimethylammonium chloride, decyltrimethylammonium bromide, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, hexadecyltrimethylammonium bromide, octadecyltrimethylammonium bromide, icosyltrimethylammonium bromide, and docosyltrimethylammonium bromide.
The quaternary ammonium salt represented by the general formula (2) includes dioctyldimethylammonium chloride, didecyldimethylammonium chloride, didodecyldimethylammonium chloride, dihexadecyldimethylammonium chloride, dioctadecyldimethylammonium chloride, dioctyl chloride. Examples include dodecyldimethylammonium bromide, ditradecyldimethylammonium bromide, and dioctadecyldimethylammonium bromide.

上記に例示した一般式(1)及び/又は一般式(2)で表される第四級アンモニウム塩の中では、アルキル鎖の炭素数が10〜18であるものがより好ましく、デシルトリメチルアンモニウムクロリド、ドデシルトリメチルアンモニウムブロミド、テトラデシルトリメチルアンモニウムブロミド、オクタデシルトリメチルアンモニウムブロミド;ジデシルジメチルアンモニウムクロリド、ジドデシルジメチルアンモニウムブロミド、ジテトラデシルジメチルアンモニウムブロミド、ジオクタデシルジメチルアンモニウムブロミドが特に好ましい。
上記の第四級アンモニウム塩は、単独で又は2種以上を組み合わせて用いることができる。また、本発明の目的を阻害しない範囲で、第1級〜第3級アミン塩等の他のカチオン界面活性剤を存在させることができる。
Among the quaternary ammonium salts represented by the general formula (1) and / or the general formula (2) exemplified above, those having an alkyl chain having 10 to 18 carbon atoms are more preferable. Decyltrimethylammonium chloride , Dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, octadecyltrimethylammonium bromide; didecyldimethylammonium chloride, didodecyldimethylammonium bromide, ditetradecyldimethylammonium bromide, dioctadecyldimethylammonium bromide are particularly preferred.
Said quaternary ammonium salt can be used individually or in combination of 2 or more types. In addition, other cationic surfactants such as primary to tertiary amine salts can be present as long as the object of the present invention is not impaired.

(アルミニウム源)
アルミニウム源としては、公知のアルミニウム化合物を用いることができる。例えば、塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム、酢酸アルミニウム、水酸化アルミニウム、酸化アルミニウム、アルミン酸ナトリウム、アルミニウムアセチルアセトナート、アルミニウムメトキシド、アルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウムブトキシド、金属アルミニウム等が挙げられる。これらのアルミニウム源は、単独で又は2種以上を組み合わせて用いることができる。
(Aluminum source)
A known aluminum compound can be used as the aluminum source. For example, aluminum chloride, aluminum nitrate, aluminum sulfate, aluminum acetate, aluminum hydroxide, aluminum oxide, sodium aluminate, aluminum acetylacetonate, aluminum methoxide, aluminum ethoxide, aluminum isopropoxide, aluminum butoxide, metal aluminum, etc. Can be mentioned. These aluminum sources can be used alone or in combination of two or more.

(シリカ源)
シリカ源としては、公知のケイ素化合物を用いることができる。例えば、シリカゾル、コロイダルシリカ、ケイ酸塩(水ガラス等)、又はテトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン等のアルコキシシラン等が挙げられる。これらのシリカ源は、単独で又は2種以上を組み合わせて用いることができる。
また、アルミニウム及びシリカをともに含む公知のアルミニウム・ケイ素化合物を用いることができる。例えばアルミノシリケート等が挙げられ、単独で又は2種以上を組み合わせて用いることができる。
(Silica source)
A known silicon compound can be used as the silica source. For example, silica sol, colloidal silica, silicate (water glass or the like), or alkoxysilane such as tetramethoxysilane, tetraethoxysilane, or tetrabutoxysilane can be used. These silica sources can be used alone or in combination of two or more.
Moreover, the well-known aluminum silicon compound containing both aluminum and a silica can be used. For example, an aluminosilicate etc. are mentioned, It can use individually or in combination of 2 or more types.

(各成分の濃度)
前記(a)工程で調製される、アルミ・シリカ源含有水溶液における、第四級アンモニウム塩、アルミニウム源及びシリカ源の濃度、モル比は特に限定されはない。好ましくは、ヘキサゴナル構造が十分に成長し、かつ所望の細孔分布のピークトップ(平均細孔径)、BET比表面積、及び最大ピークの回折角(2θ)を有するメソポーラスアルミノシリケートを得る観点から、下記のとおりである。
第四級アンモニウム塩の濃度は、0.01〜6モル/Lが好ましく、0.1〜4.5モル/Lがより好ましい。
アルミニウム源の濃度は、0.01〜3モル/Lが好ましく、0.04〜1.5モル/Lがより好ましい。
シリカ源の濃度は、0.1〜3モル/Lが好ましく、0.4〜1.5モル/Lがより好ましい。
また、〔第四級アンモニウム塩/シリカ源〕のモル比は、SiO21モルに対して、通常0.01〜6.0モル、好ましくは0.1〜4.0モルである。第四級アンモニウム塩のモル比が、上記範囲内であれば、規則性多孔体のテンプレートとしての作用が発揮される。一方、そのモル比が過多であると、所望の多孔体が得られないことや、第四級アンモニウム塩の溶け残りのおそれが生じるので好ましくない。
(Concentration of each component)
The concentration and molar ratio of the quaternary ammonium salt, the aluminum source and the silica source in the aluminum / silica source-containing aqueous solution prepared in the step (a) are not particularly limited. Preferably, from the viewpoint of obtaining a mesoporous aluminosilicate having a hexagonal structure sufficiently grown and having a peak top (average pore diameter), a BET specific surface area, and a maximum peak diffraction angle (2θ) of a desired pore distribution, It is as follows.
The concentration of the quaternary ammonium salt is preferably 0.01 to 6 mol / L, and more preferably 0.1 to 4.5 mol / L.
The concentration of the aluminum source is preferably 0.01 to 3 mol / L, and more preferably 0.04 to 1.5 mol / L.
The concentration of the silica source is preferably from 0.1 to 3 mol / L, more preferably from 0.4 to 1.5 mol / L.
The molar ratio of [the quaternary ammonium salt / silica source], to the SiO 2 1 mol, usually from 0.01 to 6.0 mol, preferably 0.1 to 4.0 moles. When the molar ratio of the quaternary ammonium salt is within the above range, the effect of the regular porous body as a template is exhibited. On the other hand, if the molar ratio is excessive, it is not preferable because a desired porous body cannot be obtained and the quaternary ammonium salt may remain undissolved.

(アルミ・シリカ源含有水溶液の調製)
アルミ・シリカ源含有水溶液の調製は、例えば、水媒体に第四級アンモニウム塩とアルミニウム源とシリカ源を加え、室温〜70℃程度の温度で、30〜180分間程度攪拌することにより、行うことができる。
アルミ・シリカ源含有水溶液のpHは8〜13が好ましく、11〜13がより好ましく、11〜12が特に好ましい。pHの調整のために水酸化ナトリウム等のアルカリ金属水酸化物やテトラメチルアンモニウムハイドロオキサイド等の水酸化第四級アルキルアンモニウムを添加することもできる。
(Preparation of aqueous solution containing aluminum / silica)
Preparation of the aqueous solution containing an aluminum / silica source is carried out, for example, by adding a quaternary ammonium salt, an aluminum source and a silica source to an aqueous medium and stirring at a temperature of room temperature to about 70 ° C. for about 30 to 180 minutes. Can do.
The pH of the aluminum / silica source-containing aqueous solution is preferably 8 to 13, more preferably 11 to 13, and particularly preferably 11 to 12. In order to adjust the pH, an alkali metal hydroxide such as sodium hydroxide or a quaternary alkylammonium hydroxide such as tetramethylammonium hydroxide can be added.

(b)工程
この工程は、前記(a)工程で得られたアルミ・シリカ源含有水溶液を100〜160℃の温度で加熱処理して、第四級アンモニウム塩、アルミニウム及びシリカを含む複合体を析出させる工程である。
この工程においては、加熱処理により第四級アンモニウム塩とアルミニウム源及びシリカ源とが反応して、それらの複合体が析出する。反応温度は100〜160℃が好ましく、120〜150℃がより好ましい。反応時間は、反応温度に応じて適宜選択することができるが、10時間〜7日が好ましく、24〜72時間がより好ましい。
析出した複合体を濾過等の手段により固液分離し、得られたケークを水で洗浄し、乾燥することにより、その乾燥粉末を得ることができる。乾燥温度は特に限定されないが、60〜120℃が好ましい。
(B) Process This process heat-processes the aluminum silica source containing aqueous solution obtained at the said (a) process at the temperature of 100-160 degreeC, and forms the composite containing a quaternary ammonium salt, aluminum, and a silica. It is the process of making it precipitate.
In this step, the quaternary ammonium salt reacts with the aluminum source and the silica source by heat treatment, and a complex thereof is precipitated. The reaction temperature is preferably from 100 to 160 ° C, more preferably from 120 to 150 ° C. Although reaction time can be suitably selected according to reaction temperature, 10 hours-7 days are preferable and 24-72 hours are more preferable.
The precipitated composite is subjected to solid-liquid separation by means such as filtration, and the resulting cake is washed with water and dried to obtain the dried powder. Although a drying temperature is not specifically limited, 60-120 degreeC is preferable.

(c)工程
この工程は、前記(b)工程で得られた複合体を焼成処理し、該複合体から第四級アンモニウム塩を除去する工程であり、この工程によって、前記の特性を有するメソポーラスアルミノシリケート構造を有する本発明のエステル化触媒が得られる。
焼成処理の温度は、第四級アンモニウム塩が分解・揮発等する温度以上であればよく、特に限定されない。生産性の観点から、焼成処理温度は450〜700℃が好ましく、500〜650℃がより好ましく、540〜600℃がさらに好ましい。焼成時間も特に限定されないが、通常4〜10時間程度、好ましくは4〜8時間程度である。焼成は、通常、空気中で行う。
焼成に先立ち、前記(b)工程で得られた複合体の粉末を酸で洗浄し、さらに水で洗浄することにより、第四級アンモニウム塩の除去をより効率的に行うことができる。酸洗浄において使用する酸は特に限定されないが、塩酸が好ましく用いられる。また、酸洗浄におけるpHは5〜7が好ましい。
Step (c) This step is a step of baking the composite obtained in the step (b) to remove the quaternary ammonium salt from the composite. By this step, the mesoporous material having the above characteristics is obtained. The esterification catalyst of the present invention having an aluminosilicate structure is obtained.
The temperature of the baking treatment is not particularly limited as long as it is equal to or higher than the temperature at which the quaternary ammonium salt decomposes and volatilizes. From the viewpoint of productivity, the firing temperature is preferably 450 to 700 ° C, more preferably 500 to 650 ° C, and further preferably 540 to 600 ° C. The firing time is not particularly limited, but is usually about 4 to 10 hours, preferably about 4 to 8 hours. Firing is usually performed in air.
Prior to firing, the quaternary ammonium salt can be removed more efficiently by washing the composite powder obtained in the step (b) with an acid and then washing with water. The acid used in the acid cleaning is not particularly limited, but hydrochloric acid is preferably used. Further, the pH in the acid cleaning is preferably 5-7.

(エステル化反応)
本発明において、エステル化反応とは、エステルのアルコキシ基やアシル基を他のアルコキシ基やアシル基と交換する反応を意味し、カルボン酸とアルコールとの直接反応、及びエステル交換反応等を包含する。また、エステル交換反応は、より具体的には、(1)カルボン酸エステルとアルコールとの反応(アルコール分解反応)、(2)カルボン酸エステルとカルボン酸との反応(酸分解反応)、及び(3)カルボン酸エステルと他のカルボン酸エステルとの反応(エステル相互交換反応)をいう。
上記反応の中でも、本発明の触媒は、カルボン酸とアルコールとの直接反応、及びカルボン酸エステルとアルコールとの反応(アルコール分解反応)に対して特に優れたエステル化活性を有する。
本発明の触媒は、特定の細孔内を主な反応場として利用するため、得られるエステルの分子は比較的小さいものが好ましい。具体的には、分子量が5000以下のエステルを得る場合に適用することが好ましく、1000以下のエステルを得る場合に適用することがより好ましい。また、油脂(トリグリセリド)、ジグリセリド、及びモノグリセリド等のグリセリドのエステル交換反応に適用することが好ましい。
(Esterification reaction)
In the present invention, the esterification reaction means a reaction for exchanging an alkoxy group or acyl group of an ester with another alkoxy group or an acyl group, and includes a direct reaction between a carboxylic acid and an alcohol, a transesterification reaction, and the like. . More specifically, the transesterification reaction includes (1) a reaction between a carboxylic acid ester and an alcohol (alcohol decomposition reaction), (2) a reaction between the carboxylic acid ester and a carboxylic acid (acid decomposition reaction), and ( 3) A reaction (ester interchange reaction) between a carboxylic acid ester and another carboxylic acid ester.
Among the above reactions, the catalyst of the present invention has particularly excellent esterification activity for direct reaction of carboxylic acid and alcohol and reaction of carboxylic acid ester and alcohol (alcohol decomposition reaction).
Since the catalyst of the present invention utilizes the inside of specific pores as a main reaction field, the resulting ester molecule is preferably relatively small. Specifically, it is preferably applied when obtaining an ester having a molecular weight of 5000 or less, and more preferably applied when obtaining an ester having a molecular weight of 1000 or less. Moreover, it is preferable to apply to transesterification of glycerides such as fats and oils (triglycerides), diglycerides, and monoglycerides.

(原料カルボン酸)
原料のカルボン酸としては、炭素数1〜22、好ましくは炭素数1〜20の直鎖又は分岐鎖を有する脂肪族カルボン酸又は芳香族カルボン酸又はそれらの混合物を用いることができる。
例えば、脂肪族カルボン酸としては、酢酸、酪酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の飽和モノカルボン酸、マロン酸、アジピン酸等の飽和ジカルボン酸、メタクリル酸、オレイン酸等の不飽和カルボン酸等が挙げられる。芳香族カルボン酸としては、安息香酸、フタル酸、トルイル酸等のモノカルボン酸又はジカルボン酸が挙げられる。
(Raw carboxylic acid)
As a raw material carboxylic acid, an aliphatic carboxylic acid or an aromatic carboxylic acid having a straight chain or branched chain having 1 to 22 carbon atoms, preferably 1 to 20 carbon atoms, or a mixture thereof can be used.
For example, the aliphatic carboxylic acids include saturated monocarboxylic acids such as acetic acid, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and saturated dicarboxylic acids such as malonic acid and adipic acid. And unsaturated carboxylic acids such as methacrylic acid and oleic acid. Examples of the aromatic carboxylic acid include monocarboxylic acids such as benzoic acid, phthalic acid, and toluic acid, or dicarboxylic acids.

(原料アルコール)
原料のアルコールとしては、炭素数1〜22、好ましくは炭素数1〜12の直鎖又は分岐鎖を持つ1価アルコール又は多価アルコールを用いることができる。
1価アルコールとしては、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、n−ヘプチルアルコール、n−オクチルアルコール、2−エチルヘキシルアルコール、イソオクチルアルコール、n−ノニルアルコール、イソノニルアルコール等のアルキルアルコール、フェノール、ベンジルアルコール等の芳香族アルコール、ノニルフェノール等の長鎖アルキル基を有する芳香族アルコール等が挙げられる。
多価アルコールとしては、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール等のグリコール、グリセリン、ペンタエリスリトール、ソルビトール等の多価アルコールが挙げられる。
これらの中では、メタノール、エタノール、プロパノール、ブタノール等の炭素数1〜4の直鎖又は分岐鎖を持つ1価アルコールが特に好ましい。
(Raw alcohol)
As a raw material alcohol, monohydric alcohol or polyhydric alcohol having 1 to 22 carbon atoms, preferably 1 to 12 carbon atoms, having a linear or branched chain can be used.
As monohydric alcohol, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, n-heptyl alcohol, n-octyl alcohol, 2-ethylhexyl alcohol, isooctyl alcohol, n-nonyl alcohol, Examples thereof include alkyl alcohols such as isononyl alcohol, aromatic alcohols such as phenol and benzyl alcohol, and aromatic alcohols having a long-chain alkyl group such as nonylphenol.
Examples of the polyhydric alcohol include glycols such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, and neopentyl glycol, and polyhydric alcohols such as glycerin, pentaerythritol, and sorbitol.
Among these, monohydric alcohols having a linear or branched chain having 1 to 4 carbon atoms such as methanol, ethanol, propanol, and butanol are particularly preferable.

(原料エステル)
原料のエステルとしては、例えば、上記で例示した、炭素数1〜22、好ましくは炭素数1〜20の直鎖又は分岐鎖を持つ脂肪族カルボン酸又は芳香族カルボン酸又はそれらの混合物と、炭素数1〜22、好ましくは炭素数1〜12の直鎖又は分岐鎖を持つ1価アルコール又は多価アルコールとのエステル又は部分エステルを用いることができる。
より具体的には、原料エステルは、モノグリセリド、ジグリセリド、トリグリセリド、ヤシ油、パーム油、パーム核油等の天然植物油、牛脂、豚脂等の動物油等、蜜蝋、木蝋等の天然ワックスとして存在する。
(Raw material ester)
Examples of the raw material ester include aliphatic carboxylic acids or aromatic carboxylic acids having a linear or branched chain having 1 to 22 carbon atoms, preferably 1 to 20 carbon atoms, or a mixture thereof, as exemplified above, and carbon. Esters or partial esters with monohydric alcohols or polyhydric alcohols having a linear or branched chain of 1 to 22, preferably 1 to 12 carbon atoms can be used.
More specifically, the raw material ester exists as natural waxes such as monoglyceride, diglyceride, triglyceride, natural vegetable oil such as coconut oil, palm oil and palm kernel oil, animal oil such as beef tallow and lard, and beeswax and wood wax.

(反応方式、反応条件)
本発明の触媒は、エステル化反応の際に、粉末のまま原料に分散させて使用することもできるし、所望の形状に成形して使用することもできる。
本触媒を粉末のままで使用する場合には、回分式反応槽等で反応を行い、反応終了後に濾過等によって触媒を反応液から分離することができる。
本触媒を所望の形状に成形する場合には、適当なバインダーを使用して、成形触媒とし、反応塔に充填して連続反応を行うことができる。
エステル化反応における反応条件、原料仕込み比は、適宜最適な条件を選定することができる。
(Reaction method, reaction conditions)
In the esterification reaction, the catalyst of the present invention can be used in the form of a powder dispersed in a raw material, or can be used after being molded into a desired shape.
When this catalyst is used in powder form, the reaction can be carried out in a batch reaction tank or the like, and the catalyst can be separated from the reaction solution by filtration or the like after completion of the reaction.
When the catalyst is formed into a desired shape, a continuous reaction can be carried out by using a suitable binder as a formed catalyst and filling the reaction tower.
Optimum conditions can be selected as appropriate for the reaction conditions and the raw material charging ratio in the esterification reaction.

本発明の触媒は、原料のカルボン酸、アルコール、エステル等に対して不溶性であり、活性成分の溶出が起きないため、反応は気相系でも液相系でも適用可能である。特に、温和な条件でも優れた活性を示すため、従来の固体酸触媒では高活性を発現させるのが難しかった液相系でも、好適に使用することができる。
本触媒の使用量は特に制限されないが、通常、原料カルボン酸に対して0.1〜20質量%であり、好ましくは1〜10質量%である。また、原料エステルに対して0.1〜20質量%であり、好ましくは1〜10質量%である。
反応圧力は、大気圧、加圧、又は減圧で行うことができる。加圧下で反応させればアルコールの液化を促進することができるため、反応速度上有利である。
本触媒は耐熱性に優れているため、反応温度に特に制限はない。反応温度は、副反応を考慮すればより低い温度が好ましいが、本触媒は、従来の固体酸触媒と比較して、低温条件下でも高いエステル化反応活性を発揮することができる。反応温度は、通常50〜250℃、好ましくは100〜225℃である。
また、固体酸触媒である本触媒を使用してエステルを製造すれば、反応後の処理がろ過のみで済むため、均一系触媒の場合に必要な中和工程を省くことができる。また、蒸留の際にも、塩の存在による副反応等が起こらず、精製時の歩留まりを高めることができ、さらには未反応原料の回収が容易となる。
The catalyst of the present invention is insoluble in the raw material carboxylic acid, alcohol, ester and the like, and the elution of the active component does not occur. Therefore, the reaction can be applied in a gas phase system or a liquid phase system. In particular, since it exhibits excellent activity even under mild conditions, it can be suitably used even in a liquid phase system in which it was difficult to achieve high activity with conventional solid acid catalysts.
Although the usage-amount of this catalyst is not specifically limited, Usually, it is 0.1-20 mass% with respect to raw material carboxylic acid, Preferably it is 1-10 mass%. Moreover, it is 0.1-20 mass% with respect to raw material ester, Preferably it is 1-10 mass%.
The reaction pressure can be atmospheric pressure, pressurization, or reduced pressure. If the reaction is carried out under pressure, liquefaction of alcohol can be promoted, which is advantageous in terms of reaction rate.
Since this catalyst is excellent in heat resistance, the reaction temperature is not particularly limited. The reaction temperature is preferably a lower temperature in consideration of side reactions, but the present catalyst can exhibit high esterification reaction activity even under low temperature conditions as compared with conventional solid acid catalysts. The reaction temperature is usually 50 to 250 ° C, preferably 100 to 225 ° C.
In addition, if an ester is produced using the present catalyst, which is a solid acid catalyst, the post-reaction treatment can be performed only by filtration, so that the neutralization step required for a homogeneous catalyst can be omitted. In addition, no side reaction or the like due to the presence of salt occurs during the distillation, the yield during purification can be increased, and the recovery of unreacted raw materials is facilitated.

各実施例及び比較例で得られた粉末について、以下に示す方法により、元素分析、粉末X線回折(XRD)及びBET比表面積の測定を行った。
(1)元素分析
日本ジャーレルアッシュ社製、誘導結合プラズマ発光分析装置、商品名「ICAP−88」を用いて、湿式分解法にてアルミニウムの含有量を測定した。
(2)粉末X線回折の測定
理学電機工業株式会社製、粉末X線回折装置、商品名「RINT2500VPC」を用いて、X線源:Cu-Kα、管電圧:40mA、管電流:40kV、サンプリング幅:0.02°、発散スリット:1/2°、発散スリット縦:1.2mm、散乱スリット:1/2°、受光スリット:0.15mmの条件で粉末X線回折測定を行った。走査範囲は回折角(2θ)1〜20°、走査速度は4.0°/分で連続スキャン法を用いた。なお、試料は、粉砕した後、アルミニウム板に詰めて測定した。
(3)BET比表面積、細孔分布の測定
Micromeritics社製、比表面積・細孔分布測定装置、商品名「ASAP2020」を使用し、液体窒素を用いて多点法でBET比表面積を測定し、パラメータCが正になる範囲で値を導出した。細孔分布は、前記のBJH法を採用し、細孔分布のピークトップを平均細孔径とした。前処理は250℃で5時間行った。
About the powder obtained by each Example and the comparative example, the elemental analysis, the powder X-ray diffraction (XRD), and the measurement of the BET specific surface area were performed by the method shown below.
(1) Elemental analysis The aluminum content was measured by a wet decomposition method using an inductively coupled plasma emission analyzer manufactured by Nippon Jarrel Ash Co., Ltd., trade name “ICAP-88”.
(2) Measurement of powder X-ray diffraction Using a powder X-ray diffractometer manufactured by Rigaku Denki Kogyo Co., Ltd., trade name “RINT2500VPC”, X-ray source: Cu—Kα, tube voltage: 40 mA, tube current: 40 kV, sampling Powder X-ray diffraction measurement was performed under the conditions of width: 0.02 °, divergence slit: 1/2 °, divergence slit length: 1.2 mm, scattering slit: 1/2 °, and light receiving slit: 0.15 mm. The scanning range was a diffraction angle (2θ) of 1 to 20 °, the scanning speed was 4.0 ° / min, and the continuous scanning method was used. The sample was crushed and then packed in an aluminum plate for measurement.
(3) Measurement of BET specific surface area and pore distribution
Using a specific surface area / pore distribution measuring device manufactured by Micromeritics Co., Ltd., trade name “ASAP2020”, the BET specific surface area was measured by a multipoint method using liquid nitrogen, and values were derived within a range where parameter C was positive. . For the pore distribution, the BJH method described above was adopted, and the peak top of the pore distribution was defined as the average pore diameter. The pretreatment was performed at 250 ° C. for 5 hours.

実施例1
(触媒調製)
テトラデシルトリメチルアンモニウムブロミド(東京化成工業株式会社製)122.8gと硝酸アルミニウム(片山化学社製)0.63gを40℃にて攪拌しながら、蒸留水320.9gに溶解させた。該水溶液に、二酸化ケイ素(日産化学工業株式会社製、コロイダルシリカ、商品名:スノーテックス20、20〜21質量%SiO2)153.4gと水酸化ナトリウム水溶液68.8g(水酸化ナトリウム5.8g)を加え、2時間攪拌した。次に得られた溶液を静置条件下、140℃で48時間反応させた。その後、析出物を濾過、洗浄、80℃で12時間乾燥させた。得られた乾燥粉末30gに蒸留水を900g加え、攪拌下で2NのHClを用いてpH6.5付近に調整した。該水溶液を80℃で20時間静置後、濾過、洗浄を行った後、80℃で12時間乾燥した。該乾燥粉末を600℃で6時間焼成して界面活性剤を除去した。
アルミニウム含有量は0.3質量%、細孔分布のピークトップ(平均細孔径)は2.4nm、BET比表面積は1037m2/g、粉末X線回折における最大ピークの回折角(2θ)は2.3°、(1,0,0)面の面間隔は3.7nmであった。
Example 1
(Catalyst preparation)
Tetradecyltrimethylammonium bromide (Tokyo Chemical Industry Co., Ltd.) 122.8 g and aluminum nitrate (Katayama Chemical Co., Ltd.) 0.63 g were dissolved in distilled water 320.9 g while stirring at 40 ° C. In this aqueous solution, 153.4 g of silicon dioxide (manufactured by Nissan Chemical Industries, Ltd., colloidal silica, trade name: Snowtex 20, 20 to 21% by mass SiO 2 ) and 68.8 g of sodium hydroxide aqueous solution (5.8 g of sodium hydroxide) ) Was added and stirred for 2 hours. Next, the obtained solution was reacted at 140 ° C. for 48 hours under standing conditions. Thereafter, the precipitate was filtered, washed, and dried at 80 ° C. for 12 hours. 900 g of distilled water was added to 30 g of the obtained dry powder, and the pH was adjusted to around 6.5 using 2N HCl under stirring. The aqueous solution was allowed to stand at 80 ° C. for 20 hours, filtered and washed, and then dried at 80 ° C. for 12 hours. The dry powder was calcined at 600 ° C. for 6 hours to remove the surfactant.
The aluminum content is 0.3% by mass, the peak top (average pore diameter) of the pore distribution is 2.4 nm, the BET specific surface area is 1037 m 2 / g, and the diffraction angle (2θ) of the maximum peak in powder X-ray diffraction is 2. The surface interval of the .3 ° (1,0,0) plane was 3.7 nm.

(エステル交換反応)
オートクレーブ中に、パーム核油(トリグリセリド)200gと、メタノール55.8g、本発明の触媒として実施例1で調製した固体酸触媒10g仕込んだ。反応温度200℃で5時間、密閉条件で懸濁反応させた後、触媒を濾別し、反応終了液の組成をガスクロマトグラフィーで分析して5時間目のエステル収率を求め、また、下記式(1)で表される反応速度を求めた。
反応速度[1/s]=[ln〔(EV0−EVe)/(EV5h−EVe)〕]/5−〔無触媒の反応速度〕 (1)
ここで、EV0は原料トリグリセリドのエステル価(KOHmg/g)、EVeは平衡エステル価(KOHmg/g)、EV5hは反応5時間目の反応液に残存しているグリセリドのエステル価(KOHmg/g)を示し、無触媒の反応速度は0.07である。
得られた結果を表1に示す。
(Transesterification reaction)
In an autoclave, 200 g of palm kernel oil (triglyceride), 55.8 g of methanol, and 10 g of the solid acid catalyst prepared in Example 1 as a catalyst of the present invention were charged. After suspension reaction at 200 ° C. for 5 hours under sealed conditions, the catalyst was filtered off, and the composition of the reaction finished solution was analyzed by gas chromatography to determine the ester yield at 5 hours. The reaction rate represented by the formula (1) was determined.
Reaction rate [1 / s] = [ln [(EV0-EVe) / (EV5h-EVe)]] / 5- [Non-catalyst reaction rate] (1)
Here, EV0 is the ester value of raw material triglyceride (KOHmg / g), EVe is the equilibrium ester value (KOHmg / g), EV5h is the ester value of glyceride remaining in the reaction solution at 5 hours of reaction (KOHmg / g) The catalyst-free reaction rate is 0.07.
The results obtained are shown in Table 1.

実施例2
硝酸アルミニウムを加えない以外は、実施例1と同様にして触媒を調製した。
アルミニウム含有量は0.2質量%、細孔分布のピークトップ(平均細孔径)は2.4nm、BET比表面積は1016m2/g、粉末X線回折における最大ピークの回折角(2θ)は2.3°、(1,0,0)面の面間隔は3.8nmであった。
この触媒を用いて、実施例1と同様にしてエステル交換反応を行った。その結果を表1に示す。
Example 2
A catalyst was prepared in the same manner as in Example 1 except that aluminum nitrate was not added.
The aluminum content is 0.2% by mass, the peak top (average pore diameter) of the pore distribution is 2.4 nm, the BET specific surface area is 1016 m 2 / g, and the diffraction angle (2θ) of the maximum peak in powder X-ray diffraction is 2 The surface spacing of the .3 ° (1,0,0) plane was 3.8 nm.
Using this catalyst, a transesterification reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

実施例3
硝酸アルミニウムの添加量を5.63gに変えた以外は、実施例1と同様にして触媒を調製した。
アルミニウム含有量は1.2質量%、細孔分布のピークトップ(平均細孔径)は2.3nm、BET比表面積は654m2/g、粉末X線回折における最大ピークの回折角(2θ)は2.3°、(1,0,0)面の面間隔は3.9nmであった。
この触媒を用いて、実施例1と同様にしてエステル交換反応を行った。その結果を表1に示す。
Example 3
A catalyst was prepared in the same manner as in Example 1 except that the amount of aluminum nitrate added was changed to 5.63 g.
The aluminum content is 1.2% by mass, the peak top (average pore diameter) of the pore distribution is 2.3 nm, the BET specific surface area is 654 m 2 / g, and the diffraction angle (2θ) of the maximum peak in powder X-ray diffraction is 2 The surface interval of the .3 ° (1,0,0) plane was 3.9 nm.
Using this catalyst, a transesterification reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

比較例1
テトラデシルトリメチルアンモニウムブロミド(東京化成工業株式会社製)122.8gを40℃にて攪拌しながら、蒸留水364.6gに溶解させた。該水溶液に、95質量%テトラエチルオルトシリケート(和光純薬社製)109.7gと水酸化ナトリウム水溶液68.8g(水酸化ナトリウム5.8g)を加え、2時間攪拌した。次に得られた溶液を静置条件下、140℃で48時間反応させた。その後、析出物を濾過、洗浄、80℃で12時間乾燥させた。得られた乾燥粉末30gに蒸留水を900g加え、攪拌下で2NのHClを用いてpH6.5付近に調整した。該水溶液を80℃で20時間静置後、濾過、洗浄を行った後、80℃で12時間乾燥した。該乾燥粉末を600℃で6時間焼成して界面活性剤を除去した。
アルミニウム含有量は0.005質量%、細孔分布のピークトップ(平均細孔径)は2.3nm、BET比表面積は912m2/g、粉末X線回折における最大ピークの回折角(2θ)は2.3°、(1,0,0)面の面間隔は3.7nmであった。
この触媒を用いて、実施例1と同様にしてアルコール分解反応を行った。その結果を表1に示す。
Comparative Example 1
While stirring at 40 ° C., 122.8 g of tetradecyltrimethylammonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 364.6 g of distilled water. To this aqueous solution, 109.7 g of 95% by mass tetraethyl orthosilicate (manufactured by Wako Pure Chemical Industries) and 68.8 g of sodium hydroxide aqueous solution (5.8 g of sodium hydroxide) were added and stirred for 2 hours. Next, the obtained solution was reacted at 140 ° C. for 48 hours under standing conditions. Thereafter, the precipitate was filtered, washed, and dried at 80 ° C. for 12 hours. 900 g of distilled water was added to 30 g of the obtained dry powder, and the pH was adjusted to around 6.5 using 2N HCl under stirring. The aqueous solution was allowed to stand at 80 ° C. for 20 hours, filtered and washed, and then dried at 80 ° C. for 12 hours. The dry powder was calcined at 600 ° C. for 6 hours to remove the surfactant.
The aluminum content is 0.005% by mass, the peak top (average pore diameter) of the pore distribution is 2.3 nm, the BET specific surface area is 912 m 2 / g, and the diffraction angle (2θ) of the maximum peak in powder X-ray diffraction is 2 The surface interval of the .3 ° (1,0,0) plane was 3.7 nm.
Using this catalyst, an alcohol decomposition reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

表1から、実施例1〜3の触媒を用いてエステル化反応を行うと、比較例1の場合に比べて、格段に効率的にエステルを製造することができることが分かる。   From Table 1, it can be seen that when the esterification reaction is carried out using the catalysts of Examples 1 to 3, the ester can be produced much more efficiently than in the case of Comparative Example 1.

Claims (6)

窒素吸着等温線からBJH法を用いて求めた細孔分布のピークトップが0.6〜8nmの範囲にあり、かつ0.1〜5質量%のアルミニウムを含有するシリケートを含むエステル化触媒。   An esterification catalyst comprising a silicate having a peak top of a pore distribution determined by a BJH method from a nitrogen adsorption isotherm in a range of 0.6 to 8 nm and containing 0.1 to 5% by mass of aluminum. BET比表面積が500m2/g以上である、請求項1に記載のエステル化触媒。 The esterification catalyst according to claim 1, wherein the BET specific surface area is 500 m 2 / g or more. 触媒の粉末X線回折における最大ピークの回折角(2θ)が1〜10°の範囲にある、請求項1又は2に記載のエステル化触媒。   The esterification catalyst according to claim 1 or 2, wherein the diffraction angle (2θ) of the maximum peak in the powder X-ray diffraction of the catalyst is in the range of 1 to 10 °. 触媒がヘキサゴナル構造を有し、粉末X線回折(XRD)における(1,0,0)面の面間隔が2〜8nmの範囲にある、請求項1〜3のいずれかに記載のエステル化触媒。   The esterification catalyst according to any one of claims 1 to 3, wherein the catalyst has a hexagonal structure and the (1,0,0) plane spacing in powder X-ray diffraction (XRD) is in the range of 2 to 8 nm. . 分子量が1000以下のエステルを製造する、請求項1〜4のいずれかに記載のエステル化触媒。   The esterification catalyst according to any one of claims 1 to 4, wherein an ester having a molecular weight of 1000 or less is produced. (a)一般式(1)及び/又は一般式(2)で表される第四級アンモニウム塩、アルミニウム源及びシリカ源を含む第四級アンモニウム塩水溶液を調製する工程、
[R1(CH33N]+- (1)
[R12(CH32N]+- (2)
(式中、R1及びR2は、それぞれ独立に炭素数4〜22の直鎖状又は分岐鎖状アルキル基を示し、Xはハロゲン原子を示す。)
(b)得られた第四級アンモニウム塩水溶液を100〜160℃の温度で加熱処理して、第四級アンモニウム塩、アルミニウム及びシリカを含む複合体を析出させる工程、及び
(c)得られた複合体を焼成処理し、該複合体から第四級アンモニウム塩を除去する工程、
を含む請求項1〜4のいずれかに記載のエステル化触媒の製造方法。
(A) a step of preparing an aqueous quaternary ammonium salt solution containing a quaternary ammonium salt represented by the general formula (1) and / or the general formula (2), an aluminum source and a silica source;
[R 1 (CH 3 ) 3 N] + X (1)
[R 1 R 2 (CH 3 ) 2 N] + X (2)
(In the formula, R 1 and R 2 each independently represent a linear or branched alkyl group having 4 to 22 carbon atoms, and X represents a halogen atom.)
(B) a step of heat-treating the obtained aqueous quaternary ammonium salt solution at a temperature of 100 to 160 ° C. to precipitate a composite containing a quaternary ammonium salt, aluminum and silica, and (c) obtained. Baking the composite and removing the quaternary ammonium salt from the composite;
The manufacturing method of the esterification catalyst in any one of Claims 1-4 containing this.
JP2006018048A 2006-01-26 2006-01-26 Esterification catalyst Expired - Fee Related JP4810243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018048A JP4810243B2 (en) 2006-01-26 2006-01-26 Esterification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018048A JP4810243B2 (en) 2006-01-26 2006-01-26 Esterification catalyst

Publications (2)

Publication Number Publication Date
JP2007196140A true JP2007196140A (en) 2007-08-09
JP4810243B2 JP4810243B2 (en) 2011-11-09

Family

ID=38451265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018048A Expired - Fee Related JP4810243B2 (en) 2006-01-26 2006-01-26 Esterification catalyst

Country Status (1)

Country Link
JP (1) JP4810243B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114515597A (en) * 2020-11-19 2022-05-20 中国石油化工股份有限公司 Esterification catalyst, preparation method thereof and application thereof in esterification synthesis reaction of acetic acid and alcohol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145440A (en) * 1989-10-30 1991-06-20 Idemitsu Petrochem Co Ltd Preparation of unsaturated carboxylic acid ester
JPH10139417A (en) * 1996-10-31 1998-05-26 Mitsubishi Heavy Ind Ltd Silicate of large specific surface area and its synthesis
JPH10512231A (en) * 1995-10-31 1998-11-24 コリア リサーチ インスティチュート オブ ケミカル テクノロジイ Method for preparing mesoporous crystalline material
JP2003535009A (en) * 2000-05-25 2003-11-25 ミシガン ステイト ユニバーシティー Super stable porous aluminosilicate structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145440A (en) * 1989-10-30 1991-06-20 Idemitsu Petrochem Co Ltd Preparation of unsaturated carboxylic acid ester
JPH10512231A (en) * 1995-10-31 1998-11-24 コリア リサーチ インスティチュート オブ ケミカル テクノロジイ Method for preparing mesoporous crystalline material
JPH10139417A (en) * 1996-10-31 1998-05-26 Mitsubishi Heavy Ind Ltd Silicate of large specific surface area and its synthesis
JP2003535009A (en) * 2000-05-25 2003-11-25 ミシガン ステイト ユニバーシティー Super stable porous aluminosilicate structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114515597A (en) * 2020-11-19 2022-05-20 中国石油化工股份有限公司 Esterification catalyst, preparation method thereof and application thereof in esterification synthesis reaction of acetic acid and alcohol
CN114515597B (en) * 2020-11-19 2023-05-09 中国石油化工股份有限公司 Esterification catalyst, preparation method thereof and application thereof in esterification synthesis reaction of acetic acid and alcohol

Also Published As

Publication number Publication date
JP4810243B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
Sharma et al. Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review
JP4976016B2 (en) Process for producing ester by transesterification
JP2005177722A (en) Method for producing fatty acid ester
Tantirungrotechai et al. One-pot synthesis of calcium-incorporated MCM-41 as a solid base catalyst for transesterification of palm olein
KR101230625B1 (en) Structured Mesoporous Silica Supported Fischer-Tropsch Catalyst
WO2019010700A1 (en) Multi-pore zeolite having layered structure and preparation method therefor
RU2706014C2 (en) Dehydration-hydrolysis methods and catalysts therefor
WO2014115356A1 (en) Transesterification catalyst and method for producing biodiesel fuel using transesterification catalyst
CN102658174A (en) Mesoporous fibrous SO4&lt;2-&gt;/MxOy type solid acid catalyst and preparation method thereof
Mohamad et al. Synthesis and characterization of CaO-TiO2 for transesterification of vegetable palm oil
CA2702514A1 (en) Catalyst for producing a light olefin and method for producing a light olefin
Hegde et al. Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production
CN101830503A (en) Method for preparing novel porous honeycomb mesoporous titanium dioxide material
JP4810243B2 (en) Esterification catalyst
CN106883120B (en) MIL-101(Cr) crude sample, and preparation method and application of MIL-101(Cr) material
US20110209388A1 (en) Calcium and lanthanum solid base catalysts for transesterification
JP2007022973A (en) Method for producing ester
CN1298625C (en) Double metaporous silicon dioxide material and its preparing method
US10428038B2 (en) Single step process for the synthesis of furfuryl ethyl ether
EP2912006A2 (en) Process for producing monobranched fatty acids or alkyl esters thereof
JPH04271839A (en) Sio2 containing copper oxide-chromium oxide catalyst for hydrogenating particularly fatty acid and fatty acid ester
Fazaeli et al. Production of biodiesel through esterification of palmitic acid using 12-tungestoposphoric acid supported on nanocavity of aluminium incorporated mesoporous SBA-15
KR101402957B1 (en) Mixed Oxide Catalysts with Ordered Mesopores, Method of Preparing the Same and Method of Producing Ester Compounds Using the Same
US20210339225A1 (en) Mixed oxide composite comprising calcium oxide and tricalcium aluminate
Jibril et al. Al-MCM-41 Based Catalysts for Transesterification of Jatropha Oil to Biodiesel: Effect of Ce and Zr

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees