JP2007194139A - Particulate carrying carbon particle, its manufacturing method, and electrode for solid electrolyte fuel cell - Google Patents

Particulate carrying carbon particle, its manufacturing method, and electrode for solid electrolyte fuel cell Download PDF

Info

Publication number
JP2007194139A
JP2007194139A JP2006012989A JP2006012989A JP2007194139A JP 2007194139 A JP2007194139 A JP 2007194139A JP 2006012989 A JP2006012989 A JP 2006012989A JP 2006012989 A JP2006012989 A JP 2006012989A JP 2007194139 A JP2007194139 A JP 2007194139A
Authority
JP
Japan
Prior art keywords
carbon particles
particles
molybdenum
supported
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006012989A
Other languages
Japanese (ja)
Inventor
Hiroko Sawaki
裕子 澤木
Mikio Kishimoto
幹雄 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2006012989A priority Critical patent/JP2007194139A/en
Publication of JP2007194139A publication Critical patent/JP2007194139A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide particulate carrying carbon particle which can be used as a replacement of platinum carrying carbon particle or metal platinum particle used generally at present for an electrode catalyst of a fuel cell, capable of drastically reducing the amount of platinum used compared with conventional platinum carrying carbon particles or the like. <P>SOLUTION: A metal oxide particulate (molybdenum-noble metal-contained metal oxide particulate) which contains molybdenum and a noble metal element in a crystal lattice is carried by carbon particles. As a means of manufacturing such particulate carrying carbon particles, a method is adopted in which a solution containing complex ion of metals constituting the molybdenum-noble metal-contained metal oxide particulate is prepared firstly, then, carbon particles are dispersed in the solution obtained, and after having the complex ion of the metals adsorbed to the carbon particles, water and heat treatment is applied. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池の電極用触媒等に好適に使用しうる微粒子担持カーボン粒子、特にモリブデン・貴金属含有金属酸化物微粒子とその製造方法等に関する。   The present invention relates to fine particle-supported carbon particles, particularly molybdenum / noble metal-containing metal oxide fine particles, a production method thereof, and the like that can be suitably used as a catalyst for an electrode of a fuel cell.

従来、金属粒子、合金粒子、金属酸化物粒子等を担体粒子に担持させたものは、消臭、抗菌、自動車排ガスの浄化、燃料電池、NOx還元など、各種触媒として多用されている。この場合の担体粒子としては主に酸化チタン、酸化ジルコニウム、酸化鉄、酸化ニッケル、酸化コバルトなどの金属酸化物やカーボン等が用いられている。特に導電性を持つカーボン粒子を担体として用いた触媒は燃料電池の電極用触媒として有効なものである。   Conventionally, metal particles, alloy particles, metal oxide particles and the like supported on carrier particles have been widely used as various catalysts such as deodorizing, antibacterial, automobile exhaust gas purification, fuel cell, NOx reduction. As carrier particles in this case, metal oxides such as titanium oxide, zirconium oxide, iron oxide, nickel oxide and cobalt oxide, carbon, and the like are mainly used. In particular, a catalyst using conductive carbon particles as a carrier is effective as a catalyst for an electrode of a fuel cell.

中でも、白金とルテニウムの合金粒子をカーボン担体上に担持させたものや、酸化モリブデン、酸化セリウム等の特定の金属酸化物粒子を助触媒として、金属白金微粒子と共にカーボン担体上に担持させたものは、優れた電極用触媒として知られている。これらに関する公知例としては例えば特許文献1や特許文献2がある。このうち特許文献1には、ルテニウム、鉄、コバルト、ニッケル、クロム、モリブデン等の元素と白金との合金粒子を燃料電池用触媒として用いる例が示されている。また、特許文献2には、チタン、バナジウム、クロム、コバルト、モリブデン等の金属と白金との合金粒子および、前述の元素の酸化物を、共にカーボン担体上に担持させることにより、白金粒子のシンタリングを防ぎ、高い酸素還元活性を長期に亘って維持することができると記載されている。   Among them, the one in which platinum and ruthenium alloy particles are supported on a carbon carrier, and the one in which specific metal oxide particles such as molybdenum oxide and cerium oxide are supported on a carbon carrier together with metal platinum fine particles as a promoter. It is known as an excellent electrode catalyst. Known examples of these are, for example, Patent Document 1 and Patent Document 2. Among these, Patent Document 1 shows an example in which alloy particles of platinum and an element such as ruthenium, iron, cobalt, nickel, chromium, and molybdenum are used as a fuel cell catalyst. Patent Document 2 discloses that platinum particles are sintered by supporting an alloy particle of platinum such as titanium, vanadium, chromium, cobalt, and molybdenum and an oxide of the above element on a carbon carrier. It is described that a ring can be prevented and high oxygen reduction activity can be maintained over a long period of time.

一方、金属酸化物を担体表面に担持させる方法としては、主に次のような方法が挙げられる。
(1)金属コロイド粒子を担体に吸着させる方法。
(2)金属塩水溶液中に担体粒子を分散させ、アルカリ剤により金属水酸化物を担体表面に沈着させる方法。
(3)あらかじめ微粒子を分散させた微粒子分散液から、微粒子を担体表面に固着させる方法。
On the other hand, as a method for supporting the metal oxide on the surface of the carrier, the following methods are mainly exemplified.
(1) A method of adsorbing metal colloidal particles on a carrier.
(2) A method in which carrier particles are dispersed in an aqueous metal salt solution, and a metal hydroxide is deposited on the carrier surface with an alkali agent.
(3) A method in which fine particles are fixed to the surface of a carrier from a fine particle dispersion in which fine particles are previously dispersed.

このような液相法を用いた公知例としては特許文献3や特許文献4がある。このうち、特許文献3では、あらかじめ白金を担持させたカーボン粒子を他の所定の金属塩の混合溶液中に分散させて、アルカリ剤によりカーボン粒子に前記金属の水酸化物を沈着させ、還元雰囲気下で1000℃以上に加熱することにより、カーボン粒子に合金微粒子(白金・モリブデン・ニッケル・鉄の4元素の合金微粒子)を担持させることが行われている。そこでは、担持された合金微粒子は約3nm以上とされている。   Known examples using such a liquid phase method include Patent Document 3 and Patent Document 4. Among these, in Patent Document 3, carbon particles previously supported with platinum are dispersed in a mixed solution of another predetermined metal salt, and the hydroxide of the metal is deposited on the carbon particles with an alkali agent. Under heating at 1000 ° C. or higher, alloy particles (four-element alloy particles of platinum, molybdenum, nickel, and iron) are supported on carbon particles. In this case, the supported fine alloy particles are about 3 nm or more.

また特許文献4では、五酸化バナジウムをカーボンに担持させた粒子を得るにあたり、有機バナジウム溶液に有機溶媒を加えることにより、溶媒和させて有機錯体を作製し、これをカーボンに吸着、担持させる方法がとられている。この場合にはカーボンに担持された五酸化バナジウムは非晶質となっている。   In Patent Document 4, when obtaining particles in which vanadium pentoxide is supported on carbon, an organic solvent is added to the organic vanadium solution to solvate it to produce an organic complex, which is adsorbed and supported on carbon. Has been taken. In this case, the vanadium pentoxide supported on carbon is amorphous.

特開2005−190780号公報JP 2005-190780 A 特開2005−5257号公報Japanese Patent Laid-Open No. 2005-5257 特開平5−217586号公報JP-A-5-217586 特開2000−36303号公報JP 2000-36303 A

しかしながら、従来における上記のような金属粒子、合金粒子、金属酸化物粒子あるいはこれらを担体粒子に担持させたものは、これらを燃料電池などの電極用触媒に使用した場合において、その耐食性が未だ十分でないという問題があった。例えば、これまでの金属白金粒子を用いた燃料電池の電極用触媒では、使用過程における金属白金粒子のCO被毒による劣化や、100℃以上の温度雰囲気を繰り返すことによる白金粒子同士の固着、粒成長を完全に防ぐことができなかったため、その触媒能が著しく低下するという問題があった。また、この種の電極用触媒において現状の白金量のものを使用することは、コスト面で不利であるだけでなく白金の枯渇をも招くこととなるため、白金の使用量を減少させることは喫緊の課題となっている。   However, conventional metal particles, alloy particles, metal oxide particles or those in which these are supported on carrier particles are still sufficiently resistant to corrosion when used as catalyst for an electrode such as a fuel cell. There was a problem of not. For example, in conventional fuel cell electrode catalysts using metal platinum particles, deterioration of platinum metal particles due to CO poisoning in the process of use, adhesion of platinum particles due to repetition of a temperature atmosphere of 100 ° C. or higher, particles Since the growth could not be completely prevented, there was a problem that the catalytic ability was remarkably lowered. Also, using this type of electrode catalyst with the current amount of platinum is not only disadvantageous in terms of cost but also leads to depletion of platinum, so reducing the amount of platinum used It is an urgent issue.

本発明は、このような問題に対処するもので、燃料電池の電極用触媒などに現在一般に使用されている白金担持カーボン粒子や金属白金粒子の代替材料として使用でき、しかもそのような従来の白金担持カーボン粒子等と比べると貴重な資源である白金の使用量を大幅に減らすことのできる耐食性に優れた微粒子担持カーボン粒子とその製造方法を提供することを主たる目的とする。   The present invention addresses such problems, and can be used as an alternative material for platinum-supported carbon particles and metal platinum particles that are currently commonly used in fuel cell electrode catalysts, and such conventional platinum. The main object is to provide fine particle-supported carbon particles having excellent corrosion resistance and a method for producing the same, which can significantly reduce the amount of platinum used as a valuable resource compared to supported carbon particles.

上記の目的を達成するため、本発明の微粒子担持カーボン粒子は、結晶格子中にモリブデンおよび貴金属元素を含有し、かつ、貴金属元素が配置された結晶サイトに含まれる貴金属元素量が、当該結晶サイト内に含まれる全元素量に対して2〜20mol%である金属酸化物微粒子(モリブデン・貴金属含有金属酸化物微粒子)をカーボン粒子に担持させた構成としたものである。具体的には、結晶子サイズが1〜20nmであり且つ結晶格子中にモリブデンおよび貴金属元素を含有する前記金属酸化物微粒子を、一次粒子までの単分散状態を保持したまま、平均粒子径が20〜70nmであるカーボン粒子に担持させたものである。   In order to achieve the above object, the fine particle-supported carbon particles of the present invention contain molybdenum and a noble metal element in the crystal lattice, and the amount of the noble metal element contained in the crystal site where the noble metal element is arranged is the crystal site. The metal oxide fine particles (molybdenum / noble metal-containing metal oxide fine particles) of 2 to 20 mol% with respect to the total amount of elements contained therein are supported on the carbon particles. Specifically, the average particle size of the metal oxide fine particles having a crystallite size of 1 to 20 nm and containing molybdenum and a noble metal element in a crystal lattice is maintained in a monodispersed state up to the primary particles. It is carried on carbon particles having a diameter of ˜70 nm.

本発明者らは、このような微粒子担持カーボン粒子を得るあたり、構成金属の混合錯イオン溶液を合成し、これをカーボン粒子表面に吸着させたのち、加熱処理を施すことにより、一次粒子までの単分散状態を保持したまま、モリブデン・貴金属含有金属酸化物微粒子をカーボン粒子に担持させることができることを見出した。これにより、これまでの製造方法では不可能であった微粒子担持カーボン粒子、すなわち結晶子サイズが1nm以上20nm以下の範囲にあるモリブデン・貴金属含有金属酸化物微粒子を担持させた微粒子担持カーボン粒子の開発に成功したものである。   In obtaining such fine particle-supported carbon particles, the present inventors synthesized a mixed complex ion solution of constituent metals, adsorbed this onto the surface of the carbon particles, and then subjected to heat treatment to obtain primary particles. It was found that molybdenum / noble metal-containing metal oxide fine particles can be supported on carbon particles while maintaining a monodispersed state. As a result, development of fine particle-supported carbon particles, which is impossible with conventional production methods, that is, fine particle-supported carbon particles supporting fine particles of molybdenum / noble metal containing metal oxides having a crystallite size in the range of 1 nm to 20 nm. Is a successful one.

本発明方法は、上記のような微粒子担持カーボン粒子を得るあたり、まず、モリブデン・貴金属含有金属酸化物微粒子を構成する金属の錯イオンを含む溶液を調整し、次いで、得られた溶液中にカーボン粒子を分散させて、前記金属の錯イオンをカーボン粒子に吸着させることを特徴とするものである。この場合、前記金属の錯イオンをカーボン粒子に吸着させた後において、さらに水熱処理を施すことにより、モリブデン・貴金属含有金属酸化物微粒子をカーボン粒子表面に析出させて担持させるのが好ましい。   In the method of the present invention, when obtaining the fine particle-supported carbon particles as described above, first, a solution containing a complex ion of a metal constituting the molybdenum / noble metal-containing metal oxide fine particles is prepared, and then carbon is added to the obtained solution. The particles are dispersed, and the complex ions of the metal are adsorbed on the carbon particles. In this case, after the metal complex ions are adsorbed on the carbon particles, it is preferable that the molybdenum / noble metal-containing metal oxide fine particles are deposited and supported on the surface of the carbon particles by further hydrothermal treatment.

本発明の微粒子担持カーボン粒子では、これを電極用触媒(主として燃料電池の電極用触媒)に用いた場合の耐食性を向上させるべく、触媒機能を持つ貴金属元素を、金属粒子としてではなくイオンの状態でカーボン粒子に担持させている。通常、貴金属元素は、金属粒子の状態で存在しなければ優れた触媒能が発現しないと言われているが、本発明においては、前記のように触媒機能を持つ貴金属元素を、金属粒子としてではなく結晶格子中にイオンの状態で存在させているため、電極用触媒としての使用環境下において、電圧を掛けることによる電子の移動を利用して、含有される貴金属元素を強引に酸化・還元環境下に曝し、還元状態では貴金属元素が金属粒子として析出し、酸化状態では母体となる酸化物中に再固溶する、という過程を繰り返させることができる。これにより、貴金属元素の固着、粒成長を防ぎ、優れた耐久性を実現することが可能となる。   In the fine particle-supported carbon particles of the present invention, in order to improve the corrosion resistance when this is used for an electrode catalyst (mainly an electrode catalyst for a fuel cell), a noble metal element having a catalytic function is in an ionic state rather than as a metal particle. And are supported on carbon particles. Usually, noble metal elements are said to exhibit excellent catalytic ability unless they are present in the form of metal particles, but in the present invention, noble metal elements having a catalytic function as described above are not used as metal particles. Because it is present in the crystal lattice in an ionic state, the precious metal elements contained are forcibly oxidized / reduced using the transfer of electrons by applying a voltage in the environment of use as an electrode catalyst. It is possible to repeat the process of exposing to the bottom and precipitating the precious metal element as metal particles in the reduced state and re-dissolving in the base oxide in the oxidized state. As a result, it is possible to prevent adhesion of noble metal elements and grain growth, and realize excellent durability.

また、モリブデンについては、白金などの貴金属粒子と酸化モリブデンとが共存する際には、酸化モリブデンが助触媒として働き、触媒能を向上させることが知られている。本発明においては、電極用触媒としての使用環境下において貴金属元素が金属粒子として析出した際に、金属酸化物中に必ずモリブデンを含有させることにより、酸化状態にあるモリブデンを、原子レベルで貴金属元素の最近傍に存在させることができ、より触媒能の高い電極用触媒とすることができる。   As for molybdenum, it is known that when noble metal particles such as platinum and molybdenum oxide coexist, molybdenum oxide functions as a co-catalyst and improves the catalytic performance. In the present invention, when the noble metal element is precipitated as metal particles in the use environment as the electrode catalyst, the metal oxide always contains molybdenum, so that the molybdenum in the oxidized state is converted into the noble metal element at the atomic level. It can be made to exist in the nearest vicinity of, and it can be set as the catalyst for electrodes with higher catalytic ability.

このようにして、本発明によれば、燃料電池の電極用触媒に用いられている従来の白金担持カーボン粒子等の代替物となりうる微粒子担持カーボン粒子を実現でき、そのような代替物として用いた場合において、貴重な資源である白金の使用量を従来の電極用触媒材料と比べて大幅に減らすことができる。   In this way, according to the present invention, it is possible to realize fine particle-supported carbon particles that can be used as an alternative to the conventional platinum-supported carbon particles used in fuel cell electrode catalysts, and used as such an alternative. In some cases, the amount of platinum, which is a valuable resource, can be greatly reduced compared to conventional electrode catalyst materials.

本発明方法では、モリブデン・貴金属含有金属酸化物微粒子を構成する金属の錯イオンを含む溶液をあらかじめ調整し、この溶液中にカーボン粒子を分散させることにより、前記金属の錯イオンをカーボン粒子表面に吸着させ、これを乾燥させることにより、カーボン粒子表面にモリブデン・貴金属含有金属酸化物微粒子の前駆体を析出させ、さらにこれを加熱処理することによって、所定の微粒子担持カーボン粒子を作製する。   In the method of the present invention, a solution containing the complex ions of the metal constituting the molybdenum / noble metal-containing metal oxide fine particles is prepared in advance, and the carbon particles are dispersed in this solution, whereby the complex ions of the metal are deposited on the surface of the carbon particles. By adsorbing and drying, a precursor of molybdenum / noble metal-containing metal oxide fine particles is precipitated on the surface of the carbon particles, and further, this is subjected to heat treatment to produce predetermined fine particle-supported carbon particles.

本発明者らは、モリブデン・貴金属含有金属酸化物微粒子を構成する金属の錯イオンをカーボン粒子表面に吸着させるという上記のような方法により、これまでの製造方法では不可能であった、結晶子サイズが1nmから20nmの範囲にあり、かつ、結晶格子中にモリブデンおよび白金等の貴金属元素を含有するモリブデン・貴金属含有金属酸化物微粒子を、一次粒子までの単分散状態を保持したまま、カーボン担体に担持させることに成功したものである。   The inventors of the present invention have achieved crystallites that have been impossible with conventional production methods by the above-described method of adsorbing metal complex ions constituting molybdenum / noble metal-containing metal oxide fine particles to the surface of carbon particles. A carbon support having a size in a range of 1 nm to 20 nm and containing molybdenum and noble metal-containing metal oxide fine particles containing noble metal elements such as molybdenum and platinum in a crystal lattice while maintaining a monodispersed state up to the primary particles. It was succeeded in carrying it.

このようにして得られた微粒子担持カーボン粒子は、燃料電池などの電極用触媒に使用できる機能性材料となる。本発明においては、燃料電池の電極用触媒として有効である白金などの貴金属元素が、金属としてではなくイオンの状態で複合酸化物の結晶格子中に含まれることとなり、使用過程において貴金属元素同士が固着、粒成長することなく維持されるため、優れた耐久性を有する電極用触媒となることが期待できる。さらに、モリブデンを白金等の貴金属と共存させて酸化モリブデンの状態で助触媒としての機能を発揮させることで、より優れた触媒能の発現が期待できる。   The fine particle-supported carbon particles obtained in this way are functional materials that can be used for electrode catalysts such as fuel cells. In the present invention, a noble metal element such as platinum that is effective as a catalyst for an electrode of a fuel cell is included in the crystal lattice of the complex oxide in an ionic state rather than as a metal. Since it is maintained without sticking and grain growth, it can be expected to be an electrode catalyst having excellent durability. Furthermore, by exhibiting the function as a promoter in the state of molybdenum oxide by coexisting molybdenum with a noble metal such as platinum, it is possible to expect a more excellent catalytic performance.

以下、本発明の微粒子担持カーボン粒子の製造方法について説明する。
まず第一に、モリブデン・貴金属含有金属酸化物微粒子を構成する金属の錯イオンを含む溶液を調整する。前記モリブデン・貴金属含有金属酸化物微粒子を構成するモリブデンおよび貴金属以外の金属としては、ランタン(La),ストロンチウム(Sr),セリウム(Ce),カルシウム(Ca),イットリウム(Y),エルビウム(Er),プラセオジム(Pr),ネオジム(Nd),サマリウム(Sm),ユウロピウム(Eu),マグネシウム(Mg),バリウム(Ba)、鉄(Fe),コバルト(Co),マンガン(Mn),銅(Cu),チタン(Ti),クロム(Cr),ニッケル(Ni),ニオブ(Nb),鉛(Pb),ビスマス(Bi),アンチモン(Sb)等の元素から1種以上の元素を選択するが、それぞれの金属元素を安定に含有し得る元素であれば前記元素に限定されるものではない。ただし、触媒としての機能を最大限に発現させるために、特にランタンやストロンチウムを含有することが好ましい。また前記貴金属としては、電極としての触媒能を最大限に発揮するために、白金を用いることが好ましい。
Hereinafter, the manufacturing method of the fine particle carrying | support carbon particle of this invention is demonstrated.
First of all, a solution containing a complex ion of a metal constituting the molybdenum / noble metal-containing metal oxide fine particles is prepared. Examples of the metal constituting the molybdenum / noble metal-containing metal oxide fine particles include lanthanum (La), strontium (Sr), cerium (Ce), calcium (Ca), yttrium (Y), and erbium (Er). , Praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), magnesium (Mg), barium (Ba), iron (Fe), cobalt (Co), manganese (Mn), copper (Cu) , Titanium (Ti), chromium (Cr), nickel (Ni), niobium (Nb), lead (Pb), bismuth (Bi), antimony (Sb), etc. The element is not limited to the above element as long as it can stably contain the metal element. However, in order to maximize the function as a catalyst, it is particularly preferable to contain lanthanum or strontium. As the noble metal, platinum is preferably used in order to maximize the catalytic ability as an electrode.

前記金属の錯体としては、塩化物錯体、硝酸アミン錯体などの無機物錯体、あるいは、クエン酸錯体、リンゴ酸錯体、ピコリン酸錯体などの有機物を含有した錯体が挙げられ、それぞれ使用する金属元素により、溶液中でイオンとして存在し得る最適なものを選択する。ただし、この際、目的とする金属以外の金属が溶液中に含まれることは好ましくなく、例えば既存の錯化合物のうち、ルビジウム塩、セシウム塩などの金属塩錯体を単に溶解させた場合には、目的外の金属元素を溶液中に含むことになり、好ましくない。また、上記錯体のうち、カーボン表面に対する吸着効率が良いことから、クエン酸錯体が最も好ましい。   Examples of the metal complex include inorganic complexes such as chloride complexes and nitrate nitrate complexes, or complexes containing organic substances such as citric acid complexes, malic acid complexes, and picolinic acid complexes. The optimal one that can exist as an ion in the solution is selected. However, in this case, it is not preferable that a metal other than the target metal is contained in the solution. For example, among existing complex compounds, when a metal salt complex such as a rubidium salt or a cesium salt is simply dissolved, An undesired metal element is contained in the solution, which is not preferable. Of the above complexes, citric acid complexes are most preferred because of their good adsorption efficiency on the carbon surface.

次に、前記金属の錯イオンを含む溶液中に、電気化学工業社製のデンカブラック(登録商標)等のアセチレンブラック、CABOT社製のバルカン(登録商標)等のファーネスカーボン、あるいはケッチェンブラック等のカーボン粒子を分散させる。この際、カーボン粒子の平均粒子径は20〜70nmであることが好ましい。平均粒子径が20nm未満でも最終生成物である微粒子担持カーボン粒子の触媒能においては問題ないが、合成過程において粒子径が小さいために凝集が激しく、均一分散することが困難となるため、好ましくない。一方、平均粒子径が70nmより大きくても最終生成物の微粒子担持カーボン粒子の触媒能が完全になくなることはないが、比表面積が小さくなって触媒能が低下するため好ましくない。   Next, acetylene black such as Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd., furnace carbon such as Vulcan (registered trademark) manufactured by CABOT, or Ketjen Black, etc. The carbon particles are dispersed. At this time, the average particle diameter of the carbon particles is preferably 20 to 70 nm. Even if the average particle size is less than 20 nm, there is no problem in the catalytic ability of the fine particle-supported carbon particles as the final product, but it is not preferable because the particle size is small in the synthesis process, so that aggregation is severe and difficult to uniformly disperse . On the other hand, even if the average particle diameter is larger than 70 nm, the catalytic ability of the fine particle-supported carbon particles as the final product is not completely lost, but it is not preferable because the specific surface area is reduced and the catalytic ability is lowered.

なお、カーボン粒子の平均粒子径は、透過型電子顕微鏡(TEM)写真で観測される粒子100個の平均から求める。また上記溶液中に含まれる金属元素量については、最終生成物である微粒子担持カーボン粒子中のモリブデン・貴金属含有金属酸化物微粒子の含有量(微粒子担持量)が当該微粒子担持カーボン粒子全体の5〜50重量%となるように調整する。微粒子担持カーボン粒子中の微粒子担持量が5重量%より少なくても問題はないが、例えば触媒として利用する場合には、全体としての貴金属元素量が少なくなるためにその機能が発現しにくくなる恐れがあり、また50重量%より多くても問題はないが、含有量が多くなれば、カーボン粒子表面に単層で被着せずに、モリブデン・貴金属含有金属酸化物微粒子同士が重なり合ったり凝集してしまったりする恐れがあるため好ましくない。   The average particle diameter of the carbon particles is determined from the average of 100 particles observed with a transmission electron microscope (TEM) photograph. As for the amount of metal element contained in the solution, the content of the molybdenum / noble metal-containing metal oxide fine particles in the fine particle-supported carbon particles as the final product (the fine particle support amount) is 5 to 5 of the entire fine particle-supported carbon particles. Adjust to 50% by weight. There is no problem even if the amount of fine particles supported in the fine particle-supported carbon particles is less than 5% by weight. However, when used as a catalyst, for example, the amount of noble metal elements as a whole may be small, and the function may be difficult to express. There is no problem even if the content exceeds 50% by weight, but if the content increases, the molybdenum / noble metal-containing metal oxide fine particles overlap or aggregate without being deposited as a single layer on the carbon particle surface. This is not preferable because there is a risk of stagnation.

以上のようにして、カーボン粒子表面に金属の錯イオンを吸着させた後、乾燥することにより、カーボン粒子表面に、モリブデン・貴金属含有金属酸化物の前駆体微粒子を析出させる。カーボン表面に吸着させる金属錯体はイオンの状態であり、溶液中に分子レベルで分散しているため、この分散状態を保持したままカーボンの吸着点に吸着させることができ、これを乾燥させた際には再隣接の錯体同士のみが結晶化し、20nm以下のモリブデン・貴金属含有金属酸化物の前駆体粒子を析出させることができる。乾燥させる雰囲気は、特に限定されるものではなく、空気中乾燥が最も簡便かつ低コストであり、好ましい。   As described above, metal complex ions are adsorbed on the surface of the carbon particles, and then dried, thereby depositing precursor fine particles of molybdenum / noble metal-containing metal oxide on the surface of the carbon particles. Since the metal complex adsorbed on the carbon surface is in an ionic state and is dispersed at the molecular level in the solution, it can be adsorbed at the carbon adsorption point while maintaining this dispersed state, and when this is dried In this case, only re-adjacent complexes are crystallized, and precursor particles of molybdenum / noble metal-containing metal oxide having a thickness of 20 nm or less can be precipitated. The atmosphere to be dried is not particularly limited, and drying in the air is the simplest and the lowest cost and is preferable.

さらに、このようにして得られた微粒子担持カーボンに加熱処理を施す。加熱処理としては、水溶液中で高温・高圧条件下で反応させる水熱処理や、空気中300℃以下の温度での熱処理、あるいは、窒素やアルゴンなどの不活性ガス雰囲気中での熱処理を行うことが好ましい。水熱処理を行う際には、300℃以下の温度で行うことが好ましい。これより温度が高くても問題はないが、高圧になるため特別な装置が必要となり好ましくない。酸素が存在する雰囲気下では、300℃以上の高温において、担体であるカーボン粒子が燃焼してしまう危険性があり好ましくない。また、還元雰囲気下では吸着された前駆体粒子が酸化物にならない場合があるため適切ではない。不活性ガス雰囲気中での加熱処理温度は200〜1000℃の範囲が好ましい。   Further, the fine particle-supported carbon thus obtained is subjected to heat treatment. As the heat treatment, hydrothermal treatment in which an aqueous solution is reacted under high temperature and high pressure conditions, heat treatment at a temperature of 300 ° C. or lower in air, or heat treatment in an inert gas atmosphere such as nitrogen or argon is performed. preferable. The hydrothermal treatment is preferably performed at a temperature of 300 ° C. or lower. Even if the temperature is higher than this, there is no problem. In an atmosphere where oxygen is present, there is a risk that the carbon particles as the carrier may burn at a high temperature of 300 ° C. or higher, which is not preferable. Further, it is not appropriate because the adsorbed precursor particles may not become oxides in a reducing atmosphere. The heat treatment temperature in an inert gas atmosphere is preferably in the range of 200 to 1000 ° C.

以上の方法により、結晶子サイズが1nmから20nmの範囲にあり、かつ、モリブデンおよび白金等の貴金属元素を含有した金属酸化物微粒子(モリブデン・貴金属含有金属酸化物微粒子)を単分散状態で担持した、平均粒子径が20〜90nmの微粒子担持カーボン粒子が得られる。微粒子担持カーボン粒子の平均粒子径は、TEM写真で観測される100個の粒子の平均から求める。この際、担持された金属酸化物粒子の結晶子サイズは1nm以下でも、触媒としての特性上はかまわないと考えられるが、金属酸化物の格子間隔は通常0.5nm(5Å)前後であることが多く、結晶構造上、格子点の数が少なすぎるために安定な結合が起こらず、酸化物の構造を保持することが難しくなると同時に、このような理由により作製すること自体が非常に困難になる。また、結晶子サイズ20nm以上である場合でも、触媒としての特性が完全に失われることはないが、十分な比表面積が得られないために触媒としての性能が劣化する傾向にある。   By the above method, metal oxide fine particles (molybdenum / noble metal-containing metal oxide fine particles) having a crystallite size in the range of 1 nm to 20 nm and containing noble metal elements such as molybdenum and platinum are supported in a monodispersed state. Thus, fine particle-supporting carbon particles having an average particle diameter of 20 to 90 nm are obtained. The average particle size of the fine particle-supporting carbon particles is obtained from the average of 100 particles observed in the TEM photograph. At this time, even if the crystallite size of the supported metal oxide particles is 1 nm or less, the characteristics as a catalyst are considered to be acceptable, but the metal oxide lattice spacing is usually around 0.5 nm (5 mm). In many cases, the number of lattice points in the crystal structure is too small, so that stable bonding does not occur and it is difficult to maintain the oxide structure. Become. Even when the crystallite size is 20 nm or more, the characteristics as a catalyst are not completely lost, but the performance as a catalyst tends to be deteriorated because a sufficient specific surface area cannot be obtained.

以上の理由により、モリブデン・貴金属含有金属酸化物微粒子、すなわち結晶格子中にモリブデンおよび白金等の貴金属元素を含む金属酸化物微粒子の結晶子サイズは、1〜20nmとすることが好ましい。粒子径が20nm以下であるような微粒子においては、1つの粒子内で多結晶構造をとることは稀であり、ほとんどの場合に単結晶の粒子となる。したがって、担持された微粒子の平均粒子径は、TEM写真から平均を求める方法の他に、粉末X線回折スペクトルから求められる平均結晶子サイズからも求めることができる。特に粒子径が数nm以下であるような微粒子の場合には、TEM写真などから目視で粒子径を求める際の測定誤差が大きく、平均結晶子サイズから求めることが好ましい。ただし、多結晶構造を持つ粗大な粒子が存在している場合には、その粗大粒子に含まれる結晶子のサイズを測定している可能性もあるため、平均結晶子サイズから求められた粒子径と、TEMで観察される粒子の大きさに整合性があるかどうかを確認することが必要である。   For the above reasons, the crystallite size of molybdenum / noble metal-containing metal oxide fine particles, that is, metal oxide fine particles containing noble metal elements such as molybdenum and platinum in the crystal lattice is preferably 1 to 20 nm. In a fine particle having a particle diameter of 20 nm or less, it is rare to have a polycrystalline structure in one particle, and in most cases, it becomes a single crystal particle. Therefore, the average particle diameter of the supported fine particles can be obtained from an average crystallite size obtained from a powder X-ray diffraction spectrum in addition to a method for obtaining an average from a TEM photograph. In particular, in the case of fine particles having a particle diameter of several nm or less, a measurement error when the particle diameter is visually determined from a TEM photograph or the like is large, and it is preferable to determine from the average crystallite size. However, if coarse particles with a polycrystalline structure are present, the size of the crystallites contained in the coarse particles may be measured, so the particle diameter determined from the average crystallite size It is necessary to confirm whether or not the particle size observed by the TEM is consistent.

次に、本発明に係る微粒子担持カーボン粒子を電極用触媒として用いた固体電解質型燃料電池用電極の具体例として、該微粒子担持カーボン粒子を用いて作製される燃料電池用の膜電極接合体(MEA)について説明する。   Next, as a specific example of a solid oxide fuel cell electrode using the fine particle-supported carbon particles according to the present invention as an electrode catalyst, a membrane electrode assembly for a fuel cell produced using the fine particle-supported carbon particles ( MEA) will be described.

図1に、燃料電池用の膜電極接合体(MEA)の断面構造を模式的に示す。この膜電極接合体10は、固体高分子電解質膜1の厚み方向の片側に配置された空気極2と、他の片側に配置された燃料極3と、空気極2の外側に配置された空気極用ガス拡散層4と、燃料極3の外側に配置された燃料極用ガス拡散層5とを有する構成である。このうち、固体高分子電解質膜1としては、ポリパーフルオロスルホン酸樹脂膜、具体的には、デュポン社製の“ナフィオン”(商品名)、旭硝子社製の“フレミオン”(商品名)、旭化成工業社製の“アシプレックス”(商品名)などの膜を使用できる。またガス拡散層4・5としては、多孔質のカーボンクロスあるいはカーボンシートなどを使用できる。この膜電極接合体10の作製方法としては、以下の一般的な方法が適用できる。   FIG. 1 schematically shows a cross-sectional structure of a membrane electrode assembly (MEA) for a fuel cell. The membrane electrode assembly 10 includes an air electrode 2 disposed on one side in the thickness direction of the solid polymer electrolyte membrane 1, a fuel electrode 3 disposed on the other side, and an air disposed outside the air electrode 2. The electrode gas diffusion layer 4 and the fuel electrode gas diffusion layer 5 disposed outside the fuel electrode 3 are provided. Among these, as the solid polymer electrolyte membrane 1, a polyperfluorosulfonic acid resin membrane, specifically, “Nafion” (trade name) manufactured by DuPont, “Flemion” (trade name) manufactured by Asahi Glass Co., Ltd., Asahi Kasei A membrane such as “Aciplex” (trade name) manufactured by Kogyo Co., Ltd. can be used. As the gas diffusion layers 4 and 5, porous carbon cloth or carbon sheet can be used. As a manufacturing method of the membrane electrode assembly 10, the following general methods can be applied.

エタノール、プロパノールなどの低級アルコールを主成分とする溶媒に、触媒担持カーボン粒子、高分子材料、さらに必要に応じてバインダなどを混合し、マグネチックスターラー、ボールミル、超音波分散機などの一般的な分散器具を用いて分散させて、触媒塗料を作製する。この際、塗料の粘度を塗布方法に応じて最適なものとすべく、溶媒量を調整する。次に、得られた触媒塗料を用いて空気極2あるいは燃料極3を形成していくが、この後の手順としては、一般的には下記の3種の方法(1)〜(3)が挙げられる。本発明の微粒子担持カーボン粒子の評価手段としてはいずれを用いてもかまわないが、比較評価を行う際には作製方法をいずれか一つに統一して評価することが重要である。   General solvents such as magnetic stirrers, ball mills, ultrasonic dispersers, etc. are mixed with catalyst-supporting carbon particles, polymer materials, and binders as necessary in solvents based on lower alcohols such as ethanol and propanol. A catalyst paint is produced by dispersing using a dispersing device. At this time, the amount of the solvent is adjusted so that the viscosity of the paint is optimized in accordance with the application method. Next, the air electrode 2 or the fuel electrode 3 is formed by using the obtained catalyst paint, and the following three methods (1) to (3) are generally used as the subsequent procedure. Can be mentioned. Any means may be used as the means for evaluating the fine particle-supporting carbon particles of the present invention, but it is important that the production methods are unified and evaluated when performing comparative evaluation.

(1) 得られた触媒塗料を、バーコータなどを用いて、ポリテトラフルオロエチレン(PTFE)フィルム、ポリエチレンテレフタレート(PET)フィルム、ポリイミドフィルム、PTFEコートポリイミドフィルム、PTFEコートシリコンシート、PTFEコートガラスクロスなどの離型性基板上に均一塗布し、乾燥させて、離型性基板上に電極膜を形成する。この電極膜を剥し取り、所定の電極サイズに裁断する。このような電極膜を2種作製し、それぞれを空気極および燃料極として用いる。その後、上記電極膜を固体高分子電解質膜の両面に、ホットプレスあるいはホットロールプレスにより接合させた後、空気極および燃料極の両側にガス拡散層をそれぞれ配置し、ホットプレスして一体化させ、膜電極接合体を作製する。   (1) Using the obtained catalyst paint, a polytetrafluoroethylene (PTFE) film, a polyethylene terephthalate (PET) film, a polyimide film, a PTFE-coated polyimide film, a PTFE-coated silicon sheet, a PTFE-coated glass cloth, etc. An electrode film is formed on the releasable substrate by uniformly coating on the releasable substrate and drying. The electrode film is peeled off and cut into a predetermined electrode size. Two kinds of such electrode films are produced and used as an air electrode and a fuel electrode, respectively. Thereafter, the electrode membrane is bonded to both sides of the solid polymer electrolyte membrane by hot pressing or hot roll pressing, and then gas diffusion layers are arranged on both sides of the air electrode and the fuel electrode, and are integrated by hot pressing. A membrane electrode assembly is produced.

(2) 得られた触媒塗料を、空気極用ガス拡散層および燃料極用ガス拡散層にそれぞれ塗布し、乾燥させて、空気極および燃料極を形成する。この際、塗布方法は、スプレー塗布やスクリーン印刷などの方法がとられる。次に、これらの電極膜が形成されたガス拡散層で、固体高分子電解質膜を挟み、ホットプレスして一体化させ、膜電極接合体を作製する。   (2) The obtained catalyst paint is applied to the air electrode gas diffusion layer and the fuel electrode gas diffusion layer, respectively, and dried to form the air electrode and the fuel electrode. At this time, the application method is a spray application method or a screen printing method. Next, the polymer electrolyte membrane is sandwiched between the gas diffusion layers on which these electrode membranes are formed and integrated by hot pressing to produce a membrane electrode assembly.

(3) 得られた触媒塗料を、固体高分子電解質膜の両面に、スプレー塗布などの方法を用いて塗布し、乾燥させて、空気極および燃料極を形成する。その後、空気極および燃料極の両側にガス拡散層を配置し、ホットプレスして一体化させ、膜電極接合体を作製する。   (3) The obtained catalyst paint is applied to both surfaces of the solid polymer electrolyte membrane by a method such as spray coating and dried to form an air electrode and a fuel electrode. Thereafter, gas diffusion layers are arranged on both sides of the air electrode and the fuel electrode and integrated by hot pressing to produce a membrane electrode assembly.

以上のようにして得られた図1に示すごとき膜電極接合体10において、空気極2側および燃料極3側のそれぞれに集電板(図示せず)を設けて電気的な接続を行い、燃料極3に水素を、空気極2に空気(酸素)をそれぞれ供給することにより、燃料電池として作用させることができる。   In the membrane electrode assembly 10 as shown in FIG. 1 obtained as described above, a current collector plate (not shown) is provided on each of the air electrode 2 side and the fuel electrode 3 side for electrical connection, By supplying hydrogen to the fuel electrode 3 and air (oxygen) to the air electrode 2, the fuel cell can be operated.

《La(Mo0.95Pt0.05)O4 ;40重量%担持》
硝酸ランタン六水和物2.23gおよび塩化モリブデン1.33gを水100mlに溶解し、クエン酸4.18gを加え、ランタンおよびモリブデンのクエン酸錯イオンを含む水溶液を調整した。この水溶液に2gのカーボン粒子(CABOT社製のカーボンブラックであるバルカンXC−72(登録商標)、平均粒子径30nm)を加え、超音波で分散させた後、2時間攪拌し、前記錯イオンをカーボン粒子表面に吸着させた。その後90℃で乾燥させ、ランタンおよびモリブデンの化合物を担持したカーボン粒子を得た。
<< La (Mo 0.95 Pt 0.05 ) O 4 ; 40% by weight supported >>
Lanthanum nitrate hexahydrate (2.23 g) and molybdenum chloride (1.33 g) were dissolved in water (100 ml), citric acid (4.18 g) was added, and an aqueous solution containing lanthanum and molybdenum citrate complex ions was prepared. To this aqueous solution was added 2 g of carbon particles (Valcan XC-72 (registered trademark), carbon black manufactured by CABOT, average particle size 30 nm), dispersed with ultrasonic waves, stirred for 2 hours, and the complex ions were dispersed. It was made to adsorb | suck to the carbon particle surface. Thereafter, it was dried at 90 ° C. to obtain carbon particles carrying lanthanum and molybdenum compounds.

次に、塩化白金酸六水和物0.14gをエタノール30gに溶解し、白金のエタノール溶液を調整した。このエタノール溶液を、先に得られたランタンおよびモリブデン化合物を担持したカーボン粉末に含浸させ、60℃で乾燥させた後、このカーボン粉末を窒素中600℃で加熱処理し、ランタン、モリブデンおよび白金を含有した金属酸化物粒子を担持したカーボン粒子としてLa(Mo0.95Pt0.05)O4 担持カーボン粒子を得た。 Next, 0.14 g of chloroplatinic acid hexahydrate was dissolved in 30 g of ethanol to prepare an ethanol solution of platinum. The ethanol solution was impregnated with the carbon powder carrying the lanthanum and molybdenum compound obtained above and dried at 60 ° C., and then the carbon powder was heat-treated at 600 ° C. in nitrogen to obtain lanthanum, molybdenum and platinum. La (Mo 0.95 Pt 0.05 ) O 4 -supported carbon particles were obtained as carbon particles supporting the contained metal oxide particles.

このようにして得られたLa(Mo0.95Pt0.05)O4 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、白金がモリブデンサイトに置換したことによるピーク位置のずれは生じるがLaMoO4 構造の明確な単一相のピークが現れていることが確認された。このように、複数の金属元素が含まれているにも関わらず、それぞれの金属元素単体に起因する構造を表すピークが現れなかったことから、ランタン、モリブデンおよび白金は唯一種の結晶格子内に取り込まれていることがわかる。この際、回折ピークの半値幅から求めた平均結晶子サイズは18.5nmであった。また、透過型電子顕微鏡(TEM)観察を行った結果、約20nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。図2に、この粉末X線回折スペクトルを示す。 The La (Mo 0.95 Pt 0.05 ) O 4 -supported carbon particles thus obtained were subjected to powder X-ray diffraction spectrum measurement. As a result, although the peak position was shifted due to substitution of platinum with molybdenum sites, LaMoO 4 It was confirmed that a single-phase peak with a clear structure appeared. In this way, although a plurality of metal elements are contained, no peaks representing the structure due to each metal element appeared, so lanthanum, molybdenum and platinum are the only species in the crystal lattice. You can see that it has been captured. At this time, the average crystallite size obtained from the half width of the diffraction peak was 18.5 nm. Further, as a result of observation with a transmission electron microscope (TEM), it was confirmed that about 20 nm of composite metal oxide particles were supported on the surface of the carbon particles. FIG. 2 shows the powder X-ray diffraction spectrum.

《Sr(Mo0.95Pt0.05)O4 ;40重量%担持》
硝酸ストロンチウム1.09g、塩化モリブデン1.33gおよび塩化白金酸六水和物0.14gを水50mlとエタノール50mlを混合した水/エタノール溶液100mlに溶解し、クエン酸4.18gを加え、ストロンチウム、モリブデンおよび白金のクエン酸錯イオンを含む水溶液を調整した。
<< Sr (Mo 0.95 Pt 0.05 ) O 4 ; 40% by weight supported >>
1.09 g of strontium nitrate, 1.33 g of molybdenum chloride and 0.14 g of chloroplatinic acid hexahydrate were dissolved in 100 ml of a water / ethanol solution in which 50 ml of water and 50 ml of ethanol were mixed, and 4.18 g of citric acid was added, and strontium, An aqueous solution containing molybdenum and platinum citrate complex ions was prepared.

次に、2gのカーボン粒子(実施例1の場合と同じくCABOT社製のカーボンブラックであるバルカンXC−72、平均粒子径30nm)に対して、上記クエン酸錯イオンを含む水溶液を含浸させて、前記錯イオンをバルカン表面に吸着させ、90℃で乾燥させた後、窒素中350℃で加熱処理を施し、ストロンチウム、モリブデンおよび白金を含有した金属酸化物粒子を担持したカーボン粒子としてSr(Mo0.95Pt0.05)O4 担持カーボン粒子を得た。 Next, 2 g of carbon particles (Valcan XC-72, which is carbon black manufactured by CABOT, as in Example 1 and an average particle diameter of 30 nm) are impregnated with an aqueous solution containing the citrate complex ion. The complex ions are adsorbed on the surface of the Vulcan, dried at 90 ° C., and then subjected to a heat treatment at 350 ° C. in nitrogen to form Sr (Mo 0.95 as carbon particles carrying metal oxide particles containing strontium, molybdenum and platinum. Pt 0.05 ) O 4 -supported carbon particles were obtained.

このようにして得られたSr(Mo0.95Pt0.05)O4 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、モリブデンサイトへの白金の置換によりピーク位置のずれは見られるものの、SrMoO4 構造の明確な単一相のピークが現れていることが確認され、ストロンチウム、モリブデンおよび白金元素は唯一種の結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは10.6nmであった。また、TEM観察を行った結果、約10nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 The Sr (Mo 0.95 Pt 0.05 ) O 4 -supported carbon particles thus obtained were subjected to powder X-ray diffraction spectrum measurement. As a result, although the peak position was shifted due to the substitution of platinum on the molybdenum site, SrMoO It was confirmed that a single-phase peak with a clear four structure appeared, and it was found that strontium, molybdenum and platinum elements were incorporated into the crystal lattice of only one species. At this time, the average crystallite size obtained from the half width of the diffraction peak was 10.6 nm. As a result of TEM observation, it was confirmed that about 10 nm of composite metal oxide particles were supported on the carbon particle surfaces.

《Sr(Mo0.9 Pt0.1 )O4 ;20重量%担持》
実施例2の微粒子担持カーボン粒子の作製方法において、硝酸ストロンチウム1.09g、塩化モリブデン1.26gおよび塩化白金酸六水和物0.27gを用いた以外は実施例2と同様にして金属のクエン酸錯イオンを含む水溶液を調製し、これを、5gのカーボン粒子(バルカンXC−72、平均粒子径30nm)に含浸させた以外は、実施例2と同様にして、ストロンチウム、モリブデンおよび白金を含有した金属酸化物粒子を担持したカーボン粒子としてSr(Mo0.9 Pt0.1 )O4 担持カーボン粒子を得た。
<< Sr (Mo 0.9 Pt 0.1 ) O 4 ; 20 wt% supported >>
In the method for producing the fine particle-supported carbon particles of Example 2, 1.09 g of strontium nitrate, 1.26 g of molybdenum chloride and 0.27 g of chloroplatinic acid hexahydrate were used in the same manner as in Example 2 to obtain a metal quencher. An aqueous solution containing an acid complex ion was prepared, and containing strontium, molybdenum and platinum in the same manner as in Example 2 except that 5 g of carbon particles (Vulcan XC-72, average particle size of 30 nm) were impregnated. Sr (Mo 0.9 Pt 0.1 ) O 4 -carrying carbon particles were obtained as carbon particles carrying the metal oxide particles.

このようにして得られたSr(Mo0.9 Pt0.1 )O担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、実施例2と同様に、ピーク位置のずれは見られるものの、SrMoO4 構造の明確な単一相のピークが現れていることが確認され、ストロンチウム、モリブデンおよび白金元素は唯一種の結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは9.3nmであった。また、TEM観察を行った結果、約10nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 As a result of measuring the powder X-ray diffraction spectrum of the Sr (Mo 0.9 Pt 0.1 ) O-supported carbon particles obtained in this manner, the peak position was shifted as in Example 2, but the SrMoO 4 structure was observed. It was confirmed that strontium, molybdenum and platinum elements were incorporated into the crystal lattice of the seeds. At this time, the average crystallite size obtained from the half width of the diffraction peak was 9.3 nm. As a result of TEM observation, it was confirmed that about 10 nm of composite metal oxide particles were supported on the carbon particle surfaces.

《La2 (Mo0.9 Pt0.1 )O6 ;40重量%担持》
硝酸ランタン六水和物4.46gおよび塩化白金酸六水和物0.27gを、水50gとエタノール50gを混合して得られた水/エタノール溶液100mlに溶解し、クエン酸4.18gを加え、ランタンおよび白金のクエン酸錯イオンを含む水溶液を調整した。この水溶液に2gのカーボン粒子(バルカンXC−72、平均粒子径30nm)を加え、超音波で分散させた後、攪拌しながら、モリブデン酸ナトリウム1.18gを50mlの水に溶解して得られたモリブデン溶液を滴下し、さらに2時間攪拌し、前記錯イオンをカーボン粒子表面に吸着させた。その後90℃で乾燥させた後、このカーボン粉末を窒素中600℃で加熱処理し、ランタン、モリブデンおよび白金を含有した金属酸化物粒子を担持したカーボン粒子としてLa2 (Mo0.9 Pt0.1 )O6 担持カーボン粒子を得た。
"La 2 (Mo 0.9 Pt 0.1 ) O 6; 40 wt% supported"
4.46 g of lanthanum nitrate hexahydrate and 0.27 g of chloroplatinic acid hexahydrate were dissolved in 100 ml of a water / ethanol solution obtained by mixing 50 g of water and 50 g of ethanol, and 4.18 g of citric acid was added. An aqueous solution containing citrate complex ions of lanthanum and platinum was prepared. 2 g of carbon particles (Vulcan XC-72, average particle size of 30 nm) were added to this aqueous solution, dispersed with ultrasonic waves, and 1.18 g of sodium molybdate was dissolved in 50 ml of water while stirring. A molybdenum solution was dropped, and the mixture was further stirred for 2 hours to adsorb the complex ions on the surface of the carbon particles. Then, after drying at 90 ° C., the carbon powder was heat-treated at 600 ° C. in nitrogen to form La 2 (Mo 0.9 Pt 0.1 ) O 6 as carbon particles carrying metal oxide particles containing lanthanum, molybdenum and platinum. Supported carbon particles were obtained.

このようにして得られたLa2 (Mo0.9 Pt0.1 )O6 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、モリブデンサイトへの白金の置換によりピーク位置のずれは見られるものの、La2 MoO6 構造の明確な単一相のピークが現れていることが確認され、ランタン、モリブデンおよび白金は唯一種の結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは15.1nmであった。また、TEM観察を行った結果、約15nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 The La 2 (Mo 0.9 Pt 0.1 ) O 6 -supported carbon particles thus obtained were subjected to powder X-ray diffraction spectrum measurement. As a result, although displacement of the peak position was observed due to substitution of platinum with molybdenum sites, It was confirmed that a clear single-phase peak of La 2 MoO 6 structure appeared, and it was found that lanthanum, molybdenum and platinum were incorporated into only one kind of crystal lattice. At this time, the average crystallite size obtained from the half width of the diffraction peak was 15.1 nm. As a result of TEM observation, it was confirmed that about 15 nm of composite metal oxide particles were supported on the carbon particle surfaces.

《(La0.7 Ce0.3 )(Mo0.95Pt0.05)O4 ;40重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、硝酸ランタン六水和物1.56g、硝酸セリウム七水和物0.67gおよび塩化モリブデン1.33gを水100mlに溶解し、クエン酸4.18gを加え、ランタン、セリウムおよびモリブデンのクエン酸錯イオンを含む水溶液を調整した以外は実施例1と同様にして、ランタン、セリウムおよびモリブデンの化合物を担持したカーボン粒子を得た後、白金処理、加熱処理等を行い、ランタン、セリウム、モリブデンおよび白金を含有した金属酸化物粒子を担持したカーボン粒子として(La0.7 Ce0.3 )(Mo0.95Pt0.05)O4 担持カーボン粒子を得た。
"(La 0.7 Ce 0.3) ( Mo 0.95 Pt 0.05) O 4; 40 wt% supported"
In the method for producing fine particle-supporting carbon particles of Example 1, 1.56 g of lanthanum nitrate hexahydrate, 0.67 g of cerium nitrate heptahydrate and 1.33 g of molybdenum chloride were dissolved in 100 ml of water, and 4.18 g of citric acid was obtained. Was added in the same manner as in Example 1 except that an aqueous solution containing citrate complex ions of lanthanum, cerium and molybdenum was prepared, and after obtaining carbon particles carrying a compound of lanthanum, cerium and molybdenum, platinum treatment, heating Treatment was performed to obtain (La 0.7 Ce 0.3 ) (Mo 0.95 Pt 0.05 ) O 4 -supported carbon particles as carbon particles supporting metal oxide particles containing lanthanum, cerium, molybdenum and platinum.

このようにして得られた(La0.7 Ce0.3 )(Mo0.95Pt0.05)O4 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、実施例1と同様に、ピーク位置のずれは見られるものの、LaMoO4 構造の明確な単一相のピークが現れていることが確認され、ランタン、セリウム、モリブデンおよび白金は唯一種の結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは6.1nmであった。また、TEM観察を行った結果、約6nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 As a result of the powder X-ray diffraction spectrum measurement of the (La 0.7 Ce 0.3 ) (Mo 0.95 Pt 0.05 ) O 4 -supported carbon particles obtained in this way, as in Example 1, the peak position shift was observed. However, it was confirmed that a clear single-phase peak of LaMoO 4 structure appeared, and it was found that lanthanum, cerium, molybdenum and platinum were incorporated in a single crystal lattice. At this time, the average crystallite size obtained from the half width of the diffraction peak was 6.1 nm. As a result of TEM observation, it was confirmed that about 6 nm of composite metal oxide particles were supported on the carbon particle surfaces.

《(Mo0.9 Pt0.1 )O3 ;40重量%担持》
実施例2の微粒子担持カーボン粒子の作製方法において、塩化モリブデン1.26g、および塩化白金酸六水和物0.27gを用いた以外は実施例2と同様にして、金属錯イオンをカーボン粒子表面に吸着させ、90℃で乾燥させた後、窒素中300℃で加熱処理を施し、モリブデンおよび白金を含有した金属酸化物粒子を担持したカーボン粒子として(Mo0.9 Pt0.1 )O3 担持カーボン粒子を得た。
<< (Mo 0.9 Pt 0.1 ) O 3 ; 40% by weight supported >>
In the method for producing the fine particle-supporting carbon particles in Example 2, 1.26 g of molybdenum chloride and 0.27 g of chloroplatinic acid hexahydrate were used in the same manner as in Example 2, and the metal complex ions were added to the surface of the carbon particles. After adsorption at 90 ° C. and heat treatment at 300 ° C. in nitrogen, (Mo 0.9 Pt 0.1 ) O 3 -supported carbon particles are supported as carbon particles carrying metal oxide particles containing molybdenum and platinum. Obtained.

このようにして得られた(Mo0.9 Pt0.1 )O3 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、モリブデンサイトへの白金の置換によりピーク位置のずれは見られるものの、MoO3 構造の明確な単一相のピークが現れていることが確認され、モリブデンおよび白金は唯一種の結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは3.6nmであった。またTEM観察を行った結果、約3〜5nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 As a result of the powder X-ray diffraction spectrum measurement of the (Mo 0.9 Pt 0.1 ) O 3 -supported carbon particles obtained in this way, the displacement of the peak position was observed due to the substitution of platinum to the molybdenum site, but the MoO 3 It was confirmed that a single-phase peak with a clear structure appeared, and it was found that molybdenum and platinum were incorporated into a single crystal lattice. At this time, the average crystallite size obtained from the half width of the diffraction peak was 3.6 nm. As a result of TEM observation, it was confirmed that about 3 to 5 nm of composite metal oxide particles were supported on the carbon particle surfaces.

[比較例1]
《(Zr0.9 Pt0.1 )O2 ;40重量%担持》
塩化酸化ジルコニウム八水和物2.71gを水100mlに溶解し、ジルコニウムに対して3当量のクエン酸を加え、ジルコニウムのクエン酸錯イオンを含む水溶液を調整した。この水溶液に2gのカーボン粒子(バルカンXC−72)を加え、超音波で分散させた後、2時間攪拌し、前記錯イオンをカーボン粒子表面に吸着させた。その後、180℃で5時間の水熱処理を施し、90℃で乾燥させ、ジルコニウムの化合物を担持したカーボン粒子を得た。
[Comparative Example 1]
<< (Zr 0.9 Pt 0.1 ) O 2 ; 40% by weight supported >>
2.71 g of chlorinated zirconium oxide octahydrate was dissolved in 100 ml of water, and 3 equivalents of citric acid was added to zirconium to prepare an aqueous solution containing zirconium citrate complex ions. 2 g of carbon particles (Vulcan XC-72) was added to this aqueous solution and dispersed with ultrasonic waves, followed by stirring for 2 hours to adsorb the complex ions on the surface of the carbon particles. Thereafter, hydrothermal treatment was performed at 180 ° C. for 5 hours and dried at 90 ° C. to obtain carbon particles carrying a zirconium compound.

次に、塩化白金酸六水和物0.48gをエタノール30gに溶解し、白金のエタノール溶液を調整した。このエタノール溶液を、先に得られたジルコニウム化合物を担持したカーボン粉末に含浸させ、60℃で乾燥させた後、このカーボン粉末を窒素中600℃で加熱処理し、結晶格子中の一部を白金で置換した酸化ジルコニウム粒子を担持したカーボン粒子として(Zr0.9 Pt0.1 )O2 担持カーボン粒子を得た。 Next, 0.48 g of chloroplatinic acid hexahydrate was dissolved in 30 g of ethanol to prepare an ethanol solution of platinum. This ethanol solution was impregnated into the carbon powder carrying the zirconium compound obtained above and dried at 60 ° C., and then the carbon powder was heat-treated at 600 ° C. in nitrogen, and a part of the crystal lattice was platinum. (Zr 0.9 Pt 0.1 ) O 2 -carrying carbon particles were obtained as carbon particles carrying zirconium oxide particles substituted with.

このようにして得られた(Zr0.9 Pt0.1 )O2 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、ピーク位置のずれは見られるものの、酸化ジルコニウム構造の明確な単一相のピークが現れていることが確認され、白金元素は酸化ジルコニウムの結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは7.6nmであった。また、TEM観察を行った結果、約5〜10nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 As a result of measuring the powder X-ray diffraction spectrum of the (Zr 0.9 Pt 0.1 ) O 2 -supported carbon particles obtained in this way, a peak position shift was observed, but a single phase having a clear zirconium oxide structure was observed. It was confirmed that a peak appeared, and it was found that platinum element was incorporated in the crystal lattice of zirconium oxide. At this time, the average crystallite size obtained from the half width of the diffraction peak was 7.6 nm. As a result of TEM observation, it was confirmed that about 5 to 10 nm of composite metal oxide particles were supported on the carbon particle surfaces.

[比較例2]
《La(Mo0.3 Pt0.7 )O4 ;40重量%担持、白金析出》
実施例1の微粒子担持カーボン粒子の作製方法において、硝酸ランタン六水和物2.23gおよび塩化モリブデン0.42gを、水100mlに溶解し、クエン酸4.18gを加え、ランタンおよびモリブデンのクエン酸錯イオンを含む水溶液を調整した以外は実施例1と同様にして、ランタンおよびモリブデンの化合物を担持したカーボン粒子を得た後、白金処理、加熱処理等を行い、ランタン、モリブデンおよび白金を含有した金属酸化物粒子を担持したカーボン粒子としてLa(Mo0.3 Pt0.7 )O4 担持カーボン粒子を得た。
[Comparative Example 2]
"La (Mo 0.3 Pt 0.7) O 4; 40 wt% supported, platinum deposition"
In the method for producing fine particle-supporting carbon particles of Example 1, 2.23 g of lanthanum nitrate hexahydrate and 0.42 g of molybdenum chloride were dissolved in 100 ml of water, and 4.18 g of citric acid was added, and citric acid of lanthanum and molybdenum was added. Except for preparing an aqueous solution containing complex ions, carbon particles carrying a compound of lanthanum and molybdenum were obtained in the same manner as in Example 1, followed by platinum treatment, heat treatment, etc., and containing lanthanum, molybdenum and platinum. La (Mo 0.3 Pt 0.7 ) O 4 -carrying carbon particles were obtained as carbon particles carrying metal oxide particles.

このようにして得られたLa(Mo0.3 Pt0.7 )O4 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、ピーク位置のずれは見られるものの、LaMoO4 構造の明確なピークが現れるとともに、金属白金の明確なピークが確認され、置換しきれなかった白金が析出していることがわかった。この際、回折ピークの半値幅から求めた複合金属酸化物粒子の平均結晶子サイズは10.2nmであり、白金粒子の平均結晶子サイズは9.6nmであった。また、TEM観察を行った結果、約10nmの複合金属酸化物粒子と白金粒子がそれぞれカーボン粒子表面に担持されていることが確認された。 The La (Mo 0.3 Pt 0.7 ) O 4 -supported carbon particles thus obtained were subjected to powder X-ray diffraction spectrum measurement. As a result, although a peak position shift was observed, a clear peak of the LaMoO 4 structure appeared. In addition, a clear peak of metal platinum was confirmed, and it was found that platinum that could not be substituted was deposited. At this time, the average crystallite size of the composite metal oxide particles determined from the half width of the diffraction peak was 10.2 nm, and the average crystallite size of the platinum particles was 9.6 nm. As a result of TEM observation, it was confirmed that approximately 10 nm of composite metal oxide particles and platinum particles were supported on the carbon particle surfaces.

この実施例では、上述の各実施例および比較例で得られた微粒子担持カーボン粒子の触媒特性を評価するため、燃料電池用の膜電極接合体(MEA)を作製し、それを用いて燃料電池としての出力特性を調べた。膜電極接合体(MEA)を構成する電極に上記のような微粒子担持カーボン粒子を使用する場合、空気極と燃料極とでは、最大の効果が得られる微粒子担持カーボン粒子の酸化物組成(カーボン粒子に担持されている酸化物微粒子の組成)が異なる。そこで、本実施例では、一律に評価を行うために、燃料極に微粒子担持カーボン粒子電極膜を用い、空気極には以下に示す標準電極膜を用いた。   In this example, a membrane electrode assembly (MEA) for a fuel cell was produced and used to evaluate the catalytic properties of the fine particle-supported carbon particles obtained in the above-described examples and comparative examples. The output characteristics were investigated. When the fine particle-supported carbon particles as described above are used for the electrodes constituting the membrane electrode assembly (MEA), the oxide composition of the fine particle-supported carbon particles (carbon particles) that can achieve the maximum effect between the air electrode and the fuel electrode. The composition of the oxide fine particles supported on the particles is different. Therefore, in this example, in order to perform uniform evaluation, a particulate-supported carbon particle electrode film was used for the fuel electrode, and a standard electrode film shown below was used for the air electrode.

〈微粒子担持カーボン粒子電極膜〉
上記各実施例および比較例で得られた微粒子担持カーボン粒子1質量部を、ポリパーフルオロスルホン酸樹脂の5質量%溶液であるアルドリッチ(Aldrich)社製の“ナフィオン (Nafion)”(商品名、EW=1000)溶液9.72質量部およびポリパーフルオロスルホン酸樹脂の20質量%溶液であるデュポン社製の“ナフィオン(Nafion)”(商品名)2.52質量部および水1質量部に添加し、均一に分散するよう混合液を充分に攪拌することで触媒塗料を調製した。次に、PTFEフィルム上に上記触媒塗料を、白金担持量が0.03mg/cm2 となるように塗布し、乾燥した後剥がし取り、微粒子担持カーボン粒子電極膜を得た。
<Fine particle supported carbon electrode film>
1 part by weight of the fine particle-supported carbon particles obtained in each of the above examples and comparative examples was replaced with “Nafion” (trade name, manufactured by Aldrich) which is a 5% by mass solution of polyperfluorosulfonic acid resin. EW = 1000) Added to 9.72 parts by mass of a solution and 2.52 parts by mass of “Nafion” (trade name) manufactured by DuPont, which is a 20% by mass solution of polyperfluorosulfonic acid resin, and 1 part by mass of water Then, a catalyst coating material was prepared by sufficiently stirring the mixed solution so as to disperse uniformly. Next, the catalyst paint was applied onto the PTFE film so that the platinum loading was 0.03 mg / cm 2 , dried and peeled off to obtain a fine particle-supporting carbon particle electrode film.

〈標準電極膜〉
標準電極としては、白金を50質量%担持させた田中貴金属工業社製の白金担持カーボン“10E50E”(商品名)を用いて、上記と同様にして触媒塗料を調整した後、PTFEフィルム上に、白金担持量が0.5mg/cm2 となるように塗布し、乾燥した後剥し取り、標準電極膜を得た。
<Standard electrode membrane>
As a standard electrode, a platinum-supported carbon “10E50E” (trade name) manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. supporting 50% by mass of platinum was used, and after adjusting the catalyst paint in the same manner as described above, on the PTFE film, It was applied so that the amount of platinum supported was 0.5 mg / cm 2 , dried and then peeled off to obtain a standard electrode film.

〈膜電極接合体〉
固体高分子電解質膜としては、デュポン(DuPont)社製のポリパーフルオロスルホン酸樹脂膜“Nafion112”(商品名)を所定のサイズに切り出して用いた。この固体高分子電解質膜の両面に、先に作製した微粒子担持カーボン粒子電極膜と標準電極膜とを重ね合わせ、温度160℃、圧力4.4MPaの条件でホットプレスを行い、これらを接合した。次に、あらかじめ撥水処理を施したカーボン不織布(東レ社製、TGP−H−120)と、両面に電極膜を形成した固体高分子電解質膜とをホットプレスで接合し、膜電極接合体を作製した。
<Membrane electrode assembly>
As the solid polymer electrolyte membrane, a polyperfluorosulfonic acid resin membrane “Nafion112” (trade name) manufactured by DuPont was cut into a predetermined size and used. The fine particle-supporting carbon particle electrode film prepared above and the standard electrode film were superposed on both surfaces of the solid polymer electrolyte membrane, and hot pressing was performed under the conditions of a temperature of 160 ° C. and a pressure of 4.4 MPa to join them. Next, a carbon non-woven fabric (TGP-H-120, manufactured by Toray Industries, Inc.) that has been subjected to water repellent treatment in advance and a solid polymer electrolyte membrane having electrode films formed on both sides thereof are joined by hot pressing to form a membrane electrode assembly. Produced.

〔出力特性評価〕
以上のようにして得られた膜電極接合体を用いて、燃料電池としての出力特性(ここでは最大出力密度)を測定した。測定の際には、膜電極接合体を含む測定系を60℃に保持し、燃料極側に60℃の露点となるよう加湿・加温した水素ガスを供給し、空気極側に60℃の露点となるよう加湿・加温した空気を供給して測定を行った。
(Output characteristic evaluation)
Using the membrane / electrode assembly obtained as described above, output characteristics (maximum output density in this case) as a fuel cell were measured. In the measurement, the measurement system including the membrane electrode assembly is held at 60 ° C., hydrogen gas humidified and heated so as to have a dew point of 60 ° C. is supplied to the fuel electrode side, and 60 ° C. is supplied to the air electrode side. Measurement was performed by supplying air that had been humidified and heated to achieve the dew point.

表1に、実施例1〜6および比較例1・2で得られた各微粒子担持カーボン粒子についての測定結果と、これらの微粒子担持カーボン粒子を用いて実施例7で作製した各膜電極接合体についての測定結果をまとめて示す。なお、微粒子担持カーボン粒子についての組成分析および担持量分析は、蛍光X線分析およびXPSを用いて行った。   Table 1 shows the measurement results of the fine particle-supported carbon particles obtained in Examples 1 to 6 and Comparative Examples 1 and 2, and the membrane electrode assemblies prepared in Example 7 using these fine particle-supported carbon particles. The measurement results for are summarized. The composition analysis and the loading amount analysis of the fine particle-supported carbon particles were performed using fluorescent X-ray analysis and XPS.

Figure 2007194139
Figure 2007194139

表1から明らかなように、各実施例で得られた微粒子担持カーボン粒子においては、いずれの場合も各構成元素が全て、唯一つの金属酸化物結晶構造中に含まれており、その結晶子サイズは20nm以下となっていることがわかる。一方、比較例2においては、白金仕込量が過多となり金属酸化物中に含有しきれなかった白金粒子が分離析出し、約10nmという粗大な金属白金粒子となっていることがわかる。   As is apparent from Table 1, in each case, the fine particle-supported carbon particles obtained in each example contained all the constituent elements in a single metal oxide crystal structure, and the crystallite size thereof. It can be seen that is 20 nm or less. On the other hand, in Comparative Example 2, it can be seen that the amount of platinum charged was excessive and platinum particles that could not be contained in the metal oxide were separated and precipitated, resulting in coarse metal platinum particles of about 10 nm.

次に、燃料電池用燃料極としての特性評価の結果、各実施例で得られた微粒子担持カーボン粒子を用いた場合には、各比較例で得られた微粒子担持カーボン粒子を用いた場合と比較して、優れた発電特性が現れている。まず比較例1では、優れた助触媒能を持つモリブデン元素を含有せずに、それ単独では高い助触媒能を持たない酸化ジルコニウムに、白金のみを置換した酸化物粒子をカーボンに担持させているが、発電はするもののモリブデン系酸化物の場合と比べて、明らかにその発電特性は劣ることがわかる。また比較例2では、置換しきれなかった白金が分離析出し、約10nmというサイズの金属白金粒子が析出している。この場合には、析出した金属白金粒子の粒子径が、触媒として利用するには粗大なものとなってしまい、本来の金属白金粒子としての触媒特性すら現れにくくなっている。結果、触媒として有効に機能していない白金元素が存在することとなり、各実施例のものと比較すると、その発電特性は劣っている。   Next, as a result of the characteristic evaluation as the fuel electrode for the fuel cell, when the fine particle-supported carbon particles obtained in each example were used, it was compared with the case where the fine particle-supported carbon particles obtained in each comparative example was used. Thus, excellent power generation characteristics appear. First, in Comparative Example 1, oxide particles obtained by substituting only platinum are supported on carbon in zirconium oxide which does not contain a molybdenum element having an excellent promoter ability and does not have a high promoter ability alone. However, although it generates electricity, it clearly shows that its power generation characteristics are inferior to that of molybdenum oxide. In Comparative Example 2, platinum that could not be substituted was separated and deposited, and metal platinum particles having a size of about 10 nm were deposited. In this case, the particle diameter of the deposited metal platinum particles becomes coarse to use as a catalyst, and it is difficult for even the catalytic characteristics as the original metal platinum particles to appear. As a result, platinum elements that do not function effectively as a catalyst are present, and the power generation characteristics are inferior to those of the respective examples.

白金を酸化物に固溶させカーボン粒子に担持させた触媒粒子については、白金元素が酸化状態にある場合には、それ以上の酸化による劣化が起こり得ず、白金−白金間の金属結合が存在しないために凝着による粒子の粗大化による劣化も起こり得ないという点で、触媒の劣化を防ぎ、耐久性を高めるために有効な手段である。本発明実施例では、モリブデン系酸化物を主相として、白金をその結晶格子中に固溶させることによって、より優れた発電特性を示すことがわかった。   For catalyst particles in which platinum is dissolved in oxide and supported on carbon particles, when platinum element is in an oxidized state, deterioration due to further oxidation cannot occur and there is a metal bond between platinum and platinum. Therefore, it is an effective means for preventing deterioration of the catalyst and enhancing the durability in that deterioration due to coarsening of particles due to adhesion cannot occur. In the examples of the present invention, it was found that by using a molybdenum-based oxide as a main phase and dissolving platinum in its crystal lattice, a more excellent power generation characteristic is exhibited.

固体電解質型燃料電池用の膜電極接合体(MEA)の一般的な構造を模式的に示す断面図である。It is sectional drawing which shows typically the general structure of the membrane electrode assembly (MEA) for solid oxide fuel cells. 実施例1で得られた、約20nmのLa(Mo0.95Pt0.05)O4 粒子を担持したカーボン粒子の粉末X線回折スペクトルを示した図である。2 is a graph showing a powder X-ray diffraction spectrum of carbon particles carrying about 20 nm of La (Mo 0.95 Pt 0.05 ) O 4 particles obtained in Example 1. FIG.

符号の説明Explanation of symbols

1 固体高分子電解質膜
2 空気極
3 燃料極
4 空気極用ガス拡散層
5 燃料極用ガス拡散層
10 膜電極接合体(MEA)
DESCRIPTION OF SYMBOLS 1 Solid polymer electrolyte membrane 2 Air electrode 3 Fuel electrode 4 Gas diffusion layer for air electrodes 5 Gas diffusion layer for fuel electrodes 10 Membrane electrode assembly (MEA)

Claims (12)

結晶格子中にモリブデンおよび貴金属元素を含有し、かつ、貴金属元素が配置された結晶サイトに含まれる貴金属元素量が、当該結晶サイト内に含まれる全元素量に対して2〜20mol%である金属酸化物微粒子(モリブデン・貴金属含有金属酸化物微粒子)がカーボン粒子に担持されていることを特徴とする微粒子担持カーボン粒子。   A metal containing molybdenum and a noble metal element in the crystal lattice, and the amount of the noble metal element contained in the crystal site where the noble metal element is arranged is 2 to 20 mol% with respect to the total amount of elements contained in the crystal site Fine particle-supporting carbon particles, characterized in that oxide fine particles (molybdenum / noble metal-containing metal oxide fine particles) are supported on carbon particles. 前記金属酸化物微粒子の結晶格子中には、前記モリブデンおよび貴金属元素以外に、ランタン,ストロンチウム,セリウム,カルシウム,イットリウム,エルビウム,プラセオジム,ネオジム,サマリウム,ユウロピウム,マグネシウム,バリウム、鉄,コバルト,マンガン,銅,チタン,クロム,ニッケル,ニオブ,鉛,ビスマス,アンチモンから選ばれる少なくとも一種の金属元素が含有されている、請求項1記載の微粒子担持カーボン粒子。   In the crystal lattice of the metal oxide fine particles, in addition to the molybdenum and the noble metal element, lanthanum, strontium, cerium, calcium, yttrium, erbium, praseodymium, neodymium, samarium, europium, magnesium, barium, iron, cobalt, manganese, The fine particle-supported carbon particles according to claim 1, wherein at least one metal element selected from copper, titanium, chromium, nickel, niobium, lead, bismuth, and antimony is contained. 前記貴金属元素が白金、ルテニウム、パラジウム、金から選ばれる元素であり、当該貴金属元素の総含有量が、前記金属酸化物を構成する金属元素に対して1〜20atm.%である、請求項1または2記載の微粒子担持カーボン粒子。   The noble metal element is an element selected from platinum, ruthenium, palladium, and gold, and the total content of the noble metal element is 1 to 20 atm. With respect to the metal element constituting the metal oxide. The fine particle-supported carbon particles according to claim 1, wherein the fine particle-supported carbon particles are%. 前記金属酸化物微粒子の結晶格子中に含有されるモリブデンの含有量が、当該金属酸化物を構成する全金属元素に対して20〜99atm.%である、請求項1ないし3のいずれかに記載の微粒子担持カーボン粒子。   The molybdenum content contained in the crystal lattice of the metal oxide fine particles is 20 to 99 atm. With respect to all metal elements constituting the metal oxide. The fine particle-supported carbon particles according to claim 1, wherein the fine particle-supported carbon particles are%. 前記金属酸化物微粒子の結晶子サイズが1〜20nmである、請求項1ないし4のいずれかに記載の微粒子担持カーボン粒子。   The fine particle-supporting carbon particles according to any one of claims 1 to 4, wherein the metal oxide fine particles have a crystallite size of 1 to 20 nm. 微粒子担持カーボン粒子中の金属酸化物微粒子の割合が5〜50重量%である、請求項1ないし5のいずれかに記載の微粒子担持カーボン粒子。   The fine particle-supported carbon particle according to any one of claims 1 to 5, wherein the proportion of the metal oxide fine particles in the fine particle-supported carbon particles is 5 to 50% by weight. 前記金属酸化物微粒子を担持するカーボン粒子の平均粒子径が20〜70nmである、請求項1ないし6のいずれかに記載の微粒子担持カーボン粒子。   The fine particle-carrying carbon particles according to any one of claims 1 to 6, wherein an average particle diameter of the carbon particles carrying the metal oxide fine particles is 20 to 70 nm. 平均粒子径が20〜90nmである、請求項1ないし7のいずれかに記載の微粒子担持カーボン粒子。   The fine particle-supported carbon particles according to any one of claims 1 to 7, having an average particle diameter of 20 to 90 nm. 請求項1に記載した微粒子担持カーボン粒子を製造するにあたり、
まず、モリブデン・貴金属含有金属酸化物微粒子を構成する金属の錯イオンを含む溶液を調整し、
次いで、得られた溶液中にカーボン粒子を分散させて、前記金属の錯イオンをカーボン粒子に吸着させることを特徴とする微粒子担持カーボン粒子の製造方法。
In producing the particulate-supported carbon particles according to claim 1,
First, prepare a solution containing the complex ions of the metals that make up the molybdenum and noble metal-containing metal oxide fine particles,
Next, carbon particles are dispersed in the obtained solution, and the metal complex ions are adsorbed onto the carbon particles.
請求項1に記載した微粒子担持カーボン粒子を製造するにあたり、
まず、モリブデン・貴金属含有金属酸化物微粒子を構成する金属の錯イオンを含む溶液を調整し、
次いで、得られた溶液中にカーボン粒子を分散させて、前記金属の錯イオンをカーボン粒子に吸着させた後、水熱処理をすることにより、モリブデン・貴金属含有金属酸化物微粒子をカーボン粒子の表面に析出させて担持させることを特徴とする微粒子担持カーボン粒子の製造方法。
In producing the particulate-supported carbon particles according to claim 1,
First, prepare a solution containing the complex ions of the metals that make up the molybdenum and noble metal-containing metal oxide fine particles,
Next, carbon particles are dispersed in the obtained solution, the complex ions of the metal are adsorbed on the carbon particles, and then hydrothermally treated, whereby molybdenum / noble metal-containing metal oxide fine particles are formed on the surface of the carbon particles. A method for producing fine particle-supporting carbon particles, wherein the fine particle-supported carbon particles are deposited and supported.
請求項1に記載した微粒子担持カーボン粒子を製造するにあたり、
まず、モリブデン・貴金属含有金属酸化物微粒子を構成する金属の錯イオンを含む溶液を調整し、
次いで、得られた溶液をカーボン粒子に含浸させて、前記金属の錯イオンをカーボン粒子に吸着させることを特徴とする微粒子担持カーボン粒子の製造方法。
In producing the particulate-supported carbon particles according to claim 1,
First, prepare a solution containing the complex ions of the metals that make up the molybdenum and noble metal-containing metal oxide fine particles,
Next, a method for producing fine particle-supporting carbon particles, wherein carbon particles are impregnated with the obtained solution to adsorb the metal complex ions to the carbon particles.
請求項1ないし8のいずれかに記載の微粒子担持カーボン粒子を電極用触媒に用いてなる固体電解質型燃料電池用電極。   An electrode for a solid oxide fuel cell, wherein the particulate-supported carbon particles according to any one of claims 1 to 8 are used as an electrode catalyst.
JP2006012989A 2006-01-20 2006-01-20 Particulate carrying carbon particle, its manufacturing method, and electrode for solid electrolyte fuel cell Withdrawn JP2007194139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006012989A JP2007194139A (en) 2006-01-20 2006-01-20 Particulate carrying carbon particle, its manufacturing method, and electrode for solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006012989A JP2007194139A (en) 2006-01-20 2006-01-20 Particulate carrying carbon particle, its manufacturing method, and electrode for solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2007194139A true JP2007194139A (en) 2007-08-02

Family

ID=38449660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012989A Withdrawn JP2007194139A (en) 2006-01-20 2006-01-20 Particulate carrying carbon particle, its manufacturing method, and electrode for solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2007194139A (en)

Similar Documents

Publication Publication Date Title
JP4875410B2 (en) Fine particle-supporting carbon particles, method for producing the same, and fuel cell electrode
US8007691B2 (en) Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
JP5214117B2 (en) Perovskite-type oxide fine particles, perovskite-type oxide-supported particles, catalyst materials, fuel cell electrodes
JP4713959B2 (en) Fuel cell supported catalyst and fuel cell
JP4901143B2 (en) Electrode catalyst, electrode for fuel electrode, fuel cell device, and method for producing electrode catalyst
JP4879658B2 (en) Fine particle-supporting carbon particles, method for producing the same, and fuel cell electrode
JPWO2006114942A1 (en) Carbon particle, particle comprising platinum and ruthenium oxide and method for producing the same
JP2007115668A (en) Particulate-carrying carbon particle, its manufacturing method, and fuel cell electrode
EP1938896A1 (en) Particulate carbon carrying fine particle thereon, process for production thereof, and electrodes for fuel cells
JP5283913B2 (en) Proton-conducting inorganic material used in fuel cells and anode for fuel cells using the same
JP2008123860A (en) Metal oxide-carrying carbon and fuel cell electrode employing it
JP2007042519A (en) Catalyst for fuel cell, its manufacturing method, and electrode for fuel cell and fuel cell using it
JP2010238547A (en) Catalyst carrier for fuel cell, catalyst for fuel cell, and electrode for fuel cell
EP1941943A1 (en) Microparticle-supported carbon particle, method for production thereof, and fuel cell electrode
JP2007194138A (en) Particulate carrying carbon particle, its manufacturing method, and electrode for solid electrolyte fuel cell
JP2007194139A (en) Particulate carrying carbon particle, its manufacturing method, and electrode for solid electrolyte fuel cell
JP2017016895A (en) Catalyst particle and catalyst for solid polymer type fuel battery, and method of manufacturing catalyst particle
JP5217236B2 (en) Fuel cell catalyst containing RuTe2 and N element, fuel cell electrode material and fuel cell using the fuel cell catalyst
JP2010238546A (en) Fine particle carrying metal oxide catalyst, its manufacturing method, and electrode for fuel cell
JP2007194140A (en) Particulate carrying carbon particle, its manufacturing method, and electrode for solid electrolyte fuel cell
JP2008287927A (en) CATALYST FOR FUEL CELL CONTAINING RuTe2, ELECTRODE MATERIAL FOR FUEL CELL USING CATALYST FOR FUEL CELL, AND FUEL CELL
JP5217235B2 (en) Fuel cell catalyst containing RuTe2, electrode material for fuel cell and fuel cell using the fuel cell catalyst
JP2008287929A (en) CATALYST FOR FUEL CELL CONTAINING RuTe2 AND TUNGSTEN OXIDE, AND ELECTRODE MATERIAL FOR FUEL CELL USING THIS CATALYST FOR FUEL CELL, AND FUEL CELL
JP2009252412A (en) CATALYST FOR DMFC TYPE FUEL CELL FOR PORTABLE ELECTRIC APPLIANCE CONTAINING RuTe2, ELECTRODE MATERIAL FOR FUEL CELL USING THE CATALYST FOR FUEL CELL, AND FUEL CELL

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070707

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407