JP2007191670A - System for producing alkaline soil-improving material, combined with flue-gas desulfurization - Google Patents

System for producing alkaline soil-improving material, combined with flue-gas desulfurization Download PDF

Info

Publication number
JP2007191670A
JP2007191670A JP2006038610A JP2006038610A JP2007191670A JP 2007191670 A JP2007191670 A JP 2007191670A JP 2006038610 A JP2006038610 A JP 2006038610A JP 2006038610 A JP2006038610 A JP 2006038610A JP 2007191670 A JP2007191670 A JP 2007191670A
Authority
JP
Japan
Prior art keywords
stage
flue gas
fluid medium
fluidized bed
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006038610A
Other languages
Japanese (ja)
Inventor
Kanichi Ito
寛一 伊藤
Nobuyuki Ueki
庸幸 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INST OF STRATEGY FOR SUSTAINAB
INSTITUTE OF STRATEGY FOR SUSTAINABLE SOLUTIONS CO Ltd
Original Assignee
INST OF STRATEGY FOR SUSTAINAB
INSTITUTE OF STRATEGY FOR SUSTAINABLE SOLUTIONS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INST OF STRATEGY FOR SUSTAINAB, INSTITUTE OF STRATEGY FOR SUSTAINABLE SOLUTIONS CO Ltd filed Critical INST OF STRATEGY FOR SUSTAINAB
Priority to JP2006038610A priority Critical patent/JP2007191670A/en
Publication of JP2007191670A publication Critical patent/JP2007191670A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To build a system for producing a good-quality alkali soil-improving material in which amount of Ca such as lime used is slight and desulfurization can economically be carried out in high efficiency and unreacted Ca and heavy metal are scarcely mixed, in a dry type fuel-bas desulfurization method suitable for dried areas. <P>SOLUTION: A fluid medium consisting mainly of Ca is fed to the uppermost stage of a multi-stage fluidized bed and the feed is successively moved to the lower stage and flue gas in which fly ash is removed is fed from a gas chamber in the lower part of the lowermost stage and the flue gas is repeatedly brought into contact with the fluid medium in each stage and Ca is substantially completely converted to calcium sulfite or gypsum by SOx in the flue gas while controlling residence time of the fluid medium and then, the calcium sulfite or gypsum is pulled out from the lowermost stage. As a result, flue gas desulfurization is carried out and at the same time, the good-quality soil-improving material scarcely containing a heavy metal and an alkali component is produced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、硫黄含有量の多い石炭の燃焼排煙を乾式で脱硫処理すると同時に、重金属やアルカリ成分が少なくアルカリ土壌の改良に適した良質な土壌改良材を製造するシステムに係わる。  The present invention relates to a system for producing a high-quality soil improvement material suitable for improvement of alkaline soil with few heavy metals and alkali components at the same time as dry-desulfurization treatment of coal flue gas having a high sulfur content.

周知のようにアルカリ土壌は土壌構造が劣化して植物が生育せず、世界の乾燥地域とくに中国などではアルカリ土壌の不毛地帯が膨大な面積を占めている。近年このアルカリ土壌に排煙脱硫で生成する石膏を供給しNaイオンをCaに置換して土壌を改良する試みが成果を挙げている。この石膏は硫黄含有量の多い石炭の燃焼排煙の脱硫で得られるが、従来の湿式排煙脱硫法は大量の水を使用するので乾燥地域には適さない。これに対して炉内に直接石灰(CaO)の微粉を吹き込む乾式排煙脱硫法は簡易ではあるが、石炭中の硫黄分に対して化学量論的に数倍の石灰を吹き込む必要があり不経済であるのみならず未反応で排出される石灰がアルカリ性となるためアルカリ土壌には不適である。また排煙中に含まれる重金属の混入が避けられないので、土壌改良材として長期間供給すれば重金属の蓄積が問題となる。  As is well known, alkaline soil has degraded soil structure and plants do not grow, and in the arid regions of the world, especially in China, barren areas of alkaline soil occupy a huge area. In recent years, attempts have been made to improve the soil by supplying gypsum produced by flue gas desulfurization to this alkaline soil and replacing Na ions with Ca. This gypsum is obtained by desulfurization of coal flue gas with high sulfur content, but the conventional wet flue gas desulfurization method uses a large amount of water and is not suitable for dry areas. In contrast, the dry flue gas desulfurization method in which lime (CaO) fine powder is blown directly into the furnace is simple, but it is not necessary to blow lime several times stoichiometrically with respect to the sulfur content in the coal. Not only is it economical, but the unreacted lime is alkaline, so it is not suitable for alkaline soil. In addition, since heavy metals contained in the flue gas cannot be avoided, accumulation of heavy metals becomes a problem if supplied for a long period of time as a soil conditioner.

上記に対して特許文献1の方法では、水酸化Caを被覆した粒子を流動媒体とする流動層内で排煙を脱硫して石膏とした後に第1の気体固体分離器で生成石膏を流動媒体粒子から分離し、次いで第2の気体固体分離器で石膏粒子をガスから分離回収している。この方法は水の使用量が少なくCa利用率が高いという利点があるが、流動媒体粒子は粒子表面の水酸化Caの化学的変化とは無関係な物理的条件に依存して第1の気体固体分離器に吹き上げられるので未反応なCa成分の損失を免れないのみならず、気体固体分離器の機能は本質的に気体と固体の分離であって流動媒体粒子からの生成石膏分離は不確実であり、また未反応の水酸化Caが流動媒体粒子から分離して第2の気体固体分離器に達し回収物をアルカリ化する恐れもある。更に、流動媒体としてフライアッシュを利用するとしているが、石炭燃焼のフライアッシュには排煙中の重金属が濃縮されているので、第1の気体固体分離器から流動層に戻されるフライアッシュが流動中に摩滅して流動層を飛び出し第2の気体固体分離器で捕捉されて回収物を重金属汚染する恐れもある。  On the other hand, in the method disclosed in Patent Document 1, the flue gas is desulfurized in the fluidized bed using particles coated with Ca hydroxide as the fluidized medium to form gypsum, and then the generated gypsum is fluidized in the first gas solid separator. The gypsum particles are then separated from the gas by a second gas solid separator, separated from the particles. This method has the advantage that the amount of water used is small and the Ca utilization rate is high, but the fluidized medium particles depend on the physical conditions unrelated to the chemical change of Ca hydroxide on the particle surface and depend on the physical conditions. Not only is the loss of unreacted Ca component unavoidable because it is blown up to the separator, but the function of the gas solid separator is essentially the separation of gas and solid and the gypsum separation from the fluid medium particles is uncertain. In addition, unreacted Ca hydroxide may separate from the fluidized medium particles and reach the second gas solid separator to alkalinize the recovered material. Furthermore, fly ash is assumed to be used as the fluidized medium, but since the heavy metal in the flue gas is concentrated in the coal-burned fly ash, the fly ash returned from the first gas solid separator to the fluidized bed flows. There is also a possibility that the fluidized bed may be worn out and trapped by the second gas / solid separator to contaminate the recovered material with heavy metal.

一方、非特許文献1では、廃コンクリートから砂利などを除いて残った粉末がCaを主成分としガス中のSOxと数分間で反応して亜硫酸Caとなる知見が報告され、排煙脱硫に利用できる旨の示唆がある。廃コンクリートを破砕して砂利などの有価物を分離回収する技術はすでに国内で数社が実証済みであるから残留粉末の脱硫利用は極めて有意義であるが、実用化するためには可及的に反応時間を短縮しなければならない。  On the other hand, Non-Patent Document 1 reports that the powder remaining after removing gravel and the like from waste concrete has Ca as a main component and reacts with SOx in the gas in a few minutes to become Casulfite, which is used for flue gas desulfurization. There is a suggestion that it can be done. Since several companies have already demonstrated the technology for crushing waste concrete and separating and recovering valuable materials such as gravel, the use of residual powder for desulfurization is extremely meaningful. The reaction time must be shortened.

特開平2002−113326「新規脱硫剤による副生物分離可能な脱硫方法および脱硫装置」Japanese Patent Laid-Open No. 2002-113326 “Desulfurization method and desulfurization apparatus capable of separating by-products with a novel desulfurization agent” 2005年11月2日日経産業新聞p.11「火力発電所の排煙脱硫・廃コンクリートを活用」November 2, 2005 Nikkei Sangyo Shimbun p. 11 “Utilizing flue gas desulfurization and waste concrete from thermal power plants”

発明が開発しようとする課題Problems to be developed by the invention

以上に鑑み、本発明は乾燥地域に適する乾式排煙脱硫法で、石灰などのCaの使用量が少なく経済的・高効率で脱硫でき、且つ未反応なCaや重金属の混入が少ない良質なアルカリ土壌改良材を製造するシステムを構築しようとするものである。  In view of the above, the present invention is a dry-type flue gas desulfurization method suitable for dry areas, which can be desulfurized economically and efficiently with a small amount of Ca such as lime, and a high-quality alkali with little unreacted Ca and heavy metal contamination It is intended to construct a system for producing soil amendments.

課題を解決するための手段Means for solving the problem

上記課題を解決するための請求項1に記載の発明は、多段流動層では流動媒体粒子の反応が順次各段で均質に行われるので滞留時間を制御すれば未反応の流動媒体粒子の排出を確実に防止できるという多段流動層の利点に着目して発明されたものである。即ち、多段流動層の最上段にCaを主成分とする流動媒体を供給して順次下段に移動せしめると共に、フライアッシュを除去した排煙を最下段下部のガス室から供給して各段で繰返し流動媒体と接触せしめ、流動媒体の滞留時間を制御してCaを排煙中のSOxで実質的に完全に亜硫酸Caないし石膏に変換した後に最下段から抜き出すことを特徴としている。  In the invention according to claim 1 for solving the above-mentioned problem, in the multistage fluidized bed, the reaction of the fluidized medium particles is performed homogeneously in each stage sequentially, so that the unreacted fluidized medium particles can be discharged by controlling the residence time. The invention was invented by paying attention to the advantage of a multistage fluidized bed that can be surely prevented. That is, a fluid medium mainly composed of Ca is supplied to the uppermost stage of the multistage fluidized bed and moved to the lower stage sequentially, and flue gas from which fly ash has been removed is supplied from the gas chamber at the lowermost stage, and is repeated at each stage. It is characterized in that it is brought into contact with the fluid medium, and the residence time of the fluid medium is controlled so that Ca is converted into Ca sulfite or gypsum substantially completely with SOx in the flue gas and then extracted from the lowermost stage.

また請求項2に記載の発明は、上記のような固体気体の反応時間を短縮できる多段流動層の利点ならびに非特許文献1の知見に着目して発明されたもので、請求項1の発明において流動媒体が廃コンクリートから砂利などの骨材を分離回収した残りの粉体であることを特徴としている。  The invention described in claim 2 was invented by paying attention to the advantages of the multistage fluidized bed capable of shortening the reaction time of the solid gas as described above and the knowledge of Non-Patent Document 1, and in the invention of claim 1 The fluid medium is the remaining powder obtained by separating and collecting aggregates such as gravel from waste concrete.

また請求項3に記載の発明は、請求項2における流動媒体のCa含有量が比較的少ないことならびに流動層が流動媒体粒子の被覆に効果的な特性を有することに着目して発明されたもので、請求項2の発明において多段流動層の最上段若しくはその近傍の流動層内に、補助的に石灰水を撒布して流動媒体を被覆することを特徴としている。  The invention described in claim 3 was invented by paying attention to the fact that the Ca content of the fluidized medium in claim 2 is relatively small and that the fluidized bed has characteristics effective for coating the fluidized medium particles. Thus, the invention according to claim 2 is characterized in that the fluid medium is supplementarily distributed in the fluidized bed in the uppermost stage of the multistage fluidized bed or in the vicinity thereof to cover the fluidized medium.

発明の効果The invention's effect

請求項1の発明によれば、流動媒体粒子は多段流動層内で順次SOxと反応し各段毎に均質化されるので流動媒体の滞留時間制御が容易となって未反応なCaの排出を実質的に完全に抑制でき、脱硫効率と経済性が向上する。また予め排煙からフライアッシュを除去しているので重金属の混入も防止できる。即ち本システムによれば、硫黄含有量の多い石炭の燃焼排煙を乾式で高効率かつ経済的に脱硫処理すると同時に重金属やアルカリ成分が少なくアルカリ土壌の改良に適した良質な土壌改良材を製造できる。従って、大気汚染防止のみならず世界の乾燥地域で膨大な面積を占める不毛なアルカリ土壌の改善に寄与し得るものである。  According to the invention of claim 1, the fluidized medium particles sequentially react with SOx in the multistage fluidized bed and are homogenized for each stage, so that the residence time of the fluidized medium can be easily controlled and unreacted Ca is discharged. It is possible to substantially completely suppress the desulfurization efficiency and economy. Moreover, since fly ash is previously removed from the flue gas, heavy metals can be prevented from being mixed. In other words, according to this system, coal combustion flue gas with a high sulfur content is desulfurized with high efficiency and economically, and at the same time, it produces high-quality soil amendments that are low in heavy metals and alkali components and suitable for improving alkaline soil. it can. Therefore, it can contribute not only to air pollution prevention but also to improvement of barren alkaline soil that occupies a huge area in the dry region of the world.

また請求項2の発明によれば、反応効率の高い多段流動層を採用することで請求項1の利点に加えて、廃コンクリートから砂利などの有価物を回収した残りの粉末を排煙脱硫に利用する際の反応時間が短縮されて実用化が容易となり、アルカリ土壌の改善と同時に廃コンクリートの再利用を促進する要因ともなり得る。  Further, according to the invention of claim 2, in addition to the advantages of claim 1 by adopting a multistage fluidized bed with high reaction efficiency, the remaining powder obtained by collecting valuable materials such as gravel from waste concrete is subjected to flue gas desulfurization. The reaction time at the time of use is shortened and it becomes easy to put it to practical use, which may be a factor for promoting the reuse of waste concrete at the same time as improving alkaline soil.

また請求項3の発明は半湿式脱硫に適用する場合であるが、撒布された石灰水が流動媒体を効果的且つ均等に被覆するという流動層の特性を利用して、流動媒体のCa含有量が比較的少ない請求項2の発明の欠点を補うことができ、アルカリ土壌の改善と同時に廃コンクリートの再利用を促進し得る。  Further, the invention of claim 3 is a case where it is applied to semi-wet desulfurization, but the Ca content of the fluidized medium is obtained by utilizing the characteristics of the fluidized bed that the distributed lime water covers the fluidized medium effectively and evenly. Therefore, the disadvantage of the invention of claim 2 can be compensated for, and the reuse of waste concrete can be promoted simultaneously with the improvement of alkaline soil.

以下、本発明の実施の形態を図1に基づいて説明する。  Hereinafter, an embodiment of the present invention will be described with reference to FIG.

石炭火力等から排出されるSOx濃度の高い排煙1を、電気集塵機等の集塵装置2に導いて重金属濃度の高いフライアッシュ3を除去した後にブロワ4で多段流動層5の下部のガス室6に導入し、ガス分散板14を経て各段で流動媒体7を流動化させて流動層10を形成せしめる。流動媒体7は、石灰(CaO)などのCa化合物を主成分とする粒子であり、入口回転供給機8を介して多段流動層4の最上段に供給され、各段に連通して設けられた降下管9を通って順次下段に移動し、最下段から出口回転供給機11を介して排出される。  The gas chamber below the multistage fluidized bed 5 is blown by the blower 4 after the flue gas 1 having a high SOx concentration discharged from coal fired power is guided to a dust collector 2 such as an electric dust collector to remove the fly ash 3 having a high heavy metal concentration. The fluidized medium 7 is fluidized at each stage through the gas dispersion plate 14 to form the fluidized bed 10. The fluid medium 7 is a particle mainly composed of a Ca compound such as lime (CaO), and is supplied to the uppermost stage of the multistage fluidized bed 4 via the inlet rotary feeder 8 and is provided in communication with each stage. It moves to the lower stage sequentially through the downcomer 9 and is discharged from the lowermost stage through the outlet rotary feeder 11.

ここで、図中の入口回転供給機8及び出口回転供給機11はいずれもシール機能を有する周知の多翼型の回転供給機であり、前者の回転速度を制御し後者を常時回転して生成物を排出させることによって、流動媒体7の供給量すなわち滞留時間を自由に制御することができる。また、各降下管9の上面を各流動層10の設定上面とほぼ同一とし、各降下管9の下面を各ガス分散板14の上面より若干離した位置に設定することにより、上部から供給された流動媒体7は流動化に伴って図示矢印のように順次降下し、各流動層10の上面が自動的に設定値に維持される。  Here, the inlet rotary feeder 8 and the outlet rotary feeder 11 in the figure are both well-known multi-blade type rotary feeders having a sealing function, and are generated by controlling the rotational speed of the former and constantly rotating the latter. By discharging the substance, the supply amount of the fluidized medium 7, that is, the residence time can be freely controlled. Further, the upper surface of each downcomer 9 is made substantially the same as the set upper surface of each fluidized bed 10, and the lower surface of each downcomer 9 is set at a position slightly separated from the upper surface of each gas dispersion plate 14 to be supplied from above. The fluidized medium 7 descends sequentially as shown in the figure with fluidization, and the upper surface of each fluidized bed 10 is automatically maintained at the set value.

以上の構成により、排煙1は重金属を除去された後に流動媒体7と向流で流動接触して高効率で各段毎に順次脱硫され、最上段で浄化ガス13となって系外に放出される。尚、浄化ガス13に含まれるダストは周知の手段で捕集還流(図示せず)すればよい。他方、流動媒体7のCaの反応は順次各段で均質に行われるので、出口回転供給機11からの排出成分をチェックして未反応なCa成分がゼロになるように入口回転供給機8の回転速度を調整して流動媒体7の滞留時間を制御することにより、Ca分は実質的に完全に亜硫酸Caないし石膏に変換されるので、良質な土壌改良材12を得ることができる。  With the above configuration, the flue gas 1 is removed from the system by removing the heavy metals, and in fluid contact with the fluidized medium 7 in countercurrent, desulfurizing each stage in a highly efficient manner, and becoming the purified gas 13 at the uppermost stage. Is done. The dust contained in the purified gas 13 may be collected and refluxed (not shown) by a known means. On the other hand, since the reaction of Ca in the fluidized medium 7 is performed uniformly in each stage in sequence, the discharge component from the outlet rotary feeder 11 is checked and the unreacted Ca component is zero so that the unreacted Ca component becomes zero. By adjusting the rotation speed and controlling the residence time of the fluidized medium 7, the Ca content is substantially completely converted into Ca sulfite or gypsum, so that a good soil conditioner 12 can be obtained.

上記の操作において、流動媒体7を廃コンクリートから砂利などの骨材を分離回収した残りの粉体とすることができる。即ち、コンクリート廃材を破砕後「加熱すりもみ法」により処理した公開データ例によれば、副産した粉体の粒径は10〜90ミクロン程度であり石灰の含有率は20〜25%程度に達しているので、運転条件を適切に設定することにより流動媒体7として利用することができる。  In the above operation, the fluid medium 7 can be the remaining powder obtained by separating and collecting aggregates such as gravel from waste concrete. In other words, according to the published data example in which the concrete waste material was crushed and then processed by the “heated surimi method”, the particle size of the by-produced powder was about 10 to 90 microns and the lime content was about 20 to 25%. Therefore, it can be used as the fluid medium 7 by appropriately setting the operating conditions.

また本発明を半湿式法に適用する場合は、図1に示すように、多段流動層5の最上段の流動層10の内部に撒布ノズル22を配設して石灰水21を撒布すれば、流動層の特質上、流動媒体7の表面を効果的且つ均等に被覆することが容易となるので、とくにCa含有量が比較的少ない廃コンクリート粉体を利用する場合の弱点を補うことができる。  Further, when the present invention is applied to the semi-wet method, as shown in FIG. 1, if the spray nozzle 22 is disposed inside the uppermost fluidized bed 10 of the multistage fluidized bed 5 and the lime water 21 is sprayed, Because of the characteristics of the fluidized bed, it becomes easy to effectively and evenly coat the surface of the fluidized medium 7, so that it is possible to make up for the weak point particularly when using waste concrete powder having a relatively small Ca content.

本発明の実施形態を示す説明図  Explanatory drawing which shows embodiment of this invention

符号の説明Explanation of symbols

1 排煙
2 集塵装置
3 フライアッシュ
4 ブロワ
5 多段流動層
6 ガス室
7 流動媒体
8 入口回転供給機
9 降下管
10 流動層
11 出口回転供給機
12 土壌改良材
13 浄化ガス
14 ガス分散板
21 石灰水
22 撒布ノズル
DESCRIPTION OF SYMBOLS 1 Smoke exhaust 2 Dust collector 3 Fly ash 4 Blower 5 Multistage fluidized bed 6 Gas chamber 7 Fluid medium 8 Inlet rotary feeder 9 Downcomer 10 Fluidized bed 11 Outlet rotary feeder 12 Soil improver 13 Purified gas 14 Gas dispersion plate 21 Lime water 22 spray nozzle

Claims (3)

多段流動層の最上段にCaを主成分とする流動媒体を供給して順次下段に移動せしめると共に、フライアッシュを除去した排煙を最下段下部のガス室から供給して各段で繰返し流動媒体と接触せしめ、流動媒体の滞留時間を制御してCaを排煙中のSOxで実質的に完全に亜硫酸Caないし石膏に変換した後に最下段から抜き出すことを特徴とする、排煙脱硫兼用のアルカリ土壌改良材製造システム。  A fluid medium mainly composed of Ca is supplied to the uppermost stage of the multistage fluidized bed and moved to the lower stage in sequence, and the flue gas from which fly ash has been removed is supplied from the gas chamber at the lower part of the lowermost stage, and the fluidized medium is repeated at each stage. The flue gas desulfurization-use alkali is characterized in that it is extracted from the lowermost stage after being converted into Ca sulfite or gypsum substantially completely with SOx in the flue gas by contacting the fluid medium and controlling the residence time of the fluid medium. Soil improvement material manufacturing system. 流動媒体が、廃コンクリートから砂利などの骨材を分離回収した残りの粉体であることを特徴とする、請求項1に記載の排煙脱硫兼用のアルカリ土壌改良材製造システム。  2. The alkaline soil improvement material production system for flue gas desulfurization according to claim 1, wherein the fluid medium is the remaining powder obtained by separating and collecting aggregates such as gravel from waste concrete. 多段流動層の最上段若しくはその近傍の流動層内に、補助的に石灰水を撒布して流動媒体を被覆することを特徴とする、請求項2に記載の排煙脱硫兼用のアルカリ土壌改良材製造システム。  3. The alkaline soil improvement material combined with flue gas desulfurization according to claim 2, wherein the fluidized bed is coated with auxiliary lime water in the fluidized bed at or near the uppermost stage of the multistage fluidized bed. Manufacturing system.
JP2006038610A 2006-01-20 2006-01-20 System for producing alkaline soil-improving material, combined with flue-gas desulfurization Pending JP2007191670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006038610A JP2007191670A (en) 2006-01-20 2006-01-20 System for producing alkaline soil-improving material, combined with flue-gas desulfurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006038610A JP2007191670A (en) 2006-01-20 2006-01-20 System for producing alkaline soil-improving material, combined with flue-gas desulfurization

Publications (1)

Publication Number Publication Date
JP2007191670A true JP2007191670A (en) 2007-08-02

Family

ID=38447622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006038610A Pending JP2007191670A (en) 2006-01-20 2006-01-20 System for producing alkaline soil-improving material, combined with flue-gas desulfurization

Country Status (1)

Country Link
JP (1) JP2007191670A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103265956A (en) * 2013-05-03 2013-08-28 宁夏大学 High viscidity takyr solonetz conditioner
CN103551029A (en) * 2013-10-22 2014-02-05 重庆大学 Modification method for semi-dry sintering flue gas desulfurization ash
CN103566751A (en) * 2013-11-01 2014-02-12 安徽金禾实业股份有限公司 Fluidized bed boiler desulfurization method and device
WO2016088407A1 (en) * 2014-12-05 2016-06-09 三菱重工業株式会社 Exhaust gas treatment device
CN105833829A (en) * 2016-04-19 2016-08-10 华北电力大学(保定) Modified porous calcium carbonate adsorbent as well as preparation method and application thereof
CN111139081A (en) * 2019-12-29 2020-05-12 山东胜伟盐碱地科技有限公司 Saline-alkali soil conditioner and preparation method thereof
CN111363558A (en) * 2020-04-11 2020-07-03 内蒙古中恒蒙福苑建材有限责任公司 Saline-alkali soil improver
CN111773915A (en) * 2020-06-10 2020-10-16 上海交通大学 Flue gas dry desulfurization process
CN114053854A (en) * 2021-11-12 2022-02-18 湖南立泰环境工程有限公司 VOCs desulfurization and concentration regulation jar

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103265956A (en) * 2013-05-03 2013-08-28 宁夏大学 High viscidity takyr solonetz conditioner
CN103551029A (en) * 2013-10-22 2014-02-05 重庆大学 Modification method for semi-dry sintering flue gas desulfurization ash
CN103566751A (en) * 2013-11-01 2014-02-12 安徽金禾实业股份有限公司 Fluidized bed boiler desulfurization method and device
WO2016088407A1 (en) * 2014-12-05 2016-06-09 三菱重工業株式会社 Exhaust gas treatment device
JP2016107209A (en) * 2014-12-05 2016-06-20 三菱重工業株式会社 Exhaust gas treatment equipment
CN105833829A (en) * 2016-04-19 2016-08-10 华北电力大学(保定) Modified porous calcium carbonate adsorbent as well as preparation method and application thereof
CN111139081A (en) * 2019-12-29 2020-05-12 山东胜伟盐碱地科技有限公司 Saline-alkali soil conditioner and preparation method thereof
CN111363558A (en) * 2020-04-11 2020-07-03 内蒙古中恒蒙福苑建材有限责任公司 Saline-alkali soil improver
CN111773915A (en) * 2020-06-10 2020-10-16 上海交通大学 Flue gas dry desulfurization process
CN111773915B (en) * 2020-06-10 2022-07-15 上海交通大学 Flue gas dry desulfurization process
CN114053854A (en) * 2021-11-12 2022-02-18 湖南立泰环境工程有限公司 VOCs desulfurization and concentration regulation jar

Similar Documents

Publication Publication Date Title
JP2007191670A (en) System for producing alkaline soil-improving material, combined with flue-gas desulfurization
KR101140748B1 (en) A sintered flue gas wet desulfurizing and dedusting process
CN101797466B (en) Wet flue gas desulphurizing method utilizing carbide slag slurry and device thereof
JP4932840B2 (en) Method for removing sulfur trioxide from exhaust gas stream
KR100440430B1 (en) Dry desulfurization method of combustion gas
JP4685097B2 (en) Method for reducing sulfur dioxide emissions from circulating fluidized bed boilers.
EP1574487B1 (en) Cement kiln chlorine/sulfur bypass system
CZ2003766A3 (en) Reduction process of sulfur oxide (SOx) emissions in an apparatus for the manufacture of cement clinker and apparatus for making the same
JP2009161415A (en) Manufacturing method of cement
CN101802143A (en) Method for purifying the crude gas from a solid matter gasification
JP4859780B2 (en) Cement kiln extraction gas processing system and processing method
KR101711363B1 (en) Apparatus and method for recycling black dross of aluminium scrap
JP2011057465A (en) Quick lime production system and method of producing the same
JP2012245467A (en) Exhaust gas treatment apparatus and exhaust gas treatment method
CN102718194A (en) System for manufacturing sulphur by utilizing carbon and sulfur-containing flue gas
JP5686470B2 (en) Silver and lead recovery methods
JPH09118551A (en) Production of cement and apparatus for production therefor
EA037686B1 (en) Method and apparatus for treating a leaching residue of a sulfur-containing metal concentrate
EP2876371B1 (en) Method of and apparatus for combusting sulfurous fuel in a circulating fluidized bed boiler
JP2009298678A (en) System and method for treating cement kiln combustion gas extracted dust
JP4916397B2 (en) Cement kiln extraction gas processing system and processing method
JP4358144B2 (en) Waste treatment apparatus and waste treatment method
CN108350520A (en) A kind of method producing concentrate of the residue production comprising metal, rare metal and rare earth metal generated in chain from zinc and the concentrate obtained by the method
JP6223791B2 (en) Method for removing lead from cement firing equipment
CN206266239U (en) Fume desulfurizing agent sodium acid carbonate regenerating unit