JP2007191319A - Method for production of glass formed product - Google Patents

Method for production of glass formed product Download PDF

Info

Publication number
JP2007191319A
JP2007191319A JP2006008153A JP2006008153A JP2007191319A JP 2007191319 A JP2007191319 A JP 2007191319A JP 2006008153 A JP2006008153 A JP 2006008153A JP 2006008153 A JP2006008153 A JP 2006008153A JP 2007191319 A JP2007191319 A JP 2007191319A
Authority
JP
Japan
Prior art keywords
glass
gas
substrate
base material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006008153A
Other languages
Japanese (ja)
Other versions
JP4811647B2 (en
Inventor
Gen Kojima
弦 小島
Hiroshi Yokoyama
浩 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006008153A priority Critical patent/JP4811647B2/en
Priority to PCT/JP2007/050052 priority patent/WO2007083532A1/en
Publication of JP2007191319A publication Critical patent/JP2007191319A/en
Application granted granted Critical
Publication of JP4811647B2 publication Critical patent/JP4811647B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/06Annealing glass products in a continuous way with horizontal displacement of the glass products
    • C03B25/08Annealing glass products in a continuous way with horizontal displacement of the glass products of glass sheets
    • C03B25/093Annealing glass products in a continuous way with horizontal displacement of the glass products of glass sheets being in a horizontal position on a fluid support, e.g. a gas or molten metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for producing a high-quality glass formed product with high smoothness and flatness from the glass formed into plates obtained by a tin-bath method, a down-draw method represented by a fusion process, or a recently-proposed aqua-float process by simply, easily and effectively preventing the adherence of a foreign matter and the occurrence of flaws on the glass surface in a cooling process, and further to improve the quality of glass by eliminating or reducing the distortion occurred in the cooling process of various formed products including the one of an irregularly shaped cross section. <P>SOLUTION: The method for production of the glass formed product is characterized by: jetting a gas from a group of a plurality of small holes which are provided on a support substrate facing at least one surface of the glass so as to uniformly distribute on the glass which has a temperature equal to or higher than a glass transition point in an initial state and has a viscosity of ≥10<SP>6</SP>P; discharging the gas from another group of a plurality of small holes provided adjacently to the former jetting holes; and holding the glass spacing the substrate at a definite distance in a non-contact state, to thereby perform a secondary forming and/or a cooling treatment. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、表面に異物の付着、擦傷等による欠点を生じることなく、また製品に反り、波打ち、凹凸等の変形を生じることなく、ガラスの二次成形、アニールおよび冷却を行うことができる高品質のガラス成形品の製造方法に関するものである。   The present invention is capable of performing secondary glass forming, annealing and cooling without causing defects due to adhesion of foreign matter, scratches, etc. on the surface, and without causing deformation of the product, such as warping, undulation, unevenness, etc. The present invention relates to a method for producing a quality glass molded product.

建築用や車両用の板状ガラスは先進国では殆どスズ浴上に熔融状態のガラスを流出して徐々に平板状に成形するスズフロート法によって生産されている。
ディスプレー用の薄板高平坦性を求められる場合には白金の樋の両側から熔融ガラスをオーバーフローさせて白金のガイドにそって流下させた後両側からのガラスを合わせて一枚にするいわゆるフュージョン法が用いられることも多い。
テレビのブラウン管パネル等は金型でホットプレス成形の後、冷却、研削・研磨工程経て製品を得る。また、網入りガラス等の場合には間にステンレス等の網をサンドイッチするために金属ロールにより圧力をかけながらラミネート成形をする。
In industrialized countries, plate glass for construction and vehicles is mostly produced by the tin float method in which molten glass flows out onto a tin bath and is gradually formed into a flat plate shape.
When high flatness of a thin plate for display is required, a so-called fusion method is used in which the molten glass overflows from both sides of the platinum cage and flows down along the platinum guide, and then the glass from both sides is combined into one sheet. Often used.
Television cathode-ray tube panels and the like are hot press-molded with a mold and then cooled, ground and polished to obtain a product. In the case of glass with a mesh, laminate molding is performed while applying pressure with a metal roll in order to sandwich a mesh of stainless steel or the like.

これらのガラス成形品はその成形過程に続く徐冷過程が必要であり、成形の方法、搬送の方法、成形品の大きさ・肉厚・形状、或いは搬送の速度等様々な要因によって残存する内部歪が異なり、また徐冷の過程での温度分布等によって逆に発生する熱歪等の問題もあり、これを解決、軽減、改良するために種々の方法、条件や手段が利用され、或いは提案されている。
例えば、一般にスズバス法では長さ数十メートルから百メートル以上に及ぶ大型の電気炉を用いて輻射や気流による徐熱の制御を行ないアニールと冷却を行なっており、重厚長大な設備を必要とし、用途により研削・研磨工程を経て品質の向上を図る必要がある。テレビのブラウン管パネルの場合には肉厚の違いにより冷却過程を経て顕在化する凹凸等の欠点を研削・研磨工程によって取り除く工程を必要とする。
These glass molded products require a slow cooling process following the molding process, and the interior remains due to various factors such as the molding method, transport method, size, thickness, shape of the molded product, or transport speed. There are also problems such as thermal strain that is different in strain and reversely generated due to temperature distribution in the slow cooling process, etc., various methods, conditions and means are used or proposed to solve, reduce or improve this Has been.
For example, in the tin bath method, annealing and cooling are generally performed using a large electric furnace with a length of several tens of meters to more than a hundred meters to control slow heating by radiation and air flow, requiring heavy and long equipment, It is necessary to improve quality through grinding and polishing processes depending on the application. In the case of a CRT panel of a television, a process of removing defects such as irregularities that are manifested through a cooling process due to a difference in thickness by a grinding / polishing process is required.

板状のガラス成形品の場合には、ガラス転移点付近の高温部ではガラスの冷却はガラスの上部空間および下部空間に間隔を置いて設置された数機の内部を空冷する方式の熱交換器との輻射放熱を通して行うことが多く、ガラスリボンの幅方向中央部と両端部との温度差を生じ易く、ガラスの熱歪による歪みや反りを伴いやすい。また、上面と下面は気流の対流状態が異なるために、熱工学的に非対称の状態に置かれることが避け難い。
さらに、通常はロール上を搬送させるために、ガラスとロールとの接触面に傷が発生したり、異物の付着を招いたりする。加えてロールの間隔やロール面の形状の影響を受けて、また、ガラスの温度分布が必ずしも一様にならず、得られる製品の平滑性や平坦性は高度のレベルを達成することが困難であって、波打ちや反りを伴うので、特にディスプレー用等の高品質を求める用途には仕上げ工程として研削と研磨を必要とする場合が多い。
一方ディスプレー用等の例えばフュージョン法で得られた肉薄の板ガラス成形品の場合には表面の品質を損なわないために垂直にガラスを引き落としつつ中央部をロール等に接触させずに徐冷することも考えられるが、垂直にガラスを扱うことの熱工学的な難しさや空間的な装置上の制約もある。
In the case of plate-like glass molded products, in the high-temperature part near the glass transition point, the glass is cooled by air-cooling the interior of several machines installed at intervals in the upper and lower spaces of the glass. It is often performed through radiation and heat radiation, and a temperature difference between the center portion in the width direction of the glass ribbon and both ends is likely to occur, and distortion and warpage due to thermal strain of the glass are likely to occur. Further, since the convection state of the airflow is different between the upper surface and the lower surface, it is difficult to avoid being placed in an asymmetrical state in terms of thermal engineering.
Further, since the surface is usually conveyed on the roll, the contact surface between the glass and the roll may be damaged or foreign matter may be attached. In addition, due to the effect of roll spacing and roll surface shape, the temperature distribution of the glass is not necessarily uniform, and it is difficult to achieve a high level of smoothness and flatness of the resulting product. In addition, since it involves undulations and warping, grinding and polishing are often required as finishing processes, particularly for applications requiring high quality such as for displays.
On the other hand, in the case of a thin flat glass molded product obtained by the fusion method for display or the like, it is possible to gradually cool the glass without pulling the glass vertically and contacting the roll or the like so as not to impair the surface quality. Though conceivable, there are thermal engineering difficulties in handling glass vertically and spatial device constraints.

近年、徐冷に関する問題の解決や改良のために幾つかの提案がなされており、例えば前記スズフロート法やフュージョン法に代表されるダウンドロー法で得られた成形後の板ガラスの周辺部が中央部に比べて板厚が厚くなっていることによって発生する温度分布を相殺するために熱処理手段によって幅方向に温度分布を形成する方法(特許文献1参照)、スズフロート法によって得られる板硝子のスズ浴からの引き上げ時に搬送ロールの周面を不活性ガスや水蒸気によって覆う方法(特許文献2参照、特許文献3参照)が開示されている。   In recent years, several proposals have been made to solve or improve the problems related to slow cooling. For example, the peripheral part of the sheet glass after molding obtained by the downdraw method typified by the tin float method or the fusion method is the central part. A method of forming a temperature distribution in the width direction by a heat treatment means in order to offset the temperature distribution generated by the increase in the thickness of the plate (see Patent Document 1), from a tin glass bath obtained by a tin float method A method of covering the peripheral surface of the transport roll with an inert gas or water vapor when pulling up (see Patent Document 2 and Patent Document 3) is disclosed.

また、同じくガラスリボンの両耳部を強制冷却することにより、ガラスリボンの幅方向における中央部が凸状に湾曲した横断面アーチ型を形成させることによりガラス中央部の搬送ロールとの接触を避ける方法(特許文献4参照)、或いは徐冷後に改めて平坦化を行なうためにMgCO3、CaCO3などの無機物質の粉体を水などの溶媒に懸濁させた溶液を板ガラス1に塗布した後に、積層された板ガラスに荷重をかけて加熱することで板ガラスを平坦化処理する方法(特許文献5参照、特許文献6参照)等が知られている。 Similarly, by forcibly cooling both ears of the glass ribbon, a cross section arch shape in which the central portion in the width direction of the glass ribbon is convexly curved is formed, thereby avoiding contact with the transport roll in the central portion of the glass ribbon. After applying a method (refer to Patent Document 4) or a solution obtained by suspending a powder of an inorganic substance such as MgCO 3 or CaCO 3 in a solvent such as water to flatten again after slow cooling, A method of flattening a sheet glass by applying a load to the laminated sheet glass and heating it is known (see Patent Document 5 and Patent Document 6).

しかしながら、上記提案は、その実用的な実施や効果に疑問もあり、仮に実現できたとしても部分的かつ限界のある改善しか望めず、工程も煩雑化するので、広く各種の板硝子製品に適用できる、製品全表面に亘る高品質・高平坦度を信頼性と実用性をもって実現する方法としてより良い方法が求められている。
また、板状のガラスを軟化温度まで再加熱して、プレス曲げ加工により曲面を付与する、或いは再延伸を掛けて薄板化を図る等の方法が知られている。
これらの方法においても気体による支持を行う場合には局部的な気体の流れの影響や徐冷等の工程で上記と同様に表面の品質の問題があり、一般にその工程は煩雑である。
公開2001−31435 特許公開2000−119033 特許公開平11−302029 特許公開2000−72457 特許公開平8−231233
However, the above proposal has doubts about its practical implementation and effects, and even if it can be realized, only partial and limited improvement can be expected, and the process becomes complicated, so it can be widely applied to various plate glass products. Therefore, a better method is required as a method for realizing high quality and high flatness over the entire surface of the product with reliability and practicality.
Also known are methods such as reheating plate-like glass to a softening temperature and imparting a curved surface by press bending, or reducing the thickness by re-stretching.
Even in these methods, when supporting by gas, there is a problem of surface quality in the same manner as described above due to the influence of local gas flow and slow cooling, and the process is generally complicated.
Public 2001-31435 Patent Publication 2000-119033 Patent Publication 11-302029 Patent Publication 2000-72457 Patent Publication No. 8-231233

本発明は、上記の問題点を解決することを目的とし、スズフロート法やフュージョン法に代表されるダウンドロー法、或いは最近提案されているアクアフロート法で得られる板状に成形されたガラスを、簡便かつ効果的に表面の異物付着や傷の発生を防ぎ、高度の平滑性と平坦性を実現する高品質のガラス成形製品とする新規な方法を提供しようとするものである。
また、異形断面を含む各種の成形品の冷却過程で発生する歪を解消若しくは軽減し、品質の改良を図るものである。或いはまた、曲面を付与し、或いは延伸を掛けて二次的な成形も行える方法を提供しようとするものである。
さらに、研削・研磨等の処理工程を施すことなく、高品質の硝子成形品を与え、併せて大型の加熱設備を不要とし、エネルギー消費等の低減をもたらし、環境問題への貢献も図ろうとするものである。
An object of the present invention is to solve the above-described problems, and a glass formed into a plate shape obtained by a downdraw method typified by a tin float method or a fusion method, or a recently proposed aqua float method, An object of the present invention is to provide a novel method for producing a high-quality glass molded product that can easily and effectively prevent the occurrence of foreign matter adhesion and scratches on the surface and realize high smoothness and flatness.
Moreover, the distortion which generate | occur | produces in the cooling process of the various molded articles containing a deformed cross section is eliminated or reduced, and quality improvement is aimed at. Alternatively, the present invention is intended to provide a method in which a secondary surface can be formed by imparting a curved surface or stretching.
In addition, without giving processing steps such as grinding and polishing, high-quality glass molded products are provided, and large heating equipment is not required, reducing energy consumption and trying to contribute to environmental problems. Is.

上記の課題に鑑み、次の発明を提供する。
本発明は、粘度、剛性その他の物理的な一定の条件を満たす成形もしくは予備成形を施した高温のガラスを、その主要部分を液体や固体と接触させることなく、気体で保持したまま、加工及び/又は冷却する新しい技術を見出したものである。
従来ガラスを気体上に浮上させるためには、水を含浸させた基材上に高温のガラスを接することによる方法や多孔質の基材もしくは小孔を開けた基材から空気を噴出させる方法が知られていたが、前者ではガラスが水蒸気を充分に発生させるに足る高温である必要があり、アニールや徐冷工程への適用は困難である。
また、後者ではガラスを浮上させるために充分な気体の圧力を生じさせるためには過剰な噴出を必要とし、ガラスの浮上位置等を安定に保つことも、気流による温度およびその分布の乱れを防ぐことも困難であり、また、気体の流れによる局部的な物理的(柔らかいガラス表面への高速の気体の衝突)影響も発生する恐れがあった。
In view of the above problems, the following invention is provided.
In the present invention, a high-temperature glass that has been molded or preformed to satisfy certain physical conditions such as viscosity, rigidity, and the like is processed and retained without being in contact with a liquid or solid. A new technology for cooling is found.
Conventionally, in order to float glass on a gas, there are a method in which high-temperature glass is brought into contact with a substrate impregnated with water and a method in which air is ejected from a porous substrate or a substrate having small holes. As is known, in the former case, the glass needs to be at a high temperature sufficient to generate water vapor, and it is difficult to apply it to an annealing or slow cooling process.
In the latter case, excessive jetting is required to generate a sufficient gas pressure to float the glass, and keeping the glass floating position, etc., stable also prevents the temperature and its distribution from being disturbed by the air flow. In addition, local physical (high-speed gas collision with a soft glass surface) effect due to the gas flow may occur.

一方、最近板ガラス製品等の搬送や評価・計測のために、低流量の気体に浮上・支持させる技術が出現しているが、これをガラス転移点以上の高温のガラスの加工や冷却処理に用いた例は無く、また適用可能性についても未知である。
発明者らは、上記の低流量の気体に浮上・支持させる技術のガラス転移点以上の高温のガラスへの応用について、種々の観点から検討した結果、気流の制御によるガラスへの物理的影響の軽減・解消の可能なこと、並びに気体噴出基材の表面・材質・構造等の最適化によるガラス/気体/支持基材/除熱媒体間の熱の流れ(熱流束)制御によってガラスが受ける熱的影響の制御の可能なことを見出し、また併せて、このような制御可能なガラスの初期物性も明らかにして、本発明の完成に至ったものである。
On the other hand, recently, a technology for floating and supporting a low flow rate gas has emerged for the transportation, evaluation and measurement of flat glass products, etc., which can be used for processing and cooling of glass at a high temperature above the glass transition point. There are no examples, and the applicability is unknown.
The inventors have studied the application of the technology for levitating and supporting the above-mentioned low flow rate gas to glass having a temperature higher than the glass transition point from various viewpoints. Heat that glass receives by controlling heat flow (heat flux) between glass / gas / support substrate / heat removal medium by reducing / eliminating and optimizing the surface / material / structure of gas ejection substrate The present inventors have found that the control of the mechanical influence can be controlled, and also clarified the initial physical properties of such controllable glass, and have completed the present invention.

以下、その内容について詳細を述べる。
高温のガラスを非接触状態で気体による浮上・支持を行うためには、ガラスの浮上・支持に必要な一定以上の圧力が必要であるが、ガラスの周辺、少なくとも一辺は開放されており、いわゆる開放系なので、常時気体をガラスと支持基材の間に供給・噴出させる必要がある。
その際、ガラスに面している基材の表面から出来るだけ均一かつ低流量・低流速で気体を噴出させることが望ましい。そのためには気体の噴出を基材表面に均一に分散して設けた小孔から行うことが望ましい。
The details will be described below.
In order to float and support high-temperature glass with gas in a non-contact state, a certain level of pressure is required to float and support the glass, but at least one side of the glass is open, so-called Since it is an open system, it is necessary to constantly supply and eject gas between the glass and the supporting substrate.
At that time, it is desirable to eject the gas from the surface of the base material facing the glass as uniformly as possible at a low flow rate and low flow rate. For this purpose, it is desirable to carry out gas ejection from small holes provided in a uniformly dispersed manner on the substrate surface.

また、気体がガラスリボンの周辺からのみ排出される場合には、ガラスリボンの中心部と周辺部における気体の流量・流速が異なり、ガラスから気体が奪う熱量も異なるので好ましくない。気体の噴出部に隣接して気体の排出用の小孔を設け、噴出気体と排出気体のバランスの上にガラスリボンを浮上・支持することが重要であり、また必要である。
また、その際ガラスリボンの初期状態はガラス転移点以上の温度にあることが重要かつ必要であって、それ以下の温度では、ガラスの曲げ加工や再延伸等の二次加工が困難と成り、また冷却処理の場合のガラス内部の初期歪の除去・均一化等も困難となる。
Further, when the gas is discharged only from the periphery of the glass ribbon, it is not preferable because the flow rate and flow velocity of the gas at the central portion and the peripheral portion of the glass ribbon are different and the amount of heat taken by the gas from the glass is also different. It is important and necessary to provide a small hole for gas discharge adjacent to the gas jetting part, and to float and support the glass ribbon on the balance of the jetted gas and the exhausted gas.
Also, in that case, it is important and necessary that the initial state of the glass ribbon is at a temperature above the glass transition point, and at temperatures below that, secondary processing such as glass bending and redrawing becomes difficult, In addition, it becomes difficult to remove and make uniform the initial strain inside the glass in the case of cooling treatment.

同時にガラスの粘度が低すぎない適正なレベルにあることが併せて重要かつ必要であって、ガラスの粘度は10以上、より好ましくは10ポイズ以上にあることが必要である。これ以下では、ガラスリボンが過度に変形しやすくなり、安定した状態での浮上・保持が困難となる。
以上により、初期状態がガラス転移温度以上で、粘度が10ポイズ以上にある板状のガラスリボンを、該ガラスリボンの一方の面又は両面に対面する支持基材に設けた均一に分布している一群の複数の小孔から気体を噴出及び別の一群の複数の小孔から該気体を排出して、支持基材に対して非接触状態で一定距離に保持して二次成形及び/又は冷却処理することを課題解決の手段として見出したものである。
文字通り、気体の噴出は、基材から基材とガラスとの空間に気体を噴き出させることを意味し、気体の排出は、逆にその空間から基材を通って系外に除かれることを意味する。
At the same time, it is important and necessary that the viscosity of the glass is at an appropriate level that is not too low, and the viscosity of the glass needs to be 10 6 or more, more preferably 10 7 poise or more. Below this, the glass ribbon tends to be excessively deformed, making it difficult to float and hold in a stable state.
As described above, a plate-like glass ribbon whose initial state is equal to or higher than the glass transition temperature and whose viscosity is 10 6 poises or more is uniformly distributed on the support base material facing one side or both sides of the glass ribbon. Gas is ejected from a group of a plurality of small holes, and the gas is discharged from another group of a plurality of small holes, and held at a fixed distance in a non-contact state with respect to the support substrate, and / or subjected to secondary molding. It has been found that a cooling process is performed as a means for solving the problem.
Literally, gas ejection means that gas is ejected from the base material into the space between the base material and the glass, and gas discharge is conversely removed from the space through the base material and out of the system. means.

また、出来るだけ気体の流れの均一化とリボン周辺への排出流の抑制を図るために、基本的に気体を噴出させる小孔と気体を排出する小孔は交互に隣接していることが望ましい。また、その位置は基材上で少しずつずらすことによって、規則的な状態の繰り返しによるガラスへの影響を排除することも可能であり、また望ましい場合がある。
また、上記のごとく、ガラス/気体/支持基材/空間、相互の熱の流れ(熱流束:W/m2)ならびに支持基材とその冷却機材との相互の熱流束の制御によってガラスが受ける熱的影響の制御が重要かつ必要な要件となるが、そのためには以下の関係を満たす気流や基材の特性が必要となる。
In addition, in order to make the gas flow as uniform as possible and suppress the discharge flow around the ribbon, it is basically desirable that the small holes for ejecting the gas and the small holes for discharging the gas are alternately adjacent to each other. . Further, by shifting the position little by little on the base material, it is possible to eliminate the influence on the glass due to repetition of a regular state, which may be desirable.
In addition, as described above, glass is subjected to control of glass / gas / support substrate / space, mutual heat flow (heat flux: W / m 2 ), and mutual heat flux between the support substrate and its cooling equipment. Controlling the thermal effect is an important and necessary requirement. To that end, airflow and substrate characteristics that satisfy the following relationship are required.

(1)ガラス内部の熱伝導と除熱とのバランス
数1
(1) Balance between heat conduction and heat removal inside the glass Number 1

Figure 2007191319
ガラス表面と内部との温度差が過度に大きくなると、表面に収縮応力が働き、一般用途向けには必ずしも好ましくない。
このような観点から温度差は厚み1mm当たり5°C以下、より好ましくは2°C以下となるように、除熱流束をガラスの熱伝導率とのバランスにおいて設定することが望ましい。
Figure 2007191319
When the temperature difference between the glass surface and the inside becomes excessively large, shrinkage stress acts on the surface, which is not always preferable for general use.
From such a viewpoint, it is desirable to set the heat removal flux in balance with the thermal conductivity of the glass so that the temperature difference is 5 ° C. or less, more preferably 2 ° C. or less per 1 mm thickness.

(2)ガラス成形品が板状の場合、ガラスリボンの両面(例えば上、下)から除去される熱流束の対称的バランス
数2
(2) When the glass molded product is plate-shaped, the symmetrical balance of the heat flux removed from both sides (for example, the upper and lower sides) of the glass ribbon Number 2

Figure 2007191319
Figure 2007191319

(3)ガラス表面から気流、気体噴出支持基材および空間への熱流束への定常的バランスと割合
数3
(3) Steady balance and ratio of heat flux from glass surface to airflow, gas ejection support base material and space

Figure 2007191319
ガラス表面からの除熱は気体支持基材から噴出する気体、基材表面および外部空間によって賄われるが、その中で数4支配的に大きな割合を占めることがより精密なガラスの温度(分布)制御にとって重要である。
Figure 2007191319
The heat removal from the glass surface is covered by the gas ejected from the gas-supporting base material, the base material surface and the external space. Among them, it is a more precise glass temperature (distribution) that occupies a large proportion of the number 4 Important for control.

Figure 2007191319
Figure 2007191319

(4)気体噴出基材が受け取る熱量、気体噴出基材内部の熱伝導及び気体噴出基材の除熱媒体・機材との間の熱流束の定常的バランス
数5
(4) The steady balance of the heat quantity received by the gas ejection substrate, the heat conduction inside the gas ejection substrate and the heat flux between the gas ejection substrate and the heat removal medium / equipment

Figure 2007191319
Figure 2007191319

(1)、(2)および(3)はガラス内部に好ましくない温度分布をもたらさないために必要な要件であり、(3)と(4)はガラスから最終的に空気等の除熱媒体・機材によって系外に熱が滞りなく持ち去られるために必要な要件である。   (1), (2) and (3) are necessary in order not to bring about an unfavorable temperature distribution inside the glass. (3) and (4) are the final heat removal medium such as air from the glass. This is a necessary requirement for heat to be taken out of the system without any delay by the equipment.

以上のような熱工学的観点を踏まえ、以下の諸要件の重要なことを明らかにした。小孔から噴出もしくは排出する気体の流量は、単位面積あたり1以上500m/時・m以下の流量が望ましく、特に10以上100m/時・m程度の範囲が望ましい。この範囲よりも小さいとガラスを浮上させる力が不充分となり、ガラスと基材の接触の危険が増大し、それによるガラス表面の傷の発生と接触伝熱の発生による温度むらを生じ易い。
また、逆に大きすぎると気体の流れが乱れ、また気体による強制冷却的な要素が増大して、ガラスの変形や温度・その分布の制御やその他の物理的影響が問題となる恐れが増大する。気体は基材に開けられた小孔(ノズル)から噴出し、また別のノズルから排出するように設計された基材と圧力と流量制御の仕組みによって、各ノズルから均一かつ一様に噴出及び/又は排出する。
Based on the above thermal engineering viewpoints, the following important requirements were clarified. The flow rate of the gas ejected or discharged from the small holes is preferably a flow rate of 1 to 500 m 3 / hour · m 2 per unit area, and particularly preferably about 10 to 100 m 3 / hour · m 2 . If it is smaller than this range, the force to float the glass becomes insufficient, the risk of contact between the glass and the substrate increases, and the occurrence of flaws on the glass surface and uneven temperature due to the occurrence of contact heat transfer are likely to occur.
On the other hand, if it is too large, the gas flow will be disturbed, and the forced cooling factor by the gas will increase, increasing the possibility of glass deformation, temperature / distribution control and other physical effects becoming a problem. . Gas is ejected from a small hole (nozzle) opened in the base material and ejected from each nozzle uniformly and uniformly by the base material designed to discharge from another nozzle and the mechanism of pressure and flow rate control. / Or discharge.

また、その気体の噴出と排出はいずれも基材に気体を介して面接しているガラスの有無に拠らずに、できるだけ不変安定していることが重要な要件である。このような気体の噴出・排出の耐荷重安定性は、基材内部の各ノズルの一部に気体流通に対する大きな抵抗負荷を有していることによって達成される。
このような気体の流量は、単位面積あたりの孔の数やガラスと基材の間隔に応じて気体の平均流速にも反映されるが、概ね気体の速度としては0.05m/秒以上10m/秒以下の範囲、特に0.5m/秒以上5m/秒以下の範囲にあることが好ましい。
余りに速い気体の流速は気体の流れの乱れを伴い、ガラスの温度・その分布の制御や物理的影響の点から好ましくないことは上述の通りである。すなわち上記範囲よりも高速流動する気体の場合にはガラス表面近傍の気体の流れがガラスからの熱の除去を不均一にする恐れが増大する。
In addition, it is an important requirement that both the ejection and discharge of the gas be as stable and stable as possible without depending on the presence or absence of glass that is in contact with the substrate via the gas. Such load resistance stability of gas ejection / discharge is achieved by having a large resistance load against gas flow in a part of each nozzle inside the substrate.
Such a gas flow rate is also reflected in the average gas flow velocity according to the number of holes per unit area and the distance between the glass and the substrate, but generally the gas velocity is 0.05 m / second to 10 m / second. It is preferably in the range of seconds or less, particularly in the range of 0.5 m / second to 5 m / second.
As described above, an excessively high gas flow velocity is accompanied by disturbance of the gas flow, and is not preferable from the viewpoint of controlling the glass temperature and its distribution and physical influence. That is, in the case of a gas that flows faster than the above range, there is an increased risk that the gas flow near the glass surface will make the removal of heat from the glass uneven.

また、従来の輻射放熱によるガラスの除熱では、ガラスと受熱基材との距離には関心を殆ど払っておらず、多くの場合には両者の間にロールの介在さえ認められるが、このような状態では、ガラスからの輻射放熱は広い角度で行なわれ、受熱バッテリーの温度を制御してもそれがガラスの各部分に与える効果は減滅してしまう。このことはとりわけ、ガラスの温度が次第に低下して、ガラス内部の熱伝達における輻射伝熱の占める割合が減少してくるにつれて一層大きな問題となる。   In addition, in conventional heat removal of glass by radiation heat radiation, little attention is paid to the distance between the glass and the heat receiving substrate, and in many cases even a roll is interposed between the two. In such a state, radiation and heat radiation from the glass is performed at a wide angle, and even if the temperature of the heat receiving battery is controlled, the effect that it has on each part of the glass is diminished. This becomes particularly problematic as the temperature of the glass gradually decreases and the proportion of radiant heat transfer in the heat transfer inside the glass decreases.

発明者らはこのような従来技術の問題点を解消する方法として、上述の(3)の考察に基づき、ガラス表面と支持基材との距離が近接し、また前者が後者によってほぼ全面覆われていることが重要なことを明らかにした。具体的にはガラス表面と支持基材との距離はガラスリボンの幅の100分の1以下であって、ガラス表面は支持基材によって90%以上覆われていることが必要である。
これによってガラスに局部的な冷却による歪やガラスリボンの中央部と両端の温度差を極小化が可能となる。本発明では気体噴出支持基材ならびに輻射受熱基板をガラスに近接させることが可能となるため、上記要件の実現が可能となり、ガラスから受熱体への輻射放熱の角度が限定され、部分的なガラス温度の調整・制御が直接的に行なわれ、大きく改善される。
As a method for solving such problems of the prior art, the inventors have made the distance between the glass surface and the supporting substrate close to each other based on the above consideration (3), and the former is almost entirely covered by the latter. It is clarified that it is important. Specifically, the distance between the glass surface and the supporting substrate is 1/100 or less of the width of the glass ribbon, and the glass surface needs to be covered by the supporting substrate by 90% or more.
This makes it possible to minimize the distortion caused by local cooling in the glass and the temperature difference between the center and both ends of the glass ribbon. In the present invention, the gas ejection support base material and the radiation heat receiving substrate can be brought close to the glass, so that the above requirement can be realized, the angle of radiation heat radiation from the glass to the heat receiving body is limited, and the partial glass Temperature adjustment and control is performed directly, which greatly improves.

これは支持基材から噴出・排出する低速・低流量の気体が形成する圧力均衡状態の上で、支持基材上の安定した近距離にガラスを浮上させることが可能であるために、初めて実現される熱流制御技術である。この技術は支持基材の働きによって、また同時に、ガラスに対し支持基材の反対側に位置する輻射受熱基材の位置をガラスに近接させることも可能とするので、ガラスの両面からの厳密な温度制御を可能とする。   This is achieved for the first time because glass can float to a stable short distance on the support substrate in a pressure balanced state formed by a low-speed, low-flowing gas ejected from and discharged from the support substrate. Heat flow control technology. This technology allows the position of the radiation heat receiving substrate located on the opposite side of the support substrate to the glass to be brought close to the glass by the action of the support substrate, so that the strictness from both sides of the glass can be ensured. Enables temperature control.

さらに、上記の観点からガラスリボンからの除熱の熱流束は主として気体噴出基材もしくは除熱基材への輻射放熱によって賄われるべきことが明らかになったが、その際に重要な要件が基材の表面の放射率と内部の熱伝導度である。
発明者らはこの点について検討を重ねた結果、ガラスを処理する温度領域(ガラス転移点±150°C)における基材表面の放射率は少なくとも0.5以上、好ましくは0.7以上あることが、ガラスからの円滑かつ定常的な除熱に必要なことを明らかにした。これより放射率の小さな基材を用いるとガラスからの輻射放熱の反射が無視できなくなり、ガラスの冷却制御が困難となる。
Furthermore, it has become clear from the above viewpoint that the heat flux of heat removal from the glass ribbon should be mainly covered by radiant heat dissipation to the gas ejection substrate or heat removal substrate. The emissivity of the surface of the material and the thermal conductivity inside.
As a result of repeated investigations on this point, the inventors have found that the emissivity of the substrate surface in the temperature region (glass transition point ± 150 ° C) for processing glass is at least 0.5, preferably 0.7 or more. However, it was clarified that it is necessary for smooth and steady heat removal from the glass. If a substrate having a lower emissivity is used, the reflection of radiation heat radiation from the glass cannot be ignored, and it becomes difficult to control the cooling of the glass.

また、気体噴出基材にガラスから輻射放熱により移動した熱はさらに定常的にバランスの取れた状態で該基材の内部を伝導伝熱によって移動し、次いで空冷機材によってこれも定常的にバランスの取れた状態で系外に放出されることが重要かつ必要である。このような観点から基材の材質は所定の熱伝導率を必要とし、その大きさは上記の温度範囲で10W/mK以上、好ましくは20/mK以上あることが望ましい。
これらの特性と共に、取り扱うガラスの温度領域を考慮して、耐熱性の基材を用いることが望ましく、各種の金属、セラミックス、カーボン等が利用可能である。また、それらの表面は上記の放射率を考慮して、必要があればサンドブラストや化学処理等によって微細な凹凸をつけることも可能であり、有用である。
In addition, the heat transferred from the glass to the gas jetting base material by radiant heat release is transferred to the inside of the base material by conduction heat transfer in a more balanced state, and this is also constantly balanced by the air cooling equipment. It is important and necessary to be released out of the system in a detached state. From this point of view, the material of the base material needs to have a predetermined thermal conductivity, and its size is 10 W / mK or more, preferably 20 / mK or more in the above temperature range.
In addition to these characteristics, it is desirable to use a heat-resistant substrate in consideration of the temperature range of the glass to be handled, and various metals, ceramics, carbon, etc. can be used. In addition, in consideration of the above emissivity, those surfaces can be provided with fine irregularities by sandblasting, chemical treatment or the like, if necessary, which is useful.

一方、ガラスリボンに曲げ加工や再延伸等の二次加工を施す場合には、ガラスからの除熱の速度を変える必要もあり、その場合には基材の冷却速度を落としたり、場合により放射率の低い表面基材を用いることも可能であり、有用である。
また、気体の系外への排出の際、少なくともその一部を減圧状態で吸引排出を行うことにより、ガラスに対して支持基材から一定の吸引力を印加しつつ浮上させることが可能となるので、一層厳密なガラスと支持基材との距離制御によって、処理初期状態に近い温度領域でのガラスの曲げ加工の精度向上やガラスの平坦性の向上に資する。
On the other hand, when the glass ribbon is subjected to secondary processing such as bending or redrawing, it is also necessary to change the rate of heat removal from the glass. It is also possible and useful to use a surface substrate with a low rate.
Further, when discharging the gas out of the system, at least a part of the gas is sucked and discharged in a reduced pressure state, so that the glass can be floated while applying a certain suction force from the support base material. Therefore, further strict control of the distance between the glass and the supporting substrate contributes to improvement in the accuracy of glass bending in the temperature region close to the initial processing state and improvement in glass flatness.

このような吸着浮上の現象は対面するガラスと基材の間隔が充分小さいことと気体の流量が安定して小さいことによってもたらされるものであって、その間隔は概ね1mm以下、特に500ミクロン以下が好適である。
この場合吸引減圧の度合いは噴出する気体の流量を上回らない範囲で、用途に応じ軽度の減圧から強度の減圧まで適宜設計・選択が可能である。
支持基材に開ける気体を噴出もしくは排出する小孔は実質的に均一に分布していることが望ましく、分布が一様でない場合には気体の流動やその結果生じるガラスを浮上させる力や吸引する力に偏りを生じ、その結果ガラスの変形や温度やその分布の制御が困難となる恐れが増大する。
Such adsorption levitation phenomenon is caused by the sufficiently small distance between the glass and the substrate facing each other and the stable flow rate of the gas, and the distance is approximately 1 mm or less, particularly 500 microns or less. Is preferred.
In this case, the degree of suction depressurization is within a range that does not exceed the flow rate of the gas to be ejected, and it is possible to design and select from mild depressurization to strong depressurization according to the application.
It is desirable that the small holes for ejecting or exhausting the gas to be opened in the supporting base material are distributed substantially uniformly. If the distribution is not uniform, the gas flow and the resulting force or suction to float the glass As a result, there is a bias in the force, and as a result, there is an increased risk that it will be difficult to control the deformation, temperature and distribution of the glass.

これら小孔の大きさや形状は目的や用途に応じて各種選択し得るが、一般的には平均直径が0.1mm以上5mm以下の断面が円形のものが好ましい。
余りに孔径が小さな場合には、気体の噴出・排出の抵抗が大きくなり、充分な気体流量が得られない恐れや逆に瞬間的な噴出速度が大きくなり過ぎる恐れや基材の加工上の問題を生じる恐れがあるが、これらの問題が解決され、前述の気流速度の範囲に収まるのであれば、必ずしも上記下限に制約を設けるものではない。孔の形状についても必ずしも絶対的な要件ではない。
孔径が逆に大きすぎる場合には、基材上の気体流動の平均的均一性や各種の平準化効果が損なわれる恐れを生じ、ガラスの粘度が低い場合には特にその影響が懸念される。
Various sizes and shapes of these small holes can be selected depending on the purpose and application, but in general, a circular cross section having an average diameter of 0.1 mm to 5 mm is preferable.
If the hole diameter is too small, the resistance to gas ejection / discharge will increase, and there may be a risk that a sufficient gas flow rate will not be obtained, or conversely, the instantaneous ejection speed will become too large, or problems in processing the substrate. There is a possibility that it will occur, but if these problems are solved and fall within the range of the above-mentioned airflow velocity, the above lower limit is not necessarily limited. The shape of the hole is not necessarily an absolute requirement.
On the other hand, if the pore diameter is too large, the average uniformity of gas flow on the substrate and various leveling effects may be impaired, and the influence is particularly concerned when the viscosity of the glass is low.

本技術は断面が所定の曲面をなしている基材を用いて板状ガラスリボンを曲面を有する形状に加工し、もしくは重力や機械的圧力を用いて予め成形された曲面を有しているガラスに適用することも可能であり、また有用である。
さらに、変形可能な基材材料を用いて、板状のガラスを支持基材に動的気体圧力均衡分布状態で基材から一定距離で保持した状態を維持しつつ、基材を所定の形状に変形させて、それに伴いガラスを成形することも可能であり、有用である。
This technology uses a substrate with a predetermined curved surface to process a plate-shaped glass ribbon into a curved shape, or glass having a curved surface that is pre-formed using gravity or mechanical pressure It can also be applied to and is useful.
Furthermore, using a deformable base material, the base is made into a predetermined shape while maintaining a state where the plate-like glass is held at a constant distance from the base in a dynamic gas pressure equilibrium distribution state on the support base. It is also possible to deform and to form glass accordingly, which is useful.

また、上記の曲げ加工以外にも、板状のガラスリボンを支持基材に対して一定距離に浮上・保持した状態を維持しつつ、該ガラスの周辺から延伸応力をかけて薄板化することも可能でありまた有用である。
さらに処理されるガラス成形品と気体を噴出・排出する基材の動きを相対する面に沿って異なる速度・方向に運動せしめることが、動的な平準化のメカニズムを通して気体の流速、流量分布、圧力分布等をより均一化し、ひいてはガラスの温度分布や温度制御等をより均一・効果的ならしめるために可能かつ有用である。これは、とりわけガラスの粘度や剛性が比較的低く、ガラスの流動性の高い時や排出を減圧で行う場合に重要である。
In addition to the above bending process, the plate-like glass ribbon may be thinned by applying a stretching stress from the periphery of the glass while maintaining a state where the plate-like glass ribbon is levitated and held at a certain distance from the supporting base material. It is possible and useful.
Furthermore, it is possible to move the movement of the glass molded article to be processed and the base material that ejects and discharges the gas at different speeds and directions along the opposite surfaces, through the dynamic leveling mechanism, It is possible and useful for making the pressure distribution and the like more uniform, and thus making the temperature distribution and temperature control of the glass more uniform and effective. This is particularly important when the viscosity and rigidity of the glass are relatively low and the flowability of the glass is high, or when discharging is performed under reduced pressure.

この場合のガラスと基材の相対的な運動の方向や速度の差はガラスの粘度と気体の排出・吸引する部分の溝や孔の大きさとの関係で適宜最適な値を設定することが可能かつ有効である。すなわち一般的にはガラスが高温で粘度が低い状態にある場合には、相対的な速度の差異は大きな方が望ましく、また基材の気体噴出や排出の孔も小さな方が望ましい。
これらの最適な組み合わせを推算・設計することも可能であり、有用である。これらのガラスリボンと基材の相対的速度の異なる摺動状態および基材からの気体の噴出と排出の組み合わせを利用して、ガラスがまだ柔軟性を帯びている状態、例えばその動的粘度が10〜10程度の状態にある間に、ガラスを平坦に浮上保持し、非接触状態で充分に内部歪を除去・軽減することが可能かつ有用である。
以上述べたように板状ガラスリボンと支持基材の少なくとも一方が静止状態に無く、両者を互いの相対する面に沿って異なる速度又は異なる方向に相対的に移動させることが可能かつ有用である。
In this case, the difference in the direction and speed of relative movement between the glass and the base material can be set to an optimum value as appropriate depending on the relationship between the viscosity of the glass and the size of the grooves and holes in the gas discharge / suction section. And effective. That is, in general, when the glass is at a high temperature and a low viscosity, it is desirable that the difference in relative speed is larger, and that the gas ejection and discharge holes of the substrate are smaller.
It is possible and useful to estimate and design these optimal combinations. Utilizing these sliding states with different relative speeds of the glass ribbon and the substrate and a combination of gas ejection and discharge from the substrate, the glass is still flexible, for example, its dynamic viscosity is While being in the state of about 10 6 to 10 8 , the glass is floated and held flat, and internal strain can be sufficiently removed and reduced in a non-contact state and is useful.
As described above, at least one of the plate-shaped glass ribbon and the supporting substrate is not in a stationary state, and it is possible and useful to move both of them relatively at different speeds or in different directions along the mutually opposing surfaces. .

また、板状ガラスの上面には、下面に設定されている浮上支持基材と同様に気体を噴出する機構を有している基材を上面に用いることも可能であり、また有用であるが、支持基材からの気体の噴出および排出を伴わず、ガラスに非接触状態で輻射放熱による除熱を制御する基材を設置する方が好ましい場合もある。
これらの場合の輻射放熱制御基材とガラス面との距離は下面よりは大きな距離が用いられることも考えられるが、その程度も熱工学的に適正な距離に置かれることが好ましい。また、上面の基材は隙間の無い連続体であってもよく、また逆に一定の孔やスリットの設けられている構造や網状のものも使用可能である。
In addition, it is possible to use a base material having a mechanism for ejecting a gas on the upper surface of the plate-like glass on the upper surface in the same manner as the floating support base material set on the lower surface. In some cases, it is preferable to install a base material that controls heat removal by radiant heat radiation in a non-contact state on the glass without causing gas ejection and discharge from the support base material.
Although the distance between the radiation heat dissipation control substrate and the glass surface in these cases may be larger than that of the lower surface, it is preferable that the degree is set at an appropriate distance in terms of thermal engineering. Further, the base material on the upper surface may be a continuous body without a gap, and conversely, a structure having a certain hole or slit or a net-like structure can be used.

以上のべた課題解決のための手段においては、気体噴出・排出に用いられる基材は重要であるが、基材の材質や表面の状態、或いはまた基材の構造等はガラスからの輻射放熱と対流除熱がガラスの移動方向、それと直行する方向、上下両面からの除熱等に的確に対応し、最適冷却速度や温度分布の極小化をもたらすように適宜選択・設計することが重要である。
また、ガラスの密度・厚み等によって最適な気体の噴出・排出の流量とそのバランスを最適化することが可能かつ有用である。さらに、支持基材表面での気体噴出・排出用小孔の形成密度もガラスの粘度等を考慮して最適化を図ることが可能かつ有用であり、該気体の温度もガラスの除熱の制御に一定の寄与と影響をもたらすので、輻射放熱と併せて熱工学的に最適化を図ることが望ましい。
本発明によるガラスの成形は一定の形状のガラスを個々に処理することも可能であり、また基材表面の形状に沿った形にガラスリボンを連続的に処理することも可能であり有用である。
板状のガラス成形品の場合にはガラスリボンの搬送は下流の対流空冷や強制空冷を行う領域でガラスリボンの幅方向の両端をピン状のクランプ等で連続・一様な速度で引っ張る方法も可能であり、有用である。
In the means for solving the above problems, the base material used for gas ejection / exhaust is important, but the material and surface state of the base material, or the structure of the base material, etc., are radiated and radiated from glass. It is important to select and design appropriately so that convective heat removal accurately corresponds to the moving direction of glass, the direction perpendicular to it, heat removal from both the upper and lower sides, and to bring about the optimal cooling rate and minimization of temperature distribution. .
In addition, it is possible and useful to optimize the optimal gas ejection / discharge flow rate and balance depending on the density and thickness of the glass. Furthermore, it is possible to optimize the formation density of the small holes for gas ejection / discharge on the surface of the support substrate in consideration of the viscosity of the glass, and the temperature of the gas is also controlled for the removal of heat from the glass. Therefore, it is desirable to optimize the thermal engineering in combination with radiation heat dissipation.
The glass molding according to the present invention is useful because it is possible to individually process a glass having a certain shape, and to continuously process a glass ribbon in a shape along the shape of the substrate surface. .
In the case of a plate-shaped glass molded product, the glass ribbon can be transported by pulling both ends in the width direction of the glass ribbon at a continuous and uniform speed with pin-shaped clamps in the area where downstream convection air cooling or forced air cooling is performed. It is possible and useful.

本技術の重要な要素を占める気体を噴出する基材を構成する材料は、取り扱うガラスの温度領域で変形や酸化劣化等から安定なものが望ましく、その観点からは耐熱酸化性の金属、セラミックス、炭素等が好ましい。例えば鋼材、ステンレス、耐熱鋼、シリカ、アルミナ、チッ化珪素、コーヂュライト、炭素、無機複合材等各種の材質等のうち、必要な熱工学特性を満たす材料が適用可能である。
また、その表面は用いる用途・条件によって適宜選択することが望ましく、特に表面の熱線放射率は重要な因子となる。一般にガラスを適当な速さで冷却する場合には所定の放射率を有する表面特性を有するものが望ましい。かかる観点から、基材の表面を特定のコーティング剤で塗布して用いることも可能かつ有用である。
The material that constitutes the base material that blows out the gas that occupies an important element of this technology is desirably stable from deformation and oxidative degradation in the temperature range of the glass to be handled. From that viewpoint, heat-resistant and oxidative metals, ceramics, Carbon or the like is preferable. For example, among various materials such as steel, stainless steel, heat-resistant steel, silica, alumina, silicon nitride, cordierite, carbon, and inorganic composite materials, materials satisfying necessary thermal engineering characteristics can be applied.
In addition, it is desirable to select the surface appropriately depending on the application and conditions to be used, and the heat ray emissivity of the surface is an important factor. In general, when glass is cooled at an appropriate speed, it is desirable to have a surface characteristic having a predetermined emissivity. From this viewpoint, it is possible and useful to apply the surface of the base material with a specific coating agent.

本技術の適用されるガラスの組成はソーダライムの他、無アルカリガラス、ホウケイ酸ガラス、結晶化ガラス、その他の如何なる組成であってもよく、限定されるものではない。
本発明の対象となるガラスの成形品は板状であることが望ましく、所謂板ガラスがその代表的な製品である。特にディスプレー用途に用いられる高度の物理的・光学的均一性や表面平滑・平坦性や汚点・欠点のない高品質の板ガラスへの適用に適している。
本技術を適用して得られるガラス成形品の用途としては、一般的な建築、車両用に始まり、ディスプレー用、太陽電池用、磁気メモリー媒体用、等の平面状の板硝子のみならず、網入りガラスや断面が曲面を示す車両用加工ガラス、テレビ等のブラウン管等が包含される。
The composition of the glass to which the present technology is applied may be any composition other than soda lime, alkali-free glass, borosilicate glass, crystallized glass, and the like, and is not limited.
The molded product of glass that is the subject of the present invention is preferably plate-shaped, and so-called plate glass is a typical product. It is particularly suitable for application to high-quality plate glass that does not have high physical and optical uniformity, surface smoothness, flatness, spots, and defects used in display applications.
Applications of glass molded products obtained by applying this technology include not only flat plate glass for general architecture and vehicles, but also for displays, solar cells, magnetic memory media, etc. Examples include glass, processed glass for vehicles having a curved section, and a cathode ray tube such as a television.

本発明は、アクアフロート法やフュージョン法等の成形と組み合わせることによって、研削・研磨を必要とせず、ディスプレー用ガラスにそのまま使用でき、平滑・平坦で欠点や汚れのない高品質の板ガラスを生産性高く供給することが可能であるという優れた効果を有する。また、ガラス面からの除熱をより厳密・高精度に制御できるので、冷却工程や加工における製品の温度とその分布の制御が向上し、得られる製品の平坦性を高め、残存歪や熱膨張率の設計・調整も容易である。さらに、高精度の曲面の実現も可能とし、車両用ガラスの品質向上やテレビブラウン管の製造工程の合理化等にも資する。   The present invention can be used as it is for display glass as it is without grinding / polishing by combining with molding such as aqua float method and fusion method. It has an excellent effect of being able to supply high. In addition, since the heat removal from the glass surface can be controlled more precisely and with high accuracy, the control of the product temperature and its distribution in the cooling process and processing is improved, the flatness of the resulting product is improved, and the residual strain and thermal expansion are improved. It is easy to design and adjust the rate. Furthermore, it is possible to realize a highly accurate curved surface, which contributes to improving the quality of vehicle glass and streamlining the manufacturing process of TV CRTs.

以下、本発明の実施の形態を具体的に説明する。なお、以下の説明は、本願発明の理解を容易にするためのものであり、これに制限されるものではない。すなわち、本願発明の技術思想に基づく変形、実施態様、他の例は、本願発明に含まれるものである。   Hereinafter, embodiments of the present invention will be specifically described. In addition, the following description is for making an understanding of this invention easy, and is not restrict | limited to this. That is, modifications, embodiments, and other examples based on the technical idea of the present invention are included in the present invention.

本発明の技術は主として、板状ガラスの徐冷、曲げ加工および薄板化等の工程に適用される。
板ガラスの徐冷工程においては、均一に溶融し、脱泡・清澄等の工程を経たガラスをアクアフロート法、動的重力制御法もしくはフュージョン法等によって非接触的に成形したガラスリボンに適用することが、非接触的プロセスによって高度の製品表面の品質をもたらすという観点から望ましい。
成形後のガラスリボンはガラス転移温度よりも通常50〜100°C程度高い範囲の一定温度で徐冷工程に供される。
The technique of the present invention is mainly applied to processes such as slow cooling, bending, and thinning of sheet glass.
In the glass sheet slow cooling process, glass that has been melted uniformly and passed through processes such as defoaming and clarification is applied to glass ribbons formed in a non-contact manner by the aqua float method, dynamic gravity control method, fusion method, etc. Is desirable from the standpoint of providing a high product surface quality through a non-contact process.
The glass ribbon after molding is subjected to a slow cooling step at a constant temperature that is usually in the range of about 50 to 100 ° C. higher than the glass transition temperature.

冷却工程では、初期のガラス転移点以上の温度からガラス転移温度の100°C程度低い温度までが製品の品質と特性を左右する最も重要な温度領域であって、この温度領域における冷却工程が本発明の技術の主たる適用対象工程となる。
この領域ではガラスリボンの下面を気体噴出基材によって非接触状態で支持し、上面を同じく気体噴出基材もしくは輻射除熱制御材によってガラスリボン全面に亘る温度管理を行う。この際、気体噴出基材からの気体の排出を常圧下で行なっても良く、より厳密にガラス面の平坦性を求める場合には減圧吸引排出を適用しても良い。
In the cooling process, the temperature range from the temperature above the initial glass transition point to a temperature about 100 ° C lower than the glass transition temperature is the most important temperature range that affects the quality and characteristics of the product. This is the main application process of the technology of the invention.
In this region, the lower surface of the glass ribbon is supported in a non-contact state by the gas ejection base material, and the temperature control over the entire surface of the glass ribbon is performed by the gas ejection base material or the radiation heat removal control material. At this time, the gas may be discharged from the gas ejection base material under normal pressure, and when the flatness of the glass surface is required more strictly, vacuum suction discharge may be applied.

この際に基材にガラス面と平行の微小の動きを与えることによって流体力学的な平準化を促進しても良い。また、従来の徐冷設備ではこれらの装置全体を所謂徐冷炉の中に設置するが、本技術ではガラスは上下両面を密接状態で保持され、温度管理されているので、必ずしもそのような二重構造は必要としない。
上記のガラス両面からの除熱基材の働きによって、ガラスリボン全体の温度、両面の温度の対象性、厚み方向の温度分布、ガラスリボンの流れに直行方向(幅方向)の温度分布、並びに流れ方向全てに亘る精度の高い制御が可能となる。
At this time, hydrodynamic leveling may be promoted by giving the substrate a minute movement parallel to the glass surface. In addition, in the conventional slow cooling equipment, the entire apparatus is installed in a so-called slow cooling furnace. However, in this technique, the glass is held in close contact with both upper and lower surfaces, and the temperature is controlled. Is not necessary.
Due to the action of the heat removal substrate from both sides of the glass, the temperature of the entire glass ribbon, the objectivity of the temperature on both sides, the temperature distribution in the thickness direction, the temperature distribution in the direction perpendicular to the flow of the glass ribbon (width direction), and the flow Highly accurate control in all directions is possible.

例えば、ガラス上下面の温度差を実質的に無くし、幅方向の末端部分の一部(厚みの数倍以下)を除いて横断温度分布(最大温度差)を数度以下に制御可能である。また、ガラスリボンの温度がガラス転移点以上にある間に、気体噴出支持基材の働きによって、形状の歪み(反り、波打ち等)を解消・軽減すると共に、上記のような精密な温度制御によってガラスリボンの内部応力の開放も可能である。
また、ガラスの流量、厚み、幅、移動速度、得られる製品の熱特性(収縮率等)に応じた徐冷条件の設定も精度高く行なえる。
For example, the temperature difference between the upper and lower surfaces of the glass can be substantially eliminated, and the transverse temperature distribution (maximum temperature difference) can be controlled to several degrees or less except for a part of the end portion in the width direction (less than several times the thickness). In addition, while the temperature of the glass ribbon is above the glass transition point, the distortion of the shape (warping, undulation, etc.) is eliminated and reduced by the action of the gas ejection support base material, and by the precise temperature control as described above. The internal stress of the glass ribbon can be released.
Moreover, the slow cooling conditions can be set with high accuracy in accordance with the flow rate, thickness, width, moving speed of the glass, and the thermal characteristics (shrinkage rate, etc.) of the resulting product.

以上述べたようなガラスリボンの種々の制御は、伝熱工学に基づく、気体噴出基材の材料・構造設計並びに運転プログラム条件設定によって最適化され、実施される。ガラスの温度制御は前述のように基材とその表面の特性に大きく依存するので、これらを吟味検討し、適宜選定することが望ましい。また、その表面材質が電子伝導性であるか否かによって、輻射放熱の方向性が異なるので、そのような特性も用途や目的に応じて考慮されるべき要因である。   Various controls of the glass ribbon as described above are optimized and executed by the material / structure design of the gas ejection base material and the operation program condition setting based on the heat transfer engineering. As described above, the temperature control of the glass greatly depends on the characteristics of the base material and its surface, so it is desirable to examine and examine them appropriately. In addition, since the direction of radiation heat radiation varies depending on whether or not the surface material is electronically conductive, such characteristics are factors that should be considered according to the application and purpose.

以上の条件設定においては、ガラスリボンの物理的(形状)および熱的な歪を除去・軽減するために、一定温度領域で非常に小さな冷却速度で行ない、必要充分な内部歪応力の除去或いは低減を行なった後に、冷却速度を上げて処理することも有用である。
曲げ加工においては、連続的に流れる板状ガラスに一定の一方向の曲率を与えるために、ガラスリボンの下面を平坦な形状の気体噴出基材で支持した状態から、順次曲率を変えて、所定の曲率に至らしめる方法や、一定寸法に切断した素板を両面気体噴出基材からなる支持板からなる型を用いて加熱プレス成形を行なう方法などが実施される。
薄板化に関しては、予備成形した板状ガラスの幅方向両端を連続的に流れるガラスリボンの幅方向両端をピンチロール等によって引張応力を加えて、気体噴出支持基材に保持した状態で延伸する。その際、工程を水平状態で行なうことも可能であって、また温度制御が精度高く行なえるので、所望の薄板が精度高く得られる。
In the above condition setting, in order to remove and reduce the physical (shape) and thermal distortion of the glass ribbon, it is performed at a very low cooling rate in a constant temperature range, and necessary or sufficient internal strain stress is removed or reduced. It is also useful to increase the cooling rate after the treatment.
In the bending process, in order to give a constant unidirectional curvature to the continuously flowing plate-like glass, the curvature is sequentially changed from the state where the lower surface of the glass ribbon is supported by a flat gas ejection substrate. And a method of performing hot press molding using a die made of a support plate made of a double-sided gas ejection base material, and the like.
Regarding thinning, the glass ribbon that flows continuously at both ends in the width direction of the preformed glass sheet is stretched in a state in which tensile stress is applied to the both ends in the width direction by a pinch roll or the like and held on the gas ejection support substrate. At that time, the process can be performed in a horizontal state, and the temperature can be controlled with high accuracy, so that a desired thin plate can be obtained with high accuracy.

(本発明の具体例)
[片面加圧・吸着浮上方式(図1参照)](実施形態1)
動的重力制御法で連続成形した幅1m、厚み2mmのソーダライムシリケート板ガラス(ガラス転移点約530°C)を図1に示す方法によって冷却・製品化する。アクアフロートの成形機から板ガラスリボン1を600°Cで連続的に離脱せしめ、同一平面高さで冷却ゾーン3に導入する。冷却ゾーン3にはガラスリボン1を支持する加圧低速空気流13を噴出する平坦な気体噴出・吸引排出支持基材2が設置されている。
支持基材2には10mm間隔で直径1mmの噴出・排出孔が全面に開けられており、交互に空気を噴出する孔と吸引排出する孔とに機能分離され、噴出用の孔から50m/m・時(一つの孔あたり0.01m/時)で空気が噴出し、それに隣接する吸引排出用の孔からそれとバランスする流量で空気が減圧排出される。支持基材2へは気体噴出口6から空気が送り込まれ、気体排出口7から排出される。
(Specific examples of the present invention)
[One-sided pressurization / adsorption levitation method (see FIG. 1)] (Embodiment 1)
A soda-lime silicate plate glass (glass transition point of about 530 ° C.) having a width of 1 m and a thickness of 2 mm continuously formed by the dynamic gravity control method is cooled and commercialized by the method shown in FIG. The glass sheet ribbon 1 is continuously detached from the aqua float molding machine at 600 ° C. and introduced into the cooling zone 3 at the same plane height. In the cooling zone 3, a flat gas ejection / suction / discharge support base material 2 for ejecting a pressurized low-speed air stream 13 that supports the glass ribbon 1 is installed.
Ejection and discharge hole with a diameter of 1mm at 10mm intervals on the support substrate 2 has opened to the entire surface, alternately are functionally separated into a hole for sucking discharged holes for ejecting air, 50m from the hole for jetting 3 / Air is ejected at m 2 · hour (0.01 m 3 / hour per hole), and air is discharged under reduced pressure from the suction and discharge holes adjacent thereto at a flow rate balanced with the air. Air is sent from the gas jet 6 to the support base 2 and is discharged from the gas outlet 7.

これらの空気の噴出・吸引は共にそれぞれの孔の内部に大きな流動抵抗が働く構造と仕組みが設けられており、これにより、支持基材上どこをとっても、また、ガラスの有無に拘わらず平均的に均一且つ一様になるように気流13の制御が行われ、その結果ガラスリボンは基材表面12から約150ミクロンの一定の高さに浮上しつつ、吸引状態で保持される。上記基材には表面処理を施したSUS鋼(530°Cにおける放射率0.7、熱伝導率24W/m・K)を用い、基材は空冷ユニット4により必要な熱の除去を行なう。   Both of these air jets and suctions are provided with a structure and mechanism in which large flow resistance works inside each hole, which makes it possible to take an average regardless of where glass is present or not. The air flow 13 is controlled to be uniform and uniform, and as a result, the glass ribbon is held in a sucked state while rising from the substrate surface 12 to a constant height of about 150 microns. For the base material, surface-treated SUS steel (emissivity 0.7 at 530 ° C., thermal conductivity 24 W / m · K) is used, and necessary heat is removed from the base material by the air cooling unit 4.

また、必要に応じて支持基材と底部の空冷ユニットを幾つかの部分に分割して冷却プログラムに従ってそれぞれ除熱制御を行う。空冷ユニット4へは、支持基材空冷空気噴出口8より冷却プログラムに従って算出された所定温度の空気が所定の流量で供給され、同排出口9より排出される。
ガラスリボンの幅方向両端は成形時の治具による変形や肉厚の偏差等を生じているが、それを相殺するように相対する部分の放熱を中央部と変えて、ガラスリボンの幅方向温度分布が極小になるように制御する。
そのためガラスリボンの両幅部分の温度調節を独立に行なえるように支持基材と空冷ユニットを分離する。このようにしてガラスの下面全面の温度、温度分布、冷却速度を所定の状態に制御する。
Further, if necessary, the support base and the bottom air cooling unit are divided into several parts, and heat removal control is performed according to the cooling program. To the air cooling unit 4, air of a predetermined temperature calculated according to the cooling program is supplied from the support base air cooling air outlet 8 according to the cooling program at a predetermined flow rate, and is discharged from the outlet 9.
At both ends of the glass ribbon in the width direction, deformation due to jigs during molding and deviations in wall thickness, etc. have occurred. Control the distribution to be minimal.
Therefore, the supporting base material and the air cooling unit are separated so that the temperature control of both width portions of the glass ribbon can be performed independently. In this way, the temperature, temperature distribution, and cooling rate of the entire lower surface of the glass are controlled to a predetermined state.

一方、ガラスの上面には同じ表面処理を施した耐熱鋼の、一定間隔で開放孔が開けられた平坦な輻射除熱制御板14がガラス面に近接して設置されている。この制御板によってガラス上面の除熱を下面と同様高精度で制御可能とする。
制御板14上部はガラス下面にある支持基材と同様に空冷ユニット5により制御板のガラスに面した表面温度と内部伝熱の制御を通してガラス上面の温度、温度分布、冷却速度をガラスの下面と等しくなるように調節する。これらの制御板14と空冷ユニット5は支持基材と同様に分割制御可能とする。
空冷ユニット5へは空気噴出口10から冷却プログラムに従って算出された所定温度の空気が所定の流量で供給され、同排出口11から排出される。
On the other hand, on the upper surface of the glass, a flat radiation heat removal control plate 14 made of heat-resistant steel subjected to the same surface treatment and having open holes formed at regular intervals is installed close to the glass surface. This control plate makes it possible to control the heat removal on the upper surface of the glass with the same accuracy as the lower surface.
The upper surface of the control plate 14 controls the temperature, temperature distribution, and cooling rate of the upper surface of the glass through the control of the surface temperature and internal heat transfer of the control plate by the air cooling unit 5 in the same manner as the support base on the lower surface of the glass. Adjust to be equal. The control plate 14 and the air cooling unit 5 can be divided and controlled in the same manner as the support base material.
Air at a predetermined temperature calculated according to the cooling program is supplied from the air outlet 10 to the air cooling unit 5 at a predetermined flow rate, and is discharged from the outlet 11.

輻射除熱制御板表面14とガラス上面との距離はサーボモーターを用いて徐冷炉に搬送されて来るガラス製品の平坦性や安定性を見ながらリボン幅の1/100程度から150ミクロンの間に適宜設定される。また、ガラス板幅方向の両端部の形状や肉厚は中央部と異なるので、これを考慮して両端部を覆う輻射・対流制御板の構造や位置が設定される。
支持基材と輻射制御板はガラスリボンの幅、移動速度、厚み、ガラスの物理的性質や周辺の治具の配置等によって、構造と大きさを適宜設計・製作するが、基本的には幅はガラスの幅プラスアルファ、総延長は5mから20m程度でガラス転移温度から100〜150°C程度低い温度までのアニール・徐冷を行い、それ以下の温度領域では好ましくない熱歪を生じない範囲で直接対流空冷や直接強制空冷等のより速い冷却を行ない、50°C程度の温度で製品を取り出す。
The distance between the radiation heat removal control plate surface 14 and the upper surface of the glass is appropriately between about 1/100 to 150 microns of the ribbon width while observing the flatness and stability of the glass product conveyed to the slow cooling furnace using a servo motor. Is set. Moreover, since the shape and thickness of the both ends of a glass plate width direction differ from a center part, the structure and position of the radiation and the convection control board which cover both ends are considered in consideration of this.
The structure and size of the support base and radiation control plate are appropriately designed and manufactured according to the width, moving speed, thickness, physical properties of glass, and the placement of peripheral jigs. Is the glass width plus alpha, the total extension is about 5m to 20m, annealing and slow cooling from the glass transition temperature to about 100-150 ° C, and the temperature range below that does not cause undesirable thermal strain Then, perform faster cooling, such as direct convection air cooling or direct forced air cooling, and take out the product at a temperature of about 50 ° C.

また、支持基材は管理温度領域毎にガラスリボンの長さ方向にユニット化され、ガラスリボンの温度分布や冷却速度の制御のための条件設定に至る過程で、各ユニットの小孔を通して輻射温度計等によって、連続的に16の方向に移動・処理されるガラスリボンの上面と下面それぞれについて、幅方向の分布を含めて測定する。
そして、その結果を冷却支持基材に送る冷却空気と支持空気の温度と風量等の条件設定にフィードバックし、ガラスリボンが所定のプログラムに従った温度と温度分布に収斂するようにそれぞれのユニットゾーンにおける温度制御を行なう。
In addition, the support substrate is unitized in the length direction of the glass ribbon for each management temperature range, and in the process of setting the conditions for controlling the temperature distribution and cooling rate of the glass ribbon, the radiation temperature is passed through the small holes of each unit. For each of the upper and lower surfaces of the glass ribbon that is continuously moved and processed in 16 directions by a meter or the like, the distribution is measured including the distribution in the width direction.
Then, the result is fed back to the cooling air to be sent to the cooling support substrate and the setting of conditions such as the temperature and air volume of the support air, and each unit zone so that the glass ribbon converges to the temperature and temperature distribution according to a predetermined program. Temperature control at is performed.

このようにしてガラスリボンはその上面と下面の温度差を生じることなく、幅方向の末端部分の一部(厚みの数倍以下)を除いて横断温度分布(最大温度差)を数度以下に制御可能である。得られるガラス製品の表面は2cmピッチで100nm以下、また、マクロの平坦性は全面に亘って150ミクロン以下に制御される。
この際、ガラスから支持基材および輻射基板への輻射放熱による除熱、支持基材から噴出・吸入する空気による除熱等を関連する材料・表面の熱工学的物性に基づいて試算(シミュレーション)を行い、予めおよその条件設定を行なった後、実測に基づくフィードバックによる条件調整を経て、条件を確定するなどの手段も一層本発明の効果を高めるものである。
In this way, the glass ribbon has a transverse temperature distribution (maximum temperature difference) of several degrees or less except for a part of the end portion in the width direction (less than several times the thickness) without causing a temperature difference between the upper surface and the lower surface. It can be controlled. The surface of the obtained glass product is controlled to 100 nm or less at a 2 cm pitch, and the macro flatness is controlled to 150 microns or less over the entire surface.
At this time, heat removal by radiation radiation from the glass to the support substrate and radiation substrate, heat removal by air blown from the support substrate, and heat removal from the support substrate, etc. are estimated based on the thermal engineering physical properties of the materials and surfaces (simulation) In this way, after roughly setting the conditions in advance, the condition is determined by adjusting the conditions by feedback based on the actual measurement, and the effect of the present invention is further enhanced.

[両面加圧浮上方式(図2参照)](実施形態2)
実施形態1と同様にアクアフロートの成形機から厚さ2mm、幅1mの板ガラスリボン1を600°Cで連続的に離脱せしめ、同一平面高さで冷却ゾーン3に導入する。冷却ゾーン3にはガラスリボン1を下面から支持する加圧低速空気流4を噴出する平坦な支持基材2と上面から下面よりも弱い加圧低速空気流6を噴出する平坦な基板5が設置されている。
[Double-sided pressurized levitation method (see Fig. 2)] (Embodiment 2)
As in the first embodiment, the glass sheet ribbon 1 having a thickness of 2 mm and a width of 1 m is continuously detached from the aqua float molding machine at 600 ° C. and introduced into the cooling zone 3 at the same plane height. The cooling zone 3 is provided with a flat support base 2 for ejecting a pressurized low-speed air stream 4 for supporting the glass ribbon 1 from the lower surface and a flat substrate 5 for ejecting a pressurized low-speed air stream 6 weaker than the lower surface from the upper surface. Has been.

支持基材2および5には10mm間隔で直径1mmの孔が全面に開けられており、交互に空気を噴出する孔と排出する孔とに機能分離され、噴出用の孔からは50m/m・時(一つの孔あたり0.01m/時)で空気が噴出し、それに隣接する排出用の孔から空気が常圧排出される。
これらの空気の噴出用の孔には実施形態1と同様に内部に大きな流動抵抗が働く構造と仕組みが設けられており、これにより、支持基材上どこをとってもまた、ガラスの有無に拘わらず均一・一様に空気の噴出が行われ、気流が均一になるように制御され、その結果ガラスリボンは支持基材から約300ミクロンの一定の高さに浮上しつつ、ガラスリボンを挟んで上下2枚の基板の間に平衡状態で安定に保持される。
Holes having a diameter of 1 mm are opened on the entire surface of the support bases 2 and 5 at intervals of 10 mm, and are functionally separated into holes for alternately ejecting air and holes for ejecting air, and 50 m 3 / m from the holes for ejection. At 2 hours (0.01 m 3 / hour per hole), air blows out, and air is discharged from the discharge hole adjacent to it at normal pressure.
These air ejection holes are provided with a structure and a mechanism in which a large flow resistance acts in the same manner as in the first embodiment, so that it is possible to take any place on the support substrate regardless of the presence or absence of glass. Air is blown out uniformly and uniformly, and the airflow is controlled to be uniform. As a result, the glass ribbon floats up and down from the support substrate to a certain height of about 300 microns, and sandwiches the glass ribbon. It is stably held in an equilibrium state between the two substrates.

上記基材には実施形態1に用いたものと同様の材質を用い、基材のガラス面と反対側の表面は空冷により必要な熱の除去を行なう。また、必要に応じてその空冷ユニットを幾つかの部分に分割してそれぞれ除熱制御が行なえるようにする。
特にガラスリボンの幅方向両端部分は中央部とガラスリボンの肉厚が異なるので、その部分の放熱を中央部と変えて、ガラス板全体の温度分布が均一になるように制御する。
このようにしてガラスの上面と下面全面の温度、温度分布、冷却速度を所定の状態に制御する。基材の大きさやユニットへの分割やガラスリボンの温度制御条件の設定の方法等も前記実施形態1と同様である。
The same material as that used in the first embodiment is used for the substrate, and the surface opposite to the glass surface of the substrate is subjected to heat removal by air cooling. Further, if necessary, the air cooling unit is divided into several parts so that the heat removal control can be performed.
In particular, since the thickness of the glass ribbon is different between the central portion and the thickness of the glass ribbon at both ends in the width direction, the heat radiation at that portion is changed from the central portion to control the temperature distribution of the entire glass plate to be uniform.
In this way, the temperature, temperature distribution, and cooling rate of the upper and lower surfaces of the glass are controlled to a predetermined state. The size of the substrate, the division into units, the method of setting the temperature control conditions of the glass ribbon, and the like are the same as in the first embodiment.

このようにしてガラスリボンはその上面と下面の温度差を生じることなく、幅方向の末端部分の一部(厚みの数倍以下)を除いて横断温度分布(最大温度差)を数度以下に制御可能である。また、支持基材による一定距離での浮上・吸着によりガラス製品の平坦性は全面に亘って300ミクロン以下に制御される。
ガラスリボンの温度が400°Cに達した後は、100°Cまでガラスリボンの両端と中央部のみを基材から噴出する空気と常圧で系外に排出される空気上に浮上保持し、それ以外の下面、上面共に気流による強制空冷で冷却する。
In this way, the glass ribbon has a transverse temperature distribution (maximum temperature difference) of several degrees or less except for a part of the end portion in the width direction (less than several times the thickness) without causing a temperature difference between the upper surface and the lower surface. It can be controlled. Further, the flatness of the glass product is controlled to 300 μm or less over the entire surface by floating and adsorption at a constant distance by the supporting base material.
After the temperature of the glass ribbon reaches 400 ° C, only both ends and the central portion of the glass ribbon are floated and held on the air ejected from the base material and the air discharged outside the system at normal pressure up to 100 ° C, The other lower and upper surfaces are cooled by forced air cooling with airflow.

[曲げ加工](実施形態3)
電気炉内に所定の寸法に切断した平坦な板硝子を実施形態2と同様の支持基材の上に気体を介して保持した状態で、該ガラスの温度を650°Cまで昇温した後、段階的に所定の曲面を有する同様の支持基材上に移動させる。
所定の曲面を有する支持基材は上下一対をなし、その状態で支持基材と噴出する気体の温度を所定の速度で低下させ、該ガラス製品の徐冷を行なう。
必要に応じて、該ガラス製品を迅速強制空冷の可能な充分高い流量を出せる支持基材上に移動し、強化することも可能である。
[Bending] (Embodiment 3)
In a state where a flat plate glass cut into a predetermined size in an electric furnace is held on a support base similar to that of Embodiment 2 through a gas, the temperature of the glass is raised to 650 ° C. To a similar support substrate having a predetermined curved surface.
The supporting base material having a predetermined curved surface forms a pair of upper and lower sides, and in this state, the temperature of the gas ejected from the supporting base material is reduced at a predetermined speed to gradually cool the glass product.
If necessary, the glass product can be moved and strengthened on a supporting substrate capable of producing a sufficiently high flow rate capable of rapid forced air cooling.

本発明は、特にアクアフロート法、動的重力制御法やフュージョン法等の成形と組み合わせることによって、研削・研磨を必要とせず、ディスプレー用途にそのまま使用可能な平滑・平坦で欠点や汚れのない高品質の板ガラスを生産性高く供給することができる。また、冷却速度をより厳密に制御できるので、得られる製品の熱膨張率の設計・調整も容易であり、高精度の曲面の実現を可能とするので、テレビブラウン管パネル、車両等に用いられる所謂加工ガラスの製造にも有用である。
また、スズや水素等の貴重な資源を用いることなく、基本的に熔融状態にあるガラスの熱量以外の熱エネルギーの消費が不要で、開放系で簡便かつ小規模の装置で設備投資も節減でき、炭酸ガスやその他の排気ガスの実質的にない、クリーンな操作・環境で実施可能な、品種の切り替え等の簡便かつ迅速で素地の無駄の少ない、少量多品種から大量生産までの対応ができる板ガラスの製造プロセスとして有用である。
The present invention is particularly smooth and flat and can be used as it is for display applications without any grinding or polishing by combining it with molding such as aqua float method, dynamic gravity control method or fusion method. High quality plate glass can be supplied with high productivity. In addition, since the cooling rate can be controlled more strictly, it is easy to design and adjust the coefficient of thermal expansion of the resulting product, and it is possible to realize a highly accurate curved surface, so-called used for TV CRT panels, vehicles, etc. It is also useful for the production of processed glass.
In addition, without using precious resources such as tin and hydrogen, it is not necessary to consume heat energy other than the heat of glass in a molten state, and it is possible to reduce capital investment with an open system that is simple and small-scale equipment. Can be implemented in a clean operation and environment that is virtually free of carbon dioxide and other exhaust gases, and can be easily and quickly switched between types, with little waste of substrate, and can handle a wide range of products from small to many types to mass production. It is useful as a manufacturing process for flat glass.

加圧浮上型徐冷装置の部分側面図である。It is a partial side view of a pressure floating type slow cooling apparatus. 両面加圧浮上型徐冷装置の部分側面図である。It is a partial side view of a double-sided pressure levitation type slow cooling device.

符号の説明Explanation of symbols

1:ガラスリボン
2:気体噴出・吸引支持基材
3:冷却ゾーン
4:支持基材空冷ユニット
5:除熱基板空冷ユニット
6:支持基材気体導入口
7:支持基材気体排出口
8:支持基材空冷空気導入口
9:支持基材空冷空気排出口
10:除熱基板空冷空気導入口
11:除熱基板空冷空気排出口
12:支持基材表面
13:ガラスリボンと支持基材の間の気体層
14:除熱基板表面
15:ガラスリボンと除熱基板の間の空気層
16:ガラスリボンの流れ
1: Glass ribbon 2: Gas ejection / suction support base material 3: Cooling zone 4: Support base material air cooling unit 5: Heat removal substrate air cooling unit 6: Support base material gas introduction port 7: Support base material gas discharge port 8: Support Base air cooling air inlet 9: Support base air cooling air outlet 10: Heat removal substrate air cooling air inlet 11: Heat removal substrate air cooling air outlet 12: Support base surface 13: Between the glass ribbon and the support base Gas layer 14: Heat removal substrate surface 15: Air layer 16 between glass ribbon and heat removal substrate 16: Flow of glass ribbon

Claims (10)

ガラス成形品の製造において、初期状態がガラス転移温度以上で、粘度が10ポイズ以上にある一定の形状に成形されたガラスを、該ガラスの少なくとも一方の面に対面する支持基材を設け、該支持基材に設けた均一に分布する一群の複数の小孔から気体をガラスと支持基材の間に噴出させ、別の一群の複数の小孔から該気体を排出し、支持基材に対して非接触状態で一定距離に保持して二次成形及び/又は冷却処理することを特徴とするガラス成形品の製造方法。 In the production of a glass molded article, a glass formed into a certain shape having an initial state of a glass transition temperature or higher and a viscosity of 10 6 poise or higher is provided with a support base material facing at least one surface of the glass, Gas is ejected between the glass and the supporting substrate from a group of a plurality of uniformly distributed holes provided in the supporting substrate, and the gas is discharged from another group of the plurality of small holes to the supporting substrate. On the other hand, a method for producing a glass molded article, characterized in that secondary molding and / or cooling treatment is performed while maintaining a certain distance in a non-contact state. 気体の噴出孔と排出孔を交互に隣接させ、該ガラスを支持基材に対して非接触に保持することを特徴とする請求項1記載のガラス成形品の製造方法。   The method for producing a glass molded article according to claim 1, wherein the gas ejection holes and the discharge holes are alternately adjacent to each other, and the glass is held in a non-contact manner with respect to the support substrate. 支持基材から噴出させる気体の流量が1m/時・m〜500m/時・mであり、ガラス面と気体噴出基材との距離がガラス成形品の最小幅の100分の1以下であって、支持基材に面しているガラス表面の90%以上が支持基材によって覆われていることを特徴とする請求項1又は2に記載のガラス成形品の製造方法。 The flow rate of the gas ejected from the support substrate is 1 m 3 / hour · m 2 to 500 m 3 / hour · m 2 , and the distance between the glass surface and the gas ejection substrate is 1 / 100th of the minimum width of the glass molded product. The method for producing a glass molded article according to claim 1, wherein 90% or more of the glass surface facing the support substrate is covered with the support substrate. 支持基材が、400°Cから700°Cの間での表面の放射率が0.5以上、熱伝導率が10W/mK以上の材質からなることを特徴とする請求項1〜3のいずれかに記載のガラス成形品の製造方法。   The support substrate is made of a material having a surface emissivity of 0.5 or more and a thermal conductivity of 10 W / mK or more between 400 ° C and 700 ° C. The manufacturing method of the glass molded product of crab. 排出される気体の少なくとも一部が減圧状態で系外に吸引されることを特徴とする請求項1〜4のいずれかに記載のガラス成形品の製造方法。   The method for producing a glass molded article according to any one of claims 1 to 4, wherein at least part of the discharged gas is sucked out of the system in a reduced pressure state. 支持基材に設けた気体噴出用又は排出用の小孔の平均直径が0.1mm〜5mmであることを特徴とする請求項1〜5のいずれかに記載のガラス成形品の製造方法。   The method for producing a glass molded article according to any one of claims 1 to 5, wherein an average diameter of the small holes for gas ejection or discharge provided in the support base is 0.1 mm to 5 mm. 所定の曲面を有し上下に対をなす支持基材を一対以上設け、板状ガラスリボンを曲面に加工する際又は予め該形状に加工したガラスを、該支持基材に対して非接触に保持することを特徴とする請求項1〜6のいずれかに記載のガラス成形品の製造方法。   A pair of support bases having a predetermined curved surface and a pair of upper and lower sides are provided, and when processing a glass sheet ribbon into a curved surface, or glass previously processed into the shape is held in non-contact with the support base material The manufacturing method of the glass molded product in any one of Claims 1-6 characterized by the above-mentioned. 板状のガラスリボンを支持基材に対して一定距離に浮上・保持させた状態を維持しつつ、該ガラスの周辺から延伸応力をかけて薄板化することを特徴とする請求項1〜7のいずれかに記載のガラス成形品の製造方法。   The sheet-like glass ribbon is thinned by applying a stretching stress from the periphery of the glass while maintaining a state where the plate-like glass ribbon is floated and held at a fixed distance from the supporting base material. The manufacturing method of the glass molded product in any one. ガラスリボンと支持基材の少なくとも一方が静止状態に無く、両者を互いの相対する面に沿って異なる速度又は異なる方向に相対的に移動させることを特徴とする請求項1〜8のいずれかに記載のガラス成形品の製造方法。   9. At least one of the glass ribbon and the supporting base material is not in a stationary state, and the two are moved relative to each other at different speeds or different directions along mutually opposing surfaces. The manufacturing method of the glass molded article of description. 板状ガラスの上面が除熱を制御する基材に対面していることを特徴とする請求項1〜9のいずれかに記載のガラス成形品の製造方法。
The method for producing a glass molded product according to any one of claims 1 to 9, wherein the upper surface of the sheet glass faces a base material that controls heat removal.
JP2006008153A 2006-01-17 2006-01-17 Manufacturing method of glass molded product Expired - Fee Related JP4811647B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006008153A JP4811647B2 (en) 2006-01-17 2006-01-17 Manufacturing method of glass molded product
PCT/JP2007/050052 WO2007083532A1 (en) 2006-01-17 2007-01-09 Process for producing formed glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006008153A JP4811647B2 (en) 2006-01-17 2006-01-17 Manufacturing method of glass molded product

Publications (2)

Publication Number Publication Date
JP2007191319A true JP2007191319A (en) 2007-08-02
JP4811647B2 JP4811647B2 (en) 2011-11-09

Family

ID=38287486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006008153A Expired - Fee Related JP4811647B2 (en) 2006-01-17 2006-01-17 Manufacturing method of glass molded product

Country Status (2)

Country Link
JP (1) JP4811647B2 (en)
WO (1) WO2007083532A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170925A (en) * 2008-01-19 2009-07-30 Schott Solar Gmbh Method of manufacturing glass plate for photovoltaic module which is coated with transparent metal oxide
WO2011066126A1 (en) * 2009-11-25 2011-06-03 Corning Incorporated Method for making creep resistant refractory metal structures
CN101815680B (en) * 2007-12-25 2012-11-28 日本电气硝子株式会社 Process and apparatus for producing glass plate
WO2013164964A1 (en) * 2012-05-02 2013-11-07 旭硝子株式会社 Sound wave levitation device, sound wave levitation method, plate glass manufacturing apparatus, and plate glass manufacturing method
JP2015061812A (en) * 2006-11-30 2015-04-02 コーニング インコーポレイテッド Formation of plate glass with improved shape stability
JP2016500634A (en) * 2012-10-23 2016-01-14 三星ダイヤモンド工業株式会社 Apparatus and method for supporting and securing glass plates
KR20160065170A (en) * 2013-10-09 2016-06-08 코닝 인코포레이티드 Apparatus and method for forming thin glass articles
WO2017020040A3 (en) * 2015-07-30 2017-03-09 Corning Incorporated Strengthened glass and related systems and methods
JP2017523114A (en) * 2014-07-31 2017-08-17 コーニング インコーポレイテッド Thermally tempered glass and method and apparatus for thermal tempering of glass
JP2018528918A (en) * 2015-07-30 2018-10-04 コーニング インコーポレイテッド Thermally reinforced architectural glass and related systems and methods
WO2019138787A1 (en) * 2018-01-09 2019-07-18 日本電気硝子株式会社 Glass substrate manufacturing method
US10611664B2 (en) 2014-07-31 2020-04-07 Corning Incorporated Thermally strengthened architectural glass and related systems and methods
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
JP2022050486A (en) * 2016-09-13 2022-03-30 コーニング インコーポレイテッド Device and method of glass substrate
US11485673B2 (en) 2017-08-24 2022-11-01 Corning Incorporated Glasses with improved tempering capabilities
US11643355B2 (en) 2016-01-12 2023-05-09 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US11697617B2 (en) 2019-08-06 2023-07-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same
US11708296B2 (en) 2017-11-30 2023-07-25 Corning Incorporated Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104797539B (en) * 2012-12-28 2017-07-07 旭硝子株式会社 The manufacture method of annealing device, slow cooling method, the manufacture device of glass plate and glass plate
CN115594393A (en) * 2022-10-17 2023-01-13 安徽省大诚智能玻璃有限公司(Cn) Quenching device for producing toughened glass

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09132420A (en) * 1995-11-10 1997-05-20 Nippon Sheet Glass Co Ltd Method for bending and forming sheet glass and apparatus therefor
JP2001048561A (en) * 1999-08-04 2001-02-20 Nippon Sheet Glass Co Ltd Tempered glass-producing apparatus
JP2003313039A (en) * 2002-04-23 2003-11-06 Central Glass Co Ltd Method and apparatus for detecting glass sheet conveyed in heating furnace
JP2005263602A (en) * 2004-03-22 2005-09-29 Central Glass Co Ltd Method for manufacturing float plate glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09132420A (en) * 1995-11-10 1997-05-20 Nippon Sheet Glass Co Ltd Method for bending and forming sheet glass and apparatus therefor
JP2001048561A (en) * 1999-08-04 2001-02-20 Nippon Sheet Glass Co Ltd Tempered glass-producing apparatus
JP2003313039A (en) * 2002-04-23 2003-11-06 Central Glass Co Ltd Method and apparatus for detecting glass sheet conveyed in heating furnace
JP2005263602A (en) * 2004-03-22 2005-09-29 Central Glass Co Ltd Method for manufacturing float plate glass

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061812A (en) * 2006-11-30 2015-04-02 コーニング インコーポレイテッド Formation of plate glass with improved shape stability
CN101815680B (en) * 2007-12-25 2012-11-28 日本电气硝子株式会社 Process and apparatus for producing glass plate
JP2009170925A (en) * 2008-01-19 2009-07-30 Schott Solar Gmbh Method of manufacturing glass plate for photovoltaic module which is coated with transparent metal oxide
WO2011066126A1 (en) * 2009-11-25 2011-06-03 Corning Incorporated Method for making creep resistant refractory metal structures
CN102712078A (en) * 2009-11-25 2012-10-03 康宁股份有限公司 Method for making creep resistant refractory metal structures
CN102712078B (en) * 2009-11-25 2015-05-20 康宁股份有限公司 Method for making creep resistant refractory metal structures
WO2013164964A1 (en) * 2012-05-02 2013-11-07 旭硝子株式会社 Sound wave levitation device, sound wave levitation method, plate glass manufacturing apparatus, and plate glass manufacturing method
JP2016500634A (en) * 2012-10-23 2016-01-14 三星ダイヤモンド工業株式会社 Apparatus and method for supporting and securing glass plates
US11680006B2 (en) 2013-10-09 2023-06-20 Corning Incorporated Apparatus and method for forming thin glass articles
KR20160065170A (en) * 2013-10-09 2016-06-08 코닝 인코포레이티드 Apparatus and method for forming thin glass articles
JP2016532620A (en) * 2013-10-09 2016-10-20 コーニング インコーポレイテッド Apparatus and method for forming thin glass products
KR102302717B1 (en) 2013-10-09 2021-09-16 코닝 인코포레이티드 Apparatus and method for forming thin glass articles
US11891324B2 (en) 2014-07-31 2024-02-06 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
US9783448B2 (en) 2014-07-31 2017-10-10 Corning Incorporated Thin dicing glass article
US9802853B2 (en) 2014-07-31 2017-10-31 Corning Incorporated Fictive temperature in damage-resistant glass having improved mechanical characteristics
US9975801B2 (en) 2014-07-31 2018-05-22 Corning Incorporated High strength glass having improved mechanical characteristics
US10005691B2 (en) 2014-07-31 2018-06-26 Corning Incorporated Damage resistant glass article
US9776905B2 (en) 2014-07-31 2017-10-03 Corning Incorporated Highly strengthened glass article
JP2017523114A (en) * 2014-07-31 2017-08-17 コーニング インコーポレイテッド Thermally tempered glass and method and apparatus for thermal tempering of glass
US10077204B2 (en) 2014-07-31 2018-09-18 Corning Incorporated Thin safety glass having improved mechanical characteristics
US10611664B2 (en) 2014-07-31 2020-04-07 Corning Incorporated Thermally strengthened architectural glass and related systems and methods
US10233111B2 (en) 2014-07-31 2019-03-19 Corning Incorporated Thermally tempered glass and methods and apparatuses for thermal tempering of glass
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
JP2018526314A (en) * 2015-07-30 2018-09-13 コーニング インコーポレイテッド Tempered glass and related systems and methods
JP2018528918A (en) * 2015-07-30 2018-10-04 コーニング インコーポレイテッド Thermally reinforced architectural glass and related systems and methods
WO2017020040A3 (en) * 2015-07-30 2017-03-09 Corning Incorporated Strengthened glass and related systems and methods
CN108431726A (en) * 2015-07-30 2018-08-21 康宁公司 Hot-reinforced glass and related system and method
US11643355B2 (en) 2016-01-12 2023-05-09 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
KR20220138016A (en) * 2016-09-13 2022-10-12 코닝 인코포레이티드 APPARATUS AND METHOD FOR Processing A GLASS SUBSTRATE
JP7331082B2 (en) 2016-09-13 2023-08-22 コーニング インコーポレイテッド Apparatus and method for processing glass substrate
KR102632509B1 (en) 2016-09-13 2024-02-02 코닝 인코포레이티드 APPARATUS AND METHOD FOR Processing A GLASS SUBSTRATE
JP2022050486A (en) * 2016-09-13 2022-03-30 コーニング インコーポレイテッド Device and method of glass substrate
US11485673B2 (en) 2017-08-24 2022-11-01 Corning Incorporated Glasses with improved tempering capabilities
US11708296B2 (en) 2017-11-30 2023-07-25 Corning Incorporated Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
WO2019138787A1 (en) * 2018-01-09 2019-07-18 日本電気硝子株式会社 Glass substrate manufacturing method
US11697617B2 (en) 2019-08-06 2023-07-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same

Also Published As

Publication number Publication date
JP4811647B2 (en) 2011-11-09
WO2007083532A1 (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP4811647B2 (en) Manufacturing method of glass molded product
TWI771321B (en) Apparatus and method for processing a glass substrate
JP3335291B2 (en) Method and apparatus for manufacturing glass plate
WO2018160452A1 (en) Glass article with reduced thickness variation, method for making and apparatus therefor
KR101791692B1 (en) Non-Contact Etching of Moving Glass Sheets
JP2009149463A (en) Method and equipment for manufacturing glass plate
US20090205373A1 (en) Roll forming manufacturing method and apparatus of plate glass and product thereof
KR102660244B1 (en) Systems and methods for processing thin glass ribbons
JP2014152046A (en) Glass plate molding device and glass plate molding method
JP2009107914A (en) Process for producing float plate glass
US20190202729A1 (en) Antibody-coated nanoparticle vaccines
JP5309858B2 (en) Method for producing thin glass plate by float method
WO2006064674A1 (en) Process for producing plate glass
JP7302401B2 (en) Sheet glass manufacturing apparatus and sheet glass manufacturing method
WO2023022052A1 (en) Glass article manufacturing method and manufacturing device
JP2019508356A (en) Method and apparatus for heat transfer by conduction rather than convection
JP2012167014A (en) Method and equipment for producing glass plate
JP2014051404A (en) Method for producing glass plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees