JP2007190942A - Driving force distributing device for vehicle - Google Patents

Driving force distributing device for vehicle Download PDF

Info

Publication number
JP2007190942A
JP2007190942A JP2006008403A JP2006008403A JP2007190942A JP 2007190942 A JP2007190942 A JP 2007190942A JP 2006008403 A JP2006008403 A JP 2006008403A JP 2006008403 A JP2006008403 A JP 2006008403A JP 2007190942 A JP2007190942 A JP 2007190942A
Authority
JP
Japan
Prior art keywords
driving force
force distribution
wheel
vehicle
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006008403A
Other languages
Japanese (ja)
Other versions
JP4961751B2 (en
Inventor
Takezo Yamaguchi
武蔵 山口
Hiroshi Iwano
岩野  浩
Susumu Komiyama
晋 小宮山
Ichiro Yamaguchi
一郎 山口
Seiji Shimodaira
誠司 下平
Hideaki Watanabe
英明 渡辺
Tetsuya Ikeda
哲也 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006008403A priority Critical patent/JP4961751B2/en
Publication of JP2007190942A publication Critical patent/JP2007190942A/en
Application granted granted Critical
Publication of JP4961751B2 publication Critical patent/JP4961751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a target vehicle behavior in a vehicle independently driving front wheels, a left rear wheel, and a right rear wheel. <P>SOLUTION: In a controller 8, desired values of vehicle fore and aft force and yaw moment of the vehicle are determined, basic values of driving force distribution of respective front wheels 1, 2, left rear wheel 3, and right rear wheel 4 are set, vehicle fore and aft force and yaw moment realized by the basic values of driving force distribution are calculated, and errors between the desired values of vehicle fore and aft driving force and yaw moment, and the vehicle fore and aft driving force and yaw moment realized by the basic values of driving force distribution are calculated. A correction amount of driving force distribution of each wheel reducing the errors is calculated, the desired values of driving force distribution of the respective front wheels 1, 2, left rear wheel 3, and right rear wheel 4 are respectively set as sums of the basic values of driving force distribution, and the correction amounts of driving force distribution. Each driving force of the front wheels 1, 2, the left rear wheel 3, and the right rear wheel 4 is independently controlled in accordance with the desired values of driving force distribution. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、前輪、左後輪、右後輪を独立に駆動する車両の駆動力配分制御に関する。   The present invention relates to driving force distribution control for a vehicle that independently drives a front wheel, a left rear wheel, and a right rear wheel.

4輪独立駆動車において、横風等の外乱や車重変化により運転者の操作等に応じて決定される目標ヨーモーメントと実際のヨーモーメントとの間に誤差がある場合、この誤差を小さくするように左右輪の駆動力差をつける技術が特許文献1に開示されている。   In a four-wheel independent drive vehicle, if there is an error between the target yaw moment and the actual yaw moment determined according to the driver's operation due to disturbances such as crosswinds or changes in vehicle weight, this error should be reduced. Japanese Patent Application Laid-Open No. H10-228688 discloses a technique for providing a difference in driving force between left and right wheels.

特許文献1記載の技術によれば、ヨーモーメントの目標値と実際の値との誤差を小さくすることができる。しかしながら、駆動力差を発生させた車輪のタイヤ横力の変化により、車両横方向力やヨーモーメントが変化してしまい、操縦安定性が低下する場合がある。   According to the technique described in Patent Document 1, the error between the target value of the yaw moment and the actual value can be reduced. However, the lateral force and yaw moment of the vehicle may change due to a change in the tire lateral force of the wheel that generates the driving force difference, which may reduce steering stability.

そこで、出願人は、4輪独立駆動車において、各輪の駆動力とタイヤ横力との非線形な関係を考慮しながら、車両前後方向加速度、車両横加速度、ヨー角加速度の目標値を実現する4輪の駆動力配分をフィードフォワードで求める手法を提案している。
特開平5−221300号公報
Therefore, the applicant realizes the target values of the vehicle longitudinal acceleration, the vehicle lateral acceleration, and the yaw angular acceleration in a four-wheel independent drive vehicle while taking into consideration the nonlinear relationship between the driving force of each wheel and the tire lateral force. We have proposed a method to determine the driving force distribution of four wheels by feedforward.
Japanese Patent Laid-Open No. 5-221300

上記手法では、予め運転者の操作量に応じて求めた静的な駆動力配分をベースとした車両挙動を求め、その車両挙動と目標車両挙動との誤差を小さくするよう駆動力配分を補正し、駆動力配分の目標値を求めている。   In the above method, the vehicle behavior based on the static driving force distribution obtained in advance according to the driver's operation amount is obtained, and the driving force distribution is corrected so as to reduce the error between the vehicle behavior and the target vehicle behavior. The target value of driving force distribution is obtained.

しかしながら、上記手法は4輪独立駆動車を対象としており、左前輪と右前輪が機械的に拘束されていて左前輪と右前輪とを独立に駆動することができない車両には適用することができない。   However, the above method is intended for a four-wheel independent drive vehicle and cannot be applied to a vehicle in which the left front wheel and the right front wheel are mechanically restrained and the left front wheel and the right front wheel cannot be driven independently. .

また、駆動力配分を補正する際には、駆動力配分の目標値と実際にアクチュエータで駆動力を発生する際に生じる駆動力誤差については考慮しておらず、目標とする車両挙動を実現する際の精度を向上する余地があった。   Further, when correcting the driving force distribution, the target value of the driving force distribution and the driving force error that occurs when the driving force is actually generated by the actuator are not considered, and the target vehicle behavior is realized. There was room to improve accuracy.

本発明は、上記の問題点に鑑みなされたもので、前輪、左後輪、右後輪を独立に駆動する車両において目標車両挙動を実現することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to realize a target vehicle behavior in a vehicle that independently drives a front wheel, a left rear wheel, and a right rear wheel.

本発明に係る4輪独立駆動車の駆動力配分装置は、運転状態に基づき車両の車両前後方向力、ヨーモーメントの目標値を決定し、これを概ね実現する前輪、左後輪、右後輪それぞれの駆動力配分の基本値を設定し、駆動力配分の基本値によって実現する車両前後方向力、ヨーモーメントを演算し、車両前後方向力、ヨーモーメントの目標値と駆動力配分の基本値によって実現する車両前後方向力、ヨーモーメントとの誤差を演算する。そして、この誤差を小さくする各輪の駆動力配分の補正量を演算し、前輪、左後輪、右後輪それぞれの駆動力配分の目標値をそれぞれ駆動力配分の基本値と駆動力配分の補正量との和に設定し、駆動力配分の目標値に従って前輪、左後輪、右後輪それぞれの駆動力を独立に制御する。   The driving force distribution device for a four-wheel independent drive vehicle according to the present invention determines a target value of the vehicle longitudinal force and yaw moment based on the driving state, and substantially realizes the front wheel, left rear wheel, and right rear wheel. Set the basic value of each driving force distribution, calculate the vehicle longitudinal force and yaw moment realized by the basic value of driving force distribution, and calculate the vehicle longitudinal force and yaw moment target value and the basic value of driving force distribution The error from the vehicle longitudinal force and yaw moment to be realized is calculated. Then, the correction amount of the driving force distribution of each wheel that reduces this error is calculated, and the target values of the driving force distribution of the front wheel, the left rear wheel, and the right rear wheel are respectively calculated as the basic value of the driving force distribution and the driving force distribution. It is set to the sum with the correction amount, and the driving force of each of the front wheel, the left rear wheel and the right rear wheel is independently controlled according to the target value of the driving force distribution.

本発明によれば、前輪、左後輪、右後輪を独立に駆動することができる車両において、フィードフォワードで精度良く目標とする車両挙動を実現することができ、車両の操縦性を向上することができる。   According to the present invention, in a vehicle capable of independently driving the front wheel, the left rear wheel, and the right rear wheel, the target vehicle behavior can be realized with high accuracy by feedforward, and the controllability of the vehicle is improved. be able to.

以下、添付図面を参照しながら本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

まず、本発明の理論的背景及び本発明の効果について説明する。そして、その後で、本発明を電動車両に適用した実施形態について説明する。   First, the theoretical background of the present invention and the effects of the present invention will be described. After that, an embodiment in which the present invention is applied to an electric vehicle will be described.

1.本発明の理論的背景
図1は、左前輪1及び右前輪2が機械的に拘束されており、かつ、前輪1、2、左後輪3、右後輪4をそれぞれ独立に駆動できる車両において、各輪の駆動力とタイヤ横力と舵角、そして車両に働く前後方向、横方向、重心周りのヨーモーメントを表した図である。
1. Theoretical background of the present invention FIG. 1 shows a vehicle in which the left front wheel 1 and the right front wheel 2 are mechanically constrained and the front wheels 1 and 2, the left rear wheel 3 and the right rear wheel 4 can be driven independently. FIG. 4 is a diagram illustrating a driving force, a tire lateral force, a rudder angle, and a yaw moment around a front and rear direction, a lateral direction, and a center of gravity acting on a vehicle.

δ1、δ2、δ3、δ4は各車輪1〜4それぞれの舵角(単位:rad)、Fx1、Fx2、Fx3、Fx4は各車輪1〜4の駆動力(単位:N)である。Fx1、Fx2にはデフを介して前輪駆動力Fxfが配分される。 δ 1, δ 2, δ 3 , δ 4 each wheel 1-4 respectively of the steering angle (unit: rad), Fx 1, Fx 2, Fx 3, Fx 4 in the driving force of each wheel 1-4 (unit: N). A front wheel driving force Fxf is distributed to Fx 1 and Fx 2 via a differential.

図2a、図2bは左右輪への駆動力配分特性の例を表す。図2aは、左右輪の回転速度差によらず常に左右均等に駆動力を配分するオープンデフである。図2bは、左右輪の回転速度差に応じて駆動力配分を変更する差動制限装置付きデフ、例えば、ビスカスデフであり、高回転側から低回転側へ駆動力が配分される。   2a and 2b show examples of driving force distribution characteristics to the left and right wheels. FIG. 2a is an open differential that always distributes the driving force equally to the left and right regardless of the difference in rotational speed between the left and right wheels. FIG. 2B shows a differential with a differential limiting device that changes the distribution of driving force in accordance with the difference between the rotational speeds of the left and right wheels, for example, a viscous differential, and the driving force is distributed from the high rotation side to the low rotation side.

前輪駆動力FxfとFx1、Fx2との関係は次のように表すことができる。 The relationship between the front wheel driving force Fxf and Fx 1 and Fx 2 can be expressed as follows.

ここで、eは前輪駆動力と左前輪に配分される駆動力の比を示し、デフの種類に応じて図2a、図2bに示す駆動力伝達特性を参照して求めることができる。   Here, e indicates the ratio of the driving force distributed to the front wheel driving force and the driving force distributed to the left front wheel, and can be obtained by referring to the driving force transmission characteristics shown in FIGS. 2a and 2b according to the type of the differential.

図1において、Fy1、Fy2、Fy3、Fy4は各車輪1〜4のタイヤ横力(単位:N)である。また、Fxはタイヤ力の総和の車両前後方向成分(単位:N)、Fyはタイヤ力の総和の車両横方向成分(単位:N)、Mは各輪のタイヤ力によって発生する車両重心周りのヨーモーメントの総和(単位:Nm)である。また、Lfは車両重心軸から前輪車軸までの距離(単位:m)、Lrは車両重心軸から後輪車軸までの距離(単位:m)、Ltは前後輪のトレッド長さ(単位:m)である。また、ホイールベースの長さLl(単位:m)はLfとLrの和である。 In FIG. 1, Fy 1 , Fy 2 , Fy 3 , Fy 4 are tire lateral forces (unit: N) of the wheels 1 to 4. Further, Fx is a vehicle longitudinal component of the sum of tire forces (unit: N), Fy is a vehicle lateral component of the sum of tire forces (unit: N), and M is a vehicle center of gravity generated by the tire force of each wheel. This is the total yaw moment (unit: Nm). Lf is the distance from the vehicle center of gravity axis to the front wheel axle (unit: m), Lr is the distance from the vehicle center of gravity axis to the rear wheel axle (unit: m), and Lt is the tread length of the front and rear wheels (unit: m). It is. The wheel base length Ll (unit: m) is the sum of Lf and Lr.

舵角δi(i=1〜4)およびMは車両を鉛直上方から見た場合に時計回りを正とし、δiは各車輪の回転方向が車両前後方向と一致している状態を0とする。また、Fxiはδiが全て0の時に車両を前方に加速させる方向を正とし、タイヤ横力Fyi(単位:N)はδiが全て0の時に車両を左方向に加速させる方向を正とする。 The steering angles δ i (i = 1 to 4) and M are positive when the vehicle is viewed from above, and δ i is 0 when the rotational direction of each wheel coincides with the longitudinal direction of the vehicle. To do. Fx i is positive in the direction of accelerating the vehicle forward when δ i is all 0, and the tire lateral force Fy i (unit: N) is the direction of accelerating the vehicle in the left direction when δ i is all 0. Positive.

ここで、まず各車輪で発生する駆動力とタイヤ横力の合力(タイヤ力)の車両前後方向成分Fxi’及び車両横方向成分Fyi’について考える。 Here, first, the vehicle longitudinal component Fx i ′ and the vehicle lateral component Fy i ′ of the resultant force (tire force) of the driving force and tire lateral force generated at each wheel will be considered.

図3のように各輪の舵角をδi(i=1〜4)だけ切った場合におけるFxi’とFyi’は式(3)、式(4)により表される。ただし、Fxi’は車両を前方に加速する方向を、Fyi’は車両を左方向に加速させる方向をそれぞれ正とする。 Fx i ′ and Fy i ′ when the steering angle of each wheel is turned by δ i (i = 1 to 4) as shown in FIG. 3 are expressed by equations (3) and (4). However, Fx i ′ is positive in the direction of accelerating the vehicle forward, and Fy i ′ is positive in the direction of accelerating the vehicle in the left direction.

従って、各車輪の駆動力がΔFxiだけ変化したときのタイヤ横力変化量をΔFyiとすると、各車輪の駆動力がΔFxiだけ変化したときのFxi’、Fyi’の変化量ΔFxi’、ΔFyi’は、式(5)、式(6)により表される。 Therefore, when the tire lateral force variation amount when the driving force of each wheel is changed by DerutaFx i and ΔFy i, Fx i ', Fy i' variation DerutaFx of when the driving force of each wheel is changed by DerutaFx i i ′ and ΔFy i ′ are expressed by Expression (5) and Expression (6).

ここで更に、駆動力とタイヤ横力の関係は図4に示す関係にある。図4は輪荷重と路面摩擦係数に変化が無いとした時の駆動力とタイヤ横力の関係を表した図で、駆動力を横軸に、タイヤ横力を縦軸にとっている。この図4の関係を利用して、各輪の現在の駆動力Fxiとタイヤ横力Fyiにおける、駆動力変化ΔFxiに対するタイヤ横力の感度をki(i=1〜4)とおく。即ち、kiは、図4に示すようにΔFxi及びΔFyiが微小の時の式(7)の値である。 Here, the relationship between the driving force and the tire lateral force is as shown in FIG. FIG. 4 is a diagram showing the relationship between the driving force and the tire lateral force when there is no change in the wheel load and the road surface friction coefficient. The driving force is on the horizontal axis and the tire lateral force is on the vertical axis. Using the relationship shown in FIG. 4, the sensitivity of the tire lateral force with respect to the driving force change ΔFx i in the current driving force Fx i and tire lateral force Fy i of each wheel is set to k i (i = 1 to 4). . That is, k i is the value of equation (7) when ΔFx i and ΔFy i are small as shown in FIG.

ΔFxi及びΔFyiが微小でこの式(7)の近似が十分成り立つとすると、ΔFyi=kiΔFxiとおけるので、各輪の駆動力Fxiが十分微小なΔFxiだけ変化した時のFxi’、Fyi’の変化量ΔFxi’、ΔFyi’は式(8)、式(9)により表される。 Assuming that ΔFx i and ΔFy i are very small and the approximation of Equation (7) is sufficient, ΔFy i = k i ΔFx i , so that when the driving force Fx i of each wheel changes by a sufficiently small ΔFx i The changes ΔFx i ′ and ΔFy i ′ of Fx i ′ and Fy i ′ are expressed by equations (8) and (9).

また、ΔFx1’、ΔFx2’、ΔFy1’、ΔFy2’は、式(1)、(2)を用いて次のように表せる。 ΔFx 1 ′, ΔFx 2 ′, ΔFy 1 ′, and ΔFy 2 ′ can be expressed as follows using equations (1) and (2).

ここで、図1の状態において、タイヤ力の総和の車両前後方向成分Fxと、各輪のタイヤ力によって発生する車両重心周りのヨーモーメントの総和Mは、式(14)、式(15)により表すことができる。ただし、Mは図1の通り車両を鉛直上方からみたときに反時計回りを正とする。   Here, in the state of FIG. 1, the vehicle longitudinal direction component Fx of the sum of tire forces and the sum M of yaw moments around the center of gravity of the vehicle generated by the tire force of each wheel are expressed by equations (14) and (15). Can be represented. However, M is positive in the counterclockwise direction when the vehicle is viewed from above as shown in FIG.

従って、各輪の制駆動力FxiがそれぞれΔFxiだけ変化したときのFx、Mの変化量ΔFx、ΔMは式(8)及び式(9)のpi、qiを用いて、式(16)、(17)により表される。 Therefore, when the braking / driving force Fx i of each wheel is changed by ΔFx i , Fx and M change amounts ΔFx and ΔM are expressed by the equations (8) and (9) using p i and q i , respectively. 16) and (17).

式(16)、(17)をまとめると式(18)により表すことができる。   The formulas (16) and (17) can be summarized by the formula (18).

ΔFxfを既知と仮定してΔFx3、ΔFx4について解くと、ΔFx3、ΔFx4は式(19)により表される。 When ΔFxf is assumed to be known and ΔFx 3 and ΔFx 4 are solved, ΔFx 3 and ΔFx 4 are expressed by Expression (19).

ただし、   However,

従って式(19)より、D1≠0の場合には、現在の動作点周りでFx、MをそれぞれΔFx、ΔMだけ変化させる各輪の駆動力変化量ΔFxiは、χを任意定数として式(23)により求めることができる。 Therefore, from equation (19), when D 1 ≠ 0, the driving force change amount ΔFx i for each wheel that changes Fx and M by ΔFx and ΔM around the current operating point can be expressed as (23).

同様にしてΔFx3、ΔFx4の何れか一つを既知と仮定して式(18)を解くと、D3≠0、D4≠0それぞれの場合に現在の動作点周りでFx、MをそれぞれΔFx、ΔMだけ変化させる各輪の駆動力変化量ΔFxiを求める式が得られる。例としてΔFx3を既知として式(18)を解くと、式(24)となる。 Similarly, when one of ΔFx 3 and ΔFx 4 is assumed to be known and Equation (18) is solved, Fx and M are calculated around the current operating point in the case of D 3 ≠ 0 and D 4 ≠ 0, respectively. each DerutaFx, formula for the driving force variation DerutaFx i of each wheel to be only a change ΔM is obtained. For example, when ΔFx 3 is known and equation (18) is solved, equation (24) is obtained.

次に、この式(23)や式(24)を用い、各輪の駆動力Fxiとタイヤ横力Fyiとの非線形な関係を考慮しながら、車両前後方向力、ヨーモーメントの目標値Fx**、M**を実現する駆動力配分Fxiをフィードフォワードで求める手法について図5を用いて説明する。 Then, using this equation (23) or equation (24), taking into account the non-linear relationship between the drive force Fx i and the tire lateral force Fy i of each wheel, the vehicle front-rear direction force, the target value Fx yaw moment **, will be described with reference to FIG method of obtaining the driving force distribution Fx i to realize M ** feedforward.

まず、運転者のアクセルペダルやステアリング等の操作(運転状態)からFx**、M**を生成する(図5の上2段の図の破線)。 First, Fx ** and M ** are generated from the driver's operation of the accelerator pedal and steering (driving state) (broken line in the upper two diagrams in FIG. 5).

次に、このFx**、M**を概ね実現する駆動力配分の基本値Fxi ##を演算する(図5の下3段の図の破線)。 Next, a basic value Fx i ## of the driving force distribution that substantially realizes Fx ** and M ** is calculated (broken line in the lower three stages of FIG. 5).

Fx**、M**を演算する方法として、例えば車両を線形近似したモデルに対しモデルフォロイング制御(「ビークル制御」第3章3.2節、著者:金井喜美雄、越智徳昌、川邊武俊、発行所:槇書店)等を適用して設定する。 As a method for calculating Fx ** and M ** , for example, model following control for a model in which a vehicle is linearly approximated ("Vehicle Control", Chapter 3, Section 3.2, Authors: Kimio Kanai, Tokumasa Ochi, Taketoshi Kawamata , Issuing office: bookstore) etc.

そして、Fxi ##で実現される車両前後方向力Fx##、車両横方向力Fy##、ヨーモーメントM##を、各輪の駆動力とタイヤ横力との非線形な関係を考慮した車両モデルを用いて求める(図5の上2段の図の実線)。 The vehicle longitudinal force Fx ## , vehicle lateral force Fy ## , and yaw moment M ## realized by Fx i ## are considered in consideration of the nonlinear relationship between the driving force of each wheel and the tire lateral force. Obtained using the vehicle model (solid line in the upper two figures in FIG. 5).

そしてFx**、M**とFx##、M##との誤差ΔFx、ΔMを補償する駆動力配分補正量ΔFxiを式(23)または式(24)を使って求める。最後に、Fxi **=Fxi ##+ΔFxi(図5の下3段の実線)としてFx**、M**を実現する駆動力配分Fxi **を求めることができる。これが本発明の骨子である。 Then Fx **, M ** and Fx # #, determined using equation (23) or formula (24) the error DerutaFx, driving force distribution correction amount DerutaFx i for compensating the ΔM between M # #. Finally, it is possible to obtain the driving force distribution Fx i ** that realizes Fx ** and M ** as Fx i ** = Fx i ## + ΔFx i (lower three solid lines in FIG. 5). This is the gist of the present invention.

2.本発明の効果
上記本発明の理論的背景及び効果の一例を踏まえ、本発明の効果について整理すると次の通りである。
2. Effects of the Present Invention Based on the theoretical background and examples of the effects of the present invention, the effects of the present invention are summarized as follows.

第1の発明(請求項1に記載の発明)によれば、各輪の駆動力配分の基本値Fxi ##を設定し、この基本値Fxi ##で実現するFx##、M##と、目標とするFx**、M**との誤差ΔFx、ΔMを小さくする各輪の駆動力配分の補正量ΔFxiを求め、駆動力配分指令値Fxi **をFxi **=Fxi ##+ΔFxiとする。これにより、フィードフォワードで精度良く目標値Fx**、M**を実現する各輪の駆動力配分指令値Fxi **を得ることができ、操縦性向上が期待できる。 According to the first invention (the invention described in claim 1), the basic value Fx i ## of the driving force distribution of each wheel is set, and Fx ## and M # realized by this basic value Fx i ##. The error ΔFx between the # and the target Fx ** and M ** , ΔFx i for the driving force distribution of each wheel that reduces ΔM, and the driving force distribution command value Fx i ** is calculated as Fx i **. = Fx i ## + ΔFx i As a result, it is possible to obtain the driving force distribution command value Fx i ** for each wheel that achieves the target values Fx ** and M ** with high accuracy by feedforward, and an improvement in maneuverability can be expected.

第2の発明(請求項2に記載の発明)によれば、Fxi ##+ΔFxiで実現する車両挙動Fx##、M##とFx**、M**との誤差を補償する処理を更に行う。これにより、より精度良く目標値Fx**、M**を実現する駆動力配分指令値Fxi **を得ることができ、操縦性向上が期待できる。 According to the second aspect (claim 2), the vehicle behavior Fx # # implemented in Fx i ## + ΔFx i, M ## and Fx **, processing for compensating an error between M ** Is further performed. As a result, it is possible to obtain the driving force distribution command value Fx i ** that realizes the target values Fx ** and M ** with higher accuracy, and an improvement in maneuverability can be expected.

第3の発明(請求項3に記載の発明)によれば、前輪に備えられた差動装置の駆動力伝達特性を考慮に入れ、駆動力配分を決定する。これにより、精度良く目標値Fx**、M**を実現する各輪の駆動力配分指令値Fxi **を得ることができ、操縦性向上が期待できる。 According to the third invention (invention described in claim 3), the driving force distribution is determined in consideration of the driving force transmission characteristics of the differential gear provided in the front wheel. As a result, it is possible to obtain the driving force distribution command value Fx i ** of each wheel that achieves the target values Fx ** and M ** with high accuracy, and an improvement in maneuverability can be expected.

第4の発明(請求項4に記載の発明)によれば、駆動力補正量を与えた際に発生する前輪、左後輪、右後輪の駆動力配分誤差に基づき、誤差を小さくするように各輪の駆動力配分補正量ΔFxf、ΔFx3、ΔFx4を演算する。これにより、より精度良く目標値Fx**、M**を実現することができ、更なる操縦性向上が期待できる。 According to the fourth invention (the invention described in claim 4), the error is reduced based on the driving force distribution error of the front wheel, the left rear wheel, and the right rear wheel generated when the driving force correction amount is given. Then, driving force distribution correction amounts ΔFxf, ΔFx 3 and ΔFx 4 for each wheel are calculated. Accordingly, the target values Fx ** and M ** can be realized with higher accuracy, and further maneuverability can be expected.

第5の発明(請求項5に記載の発明)によれば、駆動力補正量を与える際に、エンジンを駆動源とする両輪の駆動力の駆動力配分補正量ΔFxfの絶対値を小さくするように駆動力配分補正量ΔFxf、ΔFx3、ΔFx4を演算する。これにより、応答性の低いエンジンを駆動源とする両輪の補正量を小さくして応答性高く目標値Fx**、M**を実現することができ、更なる操縦性向上が期待できる。 According to the fifth invention (the invention described in claim 5), when the driving force correction amount is given, the absolute value of the driving force distribution correction amount ΔFxf of the driving force of both wheels using the engine as a driving source is made small. Then, driving force distribution correction amounts ΔFxf, ΔFx 3 and ΔFx 4 are calculated. As a result, it is possible to reduce the correction amount of both wheels using an engine with low responsiveness as a drive source to achieve the target values Fx ** and M ** with high responsiveness, and further improvement in maneuverability can be expected.

第6の発明(請求項6に記載の発明)によれば、駆動力変化に対する車両前後方向力、ヨーモーメントの感度を求め、この感度に基づいて駆動力配分の補正量ΔFxiを求める。これにより、現在の動作点周りにおいて、より簡便に駆動力配分の補正量ΔFxiを求めることができ、制御装置の演算負荷低減が期待できる。 According to the sixth invention (claim 6), the vehicle longitudinal direction force with respect to the driving force change, determine the sensitivity of the yaw moment, we obtain the correction amount DerutaFx i of the drive force distribution on the basis of this sensitivity. Thus, in around the current operating point, more easily can obtain the correction amount DerutaFx i of the driving force distribution, the calculation load reduction of the control device can be expected.

第7の発明(請求項7に記載の発明)によれば、各輪の駆動力変化に対するタイヤ横力の感度kiに基づいて駆動力配分の補正量ΔFxiを求める。これにより、現在の動作点周りにおいて、より正確且つ簡便に駆動力配分の補正量ΔFxiを求めることができ、更なる操縦性向上と、制御装置の演算負荷低減が期待できる。 According to the seventh invention (the invention described in claim 7), the correction amount ΔFx i of the driving force distribution is obtained based on the sensitivity k i of the tire lateral force with respect to the driving force change of each wheel. Thus, in around the current operating point, more accurately and easily can obtain the correction amount DerutaFx i of the driving force distribution, and further maneuverability improvement, arithmetic operation load reduction of the control device can be expected.

第8の発明(請求項8に記載の発明)によれば、各輪の舵角δiに基づき、駆動力配分の基本値Fxi ##によって実現する車両挙動Fx##、M##及び駆動力配分の補正量ΔFxiを求める。駆動力変化に対する車両前後方向力、ヨーモーメントの感度、及びタイヤ力の車両横方向成分は各輪の舵角によって変化するため、より正確にΔFxiを求めることができ、更なる操縦性向上が期待できる。 According to the eighth invention (the invention described in claim 8), based on the steering angle δ i of each wheel, vehicle behaviors Fx ## , M ## realized by the basic value Fx i ## of the driving force distribution A correction amount ΔFx i for driving force distribution is obtained. Vehicle longitudinal direction force to the driving force variation, the sensitivity of the yaw moment, and because the vehicle lateral component of the tire force which varies with the steering angle of each wheel, more precisely can be obtained DerutaFx i, is further maneuverability improvement I can expect.

第9の発明(請求項9に記載の発明)によれば、各輪の輪荷重Wiに基づいて、駆動力配分の基本値Fxi ##によって実現する車両挙動Fx##、M##及び駆動力配分の補正量ΔFxiを求める。駆動力変化に対する車両前後方向力、ヨーモーメントの感度、及び車両横方向の運動に主たる影響を及ぼすタイヤ横力は輪荷重によって変化するため、より正確にΔFxiを求めることができ、更なる操縦性向上が期待できる。 According to the ninth (claim 9), based on the wheel load W i of each wheel, the vehicle behavior Fx # # realized by the basic value Fx i # # of driving force distribution, M # # Then, a correction amount ΔFx i for driving force distribution is obtained. Vehicle longitudinal direction force to the driving force variation, the sensitivity of the yaw moment, and for major affect tire lateral force to the motion of the vehicle transverse direction is changed by the wheel load can be determined more accurately DerutaFx i, a further steering Can be expected.

第10の発明(請求項10に記載の発明)によれば、各輪の路面摩擦係数μiに基づいて、駆動力配分の基本値Fxi ##によって実現する車両挙動Fx##、M##及び駆動力配分の補正量ΔFxiを求める構成とした。駆動力変化に対する車両前後方向力、ヨーモーメントの感度、及び車両横方向の運動に主たる影響を及ぼすタイヤ横力は路面摩擦係数によって変化するため、より正確にΔFxiを求めることができ、更なる操縦性向上が期待できる。
3.本発明の実施形態
次に、本発明を電動車両に適用した場合について説明する。
According to the tenth invention (claim 10), based on the road surface friction coefficient mu i of each wheel, the vehicle behavior Fx # # realized by the basic value Fx i # # of driving force distribution, M # # and was configured to obtain the correction amount DerutaFx i of the drive force distribution. Vehicle longitudinal direction force to the driving force variation, the sensitivity of the yaw moment, and for major affect tire lateral force to the motion of the vehicle transverse direction is changed by the road surface friction coefficient can be determined more accurately DerutaFx i, comprising further Expected to improve maneuverability.
3. Embodiment of the Invention Next, a case where the present invention is applied to an electric vehicle will be described.

図6は、本発明を適用した電動車両の機械的構成の一例を示すブロック図である。車両は、前輪側に、駆動力源として、エンジン10と、バッテリ9から供給される電力により駆動されるモータ12とを備えており、変速機13、デファレンシャル14を介して駆動力が左前輪1、右前輪2に伝達される。また、エンジン10とモータ12の間にはクラッチ11を備え、エンジン停止時にはクラッチ11を解放しモータ12のみを駆動力源として走行することもできる。   FIG. 6 is a block diagram showing an example of a mechanical configuration of an electric vehicle to which the present invention is applied. The vehicle includes an engine 10 as a driving force source on the front wheel side and a motor 12 driven by electric power supplied from the battery 9. The driving force is transmitted to the left front wheel 1 via a transmission 13 and a differential 14. Is transmitted to the right front wheel 2. Further, a clutch 11 is provided between the engine 10 and the motor 12, and when the engine is stopped, the clutch 11 can be released and only the motor 12 can be used as a driving force source.

一方、後輪側においては、左後輪3にモータ15、右後輪4にモータ16がそれぞれ接続されており、モータ15、16はそれぞれ左後輪3、右後輪4を独立に駆動することができる。   On the other hand, on the rear wheel side, a motor 15 is connected to the left rear wheel 3, and a motor 16 is connected to the right rear wheel 4. The motors 15 and 16 drive the left rear wheel 3 and the right rear wheel 4 independently. be able to.

モータ12、15、16は三相同期電動機や三相誘導電動機等の力行運転及び回生運転ができる交流機であり、バッテリ9はニッケル水素電池或いはリチウムイオン電池である。インバータ17〜19はモータ12、15、16で発電された交流電流を直流電流に変換しバッテリ9に充電する、或いはバッテリ9が放電した直流電流を交流電流に変換しモータ12、15、16に供給する。各車輪の速度は車輪速センサ21〜24によって検出され、検出された各車輪の回転速度はコントローラ8に送信される。   The motors 12, 15 and 16 are AC machines capable of powering and regenerative operation such as a three-phase synchronous motor and a three-phase induction motor, and the battery 9 is a nickel hydrogen battery or a lithium ion battery. The inverters 17 to 19 convert the alternating current generated by the motors 12, 15, and 16 into direct current and charge the battery 9, or convert the direct current discharged from the battery 9 into alternating current and convert the alternating current into the motors 12, 15, and 16. Supply. The speed of each wheel is detected by the wheel speed sensors 21 to 24, and the detected rotation speed of each wheel is transmitted to the controller 8.

各車輪1〜4の回転半径はRで全て等しく、後輪に備えた各モータと各車輪間は減速比1、即ち直接連結されている。   The rotation radii of the wheels 1 to 4 are all equal to R, and each motor provided to the rear wheel and each wheel are connected at a reduction ratio of 1, that is, directly connected.

車両の横方向加速度は車両重心位置に取り付けられた加速度センサ100によって、車両のヨーレートはヨーレートセンサ101によってそれぞれ検出され、検出された車両の横方向加速度とヨーレートはコントローラ8に送信される。   The lateral acceleration of the vehicle is detected by the acceleration sensor 100 attached to the center of gravity of the vehicle, the yaw rate of the vehicle is detected by the yaw rate sensor 101, and the detected lateral acceleration and yaw rate of the vehicle are transmitted to the controller 8.

前輪1、2の舵角は、運転者によるステアリング5の操舵がステアリングギヤ20を介して機械的に調整される。なお、前輪1、2の舵角変化量はステアリング5の操舵角変化量に対して1/16になるように設定されている。各車輪1〜4の舵角は舵角センサ41〜44によって検出され、検出された各車輪の舵角はコントローラ8に送信される。   The steering angles of the front wheels 1 and 2 are mechanically adjusted via the steering gear 20 by the steering of the steering 5 by the driver. The steering angle change amount of the front wheels 1 and 2 is set to be 1/16 of the steering angle change amount of the steering 5. The steering angles of the wheels 1 to 4 are detected by the steering angle sensors 41 to 44, and the detected steering angles of the wheels are transmitted to the controller 8.

運転者によるステアリング5の回転角はステアリング角センサ25によって、アクセルペダル6とブレーキペダル7の踏込量はアクセルストロークセンサ26及びブレーキストロークセンサ27によってそれぞれ検出され、コントローラ8に送信される。   The rotation angle of the steering 5 by the driver is detected by the steering angle sensor 25, and the depression amounts of the accelerator pedal 6 and the brake pedal 7 are detected by the accelerator stroke sensor 26 and the brake stroke sensor 27, respectively, and transmitted to the controller 8.

コントローラ8はCPU、ROM、RAM、インターフェース回路及びインバータ回路等からなり、車輪速センサ21〜24、ステアリング角センサ25、アクセルストロークセンサ26、ブレーキストロークセンサ27、加速度センサ100、ヨーレートセンサ101等で検出した信号を受信し、これらの信号を基にアクチュエータ操作指令値を作成し、目標とする駆動力配分を実現するよう制御を行う。   The controller 8 includes a CPU, a ROM, a RAM, an interface circuit, an inverter circuit, and the like, and is detected by wheel speed sensors 21 to 24, a steering angle sensor 25, an accelerator stroke sensor 26, a brake stroke sensor 27, an acceleration sensor 100, a yaw rate sensor 101, and the like. Then, an actuator operation command value is created based on these signals, and control is performed so as to realize the target driving force distribution.

次にコントローラ8の制御内容について説明する。   Next, the control contents of the controller 8 will be described.

図7のフローチャートは、コントローラ8で実行するモータ1〜4へのトルク配分制御を示しており、第1の発明および第4〜第10の発明に対応する。   The flowchart of FIG. 7 shows torque distribution control to the motors 1 to 4 executed by the controller 8 and corresponds to the first invention and the fourth to tenth inventions.

これによると、まず、ステップS10では、車輪速センサ21〜24で各輪1〜4の回転速度ω1、ω2、ω3、ω4(単位:rad/s)をそれぞれ検出し、各輪の半径Rを乗じて各輪の速度V1、V2、V3、V4(単位:m/s)を得ると共に、車速V(単位:m/s)を式(25)により求める。   According to this, first, in step S10, the rotational speeds ω1, ω2, ω3, and ω4 (unit: rad / s) of the wheels 1 to 4 are detected by the wheel speed sensors 21 to 24, respectively, and the radius R of each wheel is determined. The speeds V1, V2, V3, and V4 (unit: m / s) of each wheel are obtained by multiplication, and the vehicle speed V (unit: m / s) is obtained by equation (25).

また、アクセルストロークセンサ26及びブレーキストロークセンサ27によってアクセルペダル6とブレーキペダル7の踏込量AP(単位:%)及びBP(単位:%)をそれぞれ検出し、ステアリング角センサ25によってステアリング5の回転角θ(単位:rad)を検出し、車両の前後方向加速度αx(単位:m/s2)と横方向加速度αy(単位:m/s2)を加速度センサ100で検出し、ヨーレートγ(単位:rad/s)をヨーレートセンサ101で検出し、各車輪1〜4の舵角δ1、δ2、δ3、δ4を舵角センサ41〜44で検出する。 Further, the accelerator stroke sensor 26 and the brake stroke sensor 27 detect the depression amounts AP (unit:%) and BP (unit:%) of the accelerator pedal 6 and the brake pedal 7 respectively, and the steering angle sensor 25 rotates the rotation angle of the steering wheel 5. θ (unit: rad) is detected, vehicle longitudinal acceleration α x (unit: m / s 2 ) and lateral acceleration α y (unit: m / s 2 ) are detected by acceleration sensor 100, and yaw rate γ ( (Unit: rad / s) is detected by the yaw rate sensor 101, and the steering angles δ 1 , δ 2 , δ 3 , and δ 4 of the wheels 1 to 4 are detected by the steering angle sensors 41 to 44.

V及びV1〜V4は車両前進方向を正とし、ステアリング5の回転角θは反時計回りを正とし、αxは車両が前方に加速する方向を正とし、αyは車両が左旋回時に車両重心位置から旋回中心に向かう方向を正とし、γは車両を鉛直上方からみたときに反時計回りを正とする。 V and V1 to V4 are positive in the forward direction of the vehicle, the rotation angle θ of the steering 5 is positive in the counterclockwise direction, α x is positive in the direction in which the vehicle accelerates forward, and α y is the vehicle when the vehicle is turning left. The direction from the center of gravity to the turning center is positive, and γ is positive in the counterclockwise direction when the vehicle is viewed from vertically above.

なお、舵角センサを持たない車両では、ステアリング5の回転角θから各輪の舵角を求めるようにする。例えば、本実施形態の構成の電動車両では、前輪1、2の舵角δ1、δ2をδ1=δ2=θ/16とし、後輪3、4の舵角δ3、δ4をδ3=δ4=0とする。このような場合には、コンプライアンスステアやロールステア等、サスペンションの影響を考慮して各輪の舵角を補正できるようにすると尚良い。 In a vehicle that does not have a steering angle sensor, the steering angle of each wheel is obtained from the rotation angle θ of the steering 5. For example, in the electric vehicle having the configuration of the present embodiment, the steering angles δ 1 and δ 2 of the front wheels 1 and 2 are set to δ 1 = δ 2 = θ / 16, and the steering angles δ 3 and δ 4 of the rear wheels 3 and 4 are set. Let δ 3 = δ 4 = 0. In such a case, it is preferable that the steering angle of each wheel can be corrected in consideration of the influence of the suspension such as compliance steer and roll steer.

ステップS20では、各輪1〜4の横すべり角β1、β2、β3、β4(単位:rad)を推定する。推定方法は、例えば、特開平10-329689号公報に記載された方法を用い、ステップS10〜S20で検出或いは推定した横方向加速度αy、ヨーレートγ、車速V、各輪舵角δiとステアリング5の回転角θから車体横すべり角βとβiを推定する。なお、βiの符号は、車輪の前後方向から車輪速度の方向までの角度が鉛直上方から見て反時計回りになっている場合を正とする。 In step S20, the sideslip angles β 1 , β 2 , β 3 , β 4 (unit: rad) of each wheel 1 to 4 are estimated. As the estimation method, for example, the method described in Japanese Patent Laid-Open No. 10-329689 is used, and the lateral acceleration α y , yaw rate γ, vehicle speed V, each wheel steering angle δ i detected and estimated in steps S10 to S20, and the steering angle The vehicle body side slip angles β and β i are estimated from the rotation angle θ of 5. The sign of β i is positive when the angle from the front-rear direction of the wheel to the direction of the wheel speed is counterclockwise when viewed from vertically above.

また、ステップS20においては各輪1〜4の輪荷重W1、W2、W3、W4(単位:N)を式(26)〜式(29)により求める。 In step S20, the wheel loads W 1 , W 2 , W 3 , W 4 (unit: N) of each of the wheels 1 to 4 are obtained by equations (26) to (29).

ただし、Lfは車両重心位置から前輪車軸までの距離(単位:m)、Lrはヨー回転方向の車両重心位置から後輪車軸までの距離(単位:m)、Ltは前後輪のトレッド長さ(単位:m)、Llはホイールベース長さ(単位:m)でLl=(Lf+Lt)、mは車両の質量(単位:kg)、gは重力加速度(単位:m/s2)である。 However, Lf is the distance (unit: m) from the center of gravity of the vehicle to the front wheel axle, Lr is the distance (unit: m) from the center of gravity of the vehicle to the rear wheel axle in the yaw rotation direction, and Lt is the tread length of the front and rear wheels (unit: m). Unit: m), Ll is the wheelbase length (unit: m), Ll = (Lf + Lt), m is the mass of the vehicle (unit: kg), and g is the acceleration of gravity (unit: m / s 2 ).

更に、ステップS20においては各輪1〜4の路面摩擦係数μ1、μ2、μ3、μ4(単位:なし)を推定する。推定方法は、例えば、前輪1、2においては例えば特開平11-78843号公報記載のように、タイヤと路面との間の摩擦係数の勾配である路面摩擦係数勾配を推定することができる技術や、特開平10-114263号公報記載のように、路面摩擦係数勾配と等価的に扱うことのできる物理量として、スリップ速度に対する制動トルクの勾配や駆動トルクの勾配に基づいて推定する技術を用いる。後輪3、4においては、特開平6-98418号公報に記載された方法を用い、各輪が路面から受ける反力を推定し、この路面反力とステップS40で求めた各輪の輪荷重Wiからμiからを推定する。 Further, in step S20, the road surface friction coefficients μ 1 , μ 2 , μ 3 , and μ 4 (unit: none) of each wheel 1 to 4 are estimated. The estimation method is, for example, a technique that can estimate a road surface friction coefficient gradient that is a gradient of a friction coefficient between a tire and a road surface, as described in, for example, Japanese Patent Application Laid-Open No. 11-78843. As described in Japanese Patent Application Laid-Open No. 10-114263, as a physical quantity that can be handled equivalently to a road surface friction coefficient gradient, a technique for estimating based on a braking torque gradient or a driving torque gradient with respect to a slip speed is used. For the rear wheels 3 and 4, the method described in JP-A-6-98418 is used to estimate the reaction force that each wheel receives from the road surface, and the road surface reaction force and the wheel load of each wheel obtained in step S40. Estimate from μ i from W i .

ステップS30では車両前後方向力の静的目標値Fx*を、アクセルペダル6の踏込量AP、ブレーキペダル7の踏込量BP及び車両速度V(運転状態)に基づいて式(30)により求める。 In step S30, the static target value Fx * of the vehicle longitudinal force is obtained from the expression (30) based on the depression amount AP of the accelerator pedal 6, the depression amount BP of the brake pedal 7, and the vehicle speed V (driving state).

式(30)中のFax *はアクセルペダル6の踏込量AP及び車速Vに基づいて目標駆動力マップを参照して得られる値であり、また、Fbx *はブレーキペダル7の踏込量BPに基づいて目標制動力マップを参照して得られる値である。 In Formula (30), Fa x * is a value obtained by referring to the target driving force map based on the depression amount AP of the accelerator pedal 6 and the vehicle speed V, and Fb x * is the depression amount BP of the brake pedal 7. Based on the target braking force map.

なお、目標駆動力マップ及び目標制動力マップは、例えば、それぞれ図8及び図9のように設定される。また、Fx*、Fax *、Fbx *何れも車両を前方に加速させる向きを正とする。 The target driving force map and the target braking force map are set as shown in FIGS. 8 and 9, for example. Further, Fx *, Fa x *, both Fb x * to the direction to accelerate the vehicle in front is positive.

ステップS40では、ステップS30で設定したFx*とステアリング5の回転角θと車両速度Vに基づいてヨーレートの静的目標値γ*を、目標ヨーレートマップを参照して設定する。 In step S40, the static target value γ * of the yaw rate is set with reference to the target yaw rate map based on Fx * set in step S30, the rotation angle θ of the steering wheel 5, and the vehicle speed V.

この目標ヨーレートマップは例えばそれぞれ図10のように設定されるマップであり、マップの設定方法は後述するステップS50にて説明する。   This target yaw rate map is a map set as shown in FIG. 10, for example, and a map setting method will be described in step S50 described later.

ステップS50では、駆動力配分の静的な目標値Fxf*、Fx3 *、Fx4 *を、θ、V、Fx*に基づいて静的駆動力配分マップを参照して設定する。静的駆動力配分マップは、例えば図11a、図11bのように設定され、目標値Fxf*は静的駆動力配分マップを参照して得られるFx1 *とFx2 *の和となる。 At step S50, a static target value of driving force distribution Fxf *, Fx 3 *, the Fx 4 *, θ, V, is set with reference to a static driving force distribution map based on Fx *. The static driving force distribution map is set as shown in FIGS. 11a and 11b, for example, and the target value Fxf * is the sum of Fx 1 * and Fx 2 * obtained by referring to the static driving force distribution map.

ここで、この静的駆動力配分マップと、ステップS40で用いた目標車両横方力マップ及び目標ヨーレートマップの求め方について説明する。   Here, how to obtain the static driving force distribution map and the target vehicle lateral force map and target yaw rate map used in step S40 will be described.

4輪の駆動力和Fxall(単位:N)、左右輪駆動力差ΔFxall(単位:N)、前輪駆動力配分η(単位:なし)、左右輪駆動力差の前輪配分Δη(単位:なし)を式(31)〜式(34)により定義する。なお、ここではη及びΔηは常に0.6(前輪への配分を6割)とする。 Four wheel driving force sum Fx all (unit: N), left and right wheel driving force difference ΔFx all (unit: N), front wheel driving force distribution η (unit: none), left and right wheel driving force difference front wheel distribution Δη (unit: N) None) is defined by equations (31) to (34). Here, η and Δη are always set to 0.6 (allocation to the front wheels is 60%).

ここで、Fx1、Fx2は、前輪に備わったデファレンシャルによる左右輪への駆動力配分特性(図2a、図2b)を考慮した式(1)、(2)から求まる値を用いればよい。 Here, Fx 1 and Fx 2 may be values obtained from the equations (1) and (2) in consideration of the driving force distribution characteristics (FIGS. 2a and 2b) to the left and right wheels by the differential provided in the front wheels.

そして、本車両が取り得るFxall、ΔFxall、ステアリング5の回転角θ、車両前後方向力の静的目標値Fx*の4つのパラメータの組合せ全てに対して次のようなシミュレーション或いは実験を行い、静的駆動力配分マップ、目標ヨーレートマップを作成する。 Then, the vehicle can be taken Fx all, ΔFx all, the rotation angle of the steering 5 theta, the following simulation or experiment for all combinations of static target value Fx * 4 one parameter of the front and rear vehicle direction force conducted A static driving force distribution map and a target yaw rate map are created.

まず、選択された、Fxall、ΔFxallから各輪の駆動力配分Fxiを式(35)〜式(38)により求め、選択されたθ’から前輪1、2の舵角をδ1=δ2=θ’/16(ステアリングギヤ比は1/16)とする。 First, the driving force distribution Fx i of each wheel is obtained from the selected Fx all and ΔFx all by the equations (35) to (38), and the steering angles of the front wheels 1 and 2 are calculated from the selected θ ′ by δ 1 = It is assumed that δ 2 = θ ′ / 16 (the steering gear ratio is 1/16).

次に、この設定された駆動力配分Fxiと前輪舵角δ1、δ2(後輪3、4の舵角δ3、δ4は0)で車両を走行させ、且つ−Fx*を車両重心位置において車両前後方向に加える。そして、十分時間が経過し車速V’が一定(定常状態)になった時のヨーレートγを求める。なお、この実験或いはシミュレーションを行う場合には空気抵抗や転がり抵抗等の走行抵抗要素を除外するようにして行うと共に、シミュレーション上で実施する場合には各輪の駆動力とタイヤ横力等の非線形性を十分考慮した車両モデルを用いて行う。 Next, the vehicle is driven with the set driving force distribution Fx i and the front wheel steering angles δ 1 and δ 2 (the steering angles δ 3 and δ 4 of the rear wheels 3 and 4 are 0), and −Fx * is set to the vehicle. It is added in the vehicle longitudinal direction at the position of the center of gravity. Then, the yaw rate γ is obtained when sufficient time has elapsed and the vehicle speed V ′ becomes constant (steady state). In this experiment or simulation, the running resistance elements such as air resistance and rolling resistance are excluded, and in the case of simulation, non-linearity such as driving force of each wheel and tire lateral force. This is done using a vehicle model that fully considers performance.

そして最後に、静的駆動力配分マップ、目標ヨーレートマップのV、θ、Fx*、γ*、Fxi *をそれぞれ今シミュレーションを行った時のV’、θ、Fx*、γ、Fxiとし、静的駆動力配分マップ、目標ヨーレートマップを設定していく。 And finally, static driving force distribution map, the target yaw rate map of V, θ, Fx *, γ *, V when the Fx i * were each carried out now simulation ', θ, Fx *, γ , and Fx i The static driving force distribution map and the target yaw rate map are set.

ステップS60では、車両前後方向力の動的目標値Fx**、ヨーレートの動的目標値γ**を得るため、各輪の駆動力配分で実現可能な範囲で運転者の操縦性が好適となるように静的な目標値Fx*、γ*に対してなまし処理を施す。本実施例ではFx*については2次遅れの伝達関数を用いて、γ*については1次遅れの伝達関数を用いてそれぞれなまし処理を施すことによってFx**、γ**を得る。なお、特にγ**の応答は各輪のタイヤ力によって実現可能なものになるようになます。 In step S60, in order to obtain the dynamic target value Fx ** of the vehicle longitudinal force and the dynamic target value γ ** of the yaw rate, the driver's maneuverability is suitable within a range that can be realized by the driving force distribution of each wheel. An annealing process is applied to the static target values Fx * and γ * so that In the present embodiment, Fx ** and γ ** are obtained by performing a smoothing process using a second-order lag transfer function for Fx * and a first-order lag transfer function for γ * , respectively. In particular, the response of γ ** can be realized by the tire force of each wheel.

そして更にステップS60においては、求められたγ**を微分し、車両のヨー慣性モーメントI(単位:kg・m2)を乗じることによってヨーモーメントの動的目標値M**を得る。 In step S60, the obtained γ ** is differentiated and multiplied by the yaw inertia moment I (unit: kg · m 2 ) of the vehicle to obtain the dynamic target value M ** of the yaw moment.

ステップS70では、ステップS50で設定した駆動力配分の静的な目標値Fxi *を基に、車両挙動の動的目標値Fx**、γ**を概ね実現する駆動力配分の基本値Fxf##、Fx3 ##、Fx4 ##を式(39)〜式(41)により求める。 In step S70, based on the static target value Fx i * of the driving force distribution set in step S50, the basic value Fxf of the driving force distribution that substantially realizes the dynamic target values Fx ** and γ ** of the vehicle behavior. ## , Fx 3 ## , and Fx 4 ## are obtained by Expressions (39) to (41).

ただし、ステップS50に示した通り、η=Δη=0.6で、Fxall ##はステップS60でFx*に対してなまし処理を施してFx**とした時と同じなまし処理をFxi *の和Fx1 *+Fx2 *+Fx3 *+Fx4 *に施した値である。 However, as shown in step S50, in the η = Δη = 0.6, the Fx all ## is the same as better treatment and when the Fx ** subjected to a smoothing process with respect to Fx * in step S60 Fx This is a value given to the sum of i * Fx 1 * + Fx 2 * + Fx 3 * + Fx 4 * .

また、ΔFxall ##は、車両を線形近似した線形2輪モデル(「自動車の運動と制御」第3章3.2.1節、(著)安部正人、(出版)山海堂)に左右輪駆動力差ΔFxall ##が加わった場合を考え、この線形2輪モデルのヨーレートの応答がγ**となるように設計したモデルフォロイング制御系(「ビークル制御」第3章3.2節、著者:金井喜美雄、越智徳昌、川邊武俊、発行所:槇書店)を用い、且つ定常状態で駆動力配分の静的な目標値Fxi *との間で偏差を生じないように補正した式(42)から求める。 ΔFx all ## is a linear two-wheel model that approximates the vehicle linearly ("Motor Movement and Control", Chapter 3 Section 3.2.1, (Author) Masato Abe, (Publishing) Sankaido). Considering the case where the driving force difference ΔFx all ## is added, the model following control system (Chapter 3, Section 3.2 of “Vehicle Control”) is designed so that the yaw rate response of this linear two-wheel model is γ **. , Authors: Kimio Kanai, Tokumasa Ochi, Taketoshi Kawabuchi, publisher: Kashiwa Shoten), and corrected so as not to cause a deviation from the static target value Fx i * of the driving force distribution in a steady state It is obtained from equation (42).

式(42)において、fr(s)はステップS60でγ*に対してなまし処理を施してγ**とした時のなまし処理の伝達関数であり、Kf、Kr(単位:N/rad)は前輪及び後輪の横滑り角が十分小さい時の単位横滑り角あたりのコーナーリングフォースである。 In equation (42), fr (s) is a transfer function of the smoothing process when the smoothing process is performed on γ * in step S60 to obtain γ **, and Kf, Kr (unit: N / rad). ) Is the cornering force per unit side slip angle when the side slip angle of the front and rear wheels is sufficiently small.

ステップS80では、駆動力配分の基本値Fxf##、Fx3 ##、Fx4 ##によって実現する車両前後方向力Fx##、ヨーモーメントM##を式(43)、式(44)により求める。 At step S80, driving force basic value Fxf # # distribution, Fx 3 ##, Fx 4 ## vehicle longitudinal direction force Fx # # realized by the yaw moment M # # Equation (43), the equation (44) Ask.

Fx1 ##、Fx2 ##はFxf##から式(1)、(2)により求めることができる。また、Fy1 ##、Fy2 ##、Fy3 ##、Fy4 ##は、現在の車両状態で、Fx1 ##、Fx2 ##、Fx3 ##、Fx4 ##が各輪に加わった時に発生するタイヤ横力で、各輪の現在の横すべり角βiに基づいて駆動力とタイヤ横力との関係を表すタイヤ特性マップ(A)から設定する。各輪ともこのタイヤ特性マップ(A)は共通であり、図12のように設定される。この時、第9の発明を適用する場合にはステップS20で求めた各輪の輪荷重Wiに、また、第10の発明を適用する場合には、同じくステップS20で求めた各輪の路面摩擦係数μiに基づいて、駆動力とタイヤ横力との関係を表すタイヤ特性マップ(B)からFyi ##を設定する。各輪ともこのタイヤ特性マップ(B)は共通であり、図13のように設定される。 Fx 1 ## and Fx 2 ## can be obtained from Fxf ## by equations (1) and (2). Further, Fy 1 ## , Fy 2 ## , Fy 3 ## , Fy 4 ## are current vehicle states, and Fx 1 ## , Fx 2 ## , Fx 3 ## , Fx 4 ## are each The tire lateral force generated when applied to the wheel is set from a tire characteristic map (A) representing the relationship between the driving force and the tire lateral force based on the current side slip angle β i of each wheel. The tire characteristic map (A) is common to all the wheels and is set as shown in FIG. At this time, when the ninth invention is applied, the wheel load W i of each wheel obtained in step S20, and when the tenth invention is applied, the road surface of each wheel similarly obtained in step S20. Based on the friction coefficient μ i , Fy i ## is set from the tire characteristic map (B) representing the relationship between the driving force and the tire lateral force. The tire characteristic map (B) is common to all the wheels and is set as shown in FIG.

更に、第8の発明を適用する場合には、式(43)、式(44)において、Fxi ##、Fyi ##を式(45)、式(46)により各輪の舵角分回転変換した値を用いてFx##、M##を推定する。 Further, when the eighth invention is applied, in Formulas (43) and (44), Fx i ## and Fy i ## are determined as the steering angle of each wheel by Formula (45) and Formula (46). Fx ## and M ## are estimated using the rotationally converted values.

ステップS90では、Fx**、M**とFx##、M##との誤差ΔFx、ΔMを式(47)、式(48)により求める。 In step S90, Fx **, M ** and Fx # #, error ΔFx with M # #, a ΔM formula (47), is obtained by equation (48).

ステップS100ではこの誤差ΔFx、ΔMを補正するΔFxf、ΔFx3、ΔFx4を、ΔFx、ΔMとβiから駆動力補正量マップを参照して求める。この駆動力補正量マップは各輪が取り得る駆動力と横すべり角毎に、例えば、図14a、図14bのように設定される。ΔFxfはマップを参照して得られるΔFx1とΔFx2の和として求めることができる。 In step S100 the error ΔFx, ΔFxf to correct the ΔM, ΔFx 3, the ΔFx 4, ΔFx, determined with reference to the driving force correction amount map .DELTA.M and beta i. This driving force correction amount map is set, for example, as shown in FIGS. 14a and 14b for each driving force and side slip angle that each wheel can take. ΔFxf can be obtained as the sum of ΔFx 1 and ΔFx 2 obtained by referring to the map.

この駆動力補正量マップは、本車両が取り得る各輪の駆動力と横すべり角全ての組合せを抽出し、夫々の組合せにおいて車両挙動の変化量ΔFx、ΔMと各輪の駆動力変化量ΔFxiとの関係を予め実験或いはシミュレーションで求めておいたものである。なお、シミュレーション上で求める場合には、設定された各輪の駆動力と横すべり角に基づいてステップS80で用いたタイヤ特性マップ(A)を参照して各輪のタイヤ横力を求め、式(47)、式(48)を用いて各輪の駆動力が変化する前後の車両挙動(車両前後方向力、ヨーモーメント)変化を求める。 This driving force correction amount map extracts all combinations of the driving force and the side slip angle of each wheel that can be taken by the vehicle, and the vehicle behavior change amounts ΔFx and ΔM and the driving force change amount ΔFx i of each wheel in each combination. The relationship is obtained by experiments or simulations in advance. In addition, when calculating | requiring on simulation, the tire lateral force of each wheel is calculated | required with reference to the tire characteristic map (A) used at step S80 based on the set driving force and side slip angle of each wheel, and Formula ( 47) and Formula (48) are used to determine the change in vehicle behavior (vehicle longitudinal force, yaw moment) before and after the driving force of each wheel changes.

従って、図14a、図14bのようなマップの形で持たせる場合には、図14a、図14bのようなマップを本車両が取り得る各輪の駆動力と横すべり角全ての組合せに対して持つ必要がある。   14a and 14b, the maps shown in FIGS. 14a and 14b are provided for all combinations of driving forces and side slip angles that can be taken by the vehicle. There is a need.

また、この時、第8の発明を適用する場合には各輪の舵角δiの取り得る組合せ全てに対しても、第9の発明を適用する場合には各輪の輪荷重Wiの取り得る組合せ全てに対しても、第10の発明を適用する場合には各輪の路面摩擦係数μiの取り得る組合せ全てに対しても、それぞれ車両挙動の変化量ΔFx、ΔMと各輪の駆動力変化量ΔFxiとの関係を予め実験或いはシミュレーションで求めておくと共にマップ化して持たせておく。 At this time, when the eighth invention is applied, all the possible combinations of the steering angles δ i of the respective wheels can be obtained. When the ninth invention is applied, the wheel load W i of each wheel can be reduced . even for all combinations which can be taken, in the case of applying the tenth invention also for all combinations of possible road surface friction coefficient mu i of each wheel, the change amount of the vehicle behavior respectively DerutaFx, .DELTA.M and each wheel The relationship with the driving force change amount ΔFx i is obtained in advance through experiments or simulations, and is provided as a map.

また、ステップS100において第6の発明を適用する場合には図15に示すフローチャートに従って、第7の発明を適用する場合には、図16に示すフローチャートに従ってΔFxiをそれぞれ求める。図15、図16に示すフローチャートによるΔFxiの求め方については後述する。 When applying the sixth invention in step S100, ΔFx i is obtained according to the flowchart shown in FIG. 15, and when applying the seventh invention, ΔFx i is obtained according to the flowchart shown in FIG. Figure 15 will be described later how to obtain the DerutaFx i according to the flowchart shown in FIG. 16.

ステップS110では、ΔFxiとFxi ##との和を各輪の駆動力配分の目標値Fxi **=Fxi ##+ΔFxiとする。 In step S110, the sum of ΔFx i and Fx i ## is set as a target value Fx i ** = Fx i ## + ΔFx i for the driving force distribution of each wheel.

ステップS120では、Fxi **を実現するようにエンジン10、モータ12、モータ15、モータ16の出力トルク、また、Gt[]は変速機13の変速比及びクラッチ11の締結/解放を制御する。 In step S120, the output torque of the engine 10, the motor 12, the motor 15, and the motor 16 so as to realize Fx i ** , and Gt [] controls the gear ratio of the transmission 13 and the engagement / release of the clutch 11. .

次に、図6の車両において、第2の発明に基づいて駆動力配分制御を行う方法について説明する。   Next, a method of performing the driving force distribution control based on the second invention in the vehicle of FIG. 6 will be described.

第2の発明に基づく場合、図7のフローチャートにおいてステップS80からステップS110までを図17のフローチャートに置き換えればよい。この図17のフローチャートについて説明する。   When based on the second invention, steps S80 to S110 in the flowchart of FIG. 7 may be replaced with the flowchart of FIG. The flowchart of FIG. 17 will be described.

ステップS200では、図7のフローチャートのステップS80と同じ処理を行い、Fxf##、Fx3 ##、Fx4 ##によって実現する、車両前後方向力Fx##、ヨーモーメントM##を推定する。 In step S200, performs the same processing as step S80 in the flowchart of FIG. 7, Fxf ##, Fx 3 ## , realized by Fx 4 # #, vehicle longitudinal direction force Fx # #, to estimate the yaw moment M # # .

ステップS210では、図7のフローチャートのステップS90と同じ処理を行い、車両前後方向力の動的目標値Fx**、ヨーレートの動的目標値γ**とFx##、M##との誤差ΔFx、ΔMを求める。 In step S210, the same processing as in step S90 of the flowchart of FIG. 7 is performed, and the error between the dynamic target value Fx ** of the vehicle longitudinal force and the dynamic target value γ ** of the yaw rate and Fx ## , M ##. ΔFx and ΔM are obtained.

ステップS220では、ΔFx、ΔMの絶対値が共に10[N]以下ならばステップS250に進み、各輪の駆動力配分の目標値Fxi **をFxi **=Fxi ##として図17のフローチャートを終了し、図7のステップS120に進む。そうでなければステップS230に進む。 In step S220, if the absolute values of ΔFx and ΔM are both 10 [N] or less, the process proceeds to step S250, and the target value Fx i ** of the driving force distribution of each wheel is set as Fx i ** = Fx i ## in FIG. Is finished, and the process proceeds to step S120 in FIG. Otherwise, the process proceeds to step S230.

ステップS230では、図7のフローチャートのステップS100と同じ処理を行い、ΔFx、ΔMを補正するΔFxf、ΔFx3、ΔFx4を求める。 At step S230, the performs the same process as step S100 of the flowchart of FIG. 7, ΔFx, ΔFxf to correct the ΔM, ΔFx 3, obtains the ΔFx 4.

ただし、ステップS230において、第6の発明を適用し図15に示すフローチャートに従ってΔFxiを求める場合、後述する図16のフローチャートのステップS710において求めたD1、D3、D4、が全て0となりステップS800においてΔFxf=ΔFx3=ΔFx4=0となった時には直ちに図17のフローチャートを抜けて図7のステップS120に進む。 However, in step S230, the case of obtaining the DerutaFx i in accordance with the flow chart shown in application to 15 the invention of a 6, D 1 obtained in step S710 in the flowchart of FIG. 16 to be described later, D 3, D 4, but all 0 When ΔFxf = ΔFx 3 = ΔFx 4 = 0 in step S800, the process immediately exits the flowchart of FIG. 17 and proceeds to step S120 of FIG.

なお、ステップS230においては、車両挙動の誤差ΔFx、ΔMに1より小さい係数η(0<η<1)を乗じた値ηΔFx、ηΔMを0とするようなΔFxiを求めるようにしても良い。 In step S230, ΔFx i may be obtained such that values ηΔFx and ηΔM obtained by multiplying the vehicle behavior errors ΔFx and ΔM by a coefficient η (0 <η <1) smaller than 1 are 0.

ステップS240では、駆動力配分の基本値Fxi ##を、Fxi ##←Fxi ##+ΔFxiとし、ステップS200に進む。 In step S240, the basic value Fx i ## of the driving force distribution is set to Fx i ## ← Fx i ## + ΔFx i, and the process proceeds to step S200.

次に、図7のフローチャートのステップS100において、第6の発明に基づいて車両挙動の誤差ΔFx、ΔMを補正するΔFxiを求める図15のフローチャートについて説明する。 Next, the flowchart of FIG. 15 for obtaining ΔFx i for correcting the errors ΔFx and ΔM of the vehicle behavior based on the sixth invention in step S100 of the flowchart of FIG. 7 will be described.

まず、ステップS500では、各輪の駆動力変化に対する車両前後方向力、ヨーモーメントそれぞれの感度Kix(単位:なし)、KiM(単位:rad・m))(例えば前輪の駆動力変化に対する車両前後方向力の感度はKfx、右後輪4の駆動力変化に対するヨーモーメントの感度はK4M)を、Fxi ##とβiから車両挙動感度マップを参照して求める。この車両挙動感度マップは例えば図18のように設定される(図18には前輪のマップのみを例として掲載する。)。 First, in step S500, the vehicle longitudinal force and yaw moment sensitivity K ix (unit: none), K iM (unit: rad · m)) (for example, the vehicle against the front wheel drive force change) The sensitivity of the longitudinal force is K fx , and the sensitivity of the yaw moment to the driving force change of the right rear wheel 4 is K 4M ), which is obtained from Fx i ## and β i with reference to the vehicle behavior sensitivity map. This vehicle behavior sensitivity map is set as shown in FIG. 18, for example (FIG. 18 shows only the front wheel map as an example).

この車両挙動感度マップは本車両が取り得る各輪の駆動力と横すべり角全ての組み合せを抽出し、夫々の組み合せにおいて、何れか1輪の駆動力を1[N]変化させたときの車両前後方向力、ヨーモーメントの変化量を求め、マップ化したものである。   This vehicle behavior sensitivity map extracts all combinations of driving force and side slip angle that can be taken by this vehicle, and before and after the vehicle when driving force of any one wheel is changed by 1 [N] in each combination. The amount of change in directional force and yaw moment is obtained and mapped.

ステップS510では、前輪、左後輪3、右後輪4の駆動力変化に対する車両前後方向力、ヨーモーメントそれぞれの感度をベクトルで表した[KixiM]が互いに1次独立である組み合わせを選ぶ。選び方は次のようにして行う。 In step S510, a combination in which [K ix K iM ] representing the sensitivity of each of the vehicle front-rear direction force and the yaw moment with respect to the driving force change of the front wheel, the left rear wheel 3 and the right rear wheel 4 is linearly independent from each other. Choose. How to choose is as follows.

まず、前輪以外の後輪3、4のベクトルを縦に並べた式(49)の行列Kfを考え、この行列Kfの行列式det|Kf|が0でないならば、車輪の組み合わせを後輪3、4とし、フラグflgに1を設定する。 First, consider the matrix K f of the equation (49) in which the vectors of the rear wheels 3 and 4 other than the front wheels are vertically arranged. If the determinant det | K f | The rear wheels 3 and 4 are set, and 1 is set in the flag flg.

もしdet|Kf|が0ならば、今度は前輪、右後輪4のベクトルを縦に並べた行列K3を式(49)と同様に考え、行列式det|K3|が0でないならば、車輪の組み合わせを前輪、右後輪4とし、フラグflgに3を設定する。det|K3|も0ならば、今度は前輪、左後輪3のベクトルを縦に並べた行列K4を式(49)と同様に考え、行列式det|K4|が0でないならば、車輪の組み合わせを前輪、左後輪3とし、フラグflgに4を設定する。det|K4|が0であり、det|Ki|が全て0の場合は、組み合わせ無しとしてフラグflgに0を設定する。 If det | K f | is 0, this time, a matrix K 3 in which the vectors of the front wheel and the right rear wheel 4 are arranged vertically is considered in the same manner as in equation (49), and if the determinant det | K 3 | For example, the wheel combination is the front wheel and the right rear wheel 4 and the flag flg is set to 3. If det | K 3 | is also 0, a matrix K 4 in which the vectors of the front wheel and the left rear wheel 3 are arranged vertically is considered in the same manner as in equation (49), and if the determinant det | K 4 | is not 0 The wheel combination is the front wheel and the left rear wheel 3, and the flag flg is set to 4. If det | K 4 | is 0 and det | K i | is all 0, the flag flg is set to 0 with no combination.

ステップS520ではフラグflgが0ならばステップS540に進み、ΔFxf=ΔFx3=ΔFx4=0とする。そうでなければステップS530に進む。 In step S520, if the flag flg is 0, the process proceeds to step S540, and ΔFxf = ΔFx 3 = ΔFx 4 = 0. Otherwise, the process proceeds to step S530.

ステップS530では、ステップS510で求めたフラグflgに応じた演算方法でΔFxiを求め、フローチャートを終了する。ΔFxiの求め方は、例えば、フラグflgが1の場合は式(50)によりΔFx3、ΔFx4を求める。即ち、ΔFx、ΔMにKfの逆行列を乗じることで求め、選択されなかった前輪の駆動力補正量ΔFxfを0とする。フラグflgが3、4の場合も同様の演算を行う。 In step S530, ΔFx i is obtained by the calculation method according to the flag flg obtained in step S510, and the flowchart ends. Determination of DerutaFx i, for example, when the flag flg is 1 ΔFx 3 by the equation (50) obtains the ΔFx 4. That, ΔFx, determined by multiplying the inverse matrix of K f in .DELTA.M, and 0 the driving force correction amount ΔFxf of the front wheels that are not selected. The same calculation is performed when the flag flg is 3 or 4.

次に、図7のフローチャートのステップS100において、第7の発明に基づいて車両挙動の誤差ΔFx、ΔMを補正するΔFxiを求める図16のフローチャートについて説明する。 Next, the flowchart of FIG. 16 for obtaining ΔFx i for correcting the errors ΔFx and ΔM of the vehicle behavior based on the seventh invention in step S100 of the flowchart of FIG. 7 will be described.

ステップS700では、各輪の駆動力変化に対するタイヤ横力の感度kiを求める。kiの求め方を左前輪1の場合を例にとって説明する。 In step S700, the tire lateral force sensitivity k i for the driving force change of each wheel is obtained. A method of obtaining k i will be described by taking the case of the left front wheel 1 as an example.

駆動力Fx1 ##+dFx1に対応するタイヤ横力Fy1 ##+dFy1をステップS80で用いた各輪の現在の横すべり角β1に基づいて駆動力とタイヤ横力との関係を表すタイヤ特性マップ(A)を参照して求め、図4のように式(51)に従ってk1を求める。 A tire representing the relationship between the driving force and the tire lateral force based on the current side slip angle β 1 of each wheel using the tire lateral force Fy 1 ## + dFy 1 corresponding to the driving force Fx 1 ## + dFx 1 in step S80. Referring to the characteristic map (A), k 1 is obtained according to equation (51) as shown in FIG.

なお、dFx1(単位:N、dFx1>0)は、本車両の左前輪1が取り得る輪荷重と比較して十分微小な値とし、ここでは10[N]とする(他の車輪のdFxiも同じ10[N]とする)。即ち、Fx1 ##が微小なdFx1だけ変化した時のFy1 ##の変化量dFy1を求める事によって、駆動力をFx1 ##とした時の駆動力変化に対するタイヤ横力の感度k1が式(51)によって求まる。 Note that dFx 1 (unit: N, dFx 1 > 0) is sufficiently small compared to the wheel load that can be taken by the left front wheel 1 of the vehicle, and is 10 [N] here (for other wheels). dFx i is also set to 10 [N]). That is, by obtaining the change amount dFy 1 of Fy 1 ## when Fx 1 ## is changed by a minute dFx 1 , the sensitivity of the tire lateral force to the change in the drive force when the drive force is Fx 1 ## k 1 is obtained by the equation (51).

車輪2〜4についても同様にしてk2〜k4を求める。 Similarly, k 2 to k 4 are obtained for the wheels 2 to 4.

またこの時、第9の発明を適用する場合には各輪の輪荷重Wiに、第10の発明を適用する場合には各輪の路面摩擦係数μiに基づいて、駆動力とタイヤ横力との関係を表すタイヤ特性マップ(B)を用いdFy1、k1を求める。 Further, at this time, when applying the ninth invention, based on the wheel load W i of each wheel, and when applying the tenth invention, based on the road surface friction coefficient μ i of each wheel, the driving force and the tire side DFy 1 and k 1 are obtained using a tire characteristic map (B) representing a relationship with force.

ステップS710では、このkiから各輪の舵角δiを0として、式(52)〜式(54)で表される、D1、D3、D4を求める。なお、第8の発明を適用する場合には、kiと各輪の舵角δiを用いて式(52)〜式(54)で表されるD1、D3、D4を求める。 In step S710, the steering angle δ i of each wheel is set to 0 from this k i , and D 1 , D 3 , and D 4 represented by the equations (52) to (54) are obtained. When the eighth invention is applied, D 1 , D 3 , and D 4 represented by Expression (52) to Expression (54) are obtained using k i and the steering angle δ i of each wheel.

ただし、   However,

ステップS720では、D1≠0であればステップS730に進み、舵角δiを0とした式(23)を用いてΔFx、ΔMを補償するΔFxf、ΔFx3、ΔFx4を求める。そうでなければステップS740に進む。 In step S720, if D 1 ≠ 0, the process proceeds to step S730, and ΔFxf, ΔFx 3 , and ΔFx 4 for compensating ΔFx and ΔM are obtained using equation (23) in which the steering angle δ i is 0. Otherwise, the process proceeds to step S740.

なお、第6の発明を適用する場合には式(56)において各輪の舵角δiを用いて求める。 When applying the sixth invention, the steering angle δ i of each wheel is obtained in the equation (56).

なお、式(56)の任意定数χは、ΔFxf、ΔFx3、ΔFx4の2乗和が最小となるように式(57)により設定される。 Note that the arbitrary constant χ in Expression (56) is set according to Expression (57) so that the square sum of ΔFxf, ΔFx 3 , and ΔFx 4 is minimized.

ステップS740では、D3≠0であればステップS750に進み、舵角δiを0とした式(58)を用いてΔFx、ΔMを補償するΔFxiを求める。そうでなければステップS760に進む。なお、式(58)中の任意定数χはステップS730と同様にΔFxf、ΔFx3、ΔFx4の2乗和が最小となるように式(59)により設定される。 In step S740, if D 3 ≠ 0, the process proceeds to step S750, and ΔFx i that compensates ΔFx and ΔM is obtained using equation (58) in which the steering angle δ i is zero. Otherwise, the process proceeds to step S760. Note that the arbitrary constant χ in equation (58) is set by equation (59) so that the sum of squares of ΔFxf, ΔFx 3 , and ΔFx 4 is minimized, as in step S730.

また、第6の発明を適用する場合には式(58)において各輪の舵角δiを用いて求める。 Further, when the sixth invention is applied, it is obtained using the steering angle δ i of each wheel in the equation (58).

ステップS760では、D4≠0であればステップS770に進み、式(19)をΔFx4を既知として解いた式から、ΔFx、ΔMを補償するΔFxiを求める。ただし、舵角δiは0とする。なお、式(23)及び式(24)中の任意定数χに対応する値はステップS730、S750同様ΔFxf、ΔFx3、ΔFx4の2乗和が最小となるように設定する。D4=0ならばステップS780に進み、ΔFxf=ΔFx3=ΔFx4=0とする。 In step S760, the process proceeds to step S770 if D 4 ≠ 0, equation (19) from solving the equation DerutaFx 4 as a known, obtaining the DerutaFx i for compensating DerutaFx, the .DELTA.M. However, the steering angle δ i is 0. Note that the value corresponding to the arbitrary constant χ in the equations (23) and (24) is set so that the sum of squares of ΔFxf, ΔFx 3 , and ΔFx 4 is minimized as in steps S730 and S750. If D 4 = 0, the process proceeds to step S780, where ΔFxf = ΔFx 3 = ΔFx 4 = 0.

また、第8の発明を適用する場合には、各輪の舵角δiを用いて求める。 Further, when the eighth invention is applied, the steering angle δ i of each wheel is used.

第4の発明を適用する場合には、ステップS720〜S770において各アクチュエータ(エンジン10、モータ12、15、16)の制御精度に伴い発生する駆動力配分誤差を小さくよう任意定数χを設定し、目標車両挙動を精度良く実現する。   When applying the fourth invention, in steps S720 to S770, an arbitrary constant χ is set so as to reduce the driving force distribution error generated with the control accuracy of each actuator (engine 10, motor 12, 15, 16). Realize the target vehicle behavior with high accuracy.

次に、駆動力配分誤差を小さくする任意定数χの設定する処理について図19を用いながら説明する。   Next, a process for setting an arbitrary constant χ for reducing the driving force distribution error will be described with reference to FIG.

ステップS400では、S70において求めた駆動力配分の基本値Fxf##、Fx3 ##、Fx4 ##を読み込む。ステップS410において任意定数χの初期値χ0を設定し、ステップS420では演算ループ回数iの初期値(=1)を設定する。 At step S400, the basic value of the driving force distribution determined in S70 Fxf ##, Fx 3 ##, reads the Fx 4 # #. In step S410, an initial value χ0 of an arbitrary constant χ is set, and in step S420, an initial value (= 1) of the operation loop count i is set.

ステップS430では、演算ループ回数iが設定した最大ループ回数m以下であるか否かを判定する。   In step S430, it is determined whether or not the operation loop count i is less than or equal to the set maximum loop count m.

最大ループ回数m以下である場合には、ステップS440において設定したχにおける駆動力補正量ΔFxf、ΔFx3、ΔFx4を演算する。ここで駆動力補正量ΔFxf、ΔFx3、ΔFx4の演算には式(23)及び式(24)を用いる。 If the maximum number of loops is less than m, the driving force correction amounts ΔFxf, ΔFx 3 and ΔFx 4 at χ set in step S440 are calculated. Here, the equations (23) and (24) are used to calculate the driving force correction amounts ΔFxf, ΔFx 3 , and ΔFx 4 .

ステップS450では、駆動力配分の基本値Fxf##、Fx3 ##、Fx4 ##と駆動力補正量を加算して目標駆動力配分Fxf**、Fx3 **、Fx4 **を求め、ステップS460において、目標駆動力配分Fxf**、Fx3 **、Fx4 **を実現する際に発生する駆動力配分誤差を求める。 In step S450, the driving force basic value Fxf # # distribution, Fx 3 ##, Fx 4 ## and the driving force correction amount summing to the target driving force distribution Fxf **, Fx 3 **, the Fx 4 ** determined, at step S460, the target driving force distribution Fxf **, Fx 3 **, determine the driving force distribution error produced in implementing Fx 4 **.

図6に示す車両において、各アクチュエータで発生するトルクと前輪、後輪で発生する駆動力の関係は、式(60)〜(62)のようになる。   In the vehicle shown in FIG. 6, the relationship between the torque generated by each actuator and the driving force generated by the front wheels and the rear wheels is expressed by equations (60) to (62).

ここで、Fxf〜[N]は前輪1、2で発生する駆動力、Fx3〜[N]、Fx4〜[N]は各々左後輪3、右後輪4で発生する駆動力を示す。Te[Nm]はエンジン10の出力トルク、Tmgf[Nm]はモータ12の出力トルク、Tmg3[Nm]はモータ15の出力トルク、Tmg4[Nm]はモータ16の出力トルクであり、また、Gt[]は変速機13の変速比、Gff[]はデファレンシャル14のギヤ比、Gfr[]は後輪に備えた各モータと各車輪間に備わった減速機のギヤ比(この実施形態では1)を示す。 Here, Fxf~ [N] represents the driving force generated by the front wheels 1,2, Fx 3 ~ [N] , Fx 4 ~ [N] are each the left rear wheel 3, a driving force generated by the right rear wheel 4 . T e [Nm] is the output torque of the engine 10, T mgf [Nm] is the output torque of the motor 12, T mg3 [Nm] is the output torque of the motor 15, and T mg4 [Nm] is the output torque of the motor 16, Gt [] is the gear ratio of the transmission 13, Gff [] is the gear ratio of the differential 14, and Gfr [] is the gear ratio of the reduction gear provided between each motor and each wheel provided on the rear wheel (this embodiment). Then, 1) is shown.

また、各アクチュエータのトルク制御精度から駆動力配分を実現した際に生じる配分誤差eFall[N]は式(63)のように表すことができる。 Further, the distribution error eF all [N] generated when the driving force distribution is realized from the torque control accuracy of each actuator can be expressed as shown in Expression (63).

ここで、eTe[Nm]はエンジン10のトルク制御誤差、eTmgf[Nm]、eTmg3[Nm]、eTmg4[Nm]はそれぞれモータ12、モータ15、モータ16のトルク制御誤差であり、発生トルクに応じて生じるアクチュエータのトルク制御誤差を予め実験等により求めた値を用いればよい。 Here, eT e [Nm] is the torque control error of the engine 10, eT mgf [Nm], eT mg3 [Nm], eT mg4 [Nm] are the torque control errors of the motor 12, the motor 15, and the motor 16, respectively. What is necessary is just to use the value which calculated | required beforehand the torque control error of the actuator which arises according to generated torque by experiment.

ステップS470では、駆動力配分誤差eFallの最小値を記憶し、ステップS480では任意定数χ、演算ループ回数iを更新し、ステップS430の判定を満足するまで演算を繰り返す。 In step S470, the minimum value of the driving force distribution error eF all is stored. In step S480, the arbitrary constant χ and the number of times of calculation loop i are updated, and the calculation is repeated until the determination in step S430 is satisfied.

最終的には、最小となる駆動力配分誤差eFallminを実現するχを用いて駆動力補正量ΔFxf、ΔFx3、ΔFx4を設定する。 Finally, the driving force correction amounts ΔFxf, ΔFx 3 , and ΔFx 4 are set using χ that realizes the minimum driving force distribution error eF allmin .

図20は任意定数χとFxf〜、Fx3〜、Fx4〜及び、eFallとの関係の一例を示す。式(23)、(24)からもわかるように任意定数χを変更すると、ΔFxf、ΔFx3、ΔFx4が変化する。図20の上段の図はχを変更した際の目標車両挙動を実現する駆動力配分Fxf〜、Fx3〜、Fx4〜を示す。下段の図は上段の図の駆動力配分を目標値とした際の駆動力配分誤差を示し、χ=χ0において誤差が最小となっている。このように駆動力配分誤差eFallを最小とする任意定数χを設定することにより、目標車両挙動を精度良く実現することができる。 Figure 20 shows Fxf~ arbitrary constant χ, Fx 3 ~, Fx 4 ~ and an example of the relationship between eF all. As can be seen from the equations (23) and (24), when the arbitrary constant χ is changed, ΔFxf, ΔFx 3 , and ΔFx 4 change. Upper part of FIG. 20 is the driving force distribution to realize the target vehicle behavior when changing the χ Fxf~, Fx 3 ~, Fx 4 shows a ~. The lower diagram shows the driving force distribution error when the driving force distribution in the upper diagram is set as a target value, and the error is minimum at χ = χ0. Thus, by setting the arbitrary constant χ that minimizes the driving force distribution error eF all , the target vehicle behavior can be realized with high accuracy.

また、第5の発明を適用する場合には、ステップS720〜S770において各アクチュエータ(エンジン10、モータ12、15、16)の応答精度に伴い発生する駆動力配分誤差が小さくよう任意定数χを設定し、目標車両挙動を精度良く実現する。   When applying the fifth aspect of the invention, an arbitrary constant χ is set in steps S720 to S770 so that the driving force distribution error generated with the response accuracy of each actuator (engine 10, motor 12, 15, 16) is reduced. And the target vehicle behavior is realized with high accuracy.

この場合、ステップS720、S740、S760において任意定数χは、評価関数JをΔFxeの2乗とおき、評価関数Jが最小となるように設定される。 In this case, the arbitrary constant χ in step S720, S740, S760, an evaluation function J 2 square of DerutaFx e Distant, is set as the evaluation function J is minimized.

任意定数χの求め方について説明すると、ステップS720では、式(56)を用いて評価関数Jを式(64)のように表し、評価関数Jを最小とするdJ/dχ=0を満たす任意定数χを式(65)により得る。   The method for obtaining the arbitrary constant χ will be described. In step S720, the evaluation function J is expressed as in Expression (64) using Expression (56), and the arbitrary constant satisfying dJ / dχ = 0 that minimizes the evaluation function J is satisfied. χ is obtained by equation (65).

この場合、式(56)においてE1=0より、χ=0となり、各輪の駆動力補正量は次式(66)のようになる。 In this case, since E 1 = 0 in Equation (56), χ = 0, and the driving force correction amount for each wheel is as shown in Equation (66) below.

ステップS740では、任意定数χを次式(67)により得る。   In step S740, an arbitrary constant χ is obtained by the following equation (67).

式(67)のχを式(58)に代入すると、各輪の駆動力補正量は式(68)のようになる。   By substituting χ in equation (67) into equation (58), the driving force correction amount for each wheel becomes equation (68).

ステップS760では、D4≠0であればステップS770に進み、式(68)をΔFx4を既知として解いた式から、ΔFx、ΔMを補償するΔFxiを求める。ただし舵角δiは0とする。なお、式(56)及び式(58)中の任意定数χに対応する値はステップS730、S750と同様にΔFxfの2乗が最小となるように設定する。D4=0ならばステップS780に進み、ΔFxf=ΔFx3=ΔFx4=0とする。 In step S760, the process proceeds to D4 ≠ 0 a long if step S770, equation (68) from solving the equation DerutaFx 4 as a known, obtaining the DerutaFx i for compensating DerutaFx, the .DELTA.M. However, the steering angle δ i is 0. It should be noted that the value corresponding to the arbitrary constant χ in the equations (56) and (58) is set so that the square of ΔFxf is minimized as in steps S730 and S750. If D 4 = 0, the process proceeds to step S780, where ΔFxf = ΔFx 3 = ΔFx 4 = 0.

さらに、応答性を向上させるために、ステップS80においては、以下に説明するように、駆動力配分の基本値によって実現する車両前後方向力Fx##、ヨーモーメントM##を求める際、エンジン10やトルクコンバータ11、変速機の応答遅れ要素を考慮するようにする。 Further, in order to improve the responsiveness, in step S80, as described below, when the vehicle longitudinal force Fx ## and the yaw moment M ## realized by the basic value of the driving force distribution are obtained, the engine 10 In addition, response delay elements of the torque converter 11 and the transmission are taken into consideration.

前輪駆動力推定値eFxfは式(69)のように表すことができる。eTeはエンジン10のトルク推定値であり、スロットル開度や点火時期、気筒数等から推定する。また、RTOtcvはトルクコンバータ11の入力トルクと出力トルクの比、Gtは変速機12の変速比、Gffはデファレンシャルギヤ13のギヤ比である。 The estimated front wheel driving force value eFxf can be expressed as shown in Equation (69). eTe is an estimated torque value of the engine 10 and is estimated from the throttle opening, ignition timing, the number of cylinders, and the like. RTO tcv is a ratio between the input torque and the output torque of the torque converter 11, Gt is a gear ratio of the transmission 12, and Gff is a gear ratio of the differential gear 13.

前輪駆動力推定値eFxfは、デファレンシャルギヤによって左右輪へ配分されるので、式(43)、(44)により車両前後方向力Fx##、ヨーモーメントM##を算出するにあたっては、式(43)、(44)中のFx1 ##、Fx2 ##をそれぞれ次のように置き換える。 Since the front wheel driving force estimated value eFxf is distributed to the left and right wheels by the differential gear, when calculating the vehicle longitudinal force Fx ## and yaw moment M ## using the equations (43) and (44), the equation (43 ) And (44), Fx 1 ## and Fx 2 ## are respectively replaced as follows.

さらに、後輪左右輪の駆動力推定値eFx3、eFx4はそれぞれ次のように表すことができる。eTmg3、eTmg4はそれぞれモータ15、モータ16のトルク推定値であり、各モータに備わったインバータ18、19から各モータへ供給した電流値から推定する。Gfrはモータとタイヤの間に備わった減速機の減速比である。なお、ここではモータ15、16の遅れを考慮していないが遅れを考慮し、さらに推定精度を高めるようにしても良い。 Further, the estimated driving force values eFx 3 and eFx 4 for the left and right rear wheels can be expressed as follows. eT mg3 and eT mg4 are estimated torque values of the motor 15 and the motor 16, respectively, and are estimated from current values supplied to the motors from the inverters 18 and 19 included in the motors. Gfr is a reduction ratio of a reduction gear provided between the motor and the tire. Although the delay of the motors 15 and 16 is not considered here, the delay may be considered and the estimation accuracy may be further increased.

そして、式(43)、(44)により車両前後方向力Fx##、ヨーモーメントM##を算出するにあたっては、式(43)、(44)中のFx3 ##、Fx4 ##をそれぞれ次のように置き換える。 Then, equation (43), the longitudinal direction of the vehicle forces Fx # # by (44), is when calculating the yaw moment M # #, equation (43), the Fx 3 ##, Fx 4 ## in (44) Replace with the following:

以上の置換えを行うことにより、車両前後方向力Fx##、ヨーモーメントM##を高い精度で求めることができる。 By performing the above replacement, the vehicle longitudinal force Fx ## and yaw moment M ## can be obtained with high accuracy.

以上、本発明の実施の形態について説明したが、本発明は図6に示す車両だけでなく、後輪を前輪とは違う角度で転舵できる車両や、ステアリング5の回転角θと独立して各輪の舵角δiを制御できる車両等、ステアバイワイヤを装備した車両にも適用可能である。また、左前輪、右前輪、及び後輪を独立に駆動することが可能な車両においても、デファレンシャルによる後輪の左右駆動力配分特性を考慮することで適用可能である。 As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the vehicle shown in FIG. 6, but a vehicle in which the rear wheels can be steered at an angle different from the front wheels, and the rotation angle θ of the steering 5. The present invention is also applicable to a vehicle equipped with steer-by-wire, such as a vehicle that can control the steering angle δ i of each wheel. Further, the present invention can be applied to a vehicle capable of independently driving the left front wheel, the right front wheel, and the rear wheel by taking into account the left / right driving force distribution characteristics of the rear wheel by the differential.

本発明の実施形態車両における各輪の駆動力、タイヤ横力、舵角等を示す図である。It is a figure which shows the driving force of each wheel, the tire lateral force, the steering angle, etc. in the vehicle of embodiment of this invention. オープンデフの駆動力伝達特性を示す図である。It is a figure which shows the driving force transmission characteristic of an open differential. ビスカスデフの駆動力伝達特性を示す図である。It is a figure which shows the driving force transmission characteristic of a viscous differential. 1輪における駆動力とタイヤ横力とその合力であるタイヤ力を示す図である。It is a figure which shows the tire force which is the driving force in one wheel, tire lateral force, and its resultant force. 制駆動力とタイヤ横力との関係を示す図である。It is a figure which shows the relationship between braking / driving force and tire lateral force. 車両挙動と駆動力配分の関係を示す図である。It is a figure which shows the relationship between a vehicle behavior and drive force distribution. 電動車両の構成を示す図である。It is a figure which shows the structure of an electric vehicle. 一実施の形態におけるトルク配分制御のフローチャートである。It is a flowchart of torque distribution control in one embodiment. アクセルペダルの踏み込み量と車速に応じた車両前後方向力の静的な目標値を示すマップである。It is a map which shows the static target value of the vehicle longitudinal direction force according to the depression amount of the accelerator pedal, and the vehicle speed. ブレーキペダルの踏み込み量に応じた車両前後方向力の静的な目標値を示すマップである。It is a map which shows the static target value of the vehicle longitudinal force according to the depression amount of a brake pedal. ステアリング回転角と車速と車両前後方向力に応じたヨーレートの静的な目標値を示すマップである。It is a map which shows the static target value of the yaw rate according to a steering rotation angle, a vehicle speed, and the vehicle front-back direction force. 各輪の駆動力配分の静的な目標値を示すマップである。It is a map which shows the static target value of the driving force distribution of each wheel. 同じく各輪の駆動力配分の静的な目標値を示すマップである。It is a map which similarly shows the static target value of the driving force distribution of each wheel. 横すべり角に対応して変化する駆動力とタイヤ横力との関係を示す図である。It is a figure which shows the relationship between the driving force which changes according to a side slip angle, and a tire lateral force. 横すべり角と輪荷重と路面摩擦係数に対応して変化する駆動力とタイヤ横力との関係を示す図である。It is a figure which shows the relationship between the driving force and tire lateral force which change according to a side slip angle, a wheel load, and a road surface friction coefficient. 車両挙動を変化させる各輪の駆動力変化量を記録したマップである。It is the map which recorded the driving force variation | change_quantity of each wheel which changes a vehicle behavior. 同じく車両挙動を変化させる各輪の駆動力変化量を記録したマップである。It is the map which recorded the driving force change amount of each wheel which similarly changes a vehicle behavior. 車両挙動の誤差を補正する各輪の駆動力補正量の求め方のフローチャートである。It is a flowchart of how to obtain a driving force correction amount for each wheel that corrects an error in vehicle behavior. 車両挙動の誤差を補正する各輪の駆動力補正量の求め方のフローチャートである。It is a flowchart of how to obtain a driving force correction amount for each wheel that corrects an error in vehicle behavior. 車両挙動の誤差を補正する各輪の駆動力補正量の求め方のフローチャートである。It is a flowchart of how to obtain a driving force correction amount for each wheel that corrects an error in vehicle behavior. 各輪の駆動力変化に対する車両挙動の感度のマップである。It is a map of the sensitivity of the vehicle behavior with respect to the driving force change of each wheel. 任意定数χの求め方のフローチャートである。It is a flowchart of how to obtain an arbitrary constant χ. 駆動力配分誤差を最小とする任意定数χを示す図である。It is a figure which shows the arbitrary constant (chi) which makes a driving force distribution error the minimum.

符号の説明Explanation of symbols

1〜4:車輪
5:ステアリング
6:アクセルペダル
7:ブレーキペダル
8:コントローラ
9:バッテリ
11〜14:モータ
15:ステアリングギヤ
21〜24:車輪速センサ
25:ステアリング角センサ
26:アクセルストロークセンサ
27:ブレーキストロークセンサ
31〜34:インバータ
41〜44:舵角センサ
100:加速度センサ
101:ヨーレートセンサ
1-4: Wheel 5: Steering 6: Accelerator pedal 7: Brake pedal 8: Controller 9: Battery 11-14: Motor 15: Steering gear 21-24: Wheel speed sensor 25: Steering angle sensor 26: Accelerator stroke sensor 27: Brake stroke sensors 31 to 34: inverters 41 to 44: rudder angle sensor 100: acceleration sensor 101: yaw rate sensor

Claims (10)

前輪、左後輪、右後輪を独立に駆動する車両の駆動力配分装置において、
前記車両の運転状態に基づき前記車両の車両前後方向力、ヨーモーメントの目標値を決定する目標車両挙動決定手段と、
前記車両前後方向力、ヨーモーメントの目標値を概ね実現する前輪、左後輪、右後輪それぞれの駆動力配分の基本値を設定する駆動力配分基本値設定手段と、
前記駆動力配分の基本値によって実現する車両前後方向力、ヨーモーメントを演算する車両挙動演算手段と、
前記車両前後方向力、ヨーモーメントの目標値と前記駆動力配分の基本値によって実現する車両前後方向力、ヨーモーメントとの誤差をそれぞれ演算する車両挙動誤差演算手段と、
前記誤差を小さくする各輪の駆動力配分の補正量を演算する駆動力配分補正量演算手段と、
前輪、左後輪、右後輪それぞれの駆動力配分の目標値をそれぞれ前記駆動力配分の基本値と前記駆動力配分の補正量との和に設定する目標駆動力配分決定手段と、
前記駆動力配分の目標値に従って前輪、左後輪、右後輪それぞれの駆動力を独立に制御する駆動力制御手段と、
を備えたことを特徴とする駆動力配分装置。
In a driving force distribution device for a vehicle that independently drives a front wheel, a left rear wheel, and a right rear wheel,
Target vehicle behavior determining means for determining a target value of the vehicle longitudinal force and yaw moment of the vehicle based on the driving state of the vehicle;
Driving force distribution basic value setting means for setting a basic value of driving force distribution for each of the front wheel, the left rear wheel, and the right rear wheel that substantially achieves the target value of the vehicle longitudinal force and yaw moment;
Vehicle behavior calculating means for calculating vehicle longitudinal force and yaw moment realized by the basic value of the driving force distribution;
Vehicle behavior error calculating means for calculating an error between the vehicle longitudinal force and yaw moment realized by the vehicle longitudinal force and yaw moment target value and the basic value of the driving force distribution;
Driving force distribution correction amount calculating means for calculating a correction amount of the driving force distribution of each wheel that reduces the error;
Target driving force distribution determining means for setting a target value of driving force distribution for each of the front wheel, the left rear wheel and the right rear wheel to the sum of the basic value of the driving force distribution and the correction amount of the driving force distribution;
Driving force control means for independently controlling the driving force of each of the front wheel, the left rear wheel, and the right rear wheel according to the target value of the driving force distribution;
A driving force distribution device comprising:
前記駆動力配分の基本値と前記駆動力配分の補正量との和によって実現する車両前後方向力、ヨーモーメントを前記車両挙動演算手段によって求める手段と、
前記車両前後方向力、ヨーモーメントの目標値と、前記前記駆動力配分の基本値と前記駆動力配分の補正量との和によって実現する値との誤差を第2の誤差として前記車両挙動誤差演算手段によって求める手段と、
前記第2の誤差を小さくする各輪の駆動力配分の補正量を駆動力配分の第2の補正量として前記駆動力配分補正量演算手段によって求める手段と、
前記駆動力配分の基本値と前記駆動力配分の補正量の和に前記第2の補正量を加えた値を前記駆動力配分の目標値に設定する車両挙動誤差補償手段と、
を備えたことを特徴とする請求項1に記載の駆動力配分装置。
Means for determining the vehicle longitudinal force, yaw moment by the vehicle behavior calculating means realized by the sum of the basic value of the driving force distribution and the correction amount of the driving force distribution;
The vehicle behavior error calculation is performed by using, as a second error, an error between the target value of the vehicle longitudinal force and yaw moment and the value realized by the sum of the basic value of the driving force distribution and the correction amount of the driving force distribution. Means determined by means;
Means for determining, by the driving force distribution correction amount calculating means, a driving force distribution correction amount for each wheel that reduces the second error as a second driving force distribution correction amount;
Vehicle behavior error compensation means for setting a value obtained by adding the second correction amount to the sum of the basic value of the driving force distribution and the correction amount of the driving force distribution as a target value of the driving force distribution;
The driving force distribution device according to claim 1, further comprising:
左前輪、右前輪の回転速度差に応じた左右前輪への駆動力配分特性を求める前輪左右駆動力配分特性演算手段を備えることを特徴とする請求項1または2に記載の駆動力配分装置。   3. The driving force distribution device according to claim 1, further comprising a front wheel left / right driving force distribution characteristic calculating means for obtaining a driving force distribution characteristic to the left and right front wheels in accordance with a difference in rotational speed between the left front wheel and the right front wheel. 前記駆動力配分補正量演算手段は、前記駆動力配分の目標値を与えた際の前輪、左後輪、右後輪において生じる駆動力配分誤差を演算する駆動力配分誤差演算手段を有し、前記駆動力配分誤差を小さくするように各輪の駆動力配分の補正量を演算することを特徴とする請求項1から3のいずれか一つに記載の駆動力配分装置。   The driving force distribution correction amount calculating means includes driving force distribution error calculating means for calculating a driving force distribution error that occurs in the front wheel, the left rear wheel, and the right rear wheel when the target value of the driving force distribution is given. The driving force distribution device according to any one of claims 1 to 3, wherein a correction amount of the driving force distribution of each wheel is calculated so as to reduce the driving force distribution error. 前記車両は前もしくは後輪の両輪の駆動源としてエンジンを、他方の両輪の駆動源として各々独立して駆動可能なモータとを備え、
前記駆動力配分補正量演算手段は、前記エンジンを駆動源とする両輪の駆動力配分の補正量の絶対値を小さくするように各輪の駆動力配分の補正量を演算することを特徴とする請求項1から3のいずれか一つに記載の駆動力配分装置。
The vehicle includes an engine as a drive source for both front and rear wheels, and a motor that can be independently driven as a drive source for the other wheels,
The driving force distribution correction amount calculating means calculates a driving force distribution correction amount for each wheel so as to reduce an absolute value of a driving force distribution correction amount for both wheels using the engine as a driving source. The driving force distribution device according to any one of claims 1 to 3.
前記駆動力配分補正量演算手段は、各輪の駆動力変化に対する車両前後方向力、ヨーモーメントの感度を演算する車両挙動変化感度演算手段を備え、前記車両挙動変化感度演算手段によって求められた感度に基づいて前記駆動力配分の補正量を求めることを特徴とする請求項1から5のいずれか一つに記載の駆動力配分装置。   The driving force distribution correction amount calculating means includes vehicle behavior change sensitivity calculating means for calculating the sensitivity of the vehicle longitudinal force and yaw moment with respect to the driving force change of each wheel, and the sensitivity obtained by the vehicle behavior change sensitivity calculating means. The driving force distribution device according to claim 1, wherein a correction amount of the driving force distribution is obtained based on the equation (1). 前記駆動力配分補正量演算手段は、左前輪、右前輪、左後輪、右後輪それぞれの駆動力変化に対するタイヤ横力の感度を推定するタイヤ横力感度推定手段を備え、前記推定されたタイヤ横力感度に基づいて前記駆動力配分の補正量を求めることを特徴とする請求項1から6のいずれか一つに記載の駆動力配分装置。   The driving force distribution correction amount calculating means includes tire lateral force sensitivity estimating means for estimating the sensitivity of the tire lateral force with respect to the driving force change of each of the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel. The driving force distribution device according to any one of claims 1 to 6, wherein a correction amount of the driving force distribution is obtained based on tire lateral force sensitivity. 左前輪、右前輪、左後輪、右後輪それぞれの舵角を検出する舵角検出手段を備え、
前記車両挙動演算手段は、前記検出した舵角に基づいて前記駆動力配分の基本値によって実現する車両前後方向力、ヨーモーメントを求め、
前記駆動力配分補正量演算手段は、前記検出した舵角に基づいて前記駆動力配分の補正量を求めることを特徴とする請求項1から7のいずれか一つに記載の駆動力配分装置。
Provided with steering angle detection means for detecting the steering angle of each of the left front wheel, right front wheel, left rear wheel, and right rear wheel,
The vehicle behavior calculation means obtains a vehicle longitudinal force, a yaw moment realized by a basic value of the driving force distribution based on the detected steering angle,
The driving force distribution apparatus according to any one of claims 1 to 7, wherein the driving force distribution correction amount calculation unit calculates a correction amount of the driving force distribution based on the detected steering angle.
左前輪、右前輪、左後輪、右後輪それぞれの輪荷重を推定或いは検出する輪荷重判断手段を備え、
前記車両挙動演算手段は、前記推定或いは検出した軸荷重に基づいて前記駆動力配分の基本値によって実現する車両前後方向力、ヨーモーメントを求め、
前記駆動力配分補正量演算手段は、前記推定或いは検出した軸荷重に基づいて前記駆動力配分の補正量を求めることを特徴とする請求項1から8のいずれか一つに記載の駆動力配分装置。
Wheel load judging means for estimating or detecting the wheel load of each of the left front wheel, right front wheel, left rear wheel and right rear wheel,
The vehicle behavior calculation means obtains a vehicle longitudinal force and a yaw moment realized by a basic value of the driving force distribution based on the estimated or detected axial load,
The driving force distribution according to any one of claims 1 to 8, wherein the driving force distribution correction amount calculation means calculates a correction amount of the driving force distribution based on the estimated or detected axial load. apparatus.
左前輪、右前輪、左後輪、右後輪それぞれの路面摩擦係数を推定する路面摩擦係数推定手段を備え、
前記車両挙動演算手段は、前記推定した路面摩擦係数に基づいて前記駆動力配分の基本値によって実現する車両前後方向力、ヨーモーメントを求め、
前記駆動力配分補正量演算手段は、前記推定した路面摩擦係数に基づいて前記駆動力配分の補正量を求めることを特徴とする請求項1から9のいずれか一つに記載の駆動力配分装置。
Road surface friction coefficient estimating means for estimating the road surface friction coefficient of each of the left front wheel, right front wheel, left rear wheel and right rear wheel,
The vehicle behavior calculating means obtains a vehicle longitudinal force and a yaw moment realized by a basic value of the driving force distribution based on the estimated road friction coefficient,
The driving force distribution apparatus according to any one of claims 1 to 9, wherein the driving force distribution correction amount calculation means calculates a correction amount of the driving force distribution based on the estimated road friction coefficient. .
JP2006008403A 2006-01-17 2006-01-17 Vehicle driving force distribution device Active JP4961751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006008403A JP4961751B2 (en) 2006-01-17 2006-01-17 Vehicle driving force distribution device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006008403A JP4961751B2 (en) 2006-01-17 2006-01-17 Vehicle driving force distribution device

Publications (2)

Publication Number Publication Date
JP2007190942A true JP2007190942A (en) 2007-08-02
JP4961751B2 JP4961751B2 (en) 2012-06-27

Family

ID=38446981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006008403A Active JP4961751B2 (en) 2006-01-17 2006-01-17 Vehicle driving force distribution device

Country Status (1)

Country Link
JP (1) JP4961751B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060928A1 (en) * 2007-11-09 2009-05-14 Toyota Jidosha Kabushiki Kaisha Driving force controller
JP2011130628A (en) * 2009-12-21 2011-06-30 Mitsubishi Motors Corp Controller for right-left drive force adjusting device for vehicle
KR20140085800A (en) * 2012-12-27 2014-07-08 현대자동차주식회사 Total control system for vehicle and method thereof
CN104787039A (en) * 2015-04-13 2015-07-22 电子科技大学 Car body stable control method of four-wheel independent drive electric car

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4304028A4 (en) 2021-03-02 2024-05-08 Shinmaywa Ind Ltd Heat-shrinkable tube heating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10181553A (en) * 1996-12-26 1998-07-07 Mazda Motor Corp Attitude control device for vehicle
JP2002036917A (en) * 2000-07-28 2002-02-06 Nissan Motor Co Ltd Adjustable speed control device for vehicle equipped with stepless transmission
JP2002211380A (en) * 2001-01-17 2002-07-31 Unisia Jecs Corp Vehicle attitude stabilizing controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10181553A (en) * 1996-12-26 1998-07-07 Mazda Motor Corp Attitude control device for vehicle
JP2002036917A (en) * 2000-07-28 2002-02-06 Nissan Motor Co Ltd Adjustable speed control device for vehicle equipped with stepless transmission
JP2002211380A (en) * 2001-01-17 2002-07-31 Unisia Jecs Corp Vehicle attitude stabilizing controller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060928A1 (en) * 2007-11-09 2009-05-14 Toyota Jidosha Kabushiki Kaisha Driving force controller
US9308912B2 (en) 2007-11-09 2016-04-12 Toyota Jidosha Kabushiki Kaisha Driving force control system
JP2011130628A (en) * 2009-12-21 2011-06-30 Mitsubishi Motors Corp Controller for right-left drive force adjusting device for vehicle
KR20140085800A (en) * 2012-12-27 2014-07-08 현대자동차주식회사 Total control system for vehicle and method thereof
KR101886083B1 (en) 2012-12-27 2018-09-07 현대자동차 주식회사 Total control system for vehicle and method thereof
CN104787039A (en) * 2015-04-13 2015-07-22 电子科技大学 Car body stable control method of four-wheel independent drive electric car

Also Published As

Publication number Publication date
JP4961751B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4929944B2 (en) Vehicle driving force distribution control device
CN107848526B (en) Vehicle turning control device
CN107848527B (en) Vehicle turning control device
JP6584779B2 (en) Vehicle attitude control device
JP6616158B2 (en) Slip control device
JP2004104991A (en) Control method and system for independent braking and controllability of vehicle with regenerative braking
JP2004249971A (en) Vehicle control method and vehicle control device
WO2015190349A1 (en) Drive control device with traction control function for right-left independent drive vehicle
JP4961751B2 (en) Vehicle driving force distribution device
JP2008062687A (en) Driving force distribution controller for vehicle
JP2008074185A (en) Vehicle motion control method and vehicle motion controller
JP4892983B2 (en) Driving force distribution device for four-wheel independent drive vehicle
JP2008222070A (en) Driving force distribution control device of vehicle
JP6577850B2 (en) Vehicle control apparatus and vehicle control method
JP2011079419A (en) Tire-state estimator
JP4561189B2 (en) Vehicle motion control device
JP4729871B2 (en) Vehicle turning control device
JP2021109454A (en) Turn control device of vehicle
JP2010151205A (en) Driving force distribution control device for vehicle
JP4844148B2 (en) Driving force distribution device for four-wheel independent drive vehicle
JP2017108485A (en) Vehicle control device and vehicle control method
JP4918787B2 (en) Driving force distribution device for four-wheel independent drive vehicle
JP5104102B2 (en) Vehicle driving force distribution control device
JP4835198B2 (en) Vehicle behavior control device
WO2016125686A1 (en) Vehicle braking/driving torque control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Ref document number: 4961751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3