JP2007190498A - Gas treatment method and its device - Google Patents

Gas treatment method and its device Download PDF

Info

Publication number
JP2007190498A
JP2007190498A JP2006011452A JP2006011452A JP2007190498A JP 2007190498 A JP2007190498 A JP 2007190498A JP 2006011452 A JP2006011452 A JP 2006011452A JP 2006011452 A JP2006011452 A JP 2006011452A JP 2007190498 A JP2007190498 A JP 2007190498A
Authority
JP
Japan
Prior art keywords
electrode
gas
reactor
adsorbent
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006011452A
Other languages
Japanese (ja)
Inventor
Masayuki Sato
正之 佐藤
Takayuki Oshima
孝之 大嶋
Tomomi Kondo
智美 近藤
Nobuyoshi Kitajima
信義 北島
Shinichi Mitsui
信一 三井
Yukio Yamada
幸男 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MASUDA KENKYUSHO KK
Gunma University NUC
Gunma Prefecture
Original Assignee
MASUDA KENKYUSHO KK
Gunma University NUC
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MASUDA KENKYUSHO KK, Gunma University NUC, Gunma Prefecture filed Critical MASUDA KENKYUSHO KK
Priority to JP2006011452A priority Critical patent/JP2007190498A/en
Publication of JP2007190498A publication Critical patent/JP2007190498A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuously usable and efficient gas treatment method and its device. <P>SOLUTION: In this gas treatment method, gas to be treated containing organic compounds is passed through a reactor and brought into contact with a conductive adsorbent provided in the reactor, so as to adsorb the organic compounds contained in the gas to be treated in the adsorbent. The conductive adsorbent is used as a first electrode, a second electrode serving as a grounding electrode is provided with a space from the first electrode, and a voltage is applied to the first electrode to cause continuous or intermittent discharge between the first and second electrodes to decompose organic compounds adsorbed in the conductive adsorbent and organic compounds present in the reactor without being adsorbed in the conductive adsorbent. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、揮発性有機化合物(Volatile Organic Compounds;以下、VOCという。)をはじめとする有機化合物を分解するガス処理方法及びその装置に関する。更に詳しくは、ガスに含まれる有機化合物を吸着処理と放電プラズマ処理によって、効率的に分解処理を行うことが可能なガス処理方法及びその装置に関するものである。   The present invention relates to a gas processing method and apparatus for decomposing organic compounds including volatile organic compounds (hereinafter referred to as VOC). More specifically, the present invention relates to a gas processing method and apparatus capable of efficiently decomposing an organic compound contained in a gas by adsorption processing and discharge plasma processing.

工場や自動車等からの排出や塗料、接着剤等に含有するVOCをはじめとする有機化合物は、塗料、印刷、接着剤など幅広く利用されているが、特異な臭気があり、過剰に吸い込むと、頭痛や吐き気などを引き起こし、シックハウス症候群、神経麻痺などの健康被害、また大気や地下水の汚染をもたらす物質としても問題になっている。VOCとは、揮発性を有し、大気中で気体状となる有機化合物の総称であり、トルエン、キシレン、酢酸エチルなど多種多様な物質が含まれる。   Organic compounds such as VOCs contained in exhaust from factories and automobiles, paints, adhesives, etc. are widely used such as paints, printing, adhesives, etc., but there is a unique odor, if you inhale excessively, It also causes problems such as headaches and nausea, causing health damage such as sick house syndrome and nerve paralysis, and contamination of the air and groundwater. VOC is a general term for organic compounds that are volatile and become gaseous in the atmosphere, and include a wide variety of substances such as toluene, xylene, and ethyl acetate.

現在このような有機化合物の処理方法として、燃焼処理法や吸着処理法が行われている。燃焼処理法は、主に高濃度排ガス処理に適用されているが、設備費、ランニングコストが高いため、普及が進んでいない。また活性炭等を用いた吸着処理法は、一度に大量の処理が可能であり、また安価な手法であるため一般的に利用されている除去方法ではあるが、有機化合物などを吸着させた使用済み吸着剤は定期的に交換しなければならず、連続処理が困難であった。また使用済み吸着剤は、焼成などを行わなければ再生処理できないため、その取扱いが煩雑となっていた。   Currently, as a method for treating such an organic compound, a combustion treatment method or an adsorption treatment method is performed. The combustion treatment method is mainly applied to high-concentration exhaust gas treatment, but has not been popularized because of high equipment costs and running costs. In addition, the adsorption treatment method using activated carbon etc. is a removal method that is generally used because it can process a large amount at a time and is an inexpensive method, but it has been used after adsorbing organic compounds etc. The adsorbent had to be replaced periodically, making continuous processing difficult. In addition, since the used adsorbent cannot be regenerated unless it is baked, the handling thereof is complicated.

一方で、非熱プラズマを用いた有機化合物の分解処理技術の研究が盛んに行われている。一般に除去処理が求められている有機化合物は濃度が極めて低い状態で存在しているため、そのままの状態でプラズマによって除去するにはエネルギー効率並びに処理効率の点で問題が残されている。   On the other hand, research on decomposition treatment techniques of organic compounds using non-thermal plasma has been actively conducted. In general, organic compounds that are required to be removed are present in a very low concentration, and thus there remains a problem in terms of energy efficiency and treatment efficiency for removing them by plasma in the same state.

上記問題を解決する放電プラズマを用いた効率的な分解処理技術として、送風手段と、触媒と吸着剤が配置された通気孔を有するシート状部材と、放電手段とを具備する空気清浄器であって、送風手段にて発生される気流中にシート状部材が配置されるようにシート状部材を配置すると共に、放電手段を、シート状部材よりも気流の上流側に配設される上流側導電性電極と、シート状部材よりも気流の下流側に配設される下流側導電性電極とで構成して成る空気清浄器が開示されている(例えば、特許文献1参照。)。特許文献1に示される空気清浄器では、臭気成分の分解効率が非常に高いものとなって、吸着剤の寿命を長寿命化させることが可能となり、シート状部材の交換頻度を低減することができ、あるいはシート状部材の交換が不要とすることができる。
また、針状の第1電極と、第1電極に略直交する状態で対向して配置された面状の第2電極と、両電極に放電電圧を印加するように接続された電源手段とを備え、第1電極と第2電極とが被処理流体の流通空間に配置され、両電極間でストリーマ放電を発生させることにより被処理流体を処理するように構成されたプラズマ反応器であって、第1電極は第2電極側の端部が突端部として形成され、その突端角度が30°以上90°以下であるプラズマ反応器が開示されている(例えば、特許文献2参照。)。特許文献2に示されるプラズマ反応器では、被処理流体を処理するための処理部材を備え、この処理部材には被処理流体に対する処理を促進する触媒物質を有するか、被処理流体に含まれる被処理成分を吸着する吸着剤が含まれる。特許文献2に示されるプラズマ反応器では、プラズマ生成領域を広範囲で生じさせるため、ガスの処理効率を高めることができる。
特開2001−178811号公報(請求項1、段落[0060]、第2図) 特開2003−38932号公報(請求項1、請求項15、請求項17、請求項24、段落[0053]、第3図)
As an efficient decomposition treatment technique using discharge plasma that solves the above problems, an air cleaner comprising a blowing means, a sheet-like member having a vent hole in which a catalyst and an adsorbent are arranged, and a discharging means. In addition, the sheet-like member is arranged so that the sheet-like member is arranged in the airflow generated by the blowing means, and the discharge means is disposed upstream of the airflow from the sheet-like member. An air purifier is disclosed which is composed of a conductive electrode and a downstream conductive electrode disposed on the downstream side of the airflow with respect to the sheet-like member (see, for example, Patent Document 1). In the air cleaner shown in Patent Document 1, the decomposition efficiency of the odor component becomes very high, the life of the adsorbent can be extended, and the replacement frequency of the sheet-like member can be reduced. Or replacement of the sheet-like member can be eliminated.
A needle-like first electrode; a planar second electrode arranged opposite to the first electrode; and a power supply means connected to apply a discharge voltage to both electrodes. A plasma reactor configured to treat a fluid to be treated by generating a streamer discharge between both electrodes, wherein the first electrode and the second electrode are disposed in a flow space of the fluid to be treated, A plasma reactor is disclosed in which the first electrode has an end on the second electrode side as a protruding end, and the protruding angle is not less than 30 ° and not more than 90 ° (for example, see Patent Document 2). The plasma reactor disclosed in Patent Document 2 includes a processing member for processing a fluid to be processed, and the processing member has a catalyst substance that promotes processing of the fluid to be processed or is included in the fluid to be processed. An adsorbent that adsorbs the processing components is included. In the plasma reactor shown in Patent Document 2, since the plasma generation region is generated in a wide range, the gas processing efficiency can be increased.
Japanese Patent Laid-Open No. 2001-178811 (Claim 1, paragraph [0060], FIG. 2) JP 2003-38932 A (Claim 1, Claim 15, Claim 17, Claim 24, Paragraph [0053], FIG. 3)

しかしながら、特許文献1に示される空気清浄器、特許文献2に示されるプラズマ反応器では、被処理流体に含まれる被処理成分を吸着する吸着剤はプラズマ反応器の下流に配置されているため、一部のプラズマによる活性種が被処理成分の分解に関与する以外はほとんどが単なる被処理成分の吸着が行われているに過ぎない。従って、定期的な吸着剤の交換、又は別のシステムによる再生処理が不可欠であった。
本発明の目的は、連続使用が可能で、かつ効率的なガス処理方法及びその装置を提供することにある。
However, in the air purifier shown in Patent Document 1 and the plasma reactor shown in Patent Document 2, the adsorbent that adsorbs the component to be treated contained in the fluid to be treated is disposed downstream of the plasma reactor. Most of the active species by plasma are merely adsorbed on the component to be processed except that the active species are involved in the decomposition of the component to be processed. Therefore, periodic replacement of the adsorbent or regeneration by another system has been indispensable.
An object of the present invention is to provide an efficient gas processing method and apparatus that can be used continuously.

請求項1に係る発明は、有機化合物を含む被処理ガスを反応器内に通じて、被処理ガスを反応器内に設けられた導電性吸着剤に接触させて、被処理ガスに含まれる有機化合物を導電性吸着剤に吸着させ、導電性吸着剤を第1電極として使用し、かつ第1電極と間隔をあけて接地電極となる第2電極を設け、第1電極に電圧を印加することにより第1及び第2電極間に放電を連続的又は間欠的に発生させて、導電性吸着剤に吸着させた有機化合物並びに反応器内で導電性吸着剤に吸着せずに存在している有機化合物を分解処理することを特徴とするガス処理方法である。
請求項3に係る発明は、図1に示すように、反応器11と、反応器11に連通して設けられ、有機化合物を含む被処理ガスを反応器11内に通じるガス給排手段12と、図2に示すように、反応器11内部に第1電極と、第1電極と間隔をあけて接地電極となる第2電極が設けられ、第1電極に電圧を印加することにより第1及び第2電極間に放電を連続的又は間欠的に生じさせるプラズマ発生手段13とを備え、第1電極が導電性吸着剤から構成されたことを特徴とするガス処理装置である。
請求項1に係るガス処理方法及び請求項3に係るガス処理装置では、導電性吸着剤に有機化合物を吸着させて捕集し、この導電性吸着剤を印加電極とする第1電極として使用し、かつ第1電極と間隔をあけて接地電極となる第2電極を設け、第1電極に高電圧を印加して放電プラズマを発生させることにより、導電性吸着剤に吸着させた有機化合物を直接分解処理するため、導電性吸着剤の再生処理を施すことなく、連続的な吸着処理が可能となる。また、放電プラズマを利用する分解処理の点では、導電性吸着剤に有機化合物を吸着させて、捕集した後に高電圧を印加することから、効率的な処理を行うことができる。また、放電プラズマの下流に吸着剤を設ける従来の方法に比べて、電極に処理物質を吸着させて直接分解処理を行っているため、より大きな処理領域を得ることができる。従って、従来の高電圧連続印加プラズマ分解方法と比較してエネルギー効率の向上が達成できる。
According to the first aspect of the present invention, an organic gas contained in a gas to be treated is obtained by passing a gas to be treated containing an organic compound into the reactor and bringing the gas to be treated into contact with a conductive adsorbent provided in the reactor. A compound is adsorbed on a conductive adsorbent, the conductive adsorbent is used as a first electrode, a second electrode serving as a ground electrode is provided at a distance from the first electrode, and a voltage is applied to the first electrode. The organic compound present in the reactor without being adsorbed by the conductive adsorbent in the reactor by continuously or intermittently generating a discharge between the first and second electrodes and adsorbed by the conductive adsorbent. A gas treatment method characterized by decomposing a compound.
As shown in FIG. 1, the invention according to claim 3 includes a reactor 11, a gas supply / exhaust means 12 that is provided in communication with the reactor 11 and communicates a gas to be treated containing an organic compound into the reactor 11. As shown in FIG. 2, a first electrode and a second electrode serving as a ground electrode spaced apart from the first electrode are provided inside the reactor 11, and the first and second electrodes are applied by applying a voltage to the first electrode. A gas processing apparatus comprising plasma generating means 13 for generating a discharge continuously or intermittently between second electrodes, wherein the first electrode is made of a conductive adsorbent.
In the gas processing method according to claim 1 and the gas processing apparatus according to claim 3, an organic compound is adsorbed and collected by the conductive adsorbent, and the conductive adsorbent is used as a first electrode as an application electrode. In addition, a second electrode serving as a ground electrode is provided at a distance from the first electrode, and a high voltage is applied to the first electrode to generate discharge plasma, so that the organic compound adsorbed on the conductive adsorbent is directly Since the decomposition treatment is performed, the continuous adsorption treatment can be performed without performing the regeneration treatment of the conductive adsorbent. Further, in terms of decomposition treatment using discharge plasma, an organic compound is adsorbed on a conductive adsorbent, and after being collected, a high voltage is applied, so that efficient treatment can be performed. In addition, compared with the conventional method in which an adsorbent is provided downstream of the discharge plasma, a treatment substance is adsorbed on the electrode and the direct decomposition treatment is performed, so that a larger treatment area can be obtained. Therefore, energy efficiency can be improved as compared with the conventional high voltage continuous application plasma decomposition method.

本発明のガス処理方法及びガス処理装置では、有機化合物を含む被処理ガスを反応器内に通じて、被処理ガスを反応器内に設けられた導電性吸着剤に接触させて、被処理ガスに含まれる有機化合物を導電性吸着剤に吸着させて捕集し、この導電性吸着剤を印加電極とする第1電極として使用し、かつ第1電極と間隔をあけて接地電極となる第2電極を設け、第1電極に電圧を印加することにより第1及び第2電極間に放電を連続的又は間欠的に発生させて、導電性吸着剤に吸着させた有機化合物並びに反応器内で導電性吸着剤に吸着せずに存在している有機化合物を分解処理するため、導電性吸着剤の再生処理を施すことなく、連続的な吸着処理が可能となる。また、放電プラズマを利用する分解処理の点では、導電性吸着剤に有機化合物を吸着させて、捕集した後に高電圧を印加することから、効率的な処理を行うことができる。また、放電プラズマの下流に吸着剤を設ける従来の方法に比べて、電極に処理物質を吸着させながら直接分解処理を行うことが可能なため、より大きな処理能力を得ることができる。従って、従来の高電圧連続印加プラズマ分解方法と比較してエネルギー効率の向上が達成できる。   In the gas processing method and the gas processing apparatus of the present invention, the gas to be processed is brought into contact with the conductive adsorbent provided in the reactor by passing the gas to be processed containing the organic compound into the reactor. The organic compound contained in is adsorbed to and collected by a conductive adsorbent, and this conductive adsorbent is used as a first electrode as an application electrode, and a second electrode serving as a ground electrode at a distance from the first electrode. An electrode is provided, and by applying a voltage to the first electrode, a discharge is generated continuously or intermittently between the first and second electrodes, and the organic compound adsorbed on the conductive adsorbent and conductive in the reactor. Since the organic compound present without being adsorbed on the conductive adsorbent is decomposed, continuous adsorption treatment is possible without performing the regeneration treatment of the conductive adsorbent. Further, in terms of decomposition treatment using discharge plasma, an organic compound is adsorbed on a conductive adsorbent, and after being collected, a high voltage is applied, so that efficient treatment can be performed. In addition, as compared with the conventional method in which an adsorbent is provided downstream of the discharge plasma, it is possible to directly perform the decomposition treatment while adsorbing the treatment substance on the electrode, so that a larger processing capacity can be obtained. Therefore, energy efficiency can be improved as compared with the conventional high voltage continuous application plasma decomposition method.

本発明を実施するための最良の形態を図面に基づいて説明する。
図1に示すように、本発明のガス処理装置10は、反応器11とガス給排手段12とプラズマ発生手段13とを備える。ガス給排手段12は、反応器11に連通して設けられ、有機化合物を含む被処理ガスを反応器11内に通じるガス供給口12aと、反応器11外部へと処理済みガスを排出するガス排出口12bとから構成される。プラズマ発生手段13は、図2に示されるように、反応器11内部に第1電極22と、この第1電極22と間隔をあけて接地電極となる第2電極23が設けられ、第1電極22に電圧を印加することにより第1及び第2電極間に放電を連続的又は間欠的に生じさせるように構成される。本実施の形態では、誘電体21の上に第1電極22を配置し、誘電体21の下に第2電極23を貼り付けて、第1電極22と第2電極23の間に誘電体21を設置した状態でこの誘電体21を反応器11内に設置している。誘電体21としてはガラス基板やセラミックが挙げられる。第1電極22には電圧が印加できるように交流電源24が接続され、第2電極23は接地電極となるように接地26を施される。
The best mode for carrying out the present invention will be described with reference to the drawings.
As shown in FIG. 1, the gas processing apparatus 10 of the present invention includes a reactor 11, a gas supply / discharge unit 12, and a plasma generation unit 13. The gas supply / exhaust means 12 is provided in communication with the reactor 11, and includes a gas supply port 12 a that communicates a gas to be treated containing an organic compound into the reactor 11, and a gas that exhausts the processed gas to the outside of the reactor 11. And a discharge port 12b. As shown in FIG. 2, the plasma generating means 13 is provided with a first electrode 22 inside the reactor 11 and a second electrode 23 that becomes a ground electrode spaced apart from the first electrode 22. By applying a voltage to 22, a discharge is generated continuously or intermittently between the first and second electrodes. In the present embodiment, the first electrode 22 is disposed on the dielectric 21, the second electrode 23 is attached under the dielectric 21, and the dielectric 21 is interposed between the first electrode 22 and the second electrode 23. The dielectric 21 is installed in the reactor 11 in a state where the is installed. Examples of the dielectric 21 include a glass substrate and a ceramic. An AC power supply 24 is connected to the first electrode 22 so that a voltage can be applied, and the second electrode 23 is grounded so as to be a ground electrode.

本発明の特徴ある構成は、第1電極22が導電性吸着剤から構成されたところにある。第1電極22である導電性吸着剤としては織物、不織布からなる活性炭繊維布、炭素繊維が挙げられる。接地電極となる第2電極23としてはアルミニウム箔や銅箔等の導電物が挙げられる。   A characteristic configuration of the present invention is that the first electrode 22 is made of a conductive adsorbent. Examples of the conductive adsorbent that is the first electrode 22 include a woven fabric, an activated carbon fiber cloth made of a nonwoven fabric, and a carbon fiber. Examples of the second electrode 23 serving as the ground electrode include conductive materials such as aluminum foil and copper foil.

このような構成を有するガス処理装置10を用いたガス処理方法では、先ず、ガス供給口12aより有機化合物を含んだ被処理ガスを反応器11内に通じ、被処理ガスを反応器11内に設置された第1電極22である導電性吸着剤に接触させて、被処理ガスに含まれる有機化合物を導電性吸着剤に吸着させる。次に、有機化合物を吸着させた導電性吸着剤からなる第1電極22に電圧を印加することにより第1及び第2電極間に放電を連続的又は間欠的に発生させ、導電性吸着剤に吸着させた有機化合物並びに反応器内で導電性吸着剤に吸着せずに存在している有機化合物を分解処理する。このガス処理方法では、導電性吸着剤の再生処理を施すことなく、連続的な吸着処理が可能となる。また、放電プラズマを利用する分解処理の点では、導電性吸着剤に有機化合物を吸着させて、捕集した後に高電圧を印加することから、効率的な処理を行うことができる。また、各電極間に吸着剤を設け、この吸着剤によって有機化合物などの処理物質を吸着させた後に放電により分解処理する従来の方法に比べて、電極に処理物質を吸着させて直接分解処理を行っているため、より大きな処理領域を得ることができる。従って、従来の高電圧連続印加プラズマ分解方法と比較してエネルギー効率の向上が達成できる。   In the gas processing method using the gas processing apparatus 10 having such a configuration, first, a gas to be processed containing an organic compound is passed into the reactor 11 from the gas supply port 12a, and the gas to be processed is introduced into the reactor 11. The organic adsorbent contained in the gas to be treated is adsorbed to the conductive adsorbent by contacting the conductive adsorbent that is the first electrode 22 installed. Next, by applying a voltage to the first electrode 22 made of a conductive adsorbent adsorbing an organic compound, a discharge is generated continuously or intermittently between the first and second electrodes, The adsorbed organic compound and the organic compound present in the reactor without adsorbing to the conductive adsorbent are decomposed. In this gas treatment method, continuous adsorption treatment is possible without performing regeneration treatment of the conductive adsorbent. Further, in terms of decomposition treatment using discharge plasma, an organic compound is adsorbed on a conductive adsorbent, and after being collected, a high voltage is applied, so that efficient treatment can be performed. Compared with the conventional method in which an adsorbent is provided between each electrode and a treatment substance such as an organic compound is adsorbed by this adsorbent and then decomposed by discharge, the treatment substance is adsorbed on the electrode and directly decomposed. As a result, a larger processing area can be obtained. Therefore, energy efficiency can be improved as compared with the conventional high voltage continuous application plasma decomposition method.

なお、本発明のガス処理方法では、被処理ガスに含まれる有機化合物を導電性吸着剤に吸着させた後にプラズマ放電を発生させて有機化合物の分解処理を行ってもよいし、被処理ガスに含まれる有機化合物を導電性吸着剤に吸着させながらプラズマ放電を発生させて有機化合物の分解処理を行ってもよい。放電を生じさせる際の、印加電圧は1〜30kV、好ましくは10〜20kVの交流高電圧又は直流パルス状高電圧を使用することが好適である。また放電の形態はバリア放電、ストリーマ放電等が挙げられる。   In the gas treatment method of the present invention, the organic compound contained in the gas to be treated may be adsorbed on the conductive adsorbent and then plasma discharge may be generated to decompose the organic compound. The organic compound may be decomposed by generating a plasma discharge while adsorbing the organic compound contained in the conductive adsorbent. It is suitable to use an AC high voltage or a DC pulsed high voltage of 1 to 30 kV, preferably 10 to 20 kV, when the discharge is generated. Examples of the form of discharge include barrier discharge and streamer discharge.

本発明のガス処理装置は、図4〜図7に示すような構成としてもよい。
図4に示すガス処理装置のプラズマ発生手段13は、第1及び第2電極22,23を被処理ガスが流通可能な材質で形成する。具体的には、第1電極22を表面にガスの流通が可能な連通孔を有する活性炭繊維織物のような導電性吸着剤で構成し、第2電極23を金網のような導電体により構成する。第1電極22に直流パルス状電源24を接続する。また第2電極23は接地26する。図5は図4の断面図である。図5では被処理ガス中の有機化合物が第1電極22表面に吸着された状態で、直流パルス状電源24を接続した第1電極22に電圧を印加することにより、第1電極22と接地26した第2電極23との間にプラズマを発生させる。この発生したプラズマにより第1電極22に吸着された有機化合物が分解される。図4及び図5に示すガス処理装置では、被処理ガスが流通している状態でガス処理を行うことができる。
The gas treatment apparatus of the present invention may be configured as shown in FIGS.
The plasma generating means 13 of the gas processing apparatus shown in FIG. 4 forms the first and second electrodes 22 and 23 with a material through which the gas to be processed can flow. Specifically, the first electrode 22 is composed of a conductive adsorbent such as an activated carbon fiber woven fabric having communication holes that allow gas to flow on the surface, and the second electrode 23 is composed of a conductor such as a wire mesh. . A DC pulsed power supply 24 is connected to the first electrode 22. The second electrode 23 is grounded 26. FIG. 5 is a cross-sectional view of FIG. In FIG. 5, by applying a voltage to the first electrode 22 connected to the DC pulsed power supply 24 in a state where the organic compound in the gas to be treated is adsorbed on the surface of the first electrode 22, the first electrode 22 and the ground 26 are applied. Plasma is generated between the second electrode 23 and the second electrode 23. The organic compound adsorbed on the first electrode 22 is decomposed by the generated plasma. In the gas processing apparatus shown in FIGS. 4 and 5, gas processing can be performed in a state where the gas to be processed is in circulation.

図6に示すガス処理装置のプラズマ発生手段13では、第1電極22と第2電極23とを一体化して平面カセット状に形成したものを1ユニットとし、ユニットの平面が被処理ガスの流通経路に垂直に位置するように配置し、かつ複数のユニットを平行に配置する。また、配置した各ユニットは取外し交換可能に構成される。被処理ガスの流通経路の後方に位置するユニットの第1電極22に直流パルス状電源24を接続する。また、このユニットの第2電極23は接地26する。図6の破線矢印に示すように、ガス処理により劣化して処理能力が低下したユニットを未使用のユニットと交換することができるため、高い処理能力を維持しながら、連続してガス処理を行うことができる。交換した破線で示される使用済みのユニットは再生処理に供される。また被処理ガスの流通経路の後方に位置するユニットでは、直流パルス状電源24を接続した第1電極22に電圧を印加することにより、第1電極22と接地26した第2電極23との間にプラズマを発生させ、この発生したプラズマにより第1電極22に吸着された有機化合物が分解される。   In the plasma generating means 13 of the gas processing apparatus shown in FIG. 6, the first electrode 22 and the second electrode 23 are integrated into a flat cassette shape to form one unit, and the plane of the unit is the flow path of the gas to be processed. And a plurality of units are arranged in parallel. Moreover, each unit arranged is configured to be removable and replaceable. A DC pulsed power supply 24 is connected to the first electrode 22 of the unit located behind the flow path of the gas to be processed. The second electrode 23 of this unit is grounded 26. As indicated by the broken line arrows in FIG. 6, units that have deteriorated due to gas processing and have reduced processing capacity can be replaced with unused units, so that gas processing is continuously performed while maintaining high processing capacity. be able to. The used unit indicated by the replaced broken line is subjected to a regeneration process. Further, in the unit located behind the flow path of the gas to be treated, a voltage is applied to the first electrode 22 connected to the DC pulsed power supply 24 to thereby connect the first electrode 22 and the second electrode 23 grounded 26. The plasma is generated, and the organic compound adsorbed on the first electrode 22 is decomposed by the generated plasma.

図7に示すガス処理装置のプラズマ発生手段13では、第1電極22となる導電性吸着剤をシート状に形成し、複数のローラでシート状の導電性吸着剤を被処理ガスが流通する空間に蛇行するように複数のローラを配置する。被処理ガスの流通経路の後方に位置するローラ27に直流パルス状電源24を接続する。また、この直流パルス状電源24を接続したローラ27に近接する別のローラ23を第2電極とし、この第2電極は接地26する。この図7に示されるガス処理装置では、被処理ガスを流通させ、複数のローラを回転させてシート状導電性吸着剤を図7の実線矢印の方向に移動させることにより、シート状導電性吸着剤が蛇行する領域で被処理ガス中の有機化合物を吸着させるため、吸着領域を大幅に向上させることができ、処理能力の向上を図ることができる。また直流パルス状電源24を接続したローラ27に電圧を印加することにより、接地26したローラ23との間にプラズマを発生させ、このプラズマが発生したローラ27,23間に位置するシート状導電性吸着剤に吸着された有機化合物が分解される。   In the plasma generating means 13 of the gas processing apparatus shown in FIG. 7, a conductive adsorbent that forms the first electrode 22 is formed in a sheet shape, and a space in which the gas to be processed flows through the sheet-shaped conductive adsorbent by a plurality of rollers. A plurality of rollers are arranged so as to meander. A DC pulsed power supply 24 is connected to a roller 27 located behind the flow path of the gas to be processed. Further, another roller 23 adjacent to the roller 27 connected to the DC pulsed power supply 24 is used as a second electrode, and this second electrode is grounded 26. In the gas processing apparatus shown in FIG. 7, the sheet-like conductive adsorption is performed by circulating the gas to be treated and rotating the plurality of rollers to move the sheet-like conductive adsorbent in the direction of the solid arrow in FIG. Since the organic compound in the gas to be treated is adsorbed in the region where the agent meanders, the adsorption region can be greatly improved, and the processing capacity can be improved. In addition, by applying a voltage to the roller 27 connected to the DC pulsed power supply 24, plasma is generated between the roller 26 and the grounded roller 23, and the sheet-like conductivity located between the rollers 27 and 23 where the plasma is generated. The organic compound adsorbed on the adsorbent is decomposed.

次に本発明の実施例を詳しく説明する。
<実施例1>
先ず、図1に示すガス処理装置を用意した。このガス処理装置10は、反応器11と、ガス給排手段12と、プラズマ発生手段13とを備える。ガス給排手段12に設けられたガス供給口12aには、被処理ガスが封入されたテドラーバッグ14が供給ポンプ16、開閉バルブ17及び流量計18を介して接続される。また、ガス排出口12bには、処理済みガス中に含まれる成分を分析するガスクロマトグラフが接続される。
Next, embodiments of the present invention will be described in detail.
<Example 1>
First, the gas processing apparatus shown in FIG. 1 was prepared. The gas processing apparatus 10 includes a reactor 11, a gas supply / discharge unit 12, and a plasma generation unit 13. A Tedlar bag 14 filled with a gas to be processed is connected to a gas supply port 12 a provided in the gas supply / discharge means 12 via a supply pump 16, an opening / closing valve 17 and a flow meter 18. In addition, a gas chromatograph for analyzing components contained in the processed gas is connected to the gas outlet 12b.

図2及び図3に示すように、反応器11は内部容積が200mlの円筒状に形成され、厚さ2.0mmのガラスプレートからなる誘電体21の上に60mm×40mmの導電性吸着剤として活性炭繊維布を置き、この活性炭繊維布には電圧が印加できるように交流電源を接続してこの活性炭繊維布を第1電極22とした。またガラスプレートからなる誘電体21の裏側には70mm×50mmのアルミニウムシートを第2電極23として貼り付け、この第2電極23を接地電極となるように接地した。導電性吸着剤かつ第1電極となる活性炭繊維布には、織物(Woven Fabric;以下、WFという。)と不織布(Nonwoven Fabric;以下、NFという。)の二種類の活性炭繊維布を用いた。WFの単位質量は92g/m2、NFの単位質量は129g/m2であった。また、被処理ガスとして200ppmに濃度調整されたアセトアルデヒドを用意し、この被処理ガスはテドラーバッグに封入した。 As shown in FIGS. 2 and 3, the reactor 11 is formed in a cylindrical shape having an internal volume of 200 ml, and is formed as a 60 mm × 40 mm conductive adsorbent on a dielectric 21 made of a glass plate having a thickness of 2.0 mm. An activated carbon fiber cloth was placed, an AC power source was connected to the activated carbon fiber cloth so that a voltage could be applied, and the activated carbon fiber cloth was used as the first electrode 22. Further, an aluminum sheet of 70 mm × 50 mm was attached as the second electrode 23 on the back side of the dielectric 21 made of a glass plate, and the second electrode 23 was grounded so as to be a ground electrode. As the conductive adsorbent and the activated carbon fiber cloth serving as the first electrode, two kinds of activated carbon fiber cloths, a woven fabric (hereinafter referred to as WF) and a non-woven fabric (hereinafter referred to as NF), were used. Unit mass of WF is unit weight of 92g / m 2, NF was 129 g / m 2. In addition, acetaldehyde whose concentration was adjusted to 200 ppm was prepared as a gas to be treated, and this gas to be treated was sealed in a Tedlar bag.

<試験1>
テドラーバック14内の被処理ガスを流量計18で100ml/分の割合となるように流量調整しながら反応器11内に通じ、活性炭繊維布として用いたWFに被処理ガス中のアセトアルデヒドが十分に吸着した状態となるまで、約3時間半程度被処理ガスを供給し続けた。吸着終了後は被処理ガスの供給を止めて反応器11内を密閉状態に保った。続いて、ネオントランスを用いて第1電極に10kVの交流電圧を印加して第1及び第2電極間に放電を生じさせ、WFに吸着されたアセトアルデヒドを分解した。また、活性炭繊維布としてWFの代わりにNFを用いた以外は上記と同様の試験を行った。図8に反応器内のアセトアルデヒド濃度の経時変化を示す。なお、図8における0分は電圧印加開始時間を示す。
<Test 1>
The gas to be treated in the Tedlar bag 14 is passed through the reactor 11 while the flow rate is adjusted to 100 ml / min with the flow meter 18, and the acetaldehyde in the gas to be treated is sufficiently adsorbed by the WF used as the activated carbon fiber cloth. The gas to be treated was continuously supplied for about three and a half hours until the state was achieved. After completion of the adsorption, the supply of the gas to be treated was stopped and the inside of the reactor 11 was kept sealed. Subsequently, an AC voltage of 10 kV was applied to the first electrode using a neon transformer to cause a discharge between the first and second electrodes, and acetaldehyde adsorbed on WF was decomposed. Moreover, the test similar to the above was performed except having used NF instead of WF as activated carbon fiber cloth. FIG. 8 shows the change with time of the acetaldehyde concentration in the reactor. In FIG. 8, 0 minutes indicates the voltage application start time.

図8より明らかなように、放電により反応器内のアセトアルデヒド濃度は徐々に減少することが観察され、WF、NFのいずれの種類の活性炭繊維布を用いた場合でも、約60分間で活性炭繊維布に吸着させたアセトアルデヒド並びに反応器内で活性炭繊維布に吸着せずに存在しているアセトアルデヒドを全て分解できた。   As is clear from FIG. 8, it is observed that the acetaldehyde concentration in the reactor gradually decreases due to the discharge, and when using any kind of activated carbon fiber cloth of WF and NF, the activated carbon fiber cloth is obtained in about 60 minutes. All the acetaldehyde adsorbed on the acetaldehyde and the acetaldehyde present in the reactor without adsorbing on the activated carbon fiber cloth could be decomposed.

<試験2>
導電性吸着剤である活性炭繊維布の再利用が可能であるかどうかを確かめる試験を行った。活性炭繊維布としてWFを用い、導電性吸着剤である活性炭繊維布の再利用における処理効率がどのように変化するかを調べた。
<Test 2>
A test was conducted to confirm whether the activated carbon fiber cloth, which is a conductive adsorbent, can be reused. Using WF as the activated carbon fiber cloth, it was investigated how the treatment efficiency in the reuse of the activated carbon fiber cloth, which is a conductive adsorbent, changes.

先ず、テドラーバック14内の被処理ガスを流量計18で100ml/分の割合となるように流量調整しながら反応器11内に通じ、活性炭繊維布として用いたWFに被処理ガス中のアセトアルデヒドが十分に吸着した状態となるまで、約3時間半程度被処理ガスを供給し続けた。続いて、吸着終了後は被処理ガスの供給を続けた状態で、ネオントランスを用いて第1電極に10kVの交流電圧を印加して第1及び第2電極間に放電を生じさせ、WFに吸着されたアセトアルデヒドを分解した。反応器11より排出される処理済みガスを適宜サンプリングし、処理済みガス中のアセトアルデヒド濃度をガスクロマトグラフにより測定した。これを1回目の使用とした。引続き2回目、3回目と、繰返し使用する際は、約2時間放電し続けて、反応器内並びに活性炭繊維布に吸着されているアセトアルデヒドを全て分解した後に、上記1回目の使用の際と同様の条件で繰返し使用を5回行った。   First, the gas to be processed in the Tedlar bag 14 is passed through the reactor 11 while adjusting the flow rate so that the flow rate becomes 100 ml / min with the flow meter 18, and the WF used as the activated carbon fiber cloth has sufficient acetaldehyde in the gas to be processed. The gas to be treated was continued to be supplied for about three and a half hours until it was adsorbed to the gas. Subsequently, after the adsorption is completed, supply of the gas to be processed is continued, and an AC voltage of 10 kV is applied to the first electrode using a neon transformer to cause a discharge between the first and second electrodes. The adsorbed acetaldehyde was decomposed. The treated gas discharged from the reactor 11 was appropriately sampled, and the acetaldehyde concentration in the treated gas was measured by a gas chromatograph. This was the first use. Continue to discharge for about 2 hours when using repeatedly for the second time and the third time. After decomposing all the acetaldehyde adsorbed in the reactor and on the activated carbon fiber cloth, the same as in the first time use. Repeated use was performed 5 times under the following conditions.

図9に活性炭繊維布を用いた第1電極を繰返し使用をした際の分解特性を示す。この図9では、活性炭繊維布を用いた第1電極を繰返し使用した際に、反応器11内に被処理ガスを通じながら放電を行い、ガス排出口12bから排出された処理済みガス中に含まれるアセトアルデヒド濃度の変化から分解特性を調べた。   FIG. 9 shows the decomposition characteristics when the first electrode using the activated carbon fiber cloth is repeatedly used. In FIG. 9, when the first electrode using the activated carbon fiber cloth is repeatedly used, discharge is performed while passing the gas to be processed into the reactor 11, and it is included in the processed gas discharged from the gas discharge port 12 b. The degradation characteristics were investigated from the change of acetaldehyde concentration.

図9より明らかなように、繰返し使用の回数が1回、2回の場合は、処理済みガス中に含まれるアセトアルデヒド濃度は処理時間が60分を越えると約10ppmにまで低下した。これは、放電前に導電性吸着剤に吸着されたアセトアルデヒドだけでなく、放電中に供給された導電性吸着剤には吸着されずに反応器内に存在しているアセトアルデヒドも併せて連続的に分解されているためと考えられる。しかし、繰返し使用の回数が増加すると、処理時間が60分を越えてもアセトアルデヒド濃度は50ppm程度に留まり、ガス処理能力が若干減少する傾向が見られた。この結果から、ガス処理能力は若干減少するが、導電性吸着剤の繰返し使用が可能であることが確認された。   As is clear from FIG. 9, when the number of repeated uses was 1 or 2, the concentration of acetaldehyde contained in the treated gas decreased to about 10 ppm when the treatment time exceeded 60 minutes. This is because not only acetaldehyde adsorbed on the conductive adsorbent before discharge but also acetaldehyde present in the reactor without being adsorbed on the conductive adsorbent supplied during discharge. This is thought to be due to decomposition. However, when the number of repeated uses increased, the acetaldehyde concentration remained at about 50 ppm even when the treatment time exceeded 60 minutes, and the gas treatment capacity tended to decrease slightly. From this result, it was confirmed that the gas adsorbing capacity was slightly reduced but the conductive adsorbent could be used repeatedly.

本発明のガス処理方法及びその装置は、VOC等の有機化合物の処理だけでなく、窒素酸化物(NOx)処理に対しても適用できる。   The gas treatment method and apparatus of the present invention can be applied not only to treatment of organic compounds such as VOC but also to nitrogen oxide (NOx) treatment.

本発明のガス処理装置を示す概略図。Schematic which shows the gas processing apparatus of this invention. 本発明のガス処理装置の反応器の断面図。Sectional drawing of the reactor of the gas processing apparatus of this invention. 図2のA−A線断面図。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. プラズマ発生手段として被処理ガスが連通可能な構成としたガス処理装置の部分概略図。The partial schematic diagram of the gas processing apparatus made into the structure which can communicate with to-be-processed gas as a plasma generation means. 図4の断面図。Sectional drawing of FIG. プラズマ発生手段として第1及び第2電極を一体化したユニットを複数段配置したガス処理装置の部分概略図。The partial schematic diagram of the gas processing apparatus which arranged the unit which integrated the 1st and 2nd electrode as a plasma generation means in multiple steps. プラズマ発生手段としてシート状導電性吸着剤をロール状に形成したガス処理装置の部分概略図。The partial schematic of the gas processing apparatus which formed the sheet-like electroconductive adsorbent in the roll shape as a plasma generation means. 反応器内のアセトアルデヒド濃度の経時変化を示す図。The figure which shows the time-dependent change of the acetaldehyde density | concentration in a reactor. 活性炭繊維布を用いた第1電極を繰返し使用をした際の分解特性を示す図。The figure which shows the decomposition | disassembly characteristic at the time of using repeatedly the 1st electrode using activated carbon fiber cloth.

符号の説明Explanation of symbols

10 ガス処理装置
11 反応器
12 ガス給排手段
13 プラズマ発生手段
DESCRIPTION OF SYMBOLS 10 Gas processing apparatus 11 Reactor 12 Gas supply / discharge means 13 Plasma generation means

Claims (3)

有機化合物を含む被処理ガスを反応器内に通じて、前記被処理ガスを反応器内に設けられた導電性吸着剤に接触させて、被処理ガスに含まれる有機化合物を前記導電性吸着剤に吸着させ、
前記導電性吸着剤を第1電極として使用し、かつ前記第1電極と間隔をあけて接地電極となる第2電極を設け、前記第1電極に電圧を印加することにより第1及び第2電極間に放電を連続的又は間欠的に発生させて、
前記導電性吸着剤に吸着させた有機化合物並びに前記反応器内で導電性吸着剤に吸着せずに存在している有機化合物を分解処理する
ことを特徴とするガス処理方法。
A gas to be treated containing an organic compound is passed through a reactor, the gas to be treated is brought into contact with a conductive adsorbent provided in the reactor, and the organic compound contained in the gas to be treated is converted into the conductive adsorbent. Adsorb to
The conductive adsorbent is used as a first electrode, a second electrode serving as a ground electrode is provided at a distance from the first electrode, and a voltage is applied to the first electrode to apply the first and second electrodes. In the meantime, discharge is generated continuously or intermittently,
An organic compound adsorbed on the conductive adsorbent and an organic compound present in the reactor without adsorbing on the conductive adsorbent are decomposed.
分解処理が被処理ガスに含まれる有機化合物を導電性吸着剤に吸着させた後、或いは被処理ガスに含まれる有機化合物を前記導電性吸着剤に吸着させながら行われる請求項1記載のガス処理方法。   The gas treatment according to claim 1, wherein the decomposition treatment is performed after the organic compound contained in the gas to be treated is adsorbed on the conductive adsorbent or while the organic compound contained in the gas to be treated is adsorbed on the conductive adsorbent. Method. 反応器(11)と、
前記反応器(11)に連通して設けられ、有機化合物を含む被処理ガスを前記反応器(11)内に通じるガス給排手段(12)と、
前記反応器(11)内部に第1電極と、前記第1電極と間隔をあけて接地電極となる第2電極が設けられ、前記第1電極に電圧を印加することにより第1及び第2電極間に放電を連続的又は間欠的に生じさせるプラズマ発生手段(13)と
を備え、
前記第1電極が導電性吸着剤から構成されたことを特徴とするガス処理装置。
A reactor (11),
Gas supply / exhaust means (12) provided in communication with the reactor (11) and communicates a gas to be treated containing an organic compound into the reactor (11).
A first electrode and a second electrode serving as a ground electrode spaced from the first electrode are provided in the reactor (11), and the first and second electrodes are applied by applying a voltage to the first electrode. And plasma generating means (13) for generating a discharge continuously or intermittently in between,
The gas processing apparatus, wherein the first electrode is made of a conductive adsorbent.
JP2006011452A 2006-01-19 2006-01-19 Gas treatment method and its device Pending JP2007190498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006011452A JP2007190498A (en) 2006-01-19 2006-01-19 Gas treatment method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006011452A JP2007190498A (en) 2006-01-19 2006-01-19 Gas treatment method and its device

Publications (1)

Publication Number Publication Date
JP2007190498A true JP2007190498A (en) 2007-08-02

Family

ID=38446592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006011452A Pending JP2007190498A (en) 2006-01-19 2006-01-19 Gas treatment method and its device

Country Status (1)

Country Link
JP (1) JP2007190498A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418910A (en) * 1990-05-11 1992-01-23 Masamune Shiraishi Carbon filter and its production
JPH08229345A (en) * 1995-02-28 1996-09-10 Mitsubishi Electric Corp Gas treating device
JP2001149754A (en) * 1999-11-30 2001-06-05 Japan Organo Co Ltd Method and device for treating waste gas containing volatile organic material
JP2001314730A (en) * 2000-05-11 2001-11-13 E Tec:Kk METHOD AND DEVICE FOR REDUCING NOx
JP2002336689A (en) * 2001-05-21 2002-11-26 Daikin Ind Ltd Plasma reactor and air cleaner
JP2003080024A (en) * 2001-09-07 2003-03-18 Komatsu Ltd Gas treating apparatus
JP2004337345A (en) * 2003-05-15 2004-12-02 Ngk Insulators Ltd Deodorizing apparatus and deodorizing method
JP2005313108A (en) * 2004-04-30 2005-11-10 Canon Inc Dielectric
JP2006175422A (en) * 2004-06-29 2006-07-06 Mitsubishi Electric Corp Device for treating volatile organic compound
JP2006247507A (en) * 2005-03-10 2006-09-21 National Institute Of Advanced Industrial & Technology Exhaust gas treatment apparatus and method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418910A (en) * 1990-05-11 1992-01-23 Masamune Shiraishi Carbon filter and its production
JPH08229345A (en) * 1995-02-28 1996-09-10 Mitsubishi Electric Corp Gas treating device
JP2001149754A (en) * 1999-11-30 2001-06-05 Japan Organo Co Ltd Method and device for treating waste gas containing volatile organic material
JP2001314730A (en) * 2000-05-11 2001-11-13 E Tec:Kk METHOD AND DEVICE FOR REDUCING NOx
JP2002336689A (en) * 2001-05-21 2002-11-26 Daikin Ind Ltd Plasma reactor and air cleaner
JP2003080024A (en) * 2001-09-07 2003-03-18 Komatsu Ltd Gas treating apparatus
JP2004337345A (en) * 2003-05-15 2004-12-02 Ngk Insulators Ltd Deodorizing apparatus and deodorizing method
JP2005313108A (en) * 2004-04-30 2005-11-10 Canon Inc Dielectric
JP2006175422A (en) * 2004-06-29 2006-07-06 Mitsubishi Electric Corp Device for treating volatile organic compound
JP2006247507A (en) * 2005-03-10 2006-09-21 National Institute Of Advanced Industrial & Technology Exhaust gas treatment apparatus and method

Similar Documents

Publication Publication Date Title
JP3711052B2 (en) Catalytic reactor for treating hazardous gases using low temperature plasma and dielectric heat
JP5266758B2 (en) Volatile organic compound processing equipment
WO2004112940A1 (en) Gas processing method and gas processing apparatus utilizing oxidation catalyst and low-temperature plasma
WO2013010328A1 (en) Air purifier with electric field regeneration
CN105864908A (en) Multistage plasma air purifier
JP2009202137A (en) Air treatment apparatus
JP2007222303A (en) Air cleaner and air cleaning method using the same
JP2007069115A (en) Gas processing apparatus and cartridge for gas processing
CN106964255A (en) A kind of plasma-catalytic purification gas processing unit
JP2015070921A (en) Deodorization device
JP2002343535A (en) Gas treatment device
JP2006187766A (en) Gas treatment apparatus and gas treatment cartridge
JP2002336689A (en) Plasma reactor and air cleaner
JP4955589B2 (en) Removal system of volatile organic compounds by low temperature plasma and oil
JP4235580B2 (en) Dielectric
US20060119278A1 (en) Gas decomposition apparatus and gas treatment cartridge
JP4006998B2 (en) Deodorizing device
JP7295945B2 (en) new plasma air purifier
JP2007190498A (en) Gas treatment method and its device
KR20100123787A (en) Deodor system with dry and wet type package
JP2002346334A (en) Gas cleaning apparatus by plasma
JP2002126445A (en) Element for treating vapor of volatile organic matter
JP2001314730A (en) METHOD AND DEVICE FOR REDUCING NOx
JPH11319486A (en) Harmful gas decomposing device
JP2004008517A (en) Air cleaner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605