JP2007189154A - Heat conductive bonding material, and packaging method - Google Patents

Heat conductive bonding material, and packaging method Download PDF

Info

Publication number
JP2007189154A
JP2007189154A JP2006007554A JP2006007554A JP2007189154A JP 2007189154 A JP2007189154 A JP 2007189154A JP 2006007554 A JP2006007554 A JP 2006007554A JP 2006007554 A JP2006007554 A JP 2006007554A JP 2007189154 A JP2007189154 A JP 2007189154A
Authority
JP
Japan
Prior art keywords
heat
heat conductive
bonding material
conductive bonding
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006007554A
Other languages
Japanese (ja)
Inventor
Eiji Tokuhira
英士 徳平
Hitoaki Date
仁昭 伊達
Hiromoto Uchida
浩基 内田
Minoru Ishinabe
稔 石鍋
Atsushi Taniguchi
淳 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006007554A priority Critical patent/JP2007189154A/en
Publication of JP2007189154A publication Critical patent/JP2007189154A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29301Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29309Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29317Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29324Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29387Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92222Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92225Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat conductive bonding material which excels in mass productivity and which can achieve a reduction in thermal resistance and is highly reliable, and to provide a packaging method of a heating element and a heat sink using this heat conductive bonding material. <P>SOLUTION: Thermally conductive particles 11 (copper particles) excellent in thermal conductivity are covered on their surfaces with a low-melting metal 12 (In-Sn-Bi alloy) having a melting point lower than an operating temperature of a silicon chip 2 to constitute a filler 10. The filler 10 is dispersed into a thermosetting resin 13 with a curing temperature lower than the operating temperature of the silicon chip 2 to constitute a thermally conductive bonding agent 1. The bonding agent 1 is applied to the silicon chip 2 (a). After an applied heat conductive bonding material 1 is intervened, and the silicon chip 2 and a heat sink 4 are aligned (b), both are joined (c) without performing a heat-treatment. The silicon chip 2 is operated, the low fusing point metal 12 is fused to obtain a metallic connection by the heat generated from the silicon chip 2 at the time of the performance, and the thermosetting resin 13 is stiffened (d). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体素子などの発熱体で発生した熱を、ヒートシンク、ヒートスプレッダなどの放熱体へ伝導させて放熱するために、発熱体と放熱体との間に介在させる熱伝導接合材、及び、この熱伝導接合材を介して発熱体と放熱体とを実装する方法に関する。   The present invention is a heat conductive bonding material interposed between the heat generating body and the heat dissipating body in order to dissipate the heat generated in the heat generating body such as a semiconductor element by conducting it to a heat dissipating body such as a heat sink and a heat spreader, and The present invention relates to a method of mounting a heat generating body and a heat radiating body via the heat conductive bonding material.

電子機器に使用される半導体素子では、近年、その高集積化、高速化などにより発熱量が著しく多くなっており、半導体素子から発せられる熱を効率良く外部へ放散する必要がある。この熱放散の一手法として、半導体素子にヒートシンクを取り付け、半導体素子で発生した熱をヒートシンクに伝えて放熱することが知られている。この際、半導体素子とヒートシンクとをそのまま接触させた場合には、それらの接合面に空隙が生じるため、熱伝導性が低下することになる。そこで、この空隙を埋めて接合界面の熱抵抗を低減して熱伝導性を向上させるために、半導体素子とヒートシンクとの間に、熱伝導性の接合材を介在させて放熱効率を高くすることが行われている。   2. Description of the Related Art In recent years, semiconductor elements used in electronic devices have a remarkably large amount of heat generated due to their high integration and high speed, and it is necessary to efficiently dissipate heat generated from the semiconductor elements to the outside. As one method of heat dissipation, it is known that a heat sink is attached to a semiconductor element, and heat generated in the semiconductor element is transmitted to the heat sink to dissipate heat. At this time, when the semiconductor element and the heat sink are brought into contact with each other as they are, voids are formed on the joint surfaces thereof, and the thermal conductivity is lowered. Therefore, in order to improve the thermal conductivity by filling the gap and reducing the thermal resistance of the bonding interface, a thermal conductive bonding material is interposed between the semiconductor element and the heat sink to increase the heat dissipation efficiency. Has been done.

このような熱的接続に使用される熱伝導接合材としては、放熱グリースと呼ばれるペースト状のもの、放熱シートまたは熱伝導性シートと呼ばれるシートタイプのものなどがある。これらは、熱伝導性が良好な無機フィラーをベースとなる樹脂に分散させて、ペースト状またはシート状にしたものである。また、銀、銅などの金属フィラーを充填した導電性ペーストも使用されている。しかしながら、これらの接合材は何れも充填されたフィラー同士の接触によって熱を伝えるので、熱抵抗が大きい。   Examples of the heat conductive bonding material used for such a thermal connection include a paste-like material called a heat radiation grease, and a sheet type material called a heat radiation sheet or a heat conductive sheet. These are obtained by dispersing an inorganic filler having good thermal conductivity in a base resin to form a paste or a sheet. In addition, a conductive paste filled with a metal filler such as silver or copper is also used. However, since all of these bonding materials transmit heat by contact between the filled fillers, the thermal resistance is large.

また、他の熱伝導接合材として、熱硬化性樹脂にはんだフィラーを充填させた接合材がある(例えば、特許文献1参照)。熱硬化性樹脂としてエポキシ系樹脂(硬化温度:約150〜200℃)を使用し、はんだフィラーとしてSn−Biはんだ(融点:138℃)を用いた場合には、樹脂の硬化温度においてはんだフィラーも溶融する。この結果、接合材中のフィラー同士、及びフィラーと発熱体または放熱体との間が、接触ではなく、はんだによって金属接合されるために、熱が伝わりやすくなって、熱抵抗を低減できる。
特開2004−335872号公報
As another heat conductive bonding material, there is a bonding material in which a thermosetting resin is filled with a solder filler (see, for example, Patent Document 1). When an epoxy resin (curing temperature: about 150 to 200 ° C.) is used as the thermosetting resin and Sn—Bi solder (melting point: 138 ° C.) is used as the solder filler, the solder filler is also used at the resin curing temperature. Melt. As a result, the filler in the bonding material and between the filler and the heating element or the heat radiating body are not contacted but metal-bonded by solder, so that heat is easily transmitted and thermal resistance can be reduced.
JP 2004-335872 A

しかしながら、上述した手法では、実装時に加熱処理が必要である、硬化温度が高い、硬化時間が長いなどの使用条件の制約が大きく、量産性が要求される用途には適用しにくいという問題があり、改善の余地がある。また、上述のはんだフィラーと熱伝導性フィラーの各々を個別に混合した場合には、樹脂材料内部ではんだフィラーと熱伝導性フィラーとが均一に分散しない。このためにチップが発熱した熱を容易に伝えることができないという問題があった。   However, the above-described method has a problem that it is difficult to apply to applications requiring mass productivity because heat treatment is required at the time of mounting, the curing conditions are high, the curing conditions are long, and the usage time is long. There is room for improvement. In addition, when each of the above-described solder filler and thermally conductive filler is individually mixed, the solder filler and thermally conductive filler are not uniformly dispersed inside the resin material. Therefore, there is a problem that the heat generated by the chip cannot be easily transmitted.

本発明は斯かる事情に鑑みてなされたものであり、このような使用条件の制約が無く、量産性の用途に容易に適用でき、低熱抵抗化及び高信頼性が実現可能な熱伝導接合材、及び、この熱伝導接合材を用いた実装方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is free from such restrictions on use conditions, and can be easily applied to mass-productive applications, and can achieve low thermal resistance and high reliability. And it aims at providing the mounting method using this heat conductive joining material.

本発明に係る熱伝導接合材は、発熱体と放熱体との間に介在され、前記発熱体からの熱を前記放熱体へ伝導する熱伝導接合材において、熱伝導性材の表面を該熱伝導性材より融点が低い金属で被覆してなるフィラーを樹脂中に分散させた材料からなることを特徴とする。   A heat conductive bonding material according to the present invention is interposed between a heat generating body and a heat radiating body, and in the heat conductive bonding material that conducts heat from the heat generating body to the heat radiating body, the surface of the heat conductive material is heated. It is characterized by comprising a material in which a filler formed by coating with a metal having a lower melting point than that of a conductive material is dispersed in a resin.

本発明の熱伝導接合材は、熱伝導性材より融点が低い低融点金属を熱伝導性材の表面に被覆してなるフィラーを樹脂中に分散させて構成されている。この熱伝導接合材を使用した場合、熱伝導接合材中の熱伝導性材は接触でなく、低融点金属によって金属接続されるので、熱が伝わりやすくて熱抵抗は低くなり、良好な放熱特性が得られる。また、樹脂中に分散させるフィラーは1種類であり、均一に分散する。したがって、接合後の金属接続状態を均一にでき、場所によって熱伝導性が異なることはない。   The heat conductive bonding material of the present invention is configured by dispersing a filler formed by coating a surface of a heat conductive material with a low melting point metal having a melting point lower than that of the heat conductive material. When this heat conductive bonding material is used, the heat conductive material in the heat conductive bonding material is not in contact but is metal-connected by a low melting point metal, so that heat is easily transmitted and thermal resistance is low, and good heat dissipation characteristics Is obtained. Moreover, the filler disperse | distributed in resin is one type, and disperse | distributes uniformly. Therefore, the metal connection state after joining can be made uniform, and the thermal conductivity does not vary depending on the location.

本発明に係る熱伝導接合材は、前記金属の融点が、60〜100℃であることを特徴とする。   The heat conductive bonding material according to the present invention is characterized in that the metal has a melting point of 60 to 100 ° C.

本発明の熱伝導接合材では、熱伝導性材の表面に被覆される低融点金属の融点が60〜100℃である。よって、半導体素子などの発熱体の動作時の熱によっても、この低融点金属は容易に溶融する。   In the heat conductive bonding material of the present invention, the melting point of the low melting point metal coated on the surface of the heat conductive material is 60 to 100 ° C. Therefore, the low melting point metal is easily melted by heat during operation of a heating element such as a semiconductor element.

本発明に係る熱伝導接合材は、前記金属が、In−Sn−Bi合金、及びIn−Bi合金から選ばれる少なくとも1種類の合金であることを特徴とする。   The heat conductive bonding material according to the present invention is characterized in that the metal is at least one alloy selected from an In—Sn—Bi alloy and an In—Bi alloy.

本発明の熱伝導接合材では、熱伝導性材の表面に被覆される融点が60〜100℃の低融点金属として、In−Sn−Bi合金、In−Bi合金を使用する。よって、発熱体の動作時にあっても容易に溶融する。   In the heat conductive bonding material of the present invention, an In—Sn—Bi alloy or an In—Bi alloy is used as the low melting point metal having a melting point of 60 to 100 ° C. coated on the surface of the heat conductive material. Therefore, it melts easily even when the heating element is in operation.

本発明に係る実装方法は、自身の動作によって発熱する発熱体に、熱伝導接合材を介して放熱体を実装する方法において、前記発熱体及び/または前記放熱体に、前記発熱体の動作時の温度より融点が低い金属を熱伝導性材の表面に被覆してなるフィラーを樹脂中に分散させてなる前記熱伝導接合材を塗布し、前記発熱体と前記放熱体とを、前記熱伝導接合材を介在させて位置合わせし、前記発熱体を動作させて前記金属を溶融させることを特徴とする。   The mounting method according to the present invention is a method of mounting a heat dissipating member on a heat generating element that generates heat by its own operation via a heat conductive bonding material, wherein the heat generating element and / or the heat dissipating element is operated during operation of the heat generating element. The heat conductive bonding material obtained by dispersing a filler having a melting point lower than the temperature of the metal on the surface of the heat conductive material is applied in the resin, and the heat generating body and the heat dissipating body are connected to the heat conductive material. Positioning is performed with a bonding material interposed therebetween, and the heating element is operated to melt the metal.

本発明の実装方法では、発熱体の動作時の温度より融点が低い低融点金属を熱伝導性材の表面に被覆させたフィラーを樹脂中に分散させてなる熱伝導接合材を、発熱体、放熱体の一方または両方に塗布し、この塗布した熱伝導接合材を介在させて発熱体と放熱体とを位置合わせし、発熱体を動作させてその動作時の熱によって低融点金属を溶融させ、低熱抵抗の接合を実現する。発熱体の動作時に低融点金属を溶融させるので、実装時に特別な加熱処理は不要である。よって、短時間で簡便に実装を行える。この結果、量産性に優れている。また、熱伝導接合材中の熱伝導性材は接触でなく、低融点金属によって金属接続されるので、熱が伝わりやすくて熱抵抗は低くなり、良好な放熱特性が得られる。また、樹脂中のフィラーは1種類であって均一に分散するため、接合後の金属接続状態を均一にでき、場所によって熱伝導性が異なることはない。   In the mounting method of the present invention, a heat conductive bonding material in which a filler obtained by coating a surface of a heat conductive material with a low melting point metal whose melting point is lower than the temperature during operation of the heat generating element is dispersed in a resin, Apply to one or both of the radiators, position the heating element and the radiator with the applied heat conductive bonding material interposed, operate the heating element, and melt the low melting point metal with the heat during operation. Realize low thermal resistance bonding. Since the low melting point metal is melted during operation of the heating element, no special heat treatment is required during mounting. Therefore, mounting can be performed easily in a short time. As a result, it is excellent in mass productivity. Further, since the heat conductive material in the heat conductive bonding material is not contacted but is metal-connected by a low melting point metal, heat is easily transmitted, the heat resistance is lowered, and good heat dissipation characteristics are obtained. Further, since the filler in the resin is one kind and is uniformly dispersed, the metal connection state after joining can be made uniform, and the thermal conductivity does not vary depending on the location.

本発明に係る実装方法は、前記樹脂が、前記発熱体の動作時の温度より低い温度で硬化することを特徴とする。   The mounting method according to the present invention is characterized in that the resin is cured at a temperature lower than a temperature during operation of the heating element.

本発明の実装方法では、樹脂の硬化温度が発熱体の動作時の温度より低い。よって、発熱体の動作時に、低融点金属を溶融させると共に樹脂の硬化を行う。よって、樹脂の硬化のための特別な加熱処理は不要であり、量産性に優れている。   In the mounting method of the present invention, the curing temperature of the resin is lower than the temperature during operation of the heating element. Therefore, during operation of the heating element, the low melting point metal is melted and the resin is cured. Therefore, a special heat treatment for curing the resin is unnecessary, and the mass productivity is excellent.

本発明では、低融点金属を熱伝導性材の表面に被覆させたフィラーを樹脂中に分散させてなる材料を熱伝導接合材としたので、熱伝導接合材中の熱伝導性材は接触でなくて低融点金属により金属接続されるため、熱が伝わりやすくて熱抵抗は低くなり、良好な放熱特性を得ることができる。また、樹脂中に分散させるフィラーは1種類であるため均一に分散することができ、接合後に均一な金属接続状態を実現でき、接合構造全体に均一な熱伝導性を得ることができる。   In the present invention, since the material obtained by dispersing the filler in which the surface of the heat conductive material is coated with the low melting point metal is used as the heat conductive bonding material, the heat conductive material in the heat conductive bonding material is in contact. Therefore, since the metal is connected by a low melting point metal, heat is easily transmitted, the thermal resistance is lowered, and good heat dissipation characteristics can be obtained. Further, since there is only one kind of filler to be dispersed in the resin, it can be uniformly dispersed, a uniform metal connection state can be realized after bonding, and uniform thermal conductivity can be obtained in the entire bonded structure.

また、本発明の実装方法では、発熱体の動作時の温度より融点が低い低融点金属を熱伝導性材の表面に被覆させたフィラーを樹脂中に分散させてなる熱伝導接合材を、発熱体、放熱体の一方または両方に塗布し、この塗布した熱伝導接合材を介在させて発熱体と放熱体とを位置合わせし、発熱体を動作させてその動作時の熱によって低融点金属を溶融させるようにしたので、実装のための特別な加熱処理が不要となって量産性に優れており、しかも、低熱抵抗化を実現することができる。また、1種類であるフィラーは樹脂中に均一に分散しているため、実装後に均一な金属接続状態を実現でき、全体に均一な熱伝導性を得ることができる。   Further, in the mounting method of the present invention, a heat conductive bonding material in which a filler in which a low melting point metal whose melting point is lower than the operating temperature of the heating element is coated on the surface of the heat conductive material is dispersed in the resin is generated. The heat-generating body and the heat-dissipating member are aligned by interposing the applied heat-conducting bonding material, and the heat-generating element is operated to apply the low melting point metal by heat during the operation. Since it is made to melt, a special heat treatment for mounting is not required, and it is excellent in mass productivity, and a low thermal resistance can be realized. Further, since one type of filler is uniformly dispersed in the resin, a uniform metal connection state can be realized after mounting, and uniform thermal conductivity can be obtained as a whole.

以下、本発明をその実施の形態を示す図面を参照して具体的に説明する。図1は、本発明に係る熱伝導接合材の構成を示す図であり、図1(a)は加熱前の構成、図1(b)は加熱後の構成をそれぞれ示している。   Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof. FIG. 1 is a diagram showing a configuration of a heat conductive bonding material according to the present invention. FIG. 1 (a) shows a configuration before heating, and FIG. 1 (b) shows a configuration after heating.

熱伝導接合材1は、熱伝導性材としての熱伝導性粒子11の表面を低融点金属12で被覆してなるフィラー10を、ベース樹脂としての熱硬化性樹脂13中に分散させた構成をなしている(図1(a)参照)。   The heat conductive bonding material 1 has a configuration in which a filler 10 formed by coating the surface of heat conductive particles 11 as a heat conductive material with a low melting point metal 12 is dispersed in a thermosetting resin 13 as a base resin. (See FIG. 1 (a)).

熱伝導性粒子11は、融点が300℃以上で熱伝導性に優れた金属フィラー、無機フィラーを使用する。具体的には、熱伝導性粒子11として、銅、銀、金、アルミニウムなどの金属フィラー、アルミナ、シリカ、窒化アルミニウム、窒化ホウ素、酸化亜鉛などの無機フィラーを使用できる。低融点金属12は、後述する発熱体としてのシリコンチップ2の動作時の発熱温度より低い融点(約60〜100℃)を有しており、具体的には、例えばIn−Sn−Bi合金、In−Bi合金などからなる金属を使用できる。熱硬化性樹脂13は、シリコンチップ2の動作時の発熱温度より低い温度(約60〜100℃)で硬化する樹脂であり、主剤としてのエポキシ樹脂とマイクロカプセル型の硬化剤とを含んでいる。   The heat conductive particles 11 use a metal filler or an inorganic filler having a melting point of 300 ° C. or higher and excellent heat conductivity. Specifically, as the thermally conductive particles 11, a metal filler such as copper, silver, gold, or aluminum, or an inorganic filler such as alumina, silica, aluminum nitride, boron nitride, or zinc oxide can be used. The low melting point metal 12 has a melting point (about 60 to 100 ° C.) lower than the heat generation temperature at the time of operation of the silicon chip 2 as a heating element described later. Specifically, for example, an In—Sn—Bi alloy, A metal made of an In—Bi alloy or the like can be used. The thermosetting resin 13 is a resin that cures at a temperature lower than the heat generation temperature during operation of the silicon chip 2 (about 60 to 100 ° C.), and includes an epoxy resin as a main agent and a microcapsule type curing agent. .

なお、熱伝導接合材1におけるフィラー10の充填量は、良好な熱伝導性を得るために50体積%以上であることが好ましい。複数種のフィラーを樹脂中に分散させる場合には、それらの各種のフィラーの均一な分散は困難であるが、本発明ではこの場合とは異なり、1種類のフィラー10のみを熱硬化性樹脂13中に分散させるので、多数のフィラー10を均一に分散させることは容易である。   In addition, it is preferable that the filling amount of the filler 10 in the heat conductive bonding material 1 is 50% by volume or more in order to obtain good heat conductivity. In the case where a plurality of types of fillers are dispersed in the resin, it is difficult to uniformly disperse these various types of fillers. However, in the present invention, unlike this case, only one type of filler 10 is used as the thermosetting resin 13. Since it is dispersed inside, it is easy to disperse many fillers 10 uniformly.

このような構成の熱伝導接合材1を加熱した場合、熱伝導性粒子11表面の低融点金属12が溶融して熱伝導性粒子11同士が金属接続する(図1(b)参照)。この際、熱硬化性樹脂13は硬化する。   When the heat conductive bonding material 1 having such a configuration is heated, the low melting point metal 12 on the surface of the heat conductive particles 11 is melted and the heat conductive particles 11 are metal-connected (see FIG. 1B). At this time, the thermosetting resin 13 is cured.

次に、上述したような構成を有する熱伝導接合材1を用いる本発明の実装方法について説明する。図2は、本発明に係る実装方法の工程の一例を示す図である。   Next, the mounting method of the present invention using the heat conductive bonding material 1 having the above-described configuration will be described. FIG. 2 is a diagram showing an example of the steps of the mounting method according to the present invention.

まず、発熱体であるシリコンチップ(半導体素子)2の一面(上面)に、熱伝導接合材1を塗布する(図2(a))。シリコンチップ2の他面(下面)には、複数のバンプ21が形成され、各バンプ21は、回路基板3の各電極31と接続されている。また、シリコンチップ2と回路基板3との間は封止樹脂32により封止されている。   First, the heat conductive bonding material 1 is applied to one surface (upper surface) of a silicon chip (semiconductor element) 2 that is a heating element (FIG. 2A). A plurality of bumps 21 are formed on the other surface (lower surface) of the silicon chip 2, and each bump 21 is connected to each electrode 31 of the circuit board 3. The space between the silicon chip 2 and the circuit board 3 is sealed with a sealing resin 32.

次いで、熱伝導接合材1を介在させて、シリコンチップ2と放熱体であるヒートシンク4との位置合わせを行った後(図2(b))、両者を接合させる(図2(c))。この際、加熱処理は必要ない。   Next, the silicon chip 2 and the heat sink 4 as a heat dissipating member are aligned with the heat conductive bonding material 1 interposed therebetween (FIG. 2B), and then both are bonded (FIG. 2C). At this time, heat treatment is not necessary.

その後、接合後のシリコンチップ2の作動試験においてシリコンチップ2を動作させる。このシリコンチップ2の動作時に、シリコンチップ2から発生する熱によって、熱伝導性粒子11表面の低融点金属12が溶融して熱伝導性粒子11同士、熱伝導性粒子11とシリコンチップ2及びヒートシンク4との間が金属接続されると共に、熱硬化性樹脂13が硬化する(図2(d))。   Thereafter, the silicon chip 2 is operated in the operation test of the silicon chip 2 after bonding. During the operation of the silicon chip 2, the low melting point metal 12 on the surface of the heat conductive particles 11 is melted by heat generated from the silicon chip 2, and the heat conductive particles 11, the heat conductive particles 11, the silicon chip 2, and the heat sink. 4 is metal-connected, and the thermosetting resin 13 is cured (FIG. 2D).

以上のように、本発明では、シリコンチップ2(発熱体)の動作時の熱を利用することによって、低熱抵抗化を実現するためには必須の金属接続を行う。また、この動作時の熱を利用してベース材である熱硬化性樹脂13の硬化を行う。よって、低熱抵抗化を実現するために従来例では不可欠であった加熱処理を無くすことができて、実装処理を簡便に行えるため、量産性に優れている。また、併せて低熱抵抗化も実現できている。   As described above, in the present invention, metal connection essential for realizing a low thermal resistance is performed by using heat during operation of the silicon chip 2 (heating element). Further, the thermosetting resin 13 that is the base material is cured by using heat during this operation. Therefore, the heat treatment that has been indispensable in the prior art for realizing a low thermal resistance can be eliminated, and the mounting process can be easily performed, which is excellent in mass productivity. In addition, a low thermal resistance can be realized.

また、1種類のフィラー10が均一に分散されているので、接合後の金属接続状態を均一にでき、場所によって熱伝導性が異なるような不具合は生じず、全体に均一な熱伝導性を実現することができる。   In addition, since one kind of filler 10 is uniformly dispersed, the metal connection state after joining can be made uniform, and there is no problem that the thermal conductivity differs depending on the location, and uniform thermal conductivity is realized as a whole. can do.

また、本実施の形態では、熱硬化性樹脂13がマイクロカプセル型硬化剤を含有しているので、シリコンチップ2の動作時にカプセルが融けて中の硬化剤が流出し、熱硬化性樹脂13が硬化する。よって、常温で反応する硬化剤も使用可能であり、その使用範囲が広くなる。   In the present embodiment, since the thermosetting resin 13 contains a microcapsule-type curing agent, the capsule melts during operation of the silicon chip 2 and the curing agent inside flows out. Harden. Therefore, a curing agent that reacts at room temperature can be used, and the range of use is widened.

なお、上記実施の形態では、発熱体(シリコンチップ2)に熱伝導接合材1を塗布することとしたが、これとは異なり、放熱体(ヒートシンク4)に熱伝導接合材1を塗布しても良く、また、発熱体(シリコンチップ2)及び放熱体(ヒートシンク4)の両方に熱伝導接合材1を塗布するようにしても良い。   In the above embodiment, the heat conductive bonding material 1 is applied to the heating element (silicon chip 2). However, unlike this, the heat conductive bonding material 1 is applied to the heat radiating body (heat sink 4). Alternatively, the heat conductive bonding material 1 may be applied to both the heat generating body (silicon chip 2) and the heat radiating body (heat sink 4).

以下、実施例に基づき本発明をより具体的に説明する。但し、本発明は、以下の実施例に限定されるものではない。   Hereinafter, based on an Example, this invention is demonstrated more concretely. However, the present invention is not limited to the following examples.

(実施例1)
以下の成分からなる熱伝導接合材1を作製した。
フィラー(フィラー10)
・銅粒子からなる熱伝導性粒子11(平均粒径:10μm)の表面をIn−Sn−B i合金(融点:60℃)からなる低融点金属12でメッキしたもの
樹脂(熱硬化性樹脂13)
・主剤1:ビスフェノールF型エポキシ(EXA−830LVP,大日本インキ)
50重量部
・主剤2:ナフタレン型エポキシ(HP−4032D,大日本インキ)
50重量部
・硬化剤:酸無水物(KRM−291−5,旭電化)
100重量部
・促進剤:イミダゾール(HX−3921 HP,旭化成ケミカルズ)
1重量部
Example 1
The heat conductive joining material 1 which consists of the following components was produced.
Filler (Filler 10)
-The surface of the thermally conductive particles 11 (average particle diameter: 10 μm) made of copper particles is plated with a low melting point metal 12 made of an In—Sn—Bi alloy (melting point: 60 ° C.) Resin (thermosetting resin 13 )
・ Main agent 1: Bisphenol F type epoxy (EXA-830LVP, Dainippon Ink)
50 parts by weight-Main agent 2: Naphthalene type epoxy (HP-4032D, Dainippon Ink)
50 parts by weight ・ Curing agent: acid anhydride (KRM-291-5, Asahi Denka)
100 parts by weight-Accelerator: Imidazole (HX-3922 HP, Asahi Kasei Chemicals)
1 part by weight

上記成分を有する樹脂に対して、上記フィラー10を50体積%添加して熱伝導接合材1を作製した。作製した熱伝導接合材1を用いて、前述した実装工程の手順(図2(a)〜(d)参照)に従って、シリコンチップ2及びヒートシンク4を実装させた。そして、得られた実装品(図2(d)参照)の熱特性を測定した。   The heat conductive joining material 1 was produced by adding 50% by volume of the filler 10 to the resin having the above components. The silicon chip 2 and the heat sink 4 were mounted using the manufactured heat conductive bonding material 1 in accordance with the procedure of the mounting process described above (see FIGS. 2A to 2D). And the thermal characteristic of the obtained mounting product (refer FIG.2 (d)) was measured.

接合部の熱抵抗を測定した結果、0.03℃・cm2 /Wと極めて低い熱抵抗で接合できていることを確認できた。また、熱伝導特性は、何れの場所でも均一であった。 As a result of measuring the thermal resistance of the bonded portion, it was confirmed that the bonding was possible with an extremely low thermal resistance of 0.03 ° C. · cm 2 / W. Further, the heat conduction characteristics were uniform everywhere.

(比較例1)
In−Sn−Bi合金製の第1フィラー(融点:60℃、平均粒径:10μm)と、表面を銀メッキした銅製の第2フィラー(平均粒径:35μm)との2種類のフィラーを、実施例1と同様の樹脂に50体積%分散させて熱伝導接合材を作製した。なお、第1フィラーと第2フィラーとの配合比率は1:1とした。
(Comparative Example 1)
Two fillers, a first filler made of an In—Sn—Bi alloy (melting point: 60 ° C., average particle size: 10 μm) and a second filler made of copper whose surface is silver-plated (average particle size: 35 μm), A heat conductive bonding material was prepared by dispersing 50% by volume in the same resin as in Example 1. In addition, the mixture ratio of the 1st filler and the 2nd filler was 1: 1.

その作製した熱伝導接合材を用いて、実施例1と同様にシリコンチップとヒートシンクとの実装を行い、その実装品の熱特性を測定した。その結果、接合部の熱抵抗は0.06℃・cm2 /Wであり、実施例1と比較して高かった。また、場所による熱伝導特性のばらつきが見られた。 Using the manufactured heat conductive bonding material, the silicon chip and the heat sink were mounted in the same manner as in Example 1, and the thermal characteristics of the mounted product were measured. As a result, the thermal resistance of the joint was 0.06 ° C. · cm 2 / W, which was higher than that of Example 1. In addition, variation in heat conduction characteristics depending on the location was observed.

実施例1の方が、比較例1に比べて熱抵抗は低かった。これは、実施例1のフィラーは熱伝導性が高い銅フィラーにて実質的に構成されているが、比較例1では銅フィラーの他に熱伝導性が低いIn−Sn−Biフィラーを含有させており、熱伝導性が高い銅フィラーの含有割合に違いがあるからと考えられる。また、比較例1で熱伝導特性にばらつきが見られたのは、比較例1では2種類のフィラーを含有させたのでフィラーの分散が不均一となったことに起因すると考えられる。これに対して、実施例1では、フィラーが1種類であり、全体に均一な熱伝導特性を得ることができている。   The thermal resistance of Example 1 was lower than that of Comparative Example 1. This is because the filler of Example 1 is substantially composed of a copper filler with high thermal conductivity, but Comparative Example 1 contains an In—Sn—Bi filler with low thermal conductivity in addition to the copper filler. It is thought that there is a difference in the content of the copper filler having high thermal conductivity. Further, the variation in the heat conduction characteristics in Comparative Example 1 is considered to be caused by the fact that the dispersion of the filler became non-uniform because two types of fillers were contained in Comparative Example 1. On the other hand, in Example 1, there is one kind of filler, and uniform heat conduction characteristics can be obtained throughout.

以上の本発明の実施の形態または実施例に関し、更に以下の付記を開示する。
(付記1) 発熱体と放熱体との間に介在され、前記発熱体からの熱を前記放熱体へ伝導する熱伝導接合材において、熱伝導性材の表面を該熱伝導性材より融点が低い金属で被覆してなるフィラーを樹脂中に分散させた材料からなることを特徴とする熱伝導接合材。 (付記2) 前記金属の融点は、60〜100℃であることを特徴とする付記1記載の熱伝導接合材。
(付記3) 前記金属は、In−Sn−Bi合金、及びIn−Bi合金から選ばれる少なくとも1種類の合金であることを特徴とする付記1または2記載の熱伝導接合材。
(付記4) 前記熱伝導性材は、銅、銀、金、若しくはアルミニウムの金属フィラー、または、アルミナ、シリカ、窒化アルミニウム、窒化ホウ素、若しくは酸化亜鉛の無機フィラーを含むことを特徴とする付記1乃至3の何れかに記載の熱伝導接合材。
(付記5) 前記フィラーの割合が50体積%以上であることを特徴とする付記1乃至4の何れかに記載の熱伝導接合材。
(付記6) 前記樹脂は、マイクロカプセル型硬化剤を含有していることを特徴とする付記1乃至5の何れかに記載の熱伝導接合材。
(付記7) 前記樹脂の硬化温度は、60〜100℃であることを特徴とする付記1乃至6の何れかに記載の熱伝導接合材。
(付記8) 自身の動作によって発熱する発熱体に、熱伝導接合材を介して放熱体を実装する方法において、前記発熱体及び/または前記放熱体に、前記発熱体の動作時の温度より融点が低い金属を熱伝導性材の表面に被覆してなるフィラーを樹脂中に分散させてなる前記熱伝導接合材を塗布し、前記発熱体と前記放熱体とを、前記熱伝導接合材を介在させて位置合わせし、前記発熱体を動作させて前記金属を溶融させることを特徴とする実装方法。
(付記9) 前記樹脂は、前記発熱体の動作時の温度より低い温度で硬化することを特徴とする付記8記載の実装方法。
The following supplementary notes are further disclosed with respect to the above-described embodiments or examples of the present invention.
(Additional remark 1) In the heat conductive joining material interposed between a heat generating body and a heat radiator and conducting the heat from the heat generating body to the heat radiator, the melting point of the surface of the heat conductive material is higher than that of the heat conductive material. A heat conductive bonding material comprising a material in which a filler coated with a low metal is dispersed in a resin. (Additional remark 2) Melting | fusing point of the said metal is 60-100 degreeC, The heat conductive joining material of Additional remark 1 characterized by the above-mentioned.
(Additional remark 3) The said metal is at least 1 type of alloy chosen from an In-Sn-Bi alloy and an In-Bi alloy, The heat conductive joining material of Additional remark 1 or 2 characterized by the above-mentioned.
(Additional remark 4) The said heat conductive material contains the inorganic filler of a metal filler of copper, silver, gold | metal | money, or aluminum, or alumina, a silica, aluminum nitride, boron nitride, or zinc oxide, The additional note 1 characterized by the above-mentioned. The heat conductive joining material in any one of thru | or 3.
(Additional remark 5) The heat conductive joining material in any one of Additional remark 1 thru | or 4 characterized by the ratio of the said filler being 50 volume% or more.
(Additional remark 6) The said resin contains the microcapsule type hardening | curing agent, The heat conductive joining material in any one of Additional remark 1 thru | or 5 characterized by the above-mentioned.
(Additional remark 7) The heat conductive bonding material in any one of additional remark 1 thru | or 6 characterized by the curing temperature of the said resin being 60-100 degreeC.
(Supplementary Note 8) In a method of mounting a heat dissipation body on a heating element that generates heat by its own operation via a heat conductive bonding material, the melting point of the heating element and / or the heat dissipation element is higher than the temperature during operation of the heating element. Applying the heat conductive bonding material in which a filler formed by coating a metal with a low metal on the surface of the heat conductive material is dispersed in a resin, and interposing the heat conductive bonding material between the heat generating body and the heat radiating body The mounting method is characterized by aligning and operating the heating element to melt the metal.
(Additional remark 9) The said resin hardens | cures at temperature lower than the temperature at the time of the operation | movement of the said heat generating body, The mounting method of Additional remark 8 characterized by the above-mentioned.

本発明に係る熱伝導接合材の構成を示す図である。It is a figure which shows the structure of the heat conductive joining material which concerns on this invention. 本発明に係る実装方法の工程の一例を示す図である。It is a figure which shows an example of the process of the mounting method which concerns on this invention.

符号の説明Explanation of symbols

1 熱伝導接合材
2 シリコンチップ(発熱体)
4 ヒートシンク(放熱体)
10 フィラー
11 熱伝導性粒子(熱伝導性材)
12 低融点金属(金属)
13 熱硬化性樹脂
1 Thermal conductive bonding material 2 Silicon chip (heating element)
4 Heat sink (heat sink)
10 Filler 11 Thermally conductive particles (thermally conductive material)
12 Low melting point metal (metal)
13 Thermosetting resin

Claims (5)

発熱体と放熱体との間に介在され、前記発熱体からの熱を前記放熱体へ伝導する熱伝導接合材において、
熱伝導性材の表面を該熱伝導性材より融点が低い金属で被覆してなるフィラーを樹脂中に分散させた材料からなることを特徴とする熱伝導接合材。
In the heat conductive bonding material that is interposed between the heat generating body and the heat radiating body and conducts heat from the heat generating body to the heat radiating body,
A heat conductive bonding material comprising a material in which a filler formed by coating the surface of a heat conductive material with a metal having a melting point lower than that of the heat conductive material is dispersed in a resin.
前記金属の融点は、60〜100℃であることを特徴とする請求項1記載の熱伝導接合材。   The heat conductive bonding material according to claim 1, wherein the melting point of the metal is 60 to 100 ° C. 前記金属は、In−Sn−Bi合金、及びIn−Bi合金から選ばれる少なくとも1種類の合金であることを特徴とする請求項1または2記載の熱伝導接合材。   The heat conductive bonding material according to claim 1, wherein the metal is at least one alloy selected from an In—Sn—Bi alloy and an In—Bi alloy. 自身の動作によって発熱する発熱体に、熱伝導接合材を介して放熱体を実装する方法において、
前記発熱体及び/または前記放熱体に、前記発熱体の動作時の温度より融点が低い金属を熱伝導性材の表面に被覆してなるフィラーを樹脂中に分散させてなる前記熱伝導接合材を塗布し、
前記発熱体と前記放熱体とを、前記熱伝導接合材を介在させて位置合わせし、
前記発熱体を動作させて前記金属を溶融させることを特徴とする実装方法。
In a method of mounting a heat sink on a heating element that generates heat by its own operation via a heat conductive bonding material,
The heat conductive bonding material obtained by dispersing a filler formed by coating a surface of a heat conductive material with a metal having a melting point lower than a temperature at the time of operation of the heat generating material on the heat generating body and / or the heat radiating body. Apply
The heating element and the radiator are aligned with the heat conductive bonding material interposed therebetween,
A mounting method comprising operating the heating element to melt the metal.
前記樹脂は、前記発熱体の動作時の温度より低い温度で硬化することを特徴とする請求項4記載の実装方法。   The mounting method according to claim 4, wherein the resin is cured at a temperature lower than a temperature during operation of the heating element.
JP2006007554A 2006-01-16 2006-01-16 Heat conductive bonding material, and packaging method Withdrawn JP2007189154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007554A JP2007189154A (en) 2006-01-16 2006-01-16 Heat conductive bonding material, and packaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007554A JP2007189154A (en) 2006-01-16 2006-01-16 Heat conductive bonding material, and packaging method

Publications (1)

Publication Number Publication Date
JP2007189154A true JP2007189154A (en) 2007-07-26

Family

ID=38344091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007554A Withdrawn JP2007189154A (en) 2006-01-16 2006-01-16 Heat conductive bonding material, and packaging method

Country Status (1)

Country Link
JP (1) JP2007189154A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102956578A (en) * 2011-08-24 2013-03-06 松下电器产业株式会社 Resin-diamagnetic material composite structure, method for producing the same, and semiconductor device using the same
US8803001B2 (en) 2011-06-21 2014-08-12 Toyota Motor Engineering & Manufacturing North America, Inc. Bonding area design for transient liquid phase bonding process
US8814030B2 (en) * 2012-04-17 2014-08-26 Toyota Motor Engineering & Manufacturing North America, Inc. Improvements of long term bondline reliability of power electronics operating at high temperatures
US9044822B2 (en) 2012-04-17 2015-06-02 Toyota Motor Engineering & Manufacturing North America, Inc. Transient liquid phase bonding process for double sided power modules
US10058951B2 (en) 2012-04-17 2018-08-28 Toyota Motor Engineering & Manufacturing North America, Inc. Alloy formation control of transient liquid phase bonding

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8803001B2 (en) 2011-06-21 2014-08-12 Toyota Motor Engineering & Manufacturing North America, Inc. Bonding area design for transient liquid phase bonding process
CN102956578A (en) * 2011-08-24 2013-03-06 松下电器产业株式会社 Resin-diamagnetic material composite structure, method for producing the same, and semiconductor device using the same
CN102956578B (en) * 2011-08-24 2016-08-31 松下知识产权经营株式会社 Resin-diamagnetic substance complex structure body, its manufacture method and use its semiconductor device
US8814030B2 (en) * 2012-04-17 2014-08-26 Toyota Motor Engineering & Manufacturing North America, Inc. Improvements of long term bondline reliability of power electronics operating at high temperatures
US9044822B2 (en) 2012-04-17 2015-06-02 Toyota Motor Engineering & Manufacturing North America, Inc. Transient liquid phase bonding process for double sided power modules
US10058951B2 (en) 2012-04-17 2018-08-28 Toyota Motor Engineering & Manufacturing North America, Inc. Alloy formation control of transient liquid phase bonding

Similar Documents

Publication Publication Date Title
JP4776192B2 (en) Thermal interface adhesive
US7952192B2 (en) Melting temperature adjustable metal thermal interface materials and packaged semiconductors including thereof
JP4089636B2 (en) Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
JP4086822B2 (en) HEAT CONDUCTIVE STRUCTURE AND METHOD FOR PRODUCING HEAT CONDUCTIVE STRUCTURE
JP5237254B2 (en) HEAT CONDUCTIVE MEMBER, ELECTRONIC DEVICE, AND METHOD OF USING THE HEAT CONDUCTIVE MEMBER
JP6287682B2 (en) Bonded body and power module substrate
JP5120032B2 (en) Electronic equipment
JP4735446B2 (en) Semiconductor device
JP2007189154A (en) Heat conductive bonding material, and packaging method
TW201709352A (en) Device with thermal interface and manufacturing method
JP6508193B2 (en) Semiconductor device manufacturing method and semiconductor device
JP4412578B2 (en) Thermally conductive material, thermally conductive joined body using the same, and manufacturing method thereof
WO2017122306A1 (en) Heatsink structure, semiconductor device, and method for manufacturing heatsink structure
JP2013508532A (en) Thermal interface material with epoxidized nutshell oil
JP4693624B2 (en) Implementation method
JP2008101227A (en) Thermally conductive resin sheet and power module using the same
JP4407509B2 (en) Insulated heat transfer structure and power module substrate
TWI484604B (en) Metal thermal interface materials and packaged semiconductors comprising the materials
US10607857B2 (en) Semiconductor device assembly including a thermal interface bond between a semiconductor die and a passive heat exchanger
JP5515251B2 (en) Semiconductor device and manufacturing method thereof
TW201907522A (en) Solder and method for die attach
JP7348485B2 (en) Manufacturing method for package substrates, electronic devices and package substrates
JP3865957B2 (en) Thermally conductive compounds
JP2013544895A (en) Heat conduction device between two components and method for manufacturing the heat conduction device
JP6647139B2 (en) Heat dissipation sheet and semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407