JP2007187376A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2007187376A
JP2007187376A JP2006005168A JP2006005168A JP2007187376A JP 2007187376 A JP2007187376 A JP 2007187376A JP 2006005168 A JP2006005168 A JP 2006005168A JP 2006005168 A JP2006005168 A JP 2006005168A JP 2007187376 A JP2007187376 A JP 2007187376A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
refrigerant
temperature sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006005168A
Other languages
Japanese (ja)
Inventor
Yuichi Rokkaku
雄一 六角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006005168A priority Critical patent/JP2007187376A/en
Publication of JP2007187376A publication Critical patent/JP2007187376A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner that can reduce refrigerant noise and reduce power consumption for a defrosting operation. <P>SOLUTION: In a defrosting operation, the air conditioner compares a temperature tempA of a refrigerant circuit of an outdoor heat exchanger 5 with a predetermined temperature Temp1 (for example, 8°C) at predetermined time intervals ΔT. If tempA>Temp1, which asserts a smaller refrigerant circulation quantity, the rotating speed of a compressor 6 is reduced by a predetermined level and the opening of an expansion valve 3 is reduced by a predetermined level. The refrigerant circulation quantity is thus controlled to maintain the temperature tempA of the refrigerant circuit of the outdoor heat exchanger 5 about the predetermined temperature Temp1. This prevents the generation of refrigerant noise when the defrosting operation is switched to a heating operation. The control of the refrigerant circulation quantity within a necessary level also reduces power consumption for the defrosting operation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、空気調和機に関し、特に、室外熱交換器に着霜した場合に除霜運転を行なう空気調和機に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner that performs a defrosting operation when frost is formed on an outdoor heat exchanger.

従来より、空気調和機は、室内熱交換器で発生した冷媒液を減圧装置で減圧して室外熱交換器に与え、その室外熱交換器で発生した冷媒ガスを圧縮機で圧縮して室内熱交換器に与え、室内暖房を行なっている。また、室外熱交換器に着霜した場合は、室外熱交換器で発生した冷媒液を減圧装置で減圧して室内熱交換器に与え、その室内熱交換器で発生した冷媒ガスを圧縮機で圧縮して室外熱交換器に与え、室外熱交換器を加熱して除霜している。除霜運転時は、除霜し易くするため、室外熱交換器に室外空気を供給する室外送風機の駆動は停止される。   Conventionally, an air conditioner has decompressed refrigerant liquid generated in an indoor heat exchanger with a decompression device and applied it to the outdoor heat exchanger, and compressed the refrigerant gas generated in the outdoor heat exchanger with a compressor. It is given to the exchanger and room heating is performed. In addition, when the outdoor heat exchanger is frosted, the refrigerant liquid generated in the outdoor heat exchanger is decompressed by the decompression device and given to the indoor heat exchanger, and the refrigerant gas generated in the indoor heat exchanger is It compresses and gives to an outdoor heat exchanger, and the outdoor heat exchanger is heated and defrosted. During the defrosting operation, the driving of the outdoor blower that supplies outdoor air to the outdoor heat exchanger is stopped to facilitate defrosting.

しかし、従来の空気調和機では、除霜運転時に室外送風機の駆動を停止していたので、室外熱交換器で十分な過冷却を行なうことができず、室内熱交換器に2相(液相、気相)の冷媒が流れて冷媒音が発生するという問題があった。   However, in the conventional air conditioner, since the driving of the outdoor fan is stopped during the defrosting operation, the outdoor heat exchanger cannot perform sufficient supercooling, and the indoor heat exchanger has two phases (liquid phase). , Gas phase) refrigerant flows and refrigerant noise is generated.

そこで、室外熱交換器の温度が所定値T1以上になったとき圧縮機の運転を一定に維持したまま室外送風機の運転を再開し、室外熱交換器の温度がさらに上昇して所定値T2以上になったとき除霜運転を停止する除霜方法が提案された。この除霜方法では、除霜運転中に室外送風機の運転を再開するので、室外熱交換器で十分な過冷却を行なうことができ、室内熱交換器に2相の冷媒が流れて冷媒音が発生するのを防止することができる(たとえば特許文献1参照)。
特開2003−172560号公報
Therefore, when the temperature of the outdoor heat exchanger becomes equal to or higher than the predetermined value T1, the operation of the outdoor fan is resumed while maintaining the operation of the compressor constant, and the temperature of the outdoor heat exchanger further rises to exceed the predetermined value T2. A defrosting method has been proposed in which the defrosting operation is stopped when it becomes. In this defrosting method, since the operation of the outdoor fan is resumed during the defrosting operation, the outdoor heat exchanger can perform sufficient supercooling, and the two-phase refrigerant flows into the indoor heat exchanger and the refrigerant sound is generated. Generation | occurrence | production can be prevented (for example, refer patent document 1).
JP 2003-172560 A

しかし、従来の除霜方法では、除霜運転中に圧縮機と室外送風機の両方を運転するので
、消費電力が大きくなるという問題があった。
However, in the conventional defrosting method, since both the compressor and the outdoor fan are operated during the defrosting operation, there is a problem that power consumption increases.

それゆえに、この発明の主たる目的は、冷媒音を低減し、かつ除霜運転時における消費電力を低減することが可能な空気調和機を提供することである。   Therefore, a main object of the present invention is to provide an air conditioner capable of reducing refrigerant noise and reducing power consumption during defrosting operation.

この発明に係わる空気調和機は、暖房時は、室内熱交換器で発生した冷媒液を減圧装置で減圧して室外熱交換器に与え、該室外熱交換器で発生した冷媒ガスを圧縮機で圧縮して室内熱交換器に与え、室外熱交換器の除霜時は、室外熱交換器で発生した冷媒液を減圧装置で減圧して室内熱交換器に与え、該室内熱交換器で発生した冷媒ガスを圧縮機で圧縮して室外熱交換器に与える空気調和機において、室外熱交換器を構成する冷媒回路の温度を検出する温度センサと、室外熱交換器の除霜時において、所定時間ごとに温度センサの検出値と予め定められた温度とを比較し、温度センサの検出値が予め定められた温度よりも高い場合は圧縮機の回転数を所定数だけ低下させる制御部とを備えたことを特徴とする。   In the air conditioner according to the present invention, during heating, the refrigerant liquid generated in the indoor heat exchanger is depressurized by a decompression device and applied to the outdoor heat exchanger, and the refrigerant gas generated in the outdoor heat exchanger is supplied by the compressor. Compressed and applied to the indoor heat exchanger, and when the outdoor heat exchanger is defrosted, the refrigerant liquid generated in the outdoor heat exchanger is depressurized by the decompression device and applied to the indoor heat exchanger, and generated in the indoor heat exchanger. In the air conditioner that compresses the refrigerant gas with the compressor and gives it to the outdoor heat exchanger, a temperature sensor that detects the temperature of the refrigerant circuit that constitutes the outdoor heat exchanger, and a predetermined value when defrosting the outdoor heat exchanger A control unit that compares the detected value of the temperature sensor with a predetermined temperature every time and reduces the rotational speed of the compressor by a predetermined number when the detected value of the temperature sensor is higher than the predetermined temperature. It is characterized by having.

好ましくは、減圧装置は、室内熱交換器と室外熱交換器の間に設けられた膨張弁であり、制御部は、さらに、室外熱交換器の除霜時において、温度センサの検出値が予め定められた温度よりも高い場合は膨張弁の開度を閉じる方向に制御する。   Preferably, the decompression device is an expansion valve provided between the indoor heat exchanger and the outdoor heat exchanger, and the control unit further detects the detected value of the temperature sensor in advance during defrosting of the outdoor heat exchanger. When the temperature is higher than the predetermined temperature, the opening degree of the expansion valve is controlled to close.

また好ましくは、温度センサは、室外熱交換器を構成する冷媒回路の配管の略中間部分に設けられる。   Preferably, the temperature sensor is provided in a substantially middle part of the piping of the refrigerant circuit constituting the outdoor heat exchanger.

この発明に係わる他の空気調和機は、暖房時は、室内熱交換器で発生した冷媒液を減圧装置で減圧して室外熱交換器に与え、該室外熱交換器で発生した冷媒ガスを圧縮機で圧縮して室内熱交換器に与え、室外熱交換器の除霜時は、室外熱交換器で発生した冷媒液を減圧装置で減圧して室内熱交換器に与え、該室内熱交換器で発生した冷媒ガスを圧縮機で圧縮して室外熱交換器に与える空気調和機において、室外熱交換器を構成する冷媒回路の温度を検出する第1の温度センサと、室内熱交換器を構成する冷媒回路の温度を検出する第2の温度センサと、室外熱交換器の除霜時において、所定時間ごとに第1および第2の温度センサの検出値の差と予め定められた値とを比較し、第1および第2の温度センサの検出値の差が予め定められた値よりも大きい場合は圧縮機の回転数を所定数だけ低下させる制御部とを備えたことを特徴とする。   In another air conditioner according to the present invention, during heating, the refrigerant liquid generated in the indoor heat exchanger is depressurized by a decompression device and applied to the outdoor heat exchanger, and the refrigerant gas generated in the outdoor heat exchanger is compressed. The refrigerant is compressed by a machine and supplied to the indoor heat exchanger. When the outdoor heat exchanger is defrosted, the refrigerant liquid generated in the outdoor heat exchanger is decompressed by a decompression device and given to the indoor heat exchanger. In the air conditioner which compresses the refrigerant gas generated in the compressor by the compressor and gives it to the outdoor heat exchanger, the first temperature sensor for detecting the temperature of the refrigerant circuit constituting the outdoor heat exchanger and the indoor heat exchanger are configured. A second temperature sensor that detects the temperature of the refrigerant circuit that performs the defrosting of the outdoor heat exchanger, and a difference between detection values of the first and second temperature sensors and a predetermined value at predetermined time intervals. The difference between the detection values of the first and second temperature sensors is compared with a predetermined value. Again greater, characterized in that a control unit for reducing the rotational speed of the compressor by a predetermined number.

好ましくは、減圧装置は、室内熱交換器と室外熱交換器の間に設けられた膨張弁であり、制御部は、さらに、室外熱交換器の除霜時において、第1および第2の温度センサの検出値の差が予め定められた値よりも大きい場合は膨張弁の開度を閉じる方向に制御する。   Preferably, the decompression device is an expansion valve provided between the indoor heat exchanger and the outdoor heat exchanger, and the control unit further includes the first and second temperatures during defrosting of the outdoor heat exchanger. When the difference between the detection values of the sensors is larger than a predetermined value, the opening of the expansion valve is controlled to close.

また好ましくは、第1の温度センサは、室外熱交換器を構成する冷媒回路の配管の略中間部分に設けられ、第2の温度センサは、室内熱交換器を構成する冷媒回路の配管の略中間部分に設けられる。   Preferably, the first temperature sensor is provided in a substantially middle portion of the piping of the refrigerant circuit constituting the outdoor heat exchanger, and the second temperature sensor is substantially a piping of the refrigerant circuit constituting the indoor heat exchanger. Provided in the middle part.

この発明に係わる空気調和機では、室外熱交換器を構成する冷媒回路の温度を検出する温度センサと、室外熱交換器の除霜時において、所定時間ごとに温度センサの検出値と予め定められた温度とを比較し、温度センサの検出値が予め定められた温度よりも高い場合は圧縮機の回転数を所定数だけ低下させる制御部とが設けられる。したがって、室外熱交換器を構成する冷媒回路の温度が予め定められた温度の近傍を維持するように冷媒の循環量が制御される。これにより、室外および室内側の冷媒の圧力差が無駄に大きくならないため、除霜運転から暖房運転に切換える際に冷媒音が発生するのが防止される。また、圧縮機の回転数を下げるので、除霜運転時の消費電力が低減される。また、除霜運転時に室内側の冷媒と室外側の冷媒との圧力差が大きくならないため、除霜運転から暖房運転に切換える間の待機時間を短くすることも可能になる。   In the air conditioner according to the present invention, the temperature sensor that detects the temperature of the refrigerant circuit that constitutes the outdoor heat exchanger, and the detection value of the temperature sensor are predetermined every predetermined time when the outdoor heat exchanger is defrosted. And a controller that reduces the rotational speed of the compressor by a predetermined number when the detected value of the temperature sensor is higher than a predetermined temperature. Therefore, the circulation amount of the refrigerant is controlled so that the temperature of the refrigerant circuit constituting the outdoor heat exchanger is maintained in the vicinity of the predetermined temperature. Thereby, since the pressure difference of the refrigerant | coolant of an outdoor side and an indoor side does not become large unnecessarily, it is prevented that a refrigerant | coolant sound generate | occur | produces when switching from a defrost operation to heating operation. Moreover, since the rotation speed of a compressor is lowered | hung, the power consumption at the time of a defrost operation is reduced. Moreover, since the pressure difference between the refrigerant on the indoor side and the refrigerant on the outdoor side does not increase during the defrosting operation, it is possible to shorten the standby time during the switching from the defrosting operation to the heating operation.

この発明に係わる他の空気調和機では、室外熱交換器を構成する冷媒回路の温度を検出する第1の温度センサと、室内熱交換器を構成する冷媒回路の温度を検出する第2の温度センサと、室外熱交換器の除霜時において、所定時間ごとに第1および第2の温度センサの検出値の差と予め定められた値とを比較し、第1および第2の温度センサの検出値の差が予め定められた値よりも大きい場合は圧縮機の回転数を所定数だけ低下させる制御部とが設けられる。したがって、室外熱交換器を構成する冷媒回路の温度と室内熱交換器を構成する冷媒回路の温度との差が予め定められた値の近傍を維持するように冷媒の循環量が制御される。これにより、室外および室内側の冷媒の圧力差が無駄に大きくならないため、除霜運転から暖房運転に切換える際に冷媒音が発生するのが防止される。また、圧縮機の回転数を下げるので、除霜運転時の消費電力が低減される。また、除霜運転時に室内側の冷媒と室外側の冷媒との圧力差が大きくならないため、除霜運転から暖房運転に切換える間の待機時間を短くすることも可能になる。   In another air conditioner according to the present invention, a first temperature sensor that detects the temperature of the refrigerant circuit that constitutes the outdoor heat exchanger, and a second temperature that detects the temperature of the refrigerant circuit that constitutes the indoor heat exchanger. At the time of defrosting the sensor and the outdoor heat exchanger, the difference between the detection values of the first and second temperature sensors is compared with a predetermined value every predetermined time, and the first and second temperature sensors are compared. When the difference between the detected values is larger than a predetermined value, a control unit is provided that reduces the rotational speed of the compressor by a predetermined number. Therefore, the circulation amount of the refrigerant is controlled so that the difference between the temperature of the refrigerant circuit constituting the outdoor heat exchanger and the temperature of the refrigerant circuit constituting the indoor heat exchanger is maintained in the vicinity of a predetermined value. Thereby, since the pressure difference of the refrigerant | coolant of an outdoor side and an indoor side does not become large unnecessarily, it is prevented that a refrigerant | coolant sound generate | occur | produces when switching from a defrost operation to heating operation. Moreover, since the rotation speed of a compressor is lowered | hung, the power consumption at the time of a defrost operation is reduced. Moreover, since the pressure difference between the refrigerant on the indoor side and the refrigerant on the outdoor side does not increase during the defrosting operation, it is possible to shorten the standby time during the switching from the defrosting operation to the heating operation.

[実施の形態1]
図1は、この発明の実施の形態1による空気調和機の構成を示す冷媒回路図である。図1において、この空気調和機は、室内送風機1、室内熱交換器2、膨張弁3、室外送風機4、室外熱交換器5、圧縮機6、および四方弁7を備える。
[Embodiment 1]
FIG. 1 is a refrigerant circuit diagram showing a configuration of an air conditioner according to Embodiment 1 of the present invention. In FIG. 1, the air conditioner includes an indoor blower 1, an indoor heat exchanger 2, an expansion valve 3, an outdoor blower 4, an outdoor heat exchanger 5, a compressor 6, and a four-way valve 7.

室内送風機1は、室内空気を室内熱交換器2に供給する。室内熱交換器2は、室内送風機1から供給された室内空気と冷媒の熱交換を行なう。膨張弁3は、冷媒の圧力を低減させる。室外送風機4は、室外空気を室外熱交換器5に供給する。室外熱交換器5は、室外送風機4から供給された室外空気と冷媒の熱交換を行なう。圧縮機6は、冷媒を圧縮する。四方弁7は、暖房時と除霜時で冷媒の流れる方向を切換える。   The indoor blower 1 supplies room air to the indoor heat exchanger 2. The indoor heat exchanger 2 performs heat exchange between the indoor air supplied from the indoor blower 1 and the refrigerant. The expansion valve 3 reduces the pressure of the refrigerant. The outdoor blower 4 supplies outdoor air to the outdoor heat exchanger 5. The outdoor heat exchanger 5 performs heat exchange between the outdoor air supplied from the outdoor blower 4 and the refrigerant. The compressor 6 compresses the refrigerant. The four-way valve 7 switches the direction of refrigerant flow during heating and defrosting.

暖房時は、四方弁7は図中点線の経路で冷媒を流す。室外熱交換器5で発生した冷媒ガスは、四方弁7を介して圧縮機6に与えられる。圧縮機6で圧縮された暖かい冷媒ガスは、室内熱交換器2で室内空気に熱を与えて液化する。これにより、室内空気が暖められる。室内熱交換器2で発生した冷媒液は、膨張弁3で減圧されて室外熱交換器5に与えられ、室外熱交換器5を介して室外空気の熱を吸収し、気化する。   At the time of heating, the four-way valve 7 allows the refrigerant to flow along the dotted line in the figure. The refrigerant gas generated in the outdoor heat exchanger 5 is given to the compressor 6 via the four-way valve 7. The warm refrigerant gas compressed by the compressor 6 is liquefied by applying heat to the indoor air in the indoor heat exchanger 2. Thereby, room air is warmed. The refrigerant liquid generated in the indoor heat exchanger 2 is decompressed by the expansion valve 3 and given to the outdoor heat exchanger 5, absorbs the heat of the outdoor air through the outdoor heat exchanger 5, and vaporizes.

室外熱交換器5に霜が付着すると、室外熱交換器5の熱交換効率が低下する。そこで、たとえば室外熱交換器5の温度が所定値以下になった場合は、室外熱交換器5に着霜したと判断して除霜運転を行なう。   When frost adheres to the outdoor heat exchanger 5, the heat exchange efficiency of the outdoor heat exchanger 5 is reduced. Therefore, for example, when the temperature of the outdoor heat exchanger 5 becomes a predetermined value or less, it is determined that the outdoor heat exchanger 5 has been frosted and the defrosting operation is performed.

除霜時は、四方弁7は図中実線の経路で冷媒を流し、送風機1,4は駆動停止される。室内熱交換器2で発生した冷媒ガスは、四方弁7を介して圧縮機6に与えられる。圧縮機6で圧縮された暖かい冷媒ガスは、室外熱交換器5に熱を与えて液化する。これにより、室外熱交換器5が暖められて、除霜される。室外熱交換器5で発生した冷媒液は、膨張弁3で減圧されて室内熱交換器2に与えられ、室内熱交換器2を介して室内空気の熱を吸収し、気化する。   At the time of defrosting, the four-way valve 7 causes the refrigerant to flow along the path indicated by the solid line in the figure, and the fans 1 and 4 are stopped. The refrigerant gas generated in the indoor heat exchanger 2 is given to the compressor 6 through the four-way valve 7. The warm refrigerant gas compressed by the compressor 6 gives heat to the outdoor heat exchanger 5 and liquefies. Thereby, the outdoor heat exchanger 5 is warmed and defrosted. The refrigerant liquid generated in the outdoor heat exchanger 5 is decompressed by the expansion valve 3 and given to the indoor heat exchanger 2, absorbs the heat of the indoor air through the indoor heat exchanger 2, and vaporizes.

図2は、室外熱交換器5の構成を示す図である。図2において、この室外熱交換器5は、長い金属配管を複数回曲げ畳んだ冷媒回路で構成される。図2中の矢印は、除霜時において冷媒が流れる方向を示している。冷媒回路の配管の中間部分には、温度センサ8が設けられている。   FIG. 2 is a diagram illustrating a configuration of the outdoor heat exchanger 5. In FIG. 2, the outdoor heat exchanger 5 is composed of a refrigerant circuit in which a long metal pipe is bent a plurality of times. The arrows in FIG. 2 indicate the direction in which the refrigerant flows during defrosting. A temperature sensor 8 is provided at an intermediate portion of the refrigerant circuit pipe.

図3は、図1に示した空気調和機の構成を示すブロック図である。図3において、この空気調和機は、図1および図2で示したものに加え、操作部9および制御部10を備える。操作部9は、電源スイッチ、温度調節キー、風量調節キー、タイマなどを含む。制御部10は、ユーザから操作部9を介して入力された指示、温度センサ8の検出結果などに従って、送風機1,4の送風量の制御、圧縮機6の回転数の制御、膨張弁3の開度の制御、四方弁7の切換えなどを行なう。   FIG. 3 is a block diagram illustrating a configuration of the air conditioner illustrated in FIG. 1. In FIG. 3, the air conditioner includes an operation unit 9 and a control unit 10 in addition to those shown in FIGS. 1 and 2. The operation unit 9 includes a power switch, a temperature adjustment key, an air volume adjustment key, a timer, and the like. The control unit 10 controls the blowing amount of the blowers 1 and 4, the rotation number of the compressor 6, and the expansion valve 3 according to the instruction input from the user via the operation unit 9 and the detection result of the temperature sensor 8. The opening degree is controlled and the four-way valve 7 is switched.

図4は、除霜運転時における制御部10の動作を示すフローチャートである。制御部10は、ステップS1において、圧縮機6の駆動を開始させ、圧縮機6の駆動周波数すなわち回転数を初期値にセットするとともに、膨張弁3の開度を初期値に設定する。除霜運転によって室外熱交換器5の霜が溶け始めると、室外熱交換器5に設けられた温度センサ8の検出値tempAが上昇していく。   FIG. 4 is a flowchart showing the operation of the control unit 10 during the defrosting operation. In step S <b> 1, the control unit 10 starts driving the compressor 6, sets the driving frequency of the compressor 6, that is, the rotational speed, to an initial value, and sets the opening of the expansion valve 3 to an initial value. When the frost of the outdoor heat exchanger 5 starts to melt by the defrosting operation, the detection value tempA of the temperature sensor 8 provided in the outdoor heat exchanger 5 increases.

ステップS2において、温度センサ8の検出値tempAが所定温度TEMP1(たとえば8℃)に到達するまで待機し、tempA>TEMP1となった場合は冷媒の循環量を減らしてもよいと判断してステップS3に進む。   In step S2, the process waits until the detected value tempA of the temperature sensor 8 reaches a predetermined temperature TEMP1 (for example, 8 ° C.). If tempA> TEMP1, it is determined that the circulation amount of the refrigerant may be reduced. Proceed to

ステップS3において、圧縮機6の回転数を所定数だけ下げるとともに、膨張弁3の開度を所定量だけ下げる。ステップS4において、所定時間ΔTが経過するまで待機した後、ステップS5に進む。ステップS5において、温度センサ8の検出値tempAが所定温度TEMP1よりも高いか否かを再度判別し、tempA>TEMP1である場合は冷媒の循環量を減らしてもよいと判断してステップS3に戻り、tempA>TEMP1でない場合は冷媒の循環量が適切であると判断してステップS6に進む。   In step S3, the rotational speed of the compressor 6 is decreased by a predetermined number, and the opening degree of the expansion valve 3 is decreased by a predetermined amount. In step S4, after waiting for a predetermined time ΔT, the process proceeds to step S5. In step S5, it is determined again whether or not the detected value tempA of the temperature sensor 8 is higher than the predetermined temperature TEMP1, and if tempA> TEMP1, it is determined that the circulation amount of the refrigerant may be reduced, and the process returns to step S3. If tempA> TEMP1 is not satisfied, it is determined that the circulation amount of the refrigerant is appropriate, and the process proceeds to step S6.

ステップS6において、tempA>TEMP1となった時刻からの経過時間が所定時間Tsumに到達したか否かを判別し、所定時間Tsumが経過していなければ除霜が完了していないと判断してステップS4に戻り、所定時間Tsumが経過すれば除霜が完了したと判断して除霜運転を停止する。   In step S6, it is determined whether the elapsed time from the time when tempA> TEMP1 has reached the predetermined time Tsum, and if the predetermined time Tsum has not elapsed, it is determined that the defrosting has not been completed. Returning to S4, if the predetermined time Tsum elapses, it is determined that the defrosting is completed, and the defrosting operation is stopped.

なお、ステップS3において、圧縮機6の回転数のみを制御するようにしてもよいし、膨張弁3の開度のみを制御するようにしてもよい。どちらの場合でも、冷媒の循環量が必要以上に多くならないように調節することが可能である。膨張弁3の代わりにキャピラリーチューブを用いる場合は、圧縮機6の回転数のみを制御する。   In step S3, only the rotation speed of the compressor 6 may be controlled, or only the opening degree of the expansion valve 3 may be controlled. In either case, it is possible to adjust so that the circulation amount of the refrigerant does not increase more than necessary. When a capillary tube is used instead of the expansion valve 3, only the rotation speed of the compressor 6 is controlled.

図5は、温度センサ8の検出値tempAの時間変化を例示するタイムチャートである。図5において、圧縮機6の回転数および膨張弁3の開度を制御した場合の温度センサ8の検出値tempAを実線で示し、圧縮機6の回転数および膨張弁3の開度を制御しない従来の場合を点線で示す。除霜運転を開始し、圧縮機6の回転数および膨張弁3の開度が初期値に設定されて暖かい冷媒が室外熱交換器5に供給されると、室外熱交換器5の霜が溶け始めて温度センサ8の検出値tempAが上昇していく。   FIG. 5 is a time chart illustrating the time change of the detection value tempA of the temperature sensor 8. In FIG. 5, the detected value tempA of the temperature sensor 8 when the rotational speed of the compressor 6 and the opening degree of the expansion valve 3 are controlled is indicated by a solid line, and the rotational speed of the compressor 6 and the opening degree of the expansion valve 3 are not controlled. A conventional case is indicated by a dotted line. When the defrosting operation is started and the rotation speed of the compressor 6 and the opening degree of the expansion valve 3 are set to initial values and warm refrigerant is supplied to the outdoor heat exchanger 5, the frost in the outdoor heat exchanger 5 is melted. For the first time, the detected value tempA of the temperature sensor 8 increases.

時刻t1において、温度センサ8の検出値tempAが所定温度TEMP1を超えると、冷媒の循環量を減らしてもよいと判断して、圧縮機6の回転数を所定数R1だけ下げるとともに、膨張弁3の開度を所定量I1だけ下げる。   When the detected value tempA of the temperature sensor 8 exceeds the predetermined temperature TEMP1 at time t1, it is determined that the circulation amount of the refrigerant may be reduced, the rotation speed of the compressor 6 is decreased by the predetermined number R1, and the expansion valve 3 Is lowered by a predetermined amount I1.

時刻t1から所定時間ΔT経過後の時刻t2において、温度センサ8の検出値tempAが所定温度TEMP1よりも高いか否かを再度判別する。そして、tempA>TEMP1であるため冷媒の循環量を減らしてもよいと判断して、圧縮機6の回転数を所定数R2だけ下げるとともに、膨張弁3の開度を所定量I2だけ下げる。   It is determined again whether or not the detected value tempA of the temperature sensor 8 is higher than the predetermined temperature TEMP1 at the time t2 after the lapse of the predetermined time ΔT from the time t1. Then, since tempA> TEMP1, it is determined that the circulation amount of the refrigerant may be reduced, and the rotational speed of the compressor 6 is lowered by a predetermined number R2, and the opening degree of the expansion valve 3 is lowered by a predetermined amount I2.

続いて、時刻t2から所定時間ΔT経過後の時刻t3において、温度センサ8の検出値tempAが所定温度TEMP1よりも高いか否かを再度判別する。そして、tempA>TEMP1であるため冷媒の循環量を減らしてもよいと判断して、圧縮機6の回転数を所定数R3だけ下げる。そして、時刻t1からの経過時間が所定時間Tsumに到達すると、除霜が完了したと判断して除霜運転を停止する。   Subsequently, it is determined again whether or not the detected value tempA of the temperature sensor 8 is higher than the predetermined temperature TEMP1 at the time t3 after the lapse of the predetermined time ΔT from the time t2. Then, since tempA> TEMP1, it is determined that the circulation amount of the refrigerant may be reduced, and the rotational speed of the compressor 6 is decreased by a predetermined number R3. And when the elapsed time from the time t1 reaches the predetermined time Tsum, it is determined that the defrosting is completed, and the defrosting operation is stopped.

なお、R1〜R3およびI1,I2は、それぞれ任意の値に設定される。すなわち、圧縮機6の回転数および膨張弁3の開度の制御量が順次少なくなっていくように設定することができる。また、図5に示したように、膨張弁3の開度を2回までしか制御しないように設定することもできる。   R1 to R3 and I1 and I2 are set to arbitrary values, respectively. That is, it can be set so that the control amount of the rotation speed of the compressor 6 and the opening degree of the expansion valve 3 is sequentially reduced. Moreover, as shown in FIG. 5, it can also set so that the opening degree of the expansion valve 3 may be controlled only twice.

以上のように、この実施の形態1では、室外熱交換器5の冷媒回路の温度tempAが所定温度TEMP1近傍を維持するように冷媒の循環量が制御される。これにより、室外熱交換器5で無駄な圧力上昇がなくなり、除霜運転終了時に室内側の冷媒と室外側の冷媒との圧力差が大きくなるのが回避される。したがって、除霜運転から暖房運転に切換える際に冷媒音が発生するのが防止される。また、圧縮機6の回転数を下げるとともに膨張弁3を絞って冷媒の循環量が必要以上に多くならないように調節するので、除霜が完了するまでに要する時間は従来よりも長くなるが、除霜運転時の消費電力が低減される。   As described above, in the first embodiment, the circulation amount of the refrigerant is controlled so that the temperature tempA of the refrigerant circuit of the outdoor heat exchanger 5 is maintained in the vicinity of the predetermined temperature TEMP1. Thereby, a useless pressure rise is eliminated by the outdoor heat exchanger 5, and it is avoided that the pressure difference between the refrigerant on the indoor side and the refrigerant on the outdoor side becomes large at the end of the defrosting operation. Therefore, the refrigerant noise is prevented from being generated when switching from the defrosting operation to the heating operation. Further, since the rotation speed of the compressor 6 is lowered and the expansion valve 3 is throttled so that the circulation amount of the refrigerant is not increased more than necessary, the time required for completing the defrosting is longer than before, Power consumption during the defrosting operation is reduced.

また、従来は除霜運転終了時において室内側の冷媒と室外側の冷媒との圧力差が大きくなっていたため、除霜運転が終了してから圧力差が十分に小さくなるまで一定期間(たとえば90秒)待ってから暖房運転に切換える必要があった。しかしながら、この実施の形態1では、除霜運転時に室内側の冷媒と室外側の冷媒との圧力差が大きくならないため、除霜運転から暖房運転に切換える間の待機時間を短くする(または待機時間をなくす)ことも可能になる。   Further, since the pressure difference between the indoor-side refrigerant and the outdoor-side refrigerant has been large at the end of the defrosting operation in the past, a certain period (for example, 90) until the pressure difference becomes sufficiently small after the defrosting operation is completed. Seconds) and then it was necessary to switch to heating operation. However, in this Embodiment 1, since the pressure difference between the refrigerant on the indoor side and the refrigerant on the outdoor side does not increase during the defrosting operation, the standby time during switching from the defrosting operation to the heating operation is shortened (or the standby time). Can be eliminated).

[実施の形態1の変更例]
図6は、この発明の実施の形態1の変更例を示す図であって、図2と対比される図である。図6において、温度センサ11は室外熱交換器5の冷媒回路の配管の出口部分に設けられる。
[Modification of Embodiment 1]
FIG. 6 is a diagram showing a modification of the first embodiment of the present invention, and is a diagram contrasted with FIG. In FIG. 6, the temperature sensor 11 is provided at the outlet portion of the piping of the refrigerant circuit of the outdoor heat exchanger 5.

図7は、図6に示した温度センサ11の検出値tempBの時間変化を例示するタイムチャートであって、図5と対比される図である。図7において、圧縮機6の回転数および膨張弁3の開度を制御した場合の温度センサ11の検出値tempBを実線で示し、圧縮機6の回転数および膨張弁3の開度を制御しない従来の場合を点線で示す。   FIG. 7 is a time chart illustrating the time change of the detection value tempB of the temperature sensor 11 shown in FIG. 6, and is a diagram contrasted with FIG. In FIG. 7, the detected value tempB of the temperature sensor 11 when the rotational speed of the compressor 6 and the opening degree of the expansion valve 3 are controlled is indicated by a solid line, and the rotational speed of the compressor 6 and the opening degree of the expansion valve 3 are not controlled. A conventional case is indicated by a dotted line.

除霜運転を開始し、圧縮機6の回転数および膨張弁3の開度が初期値に設定されて暖かい冷媒が室外熱交換器5に供給されると、室外熱交換器5の霜が溶け始める。霜が溶けて生じた冷水は下方に流れ落ちるので、その冷水の影響により、通常は冷媒回路の上側よりも下側の方が温度上昇が遅くなる。すなわち、冷媒回路の配管の出口部分に設けられた温度センサ11の検出値tempBは、冷媒回路の配管の中間部分に設けられた温度センサ8に比べて温度上昇が遅くなる。   When the defrosting operation is started and the rotation speed of the compressor 6 and the opening degree of the expansion valve 3 are set to initial values and warm refrigerant is supplied to the outdoor heat exchanger 5, the frost in the outdoor heat exchanger 5 is melted. start. Since the cold water generated by melting the frost flows downward, the temperature rise is generally slower on the lower side than on the upper side of the refrigerant circuit due to the influence of the cold water. That is, the temperature rise of the detected value tempB of the temperature sensor 11 provided at the outlet portion of the refrigerant circuit piping is slower than that of the temperature sensor 8 provided at the intermediate portion of the refrigerant circuit piping.

時刻t11において、温度センサ11の検出値tempBが所定温度TEMP2を超えると、冷媒の循環量を減らしてもよいと判断して、圧縮機6の回転数を所定数R1だけ下げるとともに、膨張弁3の開度を所定量I1だけ下げる。なお、所定温度TEMP2(たとえば2℃)は、所定温度TEMP1(たとえば8℃)よりも低い値に設定される。   When the detected value tempB of the temperature sensor 11 exceeds the predetermined temperature TEMP2 at time t11, it is determined that the circulation amount of the refrigerant may be reduced, and the rotation speed of the compressor 6 is decreased by the predetermined number R1, and the expansion valve 3 Is lowered by a predetermined amount I1. The predetermined temperature TEMP2 (eg, 2 ° C.) is set to a value lower than the predetermined temperature TEMP1 (eg, 8 ° C.).

時刻t11から所定時間ΔT経過後の時刻t12において、温度センサ11の検出値tempBが所定温度TEMP2よりも高いか否かを再度判別する。そして、tempB>TEMP2であるため冷媒の循環量を減らしてもよいと判断して、圧縮機6の回転数を所定数R2だけ下げるとともに、膨張弁3の開度を所定量I2だけ下げる。続いて、時刻t12から所定時間ΔT経過後の時刻t13において、温度センサ11の検出値tempBが所定温度TEMP2よりも高いか否かを再度判別する。tempB>TEMP2であるため冷媒の循環量を減らしてもよいと判断して、圧縮機6の回転数を所定数R3だけ下げる。そして、時刻t11からの経過時間が所定時間Tsumに到達すると、除霜が完了したと判断して除霜運転を停止する。   It is determined again whether or not the detected value tempB of the temperature sensor 11 is higher than the predetermined temperature TEMP2 at the time t12 after the lapse of the predetermined time ΔT from the time t11. Then, because tempB> TEMP2, it is determined that the circulation amount of the refrigerant may be reduced, and the rotation speed of the compressor 6 is lowered by a predetermined number R2, and the opening degree of the expansion valve 3 is lowered by a predetermined amount I2. Subsequently, it is determined again whether or not the detected value tempB of the temperature sensor 11 is higher than the predetermined temperature TEMP2 at the time t13 after the lapse of the predetermined time ΔT from the time t12. Since tempB> TEMP2, it is determined that the circulation amount of the refrigerant may be reduced, and the rotational speed of the compressor 6 is decreased by a predetermined number R3. And when the elapsed time from the time t11 reaches the predetermined time Tsum, it is determined that the defrosting is completed, and the defrosting operation is stopped.

[実施の形態2]
図8は、この発明の実施の形態2による室内熱交換器2の構成を示す図である。図8において、この室内熱交換器2は、室外熱交換器5と同様に長い金属配管を複数回曲げ畳んだ冷媒回路で構成される。冷媒回路の配管の中間部分には、温度センサ12が設けられている。
[Embodiment 2]
FIG. 8 is a diagram showing the configuration of the indoor heat exchanger 2 according to Embodiment 2 of the present invention. In FIG. 8, the indoor heat exchanger 2 is configured by a refrigerant circuit in which a long metal pipe is bent a plurality of times in the same manner as the outdoor heat exchanger 5. A temperature sensor 12 is provided at an intermediate portion of the refrigerant circuit pipe.

図9は、この実施の形態2による除霜運転時における制御部10の動作を示すフローチャートであって、図4と対比される図である。図9を参照して図4と異なる点は、ステップS2およびステップS5における動作である。   FIG. 9 is a flowchart showing the operation of the control unit 10 during the defrosting operation according to the second embodiment, and is a diagram compared with FIG. 9 differs from FIG. 4 in the operations in step S2 and step S5.

ステップS2において、温度センサ8の検出値tempAと温度センサ12の検出値tempCとの差が所定値TEMP3を超えるまで待機し、(tempA−tempC)>TEMP3となった場合は冷媒の循環量を減らしてもよいと判断してステップS3に進む。   In step S2, the process waits until the difference between the detected value tempA of the temperature sensor 8 and the detected value tempC of the temperature sensor 12 exceeds a predetermined value TEMP3. If (tempA−tempC)> TEMP3, the refrigerant circulation amount is reduced. The process proceeds to step S3.

またステップS5において、温度センサ8の検出値tempAと温度センサ12の検出値tempCとの差が所定値TEMP3よりも大きいか否かを再度判別し、(tempA−tempC)>TEMP3である場合は冷媒の循環量を減らしてもよいと判断してステップS3に戻り、(tempA−tempC)>TEMP3でない場合は冷媒の循環量が適切であると判断してステップS6に進む。   In step S5, it is determined again whether or not the difference between the detected value tempA of the temperature sensor 8 and the detected value tempC of the temperature sensor 12 is larger than the predetermined value TEMP3. If (tempA−tempC)> TEMP3, the refrigerant is determined. If it is not (tempA−tempC)> TEMP3, it is determined that the refrigerant circulation amount is appropriate, and the process proceeds to step S6.

図10は、温度センサ8の検出値tempAおよび温度センサ12の検出値tempCの時間変化を例示するタイムチャートであって、図5と対比される図である。図10において、除霜運転を開始すると、室内熱交換器2の温度センサ12の検出値tempCは0℃よりも低くなる。一方、除霜運転によって室外熱交換器5の霜が溶け始めると、温度センサ8の検出値tempAが上昇していき0℃よりも高くなる。   FIG. 10 is a time chart illustrating the time change of the detected value tempA of the temperature sensor 8 and the detected value tempC of the temperature sensor 12, and is a diagram that is compared with FIG. In FIG. 10, when the defrosting operation is started, the detected value tempC of the temperature sensor 12 of the indoor heat exchanger 2 becomes lower than 0 ° C. On the other hand, when the frost of the outdoor heat exchanger 5 starts to melt by the defrosting operation, the detection value tempA of the temperature sensor 8 increases and becomes higher than 0 ° C.

このような温度変化とともに室外側の冷媒が低圧になり室外側の冷媒が高圧になっていく。室内側の冷媒と室外側の冷媒との圧力差が大きくなると、除霜運転終了して四方弁を切換えて暖房運転に移行するときに冷媒音が発生してしまうため、この実施の形態2では、温度センサ8の検出値tempAと温度センサ12の検出値tempCとの差が所定値TEMP3近傍を維持するように冷媒の循環量を制御する。   With such a temperature change, the refrigerant on the outdoor side becomes low pressure, and the refrigerant on the outdoor side becomes high pressure. If the pressure difference between the refrigerant on the indoor side and the refrigerant on the outdoor side becomes large, a refrigerant noise is generated when the defrosting operation is finished and the four-way valve is switched to move to the heating operation. The circulation amount of the refrigerant is controlled so that the difference between the detection value tempA of the temperature sensor 8 and the detection value tempC of the temperature sensor 12 is maintained in the vicinity of the predetermined value TEMP3.

時刻t21において、温度センサ8の検出値tempAと温度センサ12の検出値tempCとの差が所定値TEMP3を超えると、冷媒の循環量を減らしてもよいと判断して、圧縮機6の回転数を所定数R1だけ下げるとともに、膨張弁3の開度を所定量I1だけ下げる。   When the difference between the detected value tempA of the temperature sensor 8 and the detected value tempC of the temperature sensor 12 exceeds the predetermined value TEMP3 at time t21, it is determined that the refrigerant circulation amount may be reduced, and the rotational speed of the compressor 6 Is lowered by a predetermined number R1, and the opening degree of the expansion valve 3 is lowered by a predetermined amount I1.

時刻t21から所定時間ΔT経過後の時刻t22において、温度センサ8の検出値tempAと温度センサ12の検出値tempCとの差が所定値TEMP3よりも大きいか否かを再度判別する。そして、(tempA−tempC)>TEMP3であるため冷媒の循環量を減らしてもよいと判断して、圧縮機6の回転数を所定数R2だけ下げるとともに、膨張弁3の開度を所定量I2だけ下げる。続いて、時刻t12から所定時間ΔT経過後の時刻t13において、温度センサ8の検出値tempAと温度センサ12の検出値tempCとの差が所定値TEMP3よりも大きいか否かを再度判別する。そして、(tempA−tempC)>TEMP3であるため冷媒の循環量を減らしてもよいと判断して、圧縮機6の回転数を所定数R3だけ下げる。そして、時刻t21からの経過時間が所定時間Tsumに到達すると、除霜が完了したと判断して除霜運転を停止する。   It is determined again whether or not the difference between the detection value tempA of the temperature sensor 8 and the detection value tempC of the temperature sensor 12 is larger than the predetermined value TEMP3 at time t22 after the lapse of the predetermined time ΔT from time t21. Since it is determined that (tempA−tempC)> TEMP3, it is determined that the circulation amount of the refrigerant may be reduced. The rotational speed of the compressor 6 is decreased by a predetermined number R2, and the opening degree of the expansion valve 3 is decreased by a predetermined amount I2. Just lower. Subsequently, it is determined again whether or not the difference between the detected value tempA of the temperature sensor 8 and the detected value tempC of the temperature sensor 12 is larger than the predetermined value TEMP3 at time t13 after the lapse of the predetermined time ΔT from time t12. Then, since (tempA−tempC)> TEMP3, it is determined that the circulation amount of the refrigerant may be reduced, and the rotational speed of the compressor 6 is decreased by a predetermined number R3. And when the elapsed time from the time t21 reaches the predetermined time Tsum, it is determined that the defrosting is completed, and the defrosting operation is stopped.

したがって、この実施の形態2では、室内側の冷媒と室外側の冷媒との圧力差が大きくなるのが回避される。これにより、実施の形態1と同様の効果が得られる。   Therefore, in the second embodiment, an increase in the pressure difference between the indoor-side refrigerant and the outdoor-side refrigerant is avoided. Thereby, the same effect as Embodiment 1 is acquired.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

この発明の実施の形態1による空気調和機の構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the structure of the air conditioner by Embodiment 1 of this invention. 図1に示した室外熱交換器の構成を示す図である。It is a figure which shows the structure of the outdoor heat exchanger shown in FIG. 図1に示した空気調和機の構成を示すブロック図である。It is a block diagram which shows the structure of the air conditioner shown in FIG. 除霜運転時における制御部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control part at the time of a defrost operation. 図2に示した温度センサの検出値tempAの時間変化を例示するタイムチャートである。3 is a time chart illustrating a time change of a detection value tempA of the temperature sensor illustrated in FIG. 2. この発明の実施の形態1の変更例を示す図である。It is a figure which shows the example of a change of Embodiment 1 of this invention. 図6に示した温度センサの検出値tempBの時間変化を例示するタイムチャートである。It is a time chart which illustrates the time change of detection value tempB of the temperature sensor shown in FIG. この発明の実施の形態2による室内熱交換器の構成を示す図である。It is a figure which shows the structure of the indoor heat exchanger by Embodiment 2 of this invention. この実施の形態2による除霜運転時における制御部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control part at the time of the defrost operation by this Embodiment 2. FIG. 図2に示した温度センサの検出値tempAおよび図8に示した温度センサの検出値tempCの時間変化を例示するタイムチャートである。FIG. 9 is a time chart illustrating time variation of the detection value tempA of the temperature sensor shown in FIG. 2 and the detection value tempC of the temperature sensor shown in FIG. 8.

符号の説明Explanation of symbols

1 室内送風機、2 室内熱交換器、3 膨張弁、4 室外送風機、5 室外熱交換器、6 圧縮機、7 四方弁、8,11,12 温度センサ、9 操作部、10 制御部。   DESCRIPTION OF SYMBOLS 1 Indoor fan, 2 Indoor heat exchanger, 3 Expansion valve, 4 Outdoor fan, 5 Outdoor heat exchanger, 6 Compressor, 7 Four-way valve, 8, 11, 12 Temperature sensor, 9 Operation part, 10 Control part.

Claims (6)

暖房時は、室内熱交換器で発生した冷媒液を減圧装置で減圧して室外熱交換器に与え、該室外熱交換器で発生した冷媒ガスを圧縮機で圧縮して前記室内熱交換器に与え、前記室外熱交換器の除霜時は、前記室外熱交換器で発生した冷媒液を前記減圧装置で減圧して前記室内熱交換器に与え、該室内熱交換器で発生した冷媒ガスを前記圧縮機で圧縮して前記室外熱交換器に与える空気調和機において、
前記室外熱交換器を構成する冷媒回路の温度を検出する温度センサと、
前記室外熱交換器の除霜時において、所定時間ごとに前記温度センサの検出値と予め定められた温度とを比較し、前記温度センサの検出値が前記予め定められた温度よりも高い場合は前記圧縮機の回転数を所定数だけ低下させる制御部とを備えたことを特徴とする、空気調和機。
During heating, the refrigerant liquid generated in the indoor heat exchanger is depressurized by a decompression device and applied to the outdoor heat exchanger, and the refrigerant gas generated in the outdoor heat exchanger is compressed by the compressor to the indoor heat exchanger. When the outdoor heat exchanger is defrosted, the refrigerant liquid generated in the outdoor heat exchanger is depressurized by the decompression device and supplied to the indoor heat exchanger, and the refrigerant gas generated in the indoor heat exchanger is In the air conditioner compressed by the compressor and given to the outdoor heat exchanger,
A temperature sensor for detecting a temperature of a refrigerant circuit constituting the outdoor heat exchanger;
When the outdoor heat exchanger is defrosted, the detected value of the temperature sensor is compared with a predetermined temperature every predetermined time, and the detected value of the temperature sensor is higher than the predetermined temperature. An air conditioner comprising: a control unit that reduces the rotational speed of the compressor by a predetermined number.
前記減圧装置は、前記室内熱交換器と前記室外熱交換器の間に設けられた膨張弁であり、
前記制御部は、さらに、前記室外熱交換器の除霜時において、前記温度センサの検出値が前記予め定められた温度よりも高い場合は前記膨張弁の開度を閉じる方向に制御する、請求項1に記載の空気調和機。
The decompression device is an expansion valve provided between the indoor heat exchanger and the outdoor heat exchanger,
The control unit further controls the opening degree of the expansion valve to close when the detected value of the temperature sensor is higher than the predetermined temperature during defrosting of the outdoor heat exchanger. Item 2. An air conditioner according to Item 1.
前記温度センサは、前記室外熱交換器を構成する冷媒回路の配管の略中間部分に設けられる、請求項1または請求項2に記載の空気調和機。   The air conditioner according to claim 1 or 2, wherein the temperature sensor is provided at a substantially middle portion of a pipe of a refrigerant circuit constituting the outdoor heat exchanger. 暖房時は、室内熱交換器で発生した冷媒液を減圧装置で減圧して室外熱交換器に与え、該室外熱交換器で発生した冷媒ガスを圧縮機で圧縮して前記室内熱交換器に与え、前記室外熱交換器の除霜時は、前記室外熱交換器で発生した冷媒液を前記減圧装置で減圧して前記室内熱交換器に与え、該室内熱交換器で発生した冷媒ガスを前記圧縮機で圧縮して前記室外熱交換器に与える空気調和機において、
前記室外熱交換器を構成する冷媒回路の温度を検出する第1の温度センサと、
前記室内熱交換器を構成する冷媒回路の温度を検出する第2の温度センサと、
前記室外熱交換器の除霜時において、所定時間ごとに前記第1および第2の温度センサの検出値の差と予め定められた値とを比較し、前記第1および第2の温度センサの検出値の差が前記予め定められた値よりも大きい場合は前記圧縮機の回転数を所定数だけ低下させる制御部とを備えたことを特徴とする、空気調和機。
During heating, the refrigerant liquid generated in the indoor heat exchanger is depressurized by a decompression device and applied to the outdoor heat exchanger, and the refrigerant gas generated in the outdoor heat exchanger is compressed by the compressor to the indoor heat exchanger. When the outdoor heat exchanger is defrosted, the refrigerant liquid generated in the outdoor heat exchanger is depressurized by the decompression device and supplied to the indoor heat exchanger, and the refrigerant gas generated in the indoor heat exchanger is In the air conditioner compressed by the compressor and given to the outdoor heat exchanger,
A first temperature sensor for detecting a temperature of a refrigerant circuit constituting the outdoor heat exchanger;
A second temperature sensor for detecting a temperature of a refrigerant circuit constituting the indoor heat exchanger;
At the time of defrosting the outdoor heat exchanger, the difference between the detection values of the first and second temperature sensors is compared with a predetermined value every predetermined time, and the first and second temperature sensors are compared. An air conditioner, comprising: a control unit that reduces the rotational speed of the compressor by a predetermined number when the difference between detected values is larger than the predetermined value.
前記減圧装置は、前記室内熱交換器と前記室外熱交換器の間に設けられた膨張弁であり、
前記制御部は、さらに、前記室外熱交換器の除霜時において、前記第1および第2の温度センサの検出値の差が前記予め定められた値よりも大きい場合は前記膨張弁の開度を閉じる方向に制御する、請求項4に記載の空気調和機。
The decompression device is an expansion valve provided between the indoor heat exchanger and the outdoor heat exchanger,
When the difference between the detection values of the first and second temperature sensors is larger than the predetermined value during defrosting of the outdoor heat exchanger, the control unit further opens the expansion valve. The air conditioner according to claim 4, wherein the air conditioner is controlled in a closing direction.
前記第1の温度センサは、前記室外熱交換器を構成する冷媒回路の配管の略中間部分に設けられ、
前記第2の温度センサは、前記室内熱交換器を構成する冷媒回路の配管の略中間部分に設けられる、請求項4または請求項5に記載の空気調和機。
The first temperature sensor is provided in a substantially middle portion of a piping of a refrigerant circuit constituting the outdoor heat exchanger,
The air conditioner according to claim 4 or 5, wherein the second temperature sensor is provided in a substantially middle portion of a pipe of a refrigerant circuit constituting the indoor heat exchanger.
JP2006005168A 2006-01-12 2006-01-12 Air conditioner Pending JP2007187376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006005168A JP2007187376A (en) 2006-01-12 2006-01-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005168A JP2007187376A (en) 2006-01-12 2006-01-12 Air conditioner

Publications (1)

Publication Number Publication Date
JP2007187376A true JP2007187376A (en) 2007-07-26

Family

ID=38342663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005168A Pending JP2007187376A (en) 2006-01-12 2006-01-12 Air conditioner

Country Status (1)

Country Link
JP (1) JP2007187376A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299985A (en) * 2008-06-12 2009-12-24 Sharp Corp Heat pump type heating device
CN103913024A (en) * 2013-01-09 2014-07-09 思科普有限责任公司 Method for controlling of speed variation compressor
CN109827361A (en) * 2018-12-29 2019-05-31 西安交通大学 The reverse cycle defrosting method, apparatus of air-conditioning system and air-conditioning system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043865A (en) * 1990-04-20 1992-01-08 Hitachi Ltd Freezing cycle device
JPH0464066U (en) * 1990-10-12 1992-06-01
JPH04344085A (en) * 1991-05-17 1992-11-30 Daikin Ind Ltd Defrosting operation control device for refrigerating apparatus
JPH11132606A (en) * 1997-08-25 1999-05-21 Mitsubishi Electric Corp Refrigerating cycle apparatus
JP2004036967A (en) * 2002-07-02 2004-02-05 Matsushita Electric Ind Co Ltd Control method of air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043865A (en) * 1990-04-20 1992-01-08 Hitachi Ltd Freezing cycle device
JPH0464066U (en) * 1990-10-12 1992-06-01
JPH04344085A (en) * 1991-05-17 1992-11-30 Daikin Ind Ltd Defrosting operation control device for refrigerating apparatus
JPH11132606A (en) * 1997-08-25 1999-05-21 Mitsubishi Electric Corp Refrigerating cycle apparatus
JP2004036967A (en) * 2002-07-02 2004-02-05 Matsushita Electric Ind Co Ltd Control method of air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299985A (en) * 2008-06-12 2009-12-24 Sharp Corp Heat pump type heating device
CN103913024A (en) * 2013-01-09 2014-07-09 思科普有限责任公司 Method for controlling of speed variation compressor
CN103913024B (en) * 2013-01-09 2016-08-17 思科普有限责任公司 For the method controlling the speed of variable speed compressor
CN109827361A (en) * 2018-12-29 2019-05-31 西安交通大学 The reverse cycle defrosting method, apparatus of air-conditioning system and air-conditioning system
WO2020135589A1 (en) * 2018-12-29 2020-07-02 广东美的制冷设备有限公司 Air conditioning system, and reverse-cycle defrosting method and device for same

Similar Documents

Publication Publication Date Title
JP4836212B2 (en) Air conditioner
JP6346122B2 (en) Hot water heating system
JP5471873B2 (en) Air conditioner
JP6768546B2 (en) Air conditioner
JP6071648B2 (en) Air conditioner
JP6266456B2 (en) Air conditioner
JP5831355B2 (en) Air conditioner
JP2010210223A (en) Air conditioner
JP2019219129A (en) Air conditioner
JP6084297B2 (en) Air conditioner
US11029067B2 (en) Refrigeration apparatus with defrost during heating operation
JP2002350033A (en) Defrosting operation method of refrigerator provided with two evaporators
JP2007155261A (en) Air conditioner
JP2013195045A (en) Air conditioner
WO2018179137A1 (en) Air conditioning device
JP6022291B2 (en) Air conditioner
JP2007187376A (en) Air conditioner
JP5900463B2 (en) Air conditioning system
AU2018309957B2 (en) Air conditioning apparatus
JPH04340072A (en) Off-cycle defrosting device
JP3518353B2 (en) Heat pump heating system
JP2006226568A (en) Air conditioner
JPH10205935A (en) Defrosting controller and air conditioner employing the same
JP2007040589A (en) Air conditioner
JP2007333298A (en) Refrigerant flow control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080220

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100218

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629