JP2007186391A - Explosive compound and method for preventing crystal growth thereof - Google Patents

Explosive compound and method for preventing crystal growth thereof Download PDF

Info

Publication number
JP2007186391A
JP2007186391A JP2006007282A JP2006007282A JP2007186391A JP 2007186391 A JP2007186391 A JP 2007186391A JP 2006007282 A JP2006007282 A JP 2006007282A JP 2006007282 A JP2006007282 A JP 2006007282A JP 2007186391 A JP2007186391 A JP 2007186391A
Authority
JP
Japan
Prior art keywords
rdx
average particle
crystal growth
particle size
fluorosurfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006007282A
Other languages
Japanese (ja)
Other versions
JP4837995B2 (en
Inventor
Satoshi Suzuki
悟志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koki Co Ltd
Original Assignee
Nippon Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koki Co Ltd filed Critical Nippon Koki Co Ltd
Priority to JP2006007282A priority Critical patent/JP4837995B2/en
Publication of JP2007186391A publication Critical patent/JP2007186391A/en
Application granted granted Critical
Publication of JP4837995B2 publication Critical patent/JP4837995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide explosive compounds where crystal growth in wet preservation is significantly prevented and which can be stably stored for a long term and to provide a method for preventing their crystal growth. <P>SOLUTION: The explosive compounds are produced by adsorbing a fluorosurfactant, which is a cationic surfactant, on their crystal surfaces. In the method for preventing their crystal growth, the crystal growth in wet preservation is prevented by adsorbing the fluorosurfactant on the crystal surfaces of the explosive compounds. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、産業用爆薬や軍用爆薬に使用される爆発性物質(化合火薬類)に関し、詳しくは化合火薬類および化合火薬類の結晶成長防止方法に関するものである。   The present invention relates to an explosive substance (compounds) used for industrial explosives and military explosives, and more particularly to a method for preventing crystal growth of chemical explosives and chemical explosives.

化合火薬類には、例えば、ペンタエリスリトールテトラナイトレート(PETN、別名ペンスリット)、シクロトリメチレントリニトラミン(RDX),シクロテトラメチレンテトラニトラミン(HMX)、ヘキサニトロヘキサアザイソウルチタン(CL−20)などがある(例えば、非特許文献1参照)。
また、取扱時や保存時の安全性を考慮した火砲弾薬などに用いられる発射薬は、一般にLOVA(Low Vulnerability)発射薬と称され、具体的には、被弾による衝撃や偶然に加えられる熱、火炎、衝撃、摩擦などによって発火が起きにくい性質(LOVA特性)を持ちながら、使用目的で発火させようとする時は、適正な性能を有する。
Compound explosives include, for example, pentaerythritol tetranitrate (PETN, also known as pen slit), cyclotrimethylenetrinitramine (RDX), cyclotetramethylenetetranitramine (HMX), hexanitrohexazayl soul titanium (CL -20) (for example, see Non-Patent Document 1).
In addition, the propellant used for artillery ammunition considering safety during handling and storage is generally called LOVA (Low Vulnerability) propellant, and specifically, the impact from the impact and the heat applied by chance, When it is intended to ignite for the purpose of use while having the property (LOVA characteristic) that does not easily ignite due to flame, impact, friction, etc., it has proper performance.

LOVA発射薬は、酸化剤、バインダー、可塑剤、安定剤で構成される。具体例としては、酸化剤としてRDX76質量%、バインダーとしてセルロースアセテートブチレート(CAB)12質量%、ニトロセルロース(NC)4質量%、可塑剤としてアセチルトリエチルシトレート(ATEC)7.6質量%、安定剤としてエチルセントラリット(EC)0.4質量%の組成例が開示されている(例えば、特許文献1参照)。   The LOVA propellant is composed of an oxidizing agent, a binder, a plasticizer, and a stabilizer. Specific examples include RDX 76% by mass as an oxidizing agent, 12% by mass of cellulose acetate butyrate (CAB) as a binder, 4% by mass of nitrocellulose (NC), 7.6% by mass of acetyl triethyl citrate (ATEC) as a plasticizer, A composition example of 0.4% by mass of ethyl central (EC) is disclosed as a stabilizer (see, for example, Patent Document 1).

LOVA発射薬の酸化剤としては、RDX、HMX、ニトログアニジン、硝酸アンモニウムなどが使用されるが、このうち化合火薬類であるRDX、HMXはエネルギーおよび貯蔵安定性が高く、燃焼ガスに塩素系化合物が含まれないので、酸化剤として使用する際、好都合である。
酸化剤の形状には特に制限はないが、粒状として用いる場合には、粒子径0.1μm〜10μmのものが好適である。粒子径が0.1μm未満でも使用できるが、粒子径が小さいので取り扱いにくい場合がある(例えば、特許文献2参照)。
RDX, HMX, nitroguanidine, ammonium nitrate, etc. are used as oxidants for LOVA propellants. Among them, RDX and HMX, which are chemical explosives, have high energy and storage stability, and chlorinated compounds are present in the combustion gas. Since it is not included, it is convenient when used as an oxidizing agent.
Although there is no restriction | limiting in particular in the shape of an oxidizing agent, When using as a granular form, a thing with a particle diameter of 0.1 micrometer-10 micrometers is suitable. Although it can be used even if the particle diameter is less than 0.1 μm, it may be difficult to handle because the particle diameter is small (see, for example, Patent Document 2).

酸化剤の粒子径が10μmを超えるものも使用できるが、組成物成分中で一種の異物のような孤立した形で存在するため、燃焼反応の進行に伴って反応速度が上昇してしまい、安定した燃焼性能の発射薬が得られない場合がある(例えば、特許文献3参照)。
特許文献3では、RDX、HMXの重量平均粒子径が10μm以下、かつ、ニトログアニジンが組成物中に50〜70質量%含まれているマルチ組成発射薬を使用することにより、発射薬組成物の圧力指数を低減している。発射薬組成物の圧力指数が低減すると、発射薬組成物の燃焼によって発生するガスで圧力が上昇しても、発射薬組成物の燃焼速度の増加が小さいので、燃焼が安定することが開示されている。このことから、発射薬組成物の安定した燃焼を得るためには、発射薬組成物に使用するRDX、HMXの重量平均粒子径は10μm以下であることが必要である。
Oxidizing agents with particle sizes exceeding 10 μm can be used, but they exist in an isolated form such as a kind of foreign substance in the composition components, so the reaction rate increases with the progress of the combustion reaction, and is stable. In some cases, it is not possible to obtain a propellant having the combustion performance described above (see, for example, Patent Document 3).
In Patent Document 3, by using a multi-composition propellant in which the weight average particle size of RDX and HMX is 10 μm or less and nitroguanidine is contained in the composition in an amount of 50 to 70% by mass, The pressure index is reduced. It is disclosed that when the pressure index of the propellant composition is reduced, the combustion is stable because the increase in the burning rate of the propellant composition is small even if the pressure is increased by the gas generated by the combustion of the propellant composition. ing. Therefore, in order to obtain stable combustion of the propellant composition, the weight average particle diameter of RDX and HMX used in the propellant composition needs to be 10 μm or less.

また、通常、RDX、HMXなどの粉状の化合火薬類は、15%以上の水分を含ませた状態すなわち湿薬状態で貯蔵・管理することが、火薬類取締法により規定されているため、LOVA発射薬の原料に微細粒子RDXや微細粒子HMXを用いる場合も、15%以上の水分を含む湿薬として保管をする必要がある。この保管中に結晶成長が起こると、LOVA発射薬の性能つまり安定した燃焼性能が得られないといった問題が発生する。   In addition, normally, powdered compound explosives such as RDX, HMX, etc. are regulated by the Explosives Control Law to be stored and managed in a state containing 15% or more moisture, that is, in a moist state. Even when the fine particle RDX or the fine particle HMX is used as the raw material of the LOVA propellant, it is necessary to store it as a moisturizer containing 15% or more of water. If crystal growth occurs during the storage, there arises a problem that the performance of the LOVA propellant, that is, the stable combustion performance cannot be obtained.

ここで、結晶成長のメカニズムについて述べる。
一般に、溶液中では溶質はいくつかの溶媒分子に囲まれながら運動をしていて、溶質の相互の位置が統計的に変動する“ゆらぎ”により溶液に生じた歪みのエネルギーによって、過飽和溶液から溶質が集団を形成して結晶核となって分離し、溶液を安定状態に移行しようとする。この場合、分離した結晶核が、その環境のもとで安定な核になるために必要な数の溶質が集まらない小さな小集団は胚種といわれ、不安定で、再び溶液中に溶解して溶質に戻り結晶は消えてしまう。一方、ある数を超えた溶質の集団が形成されると、溶解することなく安定な結晶核となり、結晶成長の中心の核としての役割を果たす。
Here, the mechanism of crystal growth will be described.
In general, a solute moves in a solution while being surrounded by several solvent molecules, and the energy of strain generated in the solution due to “fluctuation” in which the mutual position of the solutes fluctuates statistically causes the solute to move from the supersaturated solution. Forms a group and separates into crystal nuclei, and tries to move the solution to a stable state. In this case, a small subpopulation that does not collect the number of solutes necessary for the separated crystal nuclei to become stable nuclei under the environment is called an embryo seed, which is unstable and dissolves again in solution. It returns to the solute and the crystals disappear. On the other hand, when a solute group exceeding a certain number is formed, it becomes a stable crystal nucleus without dissolving, and plays a role as a core of crystal growth.

結晶の成長とは、結晶性物質の溶液の凝固、蒸気からの凝縮、溶液からの析出などに際して、単結晶あるいは多結晶が形成され大きくなることをいう。
結晶の成長速度は、結晶核の生成速度と結晶核に向かって析出する溶質が溶液中を拡散する速度とによって決まる。従って、結晶成長速度は、溶液の過飽和度が小さいと、溶質の濃度はあまり大きくないので、溶液中の溶質の拡散は容易で、その速度は大きいため、核が生成される速度が結晶成長速度に大きく影響を与える律速段階となる。一方、過飽和度が大きくなると、溶質の濃度が大きくなるので、核の生成は容易となる。一方、溶質が液中を拡散して核に到達するのに抵抗が大きくなるので、溶質の拡散速度が律速段階となる。
Crystal growth means that a single crystal or a polycrystal is formed and enlarged when a crystalline substance solution is solidified, condensed from vapor, or precipitated from a solution.
The crystal growth rate is determined by the generation rate of crystal nuclei and the rate at which the solute that precipitates toward the crystal nuclei diffuses in the solution. Therefore, the crystal growth rate is low when the supersaturation degree of the solution is small. Since the concentration of the solute is not so large, the diffusion of the solute in the solution is easy and the rate is high. This is the rate-determining step that greatly affects On the other hand, when the degree of supersaturation increases, the concentration of solutes increases, so that nucleation is facilitated. On the other hand, since the resistance increases as the solute diffuses in the liquid and reaches the nucleus, the diffusion rate of the solute becomes the rate-limiting step.

また、微粒子サイズの結晶の場合、微粒子が媒質液に多少なりとも溶解性があり、粒径分布があるときは、保存中に結晶成長が起きる。これは溶解度に粒径依存性があるからで、小さい方の粒子がより小さくなり、大きい方の粒子が成長していく傾向がある。
起爆薬であるアジ化鉛には、2つの異なる結晶形がある。α型は斜方晶系で安定で、β型は単斜方晶系で不安定で特に鋭感であり、また結晶が大きくなる程鋭感となる。β型がα型より衝撃に対して鋭感なのは、結晶中に内部歪が存在することによるとの考えもある。工業的に用いる場合には、結晶の成長を抑えるためにデキストリンを添加し、帯黄白色不定形の粉末(純度は93%程度)として取り扱う(例えば、非特許文2参照)。
特開2001−311600号公報 特開平07−242482号公報 特開平06−048879号公報 「火器弾薬技術ハンドブック」、改訂版、財団法人防衛技術協会、2003年5月、373,P378(PETN)、P367,P373,P375,P376(RDX、HMX)、P359,P367,P395(CL−20) 「一般火薬学」、第4版、日本火薬工業会、1999年4月、P40−P41
Further, in the case of crystals having a fine particle size, the fine particles are slightly soluble in the medium liquid, and when there is a particle size distribution, crystal growth occurs during storage. This is because the solubility depends on the particle size, and the smaller particles tend to be smaller and the larger particles tend to grow.
The initiator, lead azide, has two different crystal forms. The α type is orthorhombic and stable, the β type is monorhombic and unstable and particularly sharp, and the larger the crystal, the more acute. It is thought that the β type is more sensitive to impact than the α type due to the presence of internal strain in the crystal. When industrially used, dextrin is added to suppress crystal growth, and it is handled as a yellowish-white amorphous powder (purity is about 93%) (for example, see Non-Patent Document 2).
JP 2001-311600 A Japanese Patent Laid-Open No. 07-242482 Japanese Patent Laid-Open No. 06-048879 "Firearm ammunition technology handbook", revised edition, Japan Defense Technology Association, May 2003, 373, P378 (PETN), P367, P373, P375, P376 (RDX, HMX), P359, P367, P395 (CL-20) ) “General Explosives”, 4th edition, Japan Explosives Manufacturers Association, April 1999, P40-P41

平均粒径が10μm以下の微細なRDX、HMXは、水などで湿潤な状態で保管した場合、RDX、HMXがわずかではあるが、水に溶けるため保管中に結晶が成長し、平均粒子径が大きくなるという問題があった。
本発明の目的は、化合火薬類が湿薬保存中に起こる結晶成長を顕著に防止し、長期に渡って安定した貯蔵を可能にする化合火薬類および化合火薬類の結晶成長防止方法を提供することにある。
Fine RDX and HMX having an average particle size of 10 μm or less, when stored in a wet state with water or the like, although RDX and HMX are slight, the crystals grow during storage because they dissolve in water, and the average particle size is There was a problem of getting bigger.
An object of the present invention is to provide a compound and a method for preventing crystal growth of a compound explosive that significantly prevent the compound explosive from growing during storage of a wet chemical and enable stable storage over a long period of time. There is.

本発明者らは、湿薬保存中の化合火薬類が結晶成長することを防止する作用のある物質について探索するとともにその効果について鋭意研究を行ってきた。その結果、フッ素系界面活性剤を水に添加してフッ素系界面活性剤水溶液とし、フッ素系界面活性剤水溶液中に化合火薬類を投入、攪拌することにより、化合火薬類にフッ素系界面活性剤を吸着させ、湿薬保存中に起こる結晶成長を極めて効果的に防止し、極めて安定な化合火薬類となることを見出し、本発明を完成するに至った。   The present inventors have searched for a substance having an action to prevent crystal growth of compound explosives during storage of a moisturizer and have conducted intensive research on the effect. As a result, a fluorosurfactant is added to water to form a fluorosurfactant aqueous solution, and the chemical surfactant is added to the fluorochemical surfactant in the fluorosurfactant aqueous solution and stirred. As a result, the inventors have found that the crystal growth that occurs during the storage of the moist chemical is extremely effectively prevented and that it becomes a very stable chemical explosive, and the present invention has been completed.

ここで本発明に係る化合火薬類の結晶成長の防止メカニズムについて述べる。
通常、界面活性剤は水や潤滑剤、油性塗料に溶かし、界面に吸着して、表面張力や界面張力を下げ、界面状態を熱力学的に安定化するように作用する。
本発明の場合、結晶懸濁液中の微細粒子の結晶表面に界面電荷が生じるため、その界面電荷に対応したイオン系の性状を有したフッ素系界面活性剤(例えば、結晶表面にマイナスの界面電荷が生じている場合は、カチオン(プラスイオン)系のフッ素系界面活性剤を用いる)が結晶表面に吸着されることにより、フッ素系界面活性剤特有の撥水効力が結晶表面に発揮され、液相すなわち水からイオン、原子または分子が結晶表面に付着されない作用が発生し、結晶成長が防止されるものと推測される。
Here, a mechanism for preventing crystal growth of the compound explosives according to the present invention will be described.
Usually, a surfactant dissolves in water, a lubricant, and an oil-based paint and is adsorbed on the interface, thereby reducing the surface tension and interface tension and acting to stabilize the interface state thermodynamically.
In the case of the present invention, since an interfacial charge is generated on the crystal surface of the fine particles in the crystal suspension, a fluorosurfactant having an ionic property corresponding to the interfacial charge (for example, a negative interface on the crystal surface) When a charge is generated, a cationic (plus ion) fluorine-based surfactant is adsorbed on the crystal surface, and the water-repellent effect peculiar to the fluorine-based surfactant is exerted on the crystal surface. It is presumed that an action in which ions, atoms or molecules are not attached to the crystal surface from the liquid phase, that is, water occurs, and crystal growth is prevented.

上記理由より、撥水性を持ったカチオン系の界面活性剤であれば、同様の効果を得ることが可能と考えられるが、一般的に、フッ素化合物は防水性の用途に対して最大効果があることが常識である。撥水剤には、フッ素系、シリコン系、ワックス系の3種類があり、最大の効果を期待するため、フッ素系の界面活性剤での研究を実施する結論に至った。
そこで、請求項1に係る発明は、結晶表面にフッ素系界面活性剤を吸着させて成ることを特徴とする。
For the above reasons, it is considered that a similar effect can be obtained with a cationic surfactant having water repellency, but generally, a fluorine compound has the maximum effect for waterproofing applications. That is common sense. There are three types of water repellents, fluorine-based, silicon-based, and wax-based, and in order to expect the maximum effect, we have come to the conclusion of conducting research on fluorine-based surfactants.
Therefore, the invention according to claim 1 is characterized in that a fluorosurfactant is adsorbed on the crystal surface.

請求項2に係る発明は、化合火薬類の結晶表面にフッ素系界面活性剤を吸着させることにより湿薬保存中における結晶の成長を防止することを特徴とする。
請求項3に係る発明は、請求項2記載の化合火薬類の結晶成長防止方法において、フッ素系界面活性剤がカチオン系界面活性剤であることを特徴とする。
本実施形態で用いる化合火薬類としては、例えば、LOVA発射薬の酸化剤として用いられる微細粒子RDX、微細粒子HMXなどがある。
The invention according to claim 2 is characterized in that the growth of crystals during the storage of the wet chemical is prevented by adsorbing the fluorosurfactant to the crystal surface of the compound explosives.
The invention according to claim 3 is the method according to claim 2, wherein the fluorine-based surfactant is a cationic surfactant.
Examples of compound explosives used in this embodiment include fine particles RDX and fine particles HMX used as an oxidizing agent for LOVA propellants.

本発明におけるフッ素系界面活性剤とは、通常、各種合成樹脂および有機溶剤などに添加すると表面張力が低下し、乳化性、分散性、帯電防止などを付与し、高度の界面活性を発揮する効果がある。また、撥水性、撥油性を示す事から防汚、防水の吸着剤としても用いられる。
本発明において、フッ素系界面活性剤を化合火薬類の結晶表面に吸着させることにより、結晶表面の撥水性が向上し、湿薬保存中に起こる結晶成長を顕著に防止する効果が現れる。
The fluorosurfactant in the present invention usually has an effect of reducing surface tension when added to various synthetic resins and organic solvents, imparting emulsifying properties, dispersibility, antistatic properties, etc., and exhibiting a high degree of surface activity. There is. Further, since it exhibits water repellency and oil repellency, it is also used as an antifouling and waterproof adsorbent.
In the present invention, by adsorbing the fluorosurfactant to the crystal surface of the compound explosives, the water repellency of the crystal surface is improved, and the effect of remarkably preventing crystal growth that occurs during storage of the moisturizer appears.

添加量は0.1質量%以下とあまり少なくてもそれを添加した効果は現れず、また1.0質量%と必要以上に添加してもコスト高となるばかりであることから、微細粒子RDXまたは微細粒子HMXの平均粒子径が2〜3μmの場合、RDXまたはHMXに対し0.5質量%の添加量が長期的に結晶成長を防止するのに効果的である。
フッ素系界面活性剤として、例えば、カチオン系の性状を持つエフトップEF−132(株式会社ジェムコの製品名、化学名:N−[3−(パーフルオロオクタンスルホンアミド)プロピル]−N,N,N−トリメチルアンモニウムヨーダイド)、メガファック:品番:F−450(大日本インキ化学工業株式会社、化学名:パーフルオロアルキル基含有トリメチルアンモニウム塩)、サーフロン:品番:S−121(セイミケミカル株式会社)化学名:パーフルオロアリキル基をもつ分子構造などがある。これらは、フッ素系界面活性剤の構造上の特徴である分子中に直鎖のフッ素化アルキル基を有しているという共通点がある。これにより、非フッ素系界面活性剤には起こりえない高度な表面張力低下、乳化性、分散性、帯電防止、そして本発明で述べた撥水効果を発揮する。また、他メーカーのカチオン系フッ素系界面活性剤を使用した場合でも、水溶性のフッ素化アルキル基を有するものならば、結晶成長を防止する効果は期待できる。
Even if the addition amount is as small as 0.1% by mass or less, the effect of adding it does not appear, and if it is added to 1.0% by mass and more than necessary, the cost is increased, so fine particle RDX Alternatively, when the average particle size of the fine particles HMX is 2 to 3 μm, an addition amount of 0.5 mass% with respect to RDX or HMX is effective for preventing crystal growth for a long period.
As the fluorine-based surfactant, for example, EFTOP EF-132 having a cationic property (product name of Gemco Co., Ltd., chemical name: N- [3- (perfluorooctanesulfonamido) propyl] -N, N, N-trimethylammonium iodide), MegaFuck: Part No .: F-450 (Dainippon Ink Chemical Co., Ltd., chemical name: trifluoroammonium salt containing perfluoroalkyl group), Surflon: Part No .: S-121 (Seimi Chemical Co., Ltd.) ) Chemical name: There is a molecular structure having a perfluoroallyl group. These have a common point that they have a linear fluorinated alkyl group in the molecule, which is a structural feature of the fluorosurfactant. As a result, the surface tension reduction, emulsifiability, dispersibility, antistatic property, and water-repellent effect described in the present invention that cannot occur in non-fluorinated surfactants are exhibited. Even when a cationic fluorine surfactant of another manufacturer is used, the effect of preventing crystal growth can be expected if it has a water-soluble fluorinated alkyl group.

本発明によれば、化合火薬類にフッ素系界面活性剤を添加するという非常に安易な操作であるにも拘らず、湿薬保存中における結晶の成長を顕著に防止することが可能である。
したがって、本発明の方法によって長期に渡り安定した貯蔵を可能にし、安定した性能を維持することができる。
According to the present invention, it is possible to remarkably prevent crystal growth during storage of a moist chemical, despite the very easy operation of adding a fluorinated surfactant to compound chemicals.
Therefore, the method of the present invention enables stable storage over a long period of time and maintains stable performance.

以下、本発明を実施例および比較例により詳細に説明する。以下においては、%は全て質量基準である。
ここで、粒度の測定方法について述べる。
界面活性剤(分散媒)の約1%水溶液を10ml準備し、これに微細粒子RDXまたは微細粒子HMX約0.05gを加え、10分間超音波により微細粒子RDXまたは微細粒子HMXを下記の測定条件に従って粒度測定を行った。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. In the following, all percentages are based on mass.
Here, a method for measuring the particle size will be described.
Prepare 10 ml of about 1% aqueous solution of surfactant (dispersion medium), add about 0.05 g of fine particle RDX or fine particle HMX to this and add fine particle RDX or fine particle HMX by ultrasonic for 10 minutes. The particle size was measured according to

装置 セイシン企業製 レーザー回折・散乱式粒度分布測定器
型式 LMS−300
測定原理 レーザー回折法(フラウンホーファー回折理論)
光源 半導体レーザー(波長670nm、最大出力2mW)
検出器 半円型シリコンフォト・ダイオード(49素子)
前方・後方シリコンフォト・ダイオード(6素子)
分散方法 スターラおよび超音波(40W、40kHz)
(実施例1)
図1および図2は良溶媒による化合火薬類(例えば、RDX、HMX)の溶解溶液と貧溶媒である水とを所定の流量で連続的に接触・混合して得られる微細粒子化された化合火薬類(例えば、RDX、HMX)を得るための装置1の概要図である。また、本発明では装置1をT字型ミキサーと呼称する。
Equipment Seisin Corporation Laser Diffraction / Scattering Particle Size Analyzer Model LMS-300
Measurement principle Laser diffraction method (Fraunhofer diffraction theory)
Light source Semiconductor laser (wavelength 670nm, maximum output 2mW)
Detector Semi-circular silicon photodiode (49 elements)
Front and rear silicon photodiodes (6 elements)
Dispersion method Stirrer and ultrasonic wave (40W, 40kHz)
Example 1
FIG. 1 and FIG. 2 are compounded into fine particles obtained by continuously contacting and mixing a dissolved solution of compound explosives (for example, RDX, HMX) with a good solvent and water as a poor solvent at a predetermined flow rate. It is a schematic diagram of apparatus 1 for obtaining explosives (for example, RDX, HMX). In the present invention, the device 1 is referred to as a T-shaped mixer.

次に、本実施例に係る化合火薬類の結晶成長防止方法について詳細に述べる。
図1に示すように、ホットスターラ2の上に配置したガラス容器3の中にRDX200g(水分10%、クラスA)と良溶媒(DMSOジメチルスルホキシド)400mlを入れ、ホットスターラ2の温度を良溶媒の沸点以下の高温にして、希釈溶解させたRDX溶解溶液4と、一方で、冷却した冷媒槽5の中に配置したガラス容器6に入れた貧溶媒7(水)とを、高圧ポンプ8、9による圧送により、所定流量を通過させながらT字型ミキサー内にて連続的に接触・混合させ、冷却水600mlの入ったフラスコ10内に混合溶液を投入する。
Next, a method for preventing crystal growth of compound explosives according to this example will be described in detail.
As shown in FIG. 1, 200 g of RDX (water 10%, class A) and 400 ml of a good solvent (DMSO dimethyl sulfoxide) are placed in a glass container 3 placed on the hot stirrer 2, and the temperature of the hot stirrer 2 is changed to a good solvent. The RDX solution 4 diluted and dissolved at a high temperature below the boiling point of the above, and the poor solvent 7 (water) placed in the glass container 6 disposed in the cooled refrigerant tank 5 on the high pressure pump 8, The mixture is continuously brought into contact with and mixed in a T-shaped mixer while passing a predetermined flow rate by pressure feeding by No. 9, and the mixed solution is put into the flask 10 containing 600 ml of cooling water.

この後、図2に示すように、結晶懸濁液をろ過後、微細粒子RDXのみを捕集し、カチオン系の性状を持つフッ素系界面活性剤としてエフトップ EF−132(株式会社ジェムコの製品名、化学名:N−[3−(パーフルオロオクタンスルホンアミド)プロピル]−N,N,N−トリメチルアンモニウムヨーダイド))をRDX投入量に対し0.5%すなわち1.0g溶解させた冷却水1000mlすなわちフッ素系界面活性剤水溶液11に捕集した微細粒子RDXを投入し、攪拌機12により、攪拌・洗浄(残留溶剤分の除去)を行い、微細粒子RDXの結晶表面にエフトップ EF−132を吸着させる。再び結晶懸濁液をろ過後、捕集した湿薬状態の微細粒子RDXを得る。   Thereafter, as shown in FIG. 2, after filtering the crystal suspension, only fine particles RDX are collected, and F-top EF-132 (product of Gemco Co., Ltd.) is used as a fluorinated surfactant having cationic properties. Name, chemical name: N- [3- (perfluorooctanesulfonamido) propyl] -N, N, N-trimethylammonium iodide)) was dissolved in an amount of 0.5%, that is, 1.0 g with respect to the amount of RDX charged. 1000 ml of water, that is, the fine particle RDX collected in the fluorosurfactant aqueous solution 11 is charged, and the stirrer 12 is used for stirring and washing (removal of residual solvent), and F-top EF-132 is formed on the crystal surface of the fine particle RDX. To adsorb. After filtering the crystal suspension again, the collected fine particles RDX in the moist state are obtained.

その結果を表1に示す。表1より、得られた微細粒子RDXの平均粒子径は2〜3μmであり、湿薬状態で導電性ビニールパックに保管、1日経過後、10日経過後、20日経過後、30日経過後に平均粒子径を測定したが、いずれも2〜3μmであり、平均粒子径が製造直後の平均粒子径と同等の値を示すことを確認した。   The results are shown in Table 1. From Table 1, the average particle size of the obtained fine particles RDX is 2 to 3 μm, stored in a conductive vinyl pack in a wet state, after 1 day, after 10 days, after 20 days, after 30 days Although the diameter was measured, all were 2-3 micrometers, and it confirmed that an average particle diameter showed a value equivalent to the average particle diameter immediately after manufacture.

Figure 2007186391
図3は、微細粒子RDX製造直後に撮影した電子顕微鏡写真(倍率2000倍、平均粒子径2.35μm)である。
図4は、微細粒子RDX製造直後に平均粒子径が2.35μmであった微細粒子RDXを湿薬保存し、30日経過後に撮影した電子顕微鏡写真(倍率2000倍、平均粒子径2.33μm)である。
Figure 2007186391
FIG. 3 is an electron micrograph (magnification 2000 times, average particle diameter 2.35 μm) taken immediately after the production of the fine particle RDX.
FIG. 4 is an electron micrograph (magnification 2000 times, average particle size 2.33 μm) taken after 30 days of storing fine particles RDX having an average particle size of 2.35 μm immediately after production of the fine particle RDX. It is.

(比較例1)
実施例1において、カチオン系フッ素系界面活性剤を添加しなかった他は全く同様に操作して微細粒子RDXを得た。
その結果を表2に示す。表2より、製造直後の微細粒子RDXの平均粒子径は2〜3μmであるが、湿薬状態で導電性ビニールパックに保管、日数が経過するにつれ、平均粒子径は増大し、28日経過後では平均粒子径4〜5μmであった。
(Comparative Example 1)
In Example 1, fine particles RDX were obtained in exactly the same manner except that the cationic fluorosurfactant was not added.
The results are shown in Table 2. From Table 2, the average particle size of fine particles RDX immediately after production is 2 to 3 μm, but it is stored in a conductive vinyl pack in a moist state, and as the number of days elapses, the average particle size increases. The average particle size was 4 to 5 μm.

Figure 2007186391
図5は、微細粒子RDX製造直後に撮影した電子顕微鏡写真(倍率2000倍、平均粒子径2.16μm)である。
図6は、微細粒子RDX製造直後に平均粒子径が2.16μmであった微細粒子RDXを湿薬保存し、28日経過後に撮影した電子顕微鏡写真(倍率2000倍、平均粒子径4.48μm)である。
Figure 2007186391
FIG. 5 is an electron micrograph (magnification 2000 times, average particle diameter 2.16 μm) taken immediately after the production of the fine particle RDX.
FIG. 6 is an electron micrograph (magnification 2000 times, average particle size 4.48 μm) taken after 28 days of storing fine particles RDX having an average particle size of 2.16 μm immediately after production of the fine particle RDX. It is.

(実施例2)
実施例1において、カチオン系の性状を持つフッ素系界面活性剤としてエフトップ EF−132(株式会社ジェムコの製品名)の添加量をRDX質量の0.2%、0.25%、0.33%とした他は全く同様に操作して微細粒子RDXを得た。
製造直後に採取した微細粒子RDXの平均粒子径は2〜3μmであるが、湿薬状態で導電性ビニールパックに保管後、温度サイクル試験を実施した。
(Example 2)
In Example 1, the addition amount of F-top EF-132 (product name of Gemco Co., Ltd.) as a fluorine-based surfactant having cationic properties was 0.2%, 0.25%, 0.33 of RDX mass. The fine particles RDX were obtained in exactly the same manner except that the percentage was changed to%.
Although the average particle diameter of the fine particles RDX collected immediately after the production is 2 to 3 μm, a temperature cycle test was conducted after storing in a conductive vinyl pack in a moist state.

ここで、温度サイクル試験方法について述べる。
温度サイクル試験は火薬類のみならず、あらゆる製品や試験試料に温度サイクルを加え、性能の変化を調査する試験であり、短期間で加速劣化させ、潜在欠陥を顕在化させることが可能であり、通常、恒温槽が用いられる。
本温度サイクル試験では、湿薬状態の微細粒子RDXを導電性ビニールパックに入れ密封した後、恒温槽に投入し、以下に示した試験条件により試験を行った。
Here, the temperature cycle test method will be described.
The temperature cycle test is a test that investigates changes in performance by adding temperature cycles to not only explosives but also all products and test samples, and it is possible to accelerate deterioration in a short period of time and reveal latent defects, Usually, a thermostatic bath is used.
In this temperature cycle test, the fine particles RDX in a moist state were placed in a conductive vinyl pack and sealed, then placed in a thermostatic bath, and the test was performed under the test conditions shown below.

−15℃で11時間保持した後、1時間以内に+50℃まで温度を上昇させる。そして、+50℃で11時間保持した後、1時間以内に−15℃まで温度を下降させる。
このサイクルを1サイクルとして連続試験を行い、連続試験中に12、24サイクル毎にRDXを採取し粒度の測定を行った。
本来、試験前後の平均粒子径に変化がないことが好ましいものである。
After holding at −15 ° C. for 11 hours, the temperature is raised to + 50 ° C. within 1 hour. And after hold | maintaining at +50 degreeC for 11 hours, temperature is lowered | hung to -15 degreeC within 1 hour.
A continuous test was performed with this cycle as one cycle, and RDX was sampled every 12 and 24 cycles during the continuous test to measure the particle size.
Originally, it is preferable that there is no change in the average particle diameter before and after the test.

本試験では1サイクルを加速劣化相当として1ヶ月と換算し、12サイクルを加速劣化相当年数として1年すなわち365日とした。つまり、24サイクルで2年相当の経年変化が起こるものとして粒度の変化を確認した。微粒RDXを発射薬等の原料として考えた場合、2年程度で粒子径を測定するのが妥当であると判断した。発射薬の原料としてRDXを製造した場合、工程の流れを考えると、RDXの製造から発射薬になるまでに2年以上の時間が経過することは考えられない。一般的に、製造メーカは、必要な材料のみを購入し、在庫で貯蔵することは考えられない。よって、日数を短縮することにより、添加量規格を設定した。   In this test, one cycle was converted to one month as equivalent to accelerated deterioration, and 12 cycles were set as one year, ie 365 days, as the number of years equivalent to accelerated deterioration. That is, the change in the particle size was confirmed as an aging change corresponding to 2 years in 24 cycles. When considering fine RDX as a raw material for a propellant or the like, it was judged that it was appropriate to measure the particle size in about two years. When RDX is manufactured as a raw material for a propellant, considering the process flow, it is unlikely that more than two years will elapse from the manufacture of RDX until it becomes a propellant. In general, a manufacturer cannot purchase only necessary materials and store them in stock. Therefore, the addition amount standard was set by shortening the number of days.

その結果を図7に示す。
エフトップ EF−132(株式会社ジェムコの製品名)の添加量がRDX質量の0.2%のものは、12サイクル(加速劣化365日相当)で平均粒子径が6.12μmと大きく増大し、24サイクル(加速劣化730日相当)で平均粒子径が6.31μmであった。
The result is shown in FIG.
When the addition amount of F-top EF-132 (product name of Gemco Co., Ltd.) is 0.2% of the RDX mass, the average particle size greatly increases to 6.12 μm in 12 cycles (corresponding to accelerated deterioration 365 days), In 24 cycles (corresponding to accelerated deterioration of 730 days), the average particle size was 6.31 μm.

エフトップ EF−132(株式会社ジェムコの製品名)の添加量がRDX質量の0.25%のものは、12サイクル(加速劣化365日相当)で平均粒子径が4.20μm、24サイクル(加速劣化730日相当)で平均粒子径が5.25μmであった。
エフトップ EF−132(株式会社ジェムコの製品名)の添加量がRDX質量の0.33%のものは、12サイクル(加速劣化365日相当)で平均粒子径が3.78μm、24サイクル(加速劣化730日相当)で平均粒子径が4.61μmであった。
When F-top EF-132 (product name of Gemco Co., Ltd.) is added in an amount of 0.25% of the RDX mass, the average particle size is 4.20 μm and 24 cycles (accelerated) with 12 cycles (equivalent to accelerated deterioration 365 days). And the average particle size was 5.25 μm.
When F-top EF-132 (product name of Gemco Co., Ltd.) is added at 0.33% of RDX mass, the average particle size is 3.78 μm and 24 cycles (acceleration) with 12 cycles (equivalent to accelerated deterioration 365 days). And the average particle size was 4.61 μm.

エフトップ EF−132(株式会社ジェムコの製品名)の添加量がRDX質量の0.5%のものは、12サイクル(加速劣化365日相当)で平均粒子径が3.67μm、24サイクル(加速劣化730日相当)で平均粒子径が4.22μmであった。
フッ素系界面活性剤の添加量の減量度合により、サイクルが経過するにつれ、平均粒子径の増大幅が大きくなる結果となった。
When F-top EF-132 (product name of Gemco Co., Ltd.) is added at 0.5% of the RDX mass, the average particle size is 3.67 μm and 24 cycles (accelerated) in 12 cycles (equivalent to accelerated deterioration 365 days). The average particle size was 4.22 μm.
As a result of the degree of reduction in the amount of the fluorosurfactant added, the increase in the average particle diameter increased as the cycle progressed.

結晶成長を防止する効果は12サイクル経過後すなわち1年経過後に顕著に現れ、0.25%から結晶成長防止効果が発揮されることを確認した。
図7に示すように、経時変化と粒子径増大の結果からフッ素系界面活性剤の添加量は、RDX質量の0.25%〜0.5%が妥当な量と判断する。
フッ素系界面活性剤の添加量は、0.25質量%より少なくてもそれを添加した効果は現れず(365日相当で0.2%添加は粒子径増大)、また0.5質量%添加した場合、その効果は2年(730日)相当経過でも十分効果を発揮する。
The effect of preventing crystal growth was noticeable after 12 cycles, that is, after 1 year, and it was confirmed that the effect of preventing crystal growth was exhibited from 0.25%.
As shown in FIG. 7, from the results of change with time and increase in particle diameter, it is determined that the amount of the fluorosurfactant added is 0.25% to 0.5% of the RDX mass as an appropriate amount.
Even if the addition amount of the fluorosurfactant is less than 0.25% by mass, the effect of adding it does not appear (equivalent to 365 days, 0.2% addition increases the particle diameter), and 0.5% by mass addition In this case, the effect is sufficiently effective even after 2 years (730 days).

また、必要以上すなわち0.5質量%より多く添加してもコスト高となり、過剰に添加しても結晶表面に吸着しきれないフッ素系界面活性剤は、結果的にそのまま水中に溶解したまま廃棄するから、微細粒子RDXまたは微細粒子HMXの平均粒子径が2〜3μmの場合、RDXまたはHMXに対し0.25質量%〜0.5質量%の添加量が結晶成長を防止するのに効果的である範囲と考える。   In addition, if it is added more than necessary, that is, more than 0.5% by mass, the cost becomes high. Even if it is added excessively, the fluorosurfactant that cannot be adsorbed on the crystal surface is discarded as it is dissolved in water as a result. Therefore, when the average particle diameter of the fine particle RDX or the fine particle HMX is 2 to 3 μm, an addition amount of 0.25% by mass to 0.5% by mass with respect to the RDX or HMX is effective in preventing crystal growth. Think of it as a range.

(実施例3)
実施例1において、化合火薬類をHMX20gとし、良溶媒(DMSO)を200ml、フッ素系界面活性剤(EF−132)の添加量を、HMX投入量に対し0.5%すなわち0.1gとした他は全く同様に操作して微細粒子HMXを得た。
その結果を表3に示す。表3より、得られた製造直後の微細粒子HMXの平均粒子径は2〜3μmであり、湿薬状態で導電性ビニールパックに保管、1日経過後、10日経過後、20日経過後、30日経過後に平均粒子径を測定したが、いずれも2〜3μmであり、平均粒子径が製造直後の平均粒子径と同等の値を示すことを確認した。
(Example 3)
In Example 1, the compound explosives were HMX 20 g, the good solvent (DMSO) was 200 ml, and the addition amount of the fluorosurfactant (EF-132) was 0.5%, that is, 0.1 g with respect to the HMX input amount. Others were operated in exactly the same manner to obtain fine particles HMX.
The results are shown in Table 3. From Table 3, the average particle diameter of the obtained fine particles HMX immediately after production is 2 to 3 μm, stored in a conductive plastic pack in a moist state, after 1 day, after 10 days, after 20 days, after 30 days Although the average particle diameter was measured later, it was 2 to 3 μm, and it was confirmed that the average particle diameter showed the same value as the average particle diameter immediately after production.

Figure 2007186391
(比較例2)
実施例3において、カチオン系フッ素系界面活性剤を添加しなかった他は全く同様に操作して微細粒子HMXを得た。
Figure 2007186391
(Comparative Example 2)
In Example 3, fine particles HMX were obtained in exactly the same manner except that the cationic fluorosurfactant was not added.

その結果を表4に示す。表4より、製造直後の微細粒子HMXの平均粒子径は2〜3μmであるが、湿薬状態で導電性ビニールパックに保管、日数が経過するにつれ、平均粒子径は増大し、10日経過後では平均粒子径4.92μmであった。   The results are shown in Table 4. From Table 4, the average particle size of fine particles HMX immediately after production is 2 to 3 μm, but it is stored in a conductive vinyl pack in a moist state and the average particle size increases as the number of days elapses. The average particle size was 4.92 μm.

Figure 2007186391
(比較例3)
実施例1において、フッ素系界面活性剤のイオン系の性状を変えたフッ素系界面活性剤を添加した他は全く同様に操作して微細粒子RDXを得た。
Figure 2007186391
(Comparative Example 3)
In Example 1, fine particles RDX were obtained in the same manner as in Example 1 except that a fluorosurfactant in which the ionic properties of the fluorosurfactant were changed was added.

その結果を表5に示す。表5より、製造直後に採取した微細粒子RDXの平均粒子径は2〜3μmであり、湿薬状態で導電性ビニールパックに保管後、日数が経過するにつれ、カチオン系の性状を持たない各フッ素系界面活性剤を添加した微細粒子RDXの平均粒子径は増大していった。   The results are shown in Table 5. From Table 5, the average particle diameter of fine particles RDX collected immediately after production is 2 to 3 μm, and each fluorine without cationic properties as the number of days elapses after being stored in a conductive vinyl pack in a moist state. The average particle diameter of the fine particles RDX to which the system surfactant was added increased.

Figure 2007186391
表5において、品番の欄に記載のフッ素系界面活性剤は全てエフトップ(株式会社ジェムコの製品名)である。エフトップEF−122Bは、N−ポリオキシエチレン−N−プロピルペルフルオロオクタンスルホンアミド(含有量97%以上)、エフトップEF−122Cは、N−ポリオキシエチレン−N−プロピルペルフルオロオクタンスルホンアミド(含有量97%以上)、エフトップEF−122Aは、N−ポリオキシエチレン−N−プロピルベルフルオロオクタンスルホンアミド(含有量97%以上)、エフトップEF−105は、ペルフルオロオクタンスルホン酸リチウム(含有量97%以上)である。
Figure 2007186391
In Table 5, all of the fluorosurfactants described in the column of product number are F-top (product name of Gemco Co., Ltd.). F-top EF-122B is N-polyoxyethylene-N-propylperfluorooctanesulfonamide (content 97% or more), and Ftop EF-122C is N-polyoxyethylene-N-propylperfluorooctanesulfonamide (containing 97% or more), F-top EF-122A is N-polyoxyethylene-N-propylberfluorooctanesulfonamide (content 97% or more), F-top EF-105 is lithium perfluorooctanesulfonate (content) 97% or more).

実施例1における装置を示す概要図である。1 is a schematic diagram showing an apparatus in Example 1. FIG. 実施例1における装置を示す概要図である。1 is a schematic diagram showing an apparatus in Example 1. FIG. 実施例1において、微細粒子RDX製造直後に撮影した電子顕微鏡写真(倍率2000倍、平均粒子径2.35μm)である。In Example 1, it is the electron micrograph (magnification 2000 times, average particle diameter 2.35 micrometers) image | photographed immediately after manufacture of the fine particle RDX. 実施例1において、微細粒子RDX製造直後に平均粒子径が2.35μmであった微細粒子RDXを湿薬保存し、30日経過後に撮影した電子顕微鏡写真(倍率2000倍、平均粒子径2.33μm)である。In Example 1, immediately after the production of the fine particle RDX, the fine particle RDX having an average particle size of 2.35 μm was stored in a wet medicine, and an electron micrograph taken after 30 days (magnification 2000 times, average particle size 2.33 μm). ). 比較例1において、微細粒子RDX製造直後に撮影した電子顕微鏡写真(倍率2000倍、平均粒子径2.16μm)である。In Comparative Example 1, it is an electron micrograph (magnification 2000 times, average particle diameter 2.16 μm) taken immediately after the production of fine particles RDX. 比較例1において、微細粒子RDX製造直後に平均粒子径が2.16μmであった微細粒子RDXを湿薬保存し、28日経過後に撮影した電子顕微鏡写真(倍率2000倍、平均粒子径4.48μm)である。In Comparative Example 1, the fine particle RDX having an average particle size of 2.16 μm immediately after the production of the fine particle RDX was stored in a wet medicine and taken after 28 days (magnification 2000 times, average particle size 4.48 μm). ). 実施例2における温度サイクル試験を示すグラフである。6 is a graph showing a temperature cycle test in Example 2.

符号の説明Explanation of symbols

1 T字型ミキサー
2 ホットスターラ
3、6 ガラス容器
4 RDX(HMX)溶解液
5 冷媒槽
7 冷却水
8、9 高圧ポンプ
10 フラスコ
11 フッ素系界面活性剤水溶液
12 攪拌機
1 T-shaped mixer 2 Hot stirrer 3 and 6 Glass container 4 RDX (HMX) solution 5 Refrigerant tank 7 Cooling water 8 and 9 High-pressure pump 10 Flask 11 Fluorosurfactant aqueous solution 12 Stirrer

Claims (3)

結晶表面にフッ素系界面活性剤を吸着させて成ることを特徴とする化合火薬類。   Chemical explosives characterized by adsorbing a fluorosurfactant on the crystal surface. 化合火薬類の結晶表面にフッ素系界面活性剤を吸着させることにより湿薬保存中における結晶の成長を防止することを特徴とする化合火薬類の結晶成長防止方法。   A method for preventing crystal growth of chemical explosives, comprising preventing the growth of crystals during storage of a wet chemical by adsorbing a fluorosurfactant to the crystal surface of the chemical explosives. 前記フッ素系界面活性剤は、カチオン系界面活性剤であることを特徴とする請求項2記載の化合火薬類の結晶成長防止方法。
The method for preventing crystal growth of compound explosives according to claim 2, wherein the fluorosurfactant is a cationic surfactant.
JP2006007282A 2006-01-16 2006-01-16 Chemical explosives and methods for preventing crystal growth of chemical explosives Active JP4837995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007282A JP4837995B2 (en) 2006-01-16 2006-01-16 Chemical explosives and methods for preventing crystal growth of chemical explosives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007282A JP4837995B2 (en) 2006-01-16 2006-01-16 Chemical explosives and methods for preventing crystal growth of chemical explosives

Publications (2)

Publication Number Publication Date
JP2007186391A true JP2007186391A (en) 2007-07-26
JP4837995B2 JP4837995B2 (en) 2011-12-14

Family

ID=38341822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007282A Active JP4837995B2 (en) 2006-01-16 2006-01-16 Chemical explosives and methods for preventing crystal growth of chemical explosives

Country Status (1)

Country Link
JP (1) JP4837995B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151144A (en) * 2007-12-21 2009-07-09 Bridgestone Corp Developing roller and image forming apparatus
CN109186100A (en) * 2018-10-28 2019-01-11 山西北化关铝化工有限公司 Explosive production high-solidification point liquid heating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648879A (en) * 1992-07-31 1994-02-22 Tech Res & Dev Inst Of Japan Def Agency Multi-composition firing chemical
JPH07242482A (en) * 1994-03-01 1995-09-19 Tech Res & Dev Inst Of Japan Def Agency Gunpowder composition
JPH11209192A (en) * 1998-01-26 1999-08-03 Nippon Koki Co Ltd Water drop-in-oil type emulsion explosive composition
JP2001311600A (en) * 2000-04-28 2001-11-09 Asahi Kasei Corp Fuse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648879A (en) * 1992-07-31 1994-02-22 Tech Res & Dev Inst Of Japan Def Agency Multi-composition firing chemical
JPH07242482A (en) * 1994-03-01 1995-09-19 Tech Res & Dev Inst Of Japan Def Agency Gunpowder composition
JPH11209192A (en) * 1998-01-26 1999-08-03 Nippon Koki Co Ltd Water drop-in-oil type emulsion explosive composition
JP2001311600A (en) * 2000-04-28 2001-11-09 Asahi Kasei Corp Fuse

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151144A (en) * 2007-12-21 2009-07-09 Bridgestone Corp Developing roller and image forming apparatus
CN109186100A (en) * 2018-10-28 2019-01-11 山西北化关铝化工有限公司 Explosive production high-solidification point liquid heating

Also Published As

Publication number Publication date
JP4837995B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
Aakeröy et al. Crystal engineering of energetic materials: co‐crystals of ethylenedinitramine (EDNA) with modified performance and improved chemical stability
Li et al. Borohydride ionic liquids and borane/ionic‐liquid solutions as hypergolic fuels with superior low ignition‐delay times
CN107428627A (en) solid rocket propellant
JP4837995B2 (en) Chemical explosives and methods for preventing crystal growth of chemical explosives
Guillevic et al. Optimization of an antisolvent method for RDX recrystallization: influence on particle size and internal defects
Matsunaga et al. Aging characteristics of the energetic oxidizer ammonium dinitramide
WO2006108991A2 (en) Obtaining ammonium dinitramide (adn) crystals, and crystals and the energetic composites containing them
Gallagher et al. Growth and dislocation studies of β-HMX
EP2483222B1 (en) Suspensions of hexanitrohexaazaisowurtzitane crystals, production of said suspensions and production of pyrotechnic objects
Chelouche et al. Solid–liquid phase equilibria, molecular interaction and microstructural studies on (N-(2-ethanol)-p-nitroaniline+ N-(2-acetoxyethyl)-p-nitroaniline) binary mixtures
Chapman et al. Evaluation of a CL‐20/TATB Energetic Co‐crystal
US8747581B2 (en) Particles of an explosive of low sensitivity to shock and associated treatment process
CA2689318A1 (en) Method for determining the sensitive or insensitive nature of a hexogen
US11773034B2 (en) Hypergolic co-crystal material and method of use thereof
FR2665894A1 (en) ALPHA- AND BETA-OCTOGENES IN GRANULATED AND STABILIZED FORM.
Cooper et al. Antisolvent addition: an effective method of controlled fluid inclusion formation in RDX crystals
Zhang et al. Insensitive ionic bio-energetic materials derived from amino acids
Nishiwaki et al. Study of the hygroscopic deterioration of ammonium perchlorate/magnesium mixture
US20050183803A1 (en) Explosive molding powder slurry processing in a nonaqueous medium using a mixed solvent lacquer system
JP5909225B2 (en) Tetracene alternative
KR101573616B1 (en) Process for Controlling Form and Particle Size by Recrystallization of N-Guanylurea-Dinitramide
Feng et al. Measurement and correlation of solubilities of γ-2, 4, 6, 8, 10, 12-hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane (γ-CL-20) in six pure solvents and four different chloralkane+ ethyl acetate binary solvents from 283.15 to 323.15 K
US3147160A (en) Desensitization of ammonium perchlorate
Jiang et al. Control of Particle Size and Shape of ε-HNIW in Drowning-out Crystallization
US3166555A (en) Ammonium nitrate-hexamethylene-tetramine adduct

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4837995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250