JP2007186386A - Mesocarbon microsphere for high density and high hardness carbon material - Google Patents

Mesocarbon microsphere for high density and high hardness carbon material Download PDF

Info

Publication number
JP2007186386A
JP2007186386A JP2006007054A JP2006007054A JP2007186386A JP 2007186386 A JP2007186386 A JP 2007186386A JP 2006007054 A JP2006007054 A JP 2006007054A JP 2006007054 A JP2006007054 A JP 2006007054A JP 2007186386 A JP2007186386 A JP 2007186386A
Authority
JP
Japan
Prior art keywords
mesocarbon
particle diameter
density
cumulative mass
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006007054A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kuga
光広 久我
Yoichi Tajima
洋一 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2006007054A priority Critical patent/JP2007186386A/en
Publication of JP2007186386A publication Critical patent/JP2007186386A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide mesocarbon microspheres for carbon materials stably manufacturing high density and high hardness carbon products such as a high density and high hardness graphite block as a final product. <P>SOLUTION: The mesocarbon microspheres for high density and high hardness carbon materials have a particle diameter at the cumulative mass 30% of ≤8 μm, a particle diameter at the cumulative mass 50% of 9-14 μm, and a particle diameter at the cumulative mass 70% of ≥16 μm. Preferably, the ratio of the particle diameter at the cumulative mass 70% to the particle diameter at the cumulative mass 30% is 2.0-3.0. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高密度、高硬度な炭素製品の製造に用いられる炭素材料用メソカーボン小球体、例えば当該炭素材料であるメソカーボン小球体を成形、焼成、黒鉛化することで高密度、高硬度の黒鉛ブロックを安定して製造することが可能な炭素材料用メソカーボン小球体に関する。   The present invention is a mesocarbon spherule for carbon materials used in the production of high-density, high-hardness carbon products, for example, mesocarbon spherules, which are the carbon materials, are molded, fired, and graphitized to achieve high density and high hardness. The present invention relates to a mesocarbon microsphere for a carbon material that can stably produce a graphite block.

従来から、放電加工用電極等の特殊用途品の製造に用いられる炭素材料としては、主に自己焼結性を有するメソカーボン小球体(光学的異方性小球体)が用いられている。このメソカーボン小球体は、石油系重質油あるいはコールタールピッチ等を350℃〜500℃程度の温度で加熱処理して生成した光学的異方性小球体を、溶剤により分離した後、200℃〜450℃程度の温度で仮焼することで製造される。   Conventionally, mesocarbon microspheres (optically anisotropic microspheres) having self-sintering properties have been mainly used as carbon materials used in the manufacture of special-purpose products such as electrodes for electric discharge machining. This mesocarbon spherule is obtained by separating an optically anisotropic spherule formed by heating a petroleum heavy oil or coal tar pitch at a temperature of about 350 ° C. to 500 ° C. with a solvent, Manufactured by calcining at a temperature of about ~ 450 ° C.

例えば、非特許文献1の3ページ目には、このような用途に用いられる高機能性炭素材原料のメソカーボン小球体として、累積質量30%粒子径(D30)が約7μm、累積質量50%粒子径(D50)が10.3μm、累積質量70%粒子径(D70)が約12μm、累積質量30%粒子径(D30)に対する累積質量70%粒子径(D70)の比D70/D30が、12μm/7μm=1.7であるものが開示されている。   For example, on the third page of Non-Patent Document 1, as a mesocarbon microsphere of a highly functional carbon material used for such applications, a cumulative mass 30% particle diameter (D30) is about 7 μm and a cumulative mass 50%. The particle diameter (D50) is 10.3 μm, the cumulative mass 70% particle diameter (D70) is about 12 μm, and the ratio of the cumulative mass 70% particle diameter (D70) to the cumulative mass 30% particle diameter (D30) D70 / D30 is 12 μm. / 7 μm = 1.7 is disclosed.

また、この非特許文献1の2ページ目には、上記メソカーボン小球体の製造方法が開示されている。さらに、この非特許文献1の5ページ目には、上記メソカーボン小球体を用いて成形、黒鉛化した黒鉛ブロックの物理的性質として、嵩密度(成形密度)が1.90g/cm、硬度(ショア硬度)が90である旨が開示されている。
川崎製鉄株式会社(現JFEスチール株式会社)、”KMFC高機能性炭素材原料”
The second page of Non-Patent Document 1 discloses a method for producing the mesocarbon microspheres. Furthermore, on page 5 of this Non-Patent Document 1, as physical properties of the graphite block molded and graphitized using the mesocarbon spherules, the bulk density (molding density) is 1.90 g / cm 3 , hardness It is disclosed that (Shore hardness) is 90.
Kawasaki Steel Corporation (currently JFE Steel Corporation), "KMFC high-performance carbon material raw material"

しかし、上記非特許文献1の2ページ目に記載されている方法により製造したメソカーボン小球体を用いて製造した黒鉛ブロックは、その成形、焼成及び黒鉛化の過程でクラックを生じる場合があり、また、最終製品の成形密度やショア硬度にばらつきが大きいことがわかった。特に、ショア硬度に関しては、そのばらつきが大きくなっていた。例えば、成形密度は、平均値が1.90g/cm、標準偏差が0.03g/cm、ショア硬度は、平均値が90、標準偏差が5である。そのため、安定して高密度、高硬度の黒鉛ブロックを製造することが難しいという問題があった。 However, the graphite block manufactured using the mesocarbon microspheres manufactured by the method described on page 2 of Non-Patent Document 1 may cause cracks in the process of molding, firing and graphitization, It was also found that the final product had large variations in molding density and Shore hardness. In particular, the variation in Shore hardness was large. For example, the molding density has an average value of 1.90 g / cm 3 and a standard deviation of 0.03 g / cm 3 , and the Shore hardness has an average value of 90 and a standard deviation of 5. Therefore, there is a problem that it is difficult to stably produce a high density and high hardness graphite block.

そこで、本発明は、高密度、高硬度な炭素製品、例えば、最終製品である黒鉛ブロックを高密度、高硬度なブロックとして安定して製造可能な炭素材料用メソカーボン小球体を提供することを目的とする。   Accordingly, the present invention provides a mesocarbon microsphere for a carbon material that can be stably produced as a high-density, high-hardness carbon product, for example, a graphite block as a final product as a high-density, high-hardness block. Objective.

本発明者らは、最終製品である黒鉛ブロックが安定して高密度、高硬度なブロックとして製造可能なメソカーボン小球体について研究を重ねた。その中で、メソカーボン小球体の粒度分布が最終製品の成形密度及びショア硬度に大きく影響しているのではないか、と考えるに至り、その粒度分布を種々変更させて実験を行った。その結果、特定の粒度分布の原料を用いることで、上記課題を解消できることを見出した。   The present inventors have repeated research on mesocarbon spherules that can stably produce a high-density, high-hardness graphite block as a final product. Among them, it came to be thought that the particle size distribution of the mesocarbon spherules greatly influenced the molding density and Shore hardness of the final product, and experiments were conducted with various changes in the particle size distribution. As a result, it has been found that the above problem can be solved by using a raw material having a specific particle size distribution.

本発明は上記の知見に基づきなされたもので、以下のような特徴を有する。
[1]累積質量30%粒子径が8μm以下、累積質量50%粒子径が9〜14μm、累積質量70%粒子径が16μm以上であることを特徴とする高密度、高硬度な炭素材料用メソカーボン小球体。
[2]上記[1]において、累積質量30%粒子径に対する累積質量70%粒子径の比が、2.0〜3.0であることを特徴とする高密度、高硬度な炭素材料用メソカーボン小球体。
The present invention has been made based on the above findings and has the following characteristics.
[1] Meso for high density and high hardness carbon material, characterized in that cumulative mass 30% particle diameter is 8 μm or less, cumulative mass 50% particle diameter is 9-14 μm, cumulative mass 70% particle diameter is 16 μm or more. Carbon spherule.
[2] In the above [1], the ratio of the cumulative mass 70% particle size to the cumulative mass 30% particle size is 2.0 to 3.0, and the carbon material meso for high density and high hardness Carbon spherule.

本発明によれば、高密度、高硬度な炭素製品、例えば、最終製品である黒鉛ブロックを高密度、高硬度なブロックとして安定して製造可能な炭素材料用メソカーボン小球体が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the mesocarbon microsphere for carbon materials which can be manufactured stably as a high-density and high-hardness carbon product, for example, the graphite block which is an end product as a high-density and high-hardness block, is provided.

以下、本発明を実施するための最良の形態の一例を説明する。   Hereinafter, an example of the best mode for carrying out the present invention will be described.

本発明の高密度、高硬度な炭素材料用メソカーボン小球体は、累積質量30%粒子径が8μm以下、累積質量50%粒子径が9〜14μm、累積質量70%粒子径が16μm以上であることを特徴とするものである。なお、以下においては、前記累積質量30%粒子径をD30、前記累積質量50%粒子径をD50、前記累積質量70%粒子径をD70と記載する。   The high-density, high-hardness mesocarbon microspheres of the present invention have a cumulative mass of 30% particle diameter of 8 μm or less, a cumulative mass of 50% particle diameter of 9 to 14 μm, and a cumulative mass of 70% particle diameter of 16 μm or more. It is characterized by this. In the following, the cumulative mass 30% particle diameter is referred to as D30, the cumulative mass 50% particle diameter as D50, and the cumulative mass 70% particle diameter as D70.

ここで、メソカーボン小球体は、石油系重質油あるいはコールタールピッチ等を350℃〜500℃程度の温度で加熱処理して生成した光学的異方性小球体を、溶剤により分離した後、200℃〜450℃程度の温度で仮焼することで製造される。より詳しく説明すると、例えば、コールタールピッチを350℃〜500℃程度の温度で10分〜6時間加熱処理して液相(ピッチ)中に中間相のメソカーボン小球体を生成させ、溶剤で分別し、これを濾別することでメソカーボン小球体を得る。ここで得られたメソカーボン小球体は、相当量のピッチ分(例えばβ成分等)や溶剤が残存しているため、次に、不活性雰囲気中で200℃〜450℃程度の温度で2時間〜10時間仮焼してメソカーボン小球体中に残存する軽質分を除去し、同時にβ成分等の重質分をキノリン不溶分(QI)に変える。この結果、メソカーボン小球体の最表面にわずかなβ成分が付着したメソカーボン小球体の仮焼品が得られる。このβ成分は焼成、黒鉛化の際にQIに変わることで、焼結性を向上させる重要なものである。   Here, the mesocarbon spherules are separated from the optically anisotropic spherules produced by heat-treating petroleum heavy oil or coal tar pitch at a temperature of about 350 ° C. to 500 ° C. with a solvent, It is manufactured by calcining at a temperature of about 200 ° C to 450 ° C. More specifically, for example, coal tar pitch is heat-treated at a temperature of about 350 ° C. to 500 ° C. for 10 minutes to 6 hours to generate mesocarbon microspheres of an intermediate phase in the liquid phase (pitch), and fractionated with a solvent. The mesocarbon spherules are obtained by filtering this. Since the mesocarbon microspheres obtained here have a considerable amount of pitch (for example, β component) and solvent remaining, next, in an inert atmosphere, at a temperature of about 200 ° C. to 450 ° C. for 2 hours. Calcination is carried out for 10 hours to remove light components remaining in the mesocarbon microspheres, and at the same time, heavy components such as β component are changed to quinoline insoluble components (QI). As a result, a mesocarbon microsphere calcined product having a slight β component attached to the outermost surface of the mesocarbon microsphere is obtained. This β component is important for improving the sinterability by changing to QI during firing and graphitization.

そして、上記により製造したメソカーボン小球体の仮焼品に対し、粒度分布の調整を行うことにより本発明のメソカーボン小球体を得ることができる。ここで、前記粒度分布の調整は、メソカーボン小球体の製造条件である加熱温度或いは仮焼温度を調整、若しくは、加熱時間或いは仮焼時間を調整することで行うことができる。例えば、前記加熱温度或いは仮焼温度を高くし、または、加熱時間或いは仮焼時間を長くして、通常よりも粒度分布の大きなメソカーボン小球体を製造した後、分級して粒度分布を調整してもよい。また、粒径の大きなメソカーボン小球体製造した後、それを粉砕し、従来よりも粒度分布の大きなメソカーボン小球体を製造した後、分級して粒度分布を調整してもよい。   And the mesocarbon microsphere of this invention can be obtained by adjusting a particle size distribution with respect to the calcined product of the mesocarbon microsphere manufactured by the above. Here, the particle size distribution can be adjusted by adjusting the heating temperature or calcination temperature, which is the production condition of the mesocarbon microspheres, or by adjusting the heating time or calcination time. For example, by increasing the heating temperature or calcination temperature, or by increasing the heating time or calcination time to produce mesocarbon microspheres having a larger particle size distribution than usual, classification is performed to adjust the particle size distribution. May be. Alternatively, the mesocarbon microspheres having a large particle size may be produced and then pulverized to produce mesocarbon microspheres having a larger particle size distribution than before, followed by classification to adjust the particle size distribution.

本発明者らは、種々の粒度分布のメソカーボン小球体を製造し、それらを成形、焼成及び黒鉛化して製品ブロックを作成し、その成形密度及びショア硬度を測定した。この成形密度及びショア硬度の測定結果と、メソカーボン小球体の粒度分布との関係を調査した結果、以下の結論を得た。   The inventors of the present invention produced mesocarbon spherules with various particle size distributions, formed, fired and graphitized them to produce product blocks, and measured the molding density and Shore hardness. As a result of investigating the relationship between the measurement results of the molding density and the Shore hardness and the particle size distribution of the mesocarbon microspheres, the following conclusions were obtained.

つまり、黒鉛化後に密度を低下、不安定化させる主要因は、成形段階においてマクロポア(巣、成形欠陥)が存在することによるものであり、緻密でミクロポア(数μm以下の空孔)が均一に分布する成形体に成形することが最終製品である黒鉛ブロックを高密度及び高硬度に生産できる手段となる。   In other words, the main factor that lowers and destabilizes the density after graphitization is due to the presence of macropores (nests and molding defects) in the molding stage, and the micropores (holes of several μm or less) are uniform. Forming into a distributed shaped body is a means for producing a final product graphite block with high density and high hardness.

まず、ミクロポアの分布が均一となる理想的な成形体を得るために、原料となるメソカーボン小球体に必要な条件としては、マクロポアの形成を助長する粗粒子の混入を避ける必要がある。マクロポアは粗粒子間の空隙に起因すると考えられるからである。風力分級機を用いて最大粒子径の値を種々変化させ、得られた成形体の成形密度を測定するとともに、顕微鏡でマクロポアの存在の有無を調査した結果、D50が14μmを越える場合にマクロポアの存在が観察され、成形密度もその平均粒子径の増加とともに低下した。   First, in order to obtain an ideal molded body having a uniform micropore distribution, the necessary condition for the mesocarbon microspheres used as a raw material is to avoid the inclusion of coarse particles that promote the formation of macropores. This is because macropores are considered to be caused by voids between coarse particles. Using a wind classifier, the value of the maximum particle size was changed variously, and the molding density of the obtained molded body was measured. As a result of investigating the presence or absence of macropores with a microscope, when D50 exceeded 14 μm, The presence was observed, and the molding density decreased with increasing average particle size.

一方、風力分級機で微粉側の粒子径の値を種々変化させ、得られた成形体の成形密度を測定するとともに、顕微鏡でマクロポアの存在の有無を調査した。その結果、微細粒子が凝集体を形成したことが原因と考えられるマクロポアの形成が見られた。すなわち、D50が9μmを下回るようなメソカーボン小球体については、D50が14μmを越える場合と同様に成形体の成形密度低下の傾向が確認された。   On the other hand, the value of the particle size on the fine powder side was variously changed with an air classifier, the molding density of the obtained compact was measured, and the presence or absence of macropores was examined with a microscope. As a result, formation of macropores, which is considered to be caused by the formation of aggregates by fine particles, was observed. That is, for mesocarbon spherules having a D50 of less than 9 μm, a tendency of a reduction in the molding density of the molded product was confirmed as in the case of D50 exceeding 14 μm.

つまり、上記の見地より、本発明においては、D50(累積質量50%粒子径)は9〜14μmの範囲とした。   That is, from the above viewpoint, in the present invention, D50 (cumulative mass 50% particle diameter) is set in the range of 9 to 14 μm.

さらに、メソカーボン小球体の粒度が成形体の成形密度に与える影響を調査した。メソカーボン小球体は、仮焼時やその後の粉砕でメソカーボン小球体の表面に付着したβ成分がはがれ、微粉となりやすい。そのため、微細粒子側にはβ成分が多く存在し、粗粒子側にはβ成分がはがれたメソカーボン小球体が多く存在する。粗粒子間の隙間にβ成分が主体となった微細粒子を充填することが成形体の成形密度を上げるためには有利となる。したがって粒度分布としては、ある程度広がりをもった粒度分布を持つことが必要となる。   Furthermore, the effect of the particle size of mesocarbon spherules on the molding density of the compact was investigated. The mesocarbon spherules tend to become fine powder because the β component attached to the surface of the mesocarbon spherules during calcination or subsequent pulverization is peeled off. Therefore, there are many β components on the fine particle side, and many mesocarbon spherules with the β component removed on the coarse particle side. Filling the gaps between the coarse particles with fine particles mainly composed of β component is advantageous for increasing the molding density of the molded body. Therefore, the particle size distribution needs to have a particle size distribution having a certain extent.

このような見地から、本発明においては、微細粒子の平均粒径に相当するD30(累積質量30%粒子径)は8μm以下、より好ましくは7μm以下、粗粒子の平均粒径に相当するD70(累積質量70%粒子径)は16μm以上の範囲とした。   From this viewpoint, in the present invention, D30 (cumulative mass 30% particle diameter) corresponding to the average particle diameter of fine particles is 8 μm or less, more preferably 7 μm or less, and D70 (corresponding to the average particle diameter of coarse particles). The cumulative mass (70% particle diameter) was in the range of 16 μm or more.

D30の好ましい下限値は5.5μmである。この下限値が小さすぎると成形密度が上がらない。また、D70の好ましい上限値は18.5μmである。この上限値が大きすぎると成形密度とショア硬度のばらつきが大きくなる。   A preferable lower limit of D30 is 5.5 μm. If this lower limit is too small, the molding density will not increase. Moreover, the preferable upper limit of D70 is 18.5 micrometers. If this upper limit is too large, the variation in molding density and Shore hardness will increase.

ここで、前記粗粒子側の粒径と微細粒子側の粒径の関係としては、D30に対するD70の比が、2.0〜3.0であることが好ましい。このような範囲とすることで、成形体がより最密充填構造となりやすくなる。なお、D30に対するD70の比を前記範囲とすることで、本発明に係るメソカーボン小球体は、粒子径が8μm以下と16μm以上にピークを持つ粒度分布を有する。   Here, as a relationship between the particle size on the coarse particle side and the particle size on the fine particle side, the ratio of D70 to D30 is preferably 2.0 to 3.0. By setting it as such a range, a molded object will become a close-packed structure more easily. By setting the ratio of D70 to D30 in the above range, the mesocarbon microspheres according to the present invention have a particle size distribution having a particle diameter of 8 μm or less and peaks at 16 μm or more.

粒度分布の異なる種々のメソカーボン小球体(800℃揮発分は8〜12質量%)を用いて、成形、焼成及び黒鉛化を行った。成形、焼成及び黒鉛化の条件を以下に示す。   Molding, firing and graphitization were performed using various mesocarbon microspheres having different particle size distributions (800 ° C. volatile content was 8 to 12% by mass). The conditions for molding, firing and graphitization are shown below.

成形:金型を用いて、φ80mmで高さ約30mmの成形ブロックを作成した。成形は4.9MPa(50kgf/cm)で乾式プレス実施後、29.4GPa(300tf/cm)のCIP(Cold Isostatic Pressing:冷間等方圧加工法)成形を行った。 Molding: A molding block having a diameter of 80 mm and a height of about 30 mm was prepared using a mold. The molding was performed by dry pressing at 4.9 MPa (50 kgf / cm 2 ), and then CIP (Cold Isostatic Pressing) molding of 29.4 GPa (300 tf / cm 2 ) was performed.

焼成:室温から1000℃まで10℃/時で大気中において昇温し、1000℃で3時間保持することで焼成を行った。   Firing: Firing was performed by raising the temperature in the atmosphere from room temperature to 1000 ° C. at 10 ° C./hour and holding at 1000 ° C. for 3 hours.

黒鉛化:焼成後、2800℃まで0.5℃/分で昇温し、黒鉛化を行い、黒鉛ブロックの作成を行った。   Graphitization: After firing, the temperature was raised to 2800 ° C. at a rate of 0.5 ° C./min, graphitization was performed, and a graphite block was prepared.

上記条件により成形、焼成及び黒鉛化を行った黒鉛ブロックについて、成形密度及びショア硬度の測定を行った。   About the graphite block which shape | molded, baked and graphitized on the said conditions, the molding density and the Shore hardness were measured.

ここで、前記成形密度の測定は、空中と水中の質量を求めアルキメデス法により、n数を10として測定し、その平均値により算出した。   Here, the molding density was measured by obtaining the mass in the air and water, measuring the n number by 10 by the Archimedes method, and calculating the average value.

また、前記ショア硬度の測定は、黒鉛ブロックをスライスし、その断面のショア硬度(Hb)を、n数を10として測定し、その平均値により算出した。   The Shore hardness was measured by slicing a graphite block, measuring the Shore hardness (Hb) of the cross section with an n number of 10, and calculating the average value.

ショア硬度は、36gのダイヤモンドハンマーを19mmの高さから落下させ、ハンマーの反発高さから求めた。   The Shore hardness was determined from the rebound height of a hammer by dropping a 36 g diamond hammer from a height of 19 mm.

以下の表1に、本発明例1〜6、比較例1〜4について、成形密度及びショア硬度の測定を行った結果を示す。   Table 1 below shows the results of measurement of molding density and Shore hardness for Examples 1 to 6 of the present invention and Comparative Examples 1 to 4.

Figure 2007186386
Figure 2007186386

表1に示すように、本発明例1〜6においては、平均成形密度1.90〜1.93g/cm、標準偏差0.01〜0.03g/cmであったのに対し、比較例1〜4においては、平均成形密度1.72〜1.87g/cm、標準偏差0.02〜0.05g/cmであった。 As shown in Table 1, whereas in the present invention Examples 1-6, the average green density 1.90~1.93g / cm 3, was the standard deviation 0.01~0.03g / cm 3, comparison in examples 1-4, the average green density 1.72~1.87g / cm 3, was the standard deviation 0.02~0.05g / cm 3.

また、本発明例1〜6においては、平均ショア硬度89〜94、標準偏差1.0〜2.1であったのに対し、比較例1〜4においては、平均ショア硬度68〜85、標準偏差2.8〜7.7であった。   Further, in Examples 1 to 6 of the present invention, the average shore hardness was 89 to 94 and the standard deviation was 1.0 to 2.1, whereas in Comparative Examples 1 to 4, the average shore hardness was 68 to 85, standard. The deviation was 2.8 to 7.7.

つまり、本発明に係るメソカーボン小球体を用いることで、最終製品である黒鉛ブロックを高密度、高硬度なブロックとして安定して製造可能であることがわかった。   That is, by using the mesocarbon microspheres according to the present invention, it was found that the graphite block as the final product can be stably manufactured as a high-density and high-hardness block.

Claims (2)

累積質量30%粒子径が8μm以下、累積質量50%粒子径が9〜14μm、累積質量70%粒子径が16μm以上であることを特徴とする高密度、高硬度な炭素材料用メソカーボン小球体。   Mesocarbon microspheres for high-density, high-hardness carbon materials having a cumulative mass of 30% particle diameter of 8 μm or less, a cumulative mass of 50% particle diameter of 9 to 14 μm, and a cumulative mass of 70% particle diameter of 16 μm or more. . 累積質量30%粒子径に対する累積質量70%粒子径の比が、2.0〜3.0であることを特徴とする請求項1に記載の高密度、高硬度な炭素材料用メソカーボン小球体。   The mesocarbon microsphere for high-density, high-hardness carbon material according to claim 1, wherein the ratio of the cumulative mass 70% particle size to the cumulative mass 30% particle size is 2.0 to 3.0. .
JP2006007054A 2006-01-16 2006-01-16 Mesocarbon microsphere for high density and high hardness carbon material Pending JP2007186386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007054A JP2007186386A (en) 2006-01-16 2006-01-16 Mesocarbon microsphere for high density and high hardness carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007054A JP2007186386A (en) 2006-01-16 2006-01-16 Mesocarbon microsphere for high density and high hardness carbon material

Publications (1)

Publication Number Publication Date
JP2007186386A true JP2007186386A (en) 2007-07-26

Family

ID=38341817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007054A Pending JP2007186386A (en) 2006-01-16 2006-01-16 Mesocarbon microsphere for high density and high hardness carbon material

Country Status (1)

Country Link
JP (1) JP2007186386A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477126A (en) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 Mesocarbon microbeads and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477126A (en) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 Mesocarbon microbeads and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6342807B2 (en) Manufacturing method of dense ceramic products based on SiC
JP6878407B2 (en) Manufacturing method for artificial graphite electrodes
CN108290353B (en) Forming tool for molten metal or glass
JP4290291B2 (en) Carbon electrode for melting quartz glass
JP6360402B2 (en) Method for producing porous ceramics
JP5072802B2 (en) Method for producing high thermal conductive graphite material
CN105645960A (en) Method for preparing isotropic graphite from isotropic asphalt with high softening point through self-sintering
JP2007186386A (en) Mesocarbon microsphere for high density and high hardness carbon material
KR101792648B1 (en) Sugar graphite fine powder, sugar graphene
US20190241440A1 (en) Low-cost process of manufacturing transparent spinel
JP7457002B2 (en) Manufacturing method of high-density artificial graphite electrode
CN108358628B (en) Mullite-zirconia composite ceramic and preparation method thereof
CN114149274A (en) Method for preparing directional porous SiC ceramic by using coal slime as pore-forming agent
KR102508857B1 (en) Manufacturing method of carbonized blocks used for manufacturing isotropic graphite
RU2486160C1 (en) Method of producing ceramics based on aluminium-magnesium spinel
JP2008156169A (en) Silicon carbide granule, method for producing silicon carbide sintered compact using it and silicon carbide sintered compact
JP2007084399A (en) Carbon fiber composite spinel ceramic and method of manufacturing the same
JP2652909B2 (en) Method for producing isotropic high-strength graphite material
CN108794011A (en) A kind of preparation method from sintering carbon graphite sealing material
JP7394484B2 (en) Conductive high-strength diamond/amorphous carbon composite material and its manufacturing method
JP3605632B2 (en) High-strength porous alumina and method for producing the same
KR20230083675A (en) Manufacturing method of carbonized blocks used for manufacturing isotropic graphite
JP3198123B2 (en) Method for producing isotropic high-strength graphite material
KR20190008829A (en) High carbon grade graphite block and method of making same
KR20230084801A (en) Manufacturing method of carbonized blocks used for manufacturing isotropic graphite