JP2007185601A - Water treatment apparatus and generating set - Google Patents

Water treatment apparatus and generating set Download PDF

Info

Publication number
JP2007185601A
JP2007185601A JP2006005649A JP2006005649A JP2007185601A JP 2007185601 A JP2007185601 A JP 2007185601A JP 2006005649 A JP2006005649 A JP 2006005649A JP 2006005649 A JP2006005649 A JP 2006005649A JP 2007185601 A JP2007185601 A JP 2007185601A
Authority
JP
Japan
Prior art keywords
water
treated
space
air
decompression chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006005649A
Other languages
Japanese (ja)
Inventor
Masaru Koizumi
勝 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUKIWA SHOJI KK
Original Assignee
YUKIWA SHOJI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUKIWA SHOJI KK filed Critical YUKIWA SHOJI KK
Priority to JP2006005649A priority Critical patent/JP2007185601A/en
Priority to KR1020060022971A priority patent/KR101065221B1/en
Priority to KR1020070002881A priority patent/KR20070076437A/en
Publication of JP2007185601A publication Critical patent/JP2007185601A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Physical Water Treatments (AREA)
  • Wind Motors (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment apparatus which enables downsizing of a water treatment plant, cooling of a large amount of water to be treated, and an efficient purification of the water to be treated, and a generating set using the water treatment apparatus. <P>SOLUTION: The water to be treated is fed into a space 13 from a water to be treated charging port 111, and air with a prescribed airflow and a prescribed static pressure is jetted from a first air supply means 16a, 16b into the space 13, which generates a vortex flow 50 mixed with the water to be treated going up along the inner periphery of an outer cylindrical body 11 while rotating. The vortex flow 50 reduces pressure in the space 13, the lowest decompression chamber 20-1, and the upper decompression chambers 20, and performs aeration and cluster decomposition of the water to be treated, which expands the water to be treated to perform primary cooling of the water to be treated. The primary-cooled water to be treated is separated by a gas-liquid separation means 18, and then subjected to secondary cooling in the decompression chambers 20, 20-1. The secondary-cooled water to be treated is electrolyzed to be purified, and a gas vortex flow 51 separated by the gas-liquid separation means 18 drives the generating set to generate electricity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、製鉄所などから排出される温水、プールや湖沼などの水あるいは焼却設備の冷却に使用された水などを冷却し浄化して再利用できるように処理する水処理装置並びに上記各種水の浄化・冷却処理時に発生する排気渦流を利用して発電を可能にした発電装置に関する。   The present invention relates to a water treatment apparatus for treating hot water discharged from steelworks, water used for cooling pools and lakes, water used for cooling incineration facilities, etc., so that it can be purified and reused, and the above various waters. The present invention relates to a power generation apparatus that enables power generation using an exhaust vortex generated during the purification and cooling process.

製鉄所においては、製銑から圧延までの各生産工程に、その目的に応じて多量の水が使用されることが知られている。また、製鉄所での水の用途は、大部分が各種炉体や冷却器などの冷却と、高炉、転炉などのガス洗浄や圧延ロール冷却などであり、これに淡水を使用する場合は、その大部分が循環使用されることが原則となっている。   In steelworks, it is known that a large amount of water is used in each production process from ironmaking to rolling depending on the purpose. In addition, most of the uses of water at steelworks are cooling of various furnace bodies and coolers, gas cleaning and rolling roll cooling of blast furnaces, converters, etc. When using fresh water for this, The principle is that most of them are recycled.

従来、例えば熱間圧延工程における加熱炉の冷却、一圧延機のロール冷却などに使用された冷却水を再利用可能な水質及び温度に処理する場合は、まず、冷却水中に含有するスケールやスラッジを沈殿槽で沈降処理した後、この冷却水中の懸濁物質を濾過器で濾過し、さらに冷却塔で冷却処理して冷水槽に貯留し、この冷水槽から各熱間圧延工程に供給して循環使用できるようにしている。
また、このような従来の水処理装置に適用される冷却塔は、下部に貯水用ピットを有する塔体、この塔体内に配設した充填材(熱交換部)、この充填材の上方に配置した散水機構及び塔体の上部に配設した送風機などから構成されており、熱間圧延工程で加熱された冷却水(例えば60℃〜70℃)を散水機構により充填材の上方から散布して充填材内を流下させる。これと同時に送風機を駆動して外気を塔体内に吸引し、この外気と充填材内を流下する冷却水と熱交換、すなわち、水の蒸発潜熱を利用して冷却水を冷却した後、貯水用ピット内に貯留し、ポンプにより各熱間圧延工程へ供給するようにしている(例えば特許文献1参照)。
特開2003−130488号公報
Conventionally, for example, when processing cooling water used for cooling of a heating furnace in a hot rolling process, roll cooling of a rolling mill to a reusable water quality and temperature, first, the scale and sludge contained in the cooling water The suspended matter in the cooling water is filtered through a filter, cooled in a cooling tower, stored in a cold water tank, and supplied from the cold water tank to each hot rolling step. It is designed to be recyclable.
In addition, a cooling tower applied to such a conventional water treatment apparatus includes a tower body having a water storage pit in the lower part, a filler (heat exchange part) disposed in the tower body, and disposed above the filler. The cooling water (for example, 60 ° C. to 70 ° C.) heated in the hot rolling process is sprayed from above the filler by the watering mechanism. Flow down the filler. At the same time, the blower is driven to suck the outside air into the tower, and heat exchange is performed between the outside air and the cooling water flowing down in the packing material. It stores in a pit and supplies it to each hot rolling process with a pump (for example, refer patent document 1).
JP 2003-130488 A

上記のような従来の水処理装置に用いられる冷却塔は、熱間圧延工程からの冷却水を塔体内の充填材内を流下させながら塔体内に吸引される外気との接触による水の蒸発潜熱で冷却する方式であり、しかも、日本冷却塔工業会において冷却塔の能力を決める標準温度条件は、冷却塔の入口水温が37℃、その出口水温が32℃、冷却塔の湿球温度が27℃である。
しかしながら、このような冷却塔で冷却し得る冷却水の温度は、37℃−32℃=5℃程度であり、その能力は低い。このため、熱間圧延工程で、例えば60℃〜70℃の温度に加熱された冷却水を上述のような冷却塔で冷却して55℃〜65℃程度の温度にしか冷却されず、多量に冷却水を使用する熱間圧延工程の冷却に支障を来たすほか、夏場のように気温が高く、かつ湿度の高い時期の冷却水の冷却には不向きである。
The cooling tower used in the conventional water treatment apparatus as described above is the latent heat of vaporization of water due to contact with the outside air sucked into the tower body while flowing the cooling water from the hot rolling process through the filler in the tower body. In addition, the standard temperature conditions that determine the performance of the cooling tower in the Japan Cooling Tower Industry Association are 37 ° C. for the cooling tower, 32 ° C. for the outlet water temperature, and 27% for the cooling tower wet bulb temperature. ° C.
However, the temperature of the cooling water that can be cooled by such a cooling tower is about 37 ° C.-32 ° C. = 5 ° C., and its capacity is low. For this reason, in the hot rolling process, for example, the cooling water heated to a temperature of 60 ° C. to 70 ° C. is cooled by the cooling tower as described above, and is cooled only to a temperature of about 55 ° C. to 65 ° C. In addition to hindering the cooling of the hot rolling process using cooling water, it is not suitable for cooling the cooling water when the temperature is high and the humidity is high as in summer.

また、従来、多量の冷却水を冷却処理するに際しては、熱間圧延工程での冷却に使用された冷却水(水温が60℃〜70℃)を冷却池に貯め、その水面からの蒸発により冷却池内の水を冷却し、さらに、この冷却池の水を上述した冷却塔で冷却して熱間圧延工程へ供給する方式がある。
しかしながら、このような冷却方式には200メートル四方の冷却池が必要になるとともに、この冷却池と冷却水供給箇所との間の配管及び冷却池と冷却塔との間の配管が煩雑かつ膨大なものとなり、その結果、冷却塔を含めた水処理設備が大型化しコスト高になるという問題がある。
Conventionally, when cooling a large amount of cooling water, the cooling water used for cooling in the hot rolling process (water temperature: 60 ° C. to 70 ° C.) is stored in a cooling pond and cooled by evaporation from the water surface. There is a system in which water in the pond is cooled, and further, the water in the cooling pond is cooled by the above-described cooling tower and supplied to the hot rolling process.
However, such a cooling method requires a 200-meter square cooling pond, and the piping between the cooling pond and the cooling water supply point and the piping between the cooling pond and the cooling tower are complicated and enormous. As a result, there is a problem that the water treatment equipment including the cooling tower becomes large and expensive.

一方、冷却塔にて冷却され、熱間圧延工程側と循環して使用される冷却水中に溶存する塩類や窒化物などが濃縮増加し、水質を悪化する。さらに、水質の悪化は、井戸水や工業用水、水道水などによる補給水の水質によって一層助長される。このため、スケールやスライムが生成されたり、各種菌の増殖を引き起こす問題がある。   On the other hand, the salt and nitride dissolved in the cooling water which is cooled in the cooling tower and circulated with the hot rolling process side is concentrated and the water quality is deteriorated. Furthermore, the deterioration of water quality is further promoted by the quality of makeup water such as well water, industrial water, and tap water. For this reason, there is a problem in that scales and slimes are generated and various bacteria are caused to grow.

そこで、従来においては、冷却塔の貯水用ピット内に冷却水中に浸漬された陽電極及び陰電極を配置し、この両電極間に直流電圧を印加して冷却水を電解処理することにより、スケールやスライムの生成を防止し、各種菌の増殖を防止しるようにしている。
しかしながら、冷却水を電解処理する場合、冷却水の電解を促進させるアルカリまたは酸の希釈液を冷却水中に混入しておく必要がある。このことは、冷却水の浄化処理に加えてアルカリまたは酸の希釈液の除去処理が必要になり、水処理システムが更に煩雑、かつ大型化するという問題がある。
Therefore, in the prior art, a positive electrode and a negative electrode immersed in cooling water are placed in the water storage pit of the cooling tower, and a direct current voltage is applied between the electrodes to electrolyze the cooling water, thereby scaling the scale. And slime are prevented, and the growth of various bacteria is prevented.
However, when electrolytically treating the cooling water, it is necessary to mix an alkali or acid diluting solution that promotes electrolysis of the cooling water into the cooling water. This requires a treatment for removing the diluted alkali or acid solution in addition to the purification treatment of the cooling water, and there is a problem that the water treatment system becomes more complicated and larger.

本発明は、上記のような従来の問題を解決するためになされたもので、水処理設備の小規模化を容易にするとともに被処理水の大量な冷却処理を低コストで実現でき、併せて被処理水の浄化を高効率にかつ低コストで実現できる水処理装置を提供することを目的とする。
また、本発明は、被処理水の冷却に使用された静圧空気の旋回気体渦流を利用して発電を可能にした発電装置を提供することを目的としている。
The present invention was made to solve the conventional problems as described above, and facilitates downsizing of water treatment facilities and realizes a large amount of cooling treatment of treated water at low cost. It aims at providing the water treatment apparatus which can implement | achieve purification of to-be-processed water with high efficiency and low cost.
Another object of the present invention is to provide a power generation device that can generate power using a swirling gas vortex of static pressure air used for cooling the water to be treated.

上記の目的を達成するために本発明にかかる水処理装置は、下面が密閉され上面が開口されているとともに鉛直方向に延在する所定の径及び所定の長さを有する外筒体と、下面が密閉され上面が開口されているとともに下端部が前記外筒体に連通され、かつ前記外筒体内に所定間隔の空間を介して同心に配設された、前記外筒体より小さい所定の径及び所定の長さを有する内筒体と、前記空間の上方に配設された気液分離手段と、前記外筒体の上端部寄り側壁に設けられ前記空間内に連通する少なくとも1つの被処理水投入口と、前記被処理水投入口より下方に位置する前記外筒体の側壁に設けられ所定の静圧空気を前記外筒体の内接方向に向けて前記空間内に噴出させる少なくとも1つの第1空気噴出口と、前記第1空気噴出口に接続され前記空間内に所定風量と所定静圧の空気を噴出供給する第1空気供給手段と、前記内筒体内に該内筒体内を鉛直方向に複数に区画することで形成され、かつ減圧による被処理水の蒸発で被処理水を冷却する複数の減圧室と、上下に位置する前記減圧室間に設けられ該減圧室内に被処理水を所定のレベルまで貯留するとともに上部に位置する減圧室内に貯留された被処理水をオーバフローにより下部に位置する減圧室内に流下させる第1処理水流下機構と、前記内筒体の底部に設けられ最下位に位置する前記減圧室内に被処理水を所定のレベルまで貯留するとともに該減圧室内の被処理水を流出口から外部へ流出させる第2処理水流下機構とを備え、前記被処理水投入口から前記空間内に被処理水を投入するとともに前記第1空気供給手段から所定風量と所定静圧の空気を前記第1空気噴出口から前記空間内に噴出して前記外筒体の内周に沿い旋回しながら上昇する被処理水との混合渦流を発生させ、この混合渦流により前記空間内及び該空間に連通する前記最下位の減圧室及び該最下位の減圧室に前記第1処理水流下機構を介して連通される上位の減圧室内を減圧するとともに前記被処理水をエアーレーション及びクラスタ分解して膨張させ、この被処理水の膨張作用と前記空間内での前記静圧空気の噴出膨張作用により混合渦流中の被処理水を一次冷却し、この一次冷却された被処理水を前記気液分離手段により分離して前記内筒体の上端開口から該内筒体内に投下し、かつ前記気液分離手段により分離された気体の渦流を前記外筒体の上端開口から外筒体外へ放出するように構成し、前記内筒体内に投入された被処理水を前記第1処理水流下機構を通して最上位の前記減圧室から最下位の前記減圧室へ順に流下し、前記各減圧室内の減圧に伴う被処理水の蒸発により減圧室内の被処理水を二次冷却するように構成したことを特徴とする。   In order to achieve the above object, a water treatment apparatus according to the present invention includes an outer cylindrical body having a predetermined diameter and a predetermined length extending in a vertical direction while having a lower surface sealed and an upper surface opened. Has a predetermined diameter smaller than that of the outer cylinder, which is sealed and has an upper surface opened and whose lower end communicates with the outer cylinder and is concentrically disposed in the outer cylinder via a space of a predetermined interval. And an inner cylinder having a predetermined length, gas-liquid separation means disposed above the space, and at least one object to be processed that is provided on the side wall near the upper end of the outer cylinder and communicates with the space. At least one which is provided on the side wall of the outer cylinder located below the water inlet and the water inlet to be treated and jets predetermined static pressure air into the space in the inscribed direction of the outer cylinder. Two first air outlets and connected to the first air outlet A first air supply means for blowing and supplying air of a predetermined air volume and a predetermined static pressure into the space; and a target to be processed by decompression, which is formed by dividing the inner cylinder into a plurality of vertical directions in the inner cylinder. Provided between a plurality of decompression chambers for cooling the treated water by evaporation of water and the decompression chambers located above and below, the treated water is stored up to a predetermined level in the decompression chamber and stored in the decompression chamber located above. A first treated water flow mechanism that causes the treated water to flow down into a decompression chamber located below by overflow, and a predetermined level of treated water in the decompression chamber provided at the bottom of the inner cylinder and located at the lowest position. And a second treated water flow-down mechanism that causes the treated water in the decompression chamber to flow out from the outlet to the outside. The treated water is introduced into the space from the treated water inlet and the first From air supply means A mixed vortex flow is generated with the water to be treated that rises while swirling along the inner periphery of the outer cylinder by ejecting air of constant air volume and predetermined static pressure from the first air outlet into the space. The lower pressure decompression chamber communicating with the space and the lower space and the upper decompression chamber communicated with the lowest pressure decompression chamber via the first treated water flow-down mechanism are reduced in pressure by the vortex and the water to be treated The aeration and clusters are decomposed to expand, and the water to be treated in the mixed vortex is primarily cooled by the expansion action of the water to be treated and the ejection and expansion action of the static pressure air in the space. Water to be treated is separated by the gas-liquid separation means and dropped into the inner cylinder from the upper end opening of the inner cylinder, and the gas vortex separated by the gas-liquid separation means is opened at the upper end opening of the outer cylinder Configured to release from the outer cylinder Then, the water to be treated introduced into the inner cylindrical body flows down from the uppermost decompression chamber to the lowermost decompression chamber sequentially through the first treated water flow-down mechanism, and the treatment subject to the decompression in each decompression chamber A feature is that the water to be treated in the decompression chamber is secondarily cooled by evaporation of water.

請求項2の発明は、請求項1記載の水処理装置において、前記外筒体の下端部に位置する内周壁に前記外筒体の周方向に互いに離間して該外筒体の全周に亘り交互に多数配列され前記空間内の底部に貯留された被処理水を電気分解して酸素及び水素を発生させるための陽電極及び陰電極と、前記各陽電極と陰電極との間に直流電圧を供給する直流電源と、前記陽電極及び陰電極と対向する前記外筒体の側壁に設けられ該外筒体内に空気を前記陽電極及び陰電極の内周面と内接する方向に噴出させる少なくとも1つの第2空気噴出口と、前記第2空気噴出口に接続され該第2空気噴出口から所定風量と所定静圧の空気を噴出して前記空間内の底部に貯留された被処理水を前記陽電極及び陰電極の内周面に沿い流動攪拌することで前記電極の電気分解による被処理水からの酸素及び水素の発生を促進させる第2空気供給手段とを備えることを特徴とする。   The invention according to claim 2 is the water treatment apparatus according to claim 1, wherein the inner peripheral wall located at the lower end portion of the outer cylindrical body is spaced apart from each other in the circumferential direction of the outer cylindrical body, and is disposed on the entire circumference of the outer cylindrical body. A positive electrode and a negative electrode for electrolyzing water to be treated and stored at the bottom of the space alternately and generating oxygen and hydrogen, and a direct current between the positive electrode and the negative electrode. A direct current power source for supplying voltage and a side wall of the outer cylinder facing the positive electrode and the negative electrode, and air is blown into the outer cylinder in a direction inscribed in the inner peripheral surfaces of the positive electrode and the negative electrode Water to be treated which is connected to at least one second air outlet and the second air outlet and which has a predetermined air volume and a predetermined static pressure discharged from the second air outlet and is stored at the bottom in the space. The electrode is electrically agitated along the inner peripheral surfaces of the positive electrode and the negative electrode. Characterized in that it comprises a second air supply means to promote the generation of oxygen and hydrogen from the water to be treated by the solution.

請求項3の発明は、請求項1または2記載の水処理装置において、前記最上位の減圧室と前記空間との間は前記内筒体の側壁に設けた複数の通気穴により連通されるように構成したことを特徴とする。
請求項4の発明は、請求項1または2記載の水処理装置において、前記最下位の減圧室と前記空間との間は前記内筒体の側壁に設けた複数の吸引穴により連通され、前記空間の底部に貯留された被処理水及び前記最下位の減圧室に貯留された被処理水は前記内筒体の下端縁に設けた複数の流通穴を通して流出入されるように構成したことを特徴とする。
請求項5の発明は、請求項1または2記載の水処理装置において、前記最下位の減圧室と前記第1空気供給手段の静圧空気吐出側との間は導管により接続されていることを特徴とする。
請求項6の発明は、請求項1ないし4の何れか1項に記載の水処理装置において、前記気液分離手段は、前記空間の上方に位置する前記外筒体の内壁面に該内壁面の内周方向に沿って配設された複数の気液分離羽根で構成されていることを特徴とする。
According to a third aspect of the present invention, in the water treatment apparatus according to the first or second aspect, the uppermost decompression chamber and the space are communicated with each other by a plurality of vent holes provided in a side wall of the inner cylindrical body. It is characterized by comprising.
According to a fourth aspect of the present invention, in the water treatment apparatus according to the first or second aspect, the lowermost decompression chamber and the space are communicated with each other by a plurality of suction holes provided in a side wall of the inner cylinder, The water to be treated stored at the bottom of the space and the water to be treated stored in the lowermost decompression chamber are configured to flow in and out through a plurality of flow holes provided in the lower end edge of the inner cylinder. Features.
According to a fifth aspect of the present invention, in the water treatment apparatus according to the first or second aspect, the lowermost decompression chamber and the static pressure air discharge side of the first air supply means are connected by a conduit. Features.
According to a sixth aspect of the present invention, in the water treatment apparatus according to any one of the first to fourth aspects, the gas-liquid separation means is disposed on the inner wall surface of the outer cylindrical body located above the space. It is comprised by the some gas-liquid separation blade | wing arrange | positioned along the inner peripheral direction.

請求項7の発明にかかる水処理装置を利用した発電装置は、下面が密閉され上面が開口されているとともに鉛直方向に延在する所定の径及び所定の長さを有する外筒体と、下面が密閉され上面が開口されているとともに下端部が前記外筒体に連通され、かつ前記外筒体内に所定間隔の空間を介して同心に配設された、前記外筒体より小さい所定の径及び所定の長さを有する内筒体と、前記空間の上方に配設された気液分離手段と、前記外筒体の上端部寄り側壁に設けられ前記空間内に連通する少なくとも1つの被処理水投入口と、前記被処理水投入口より下方に位置する前記外筒体の側壁に設けられ所定の静圧空気を前記外筒体の内接方向に向けて前記空間内に噴出させる少なくとも1つの第1空気噴出口と、前記第1空気噴出口に接続され前記空間内に所定風量と所定静圧の空気を噴出供給する第1空気供給手段と、前記内筒体内に該内筒体内を鉛直方向に複数に区画することで形成され、かつ減圧による被処理水の蒸発で被処理水を冷却する複数の減圧室と、上下に位置する前記減圧室間に設けられ該減圧室内に被処理水を所定のレベルまで貯留するとともに上部に位置する減圧室内に貯留された被処理水をオーバフローにより下部に位置する減圧室内に流下させる第1処理水流下機構と、前記内筒体の底部に設けられ最下位に位置する前記減圧室内に被処理水を所定のレベルまで貯留するとともに該減圧室内の被処理水を流出口から外部へ流出させる第2処理水流下機構と、前記外筒体の上端開口に相対向して配設された回転翼及び前記回転翼の回転により駆動される発電機とを備え、前記被処理水投入口から前記空間内に被処理水を投入するとともに前記第1空気供給手段から所定風量と所定静圧の空気を前記第1空気噴出口から前記空間内に噴出して前記外筒体の内周に沿い旋回しながら上昇する被処理水との混合渦流を発生させ、この渦流により前記空間内及び該空間に連通する前記最下位に位置する減圧室及び該最下位の減圧室に前記第1処理水流下機構を介して連通される上位の減圧室内を減圧するとともに前記被処理水をエアーレーション及びクラスタ分解して膨張させ、この被処理水の膨張作用と前記空間内での前記静圧空気の噴出膨張作用により渦流中の被処理水を一次冷却し、この一次冷却された被処理水を前記気液分離手段により分離して前記内筒体の上端開口から該内筒体内に投下し、かつ前記気液分離手段により分離された前記気体の渦流を前記外筒体の上端開口から外筒体外へ噴出して前記回転翼を回転することにより前記発電機を駆動するように構成し、前記内筒体内に投入された被処理水を前記第1処理水流下機構を通して最上位の前記減圧室から最下位の前記減圧室へ順に流下し、前記各減圧室内の減圧に伴う被処理水の蒸発により減圧室内の被処理水を二次冷却するように構成したことを特徴とする。   A power generation device using the water treatment device according to claim 7 includes an outer cylinder having a predetermined diameter and a predetermined length extending in the vertical direction while the lower surface is sealed and the upper surface is opened, and the lower surface Has a predetermined diameter smaller than that of the outer cylinder, which is sealed and has an upper surface opened and whose lower end communicates with the outer cylinder and is concentrically disposed in the outer cylinder via a space of a predetermined interval. And an inner cylinder having a predetermined length, gas-liquid separation means disposed above the space, and at least one object to be processed that is provided on the side wall near the upper end of the outer cylinder and communicates with the space. At least one which is provided on the side wall of the outer cylinder located below the water inlet and the water inlet to be treated and jets predetermined static pressure air into the space in the inscribed direction of the outer cylinder. Two first air outlets and connected to the first air outlet A first air supply means for blowing and supplying air of a predetermined air volume and a predetermined static pressure into the space; and a target to be processed by decompression, which is formed by dividing the inner cylinder into a plurality of vertical directions in the inner cylinder. Provided between a plurality of decompression chambers for cooling the treated water by evaporation of water and the decompression chambers located above and below, the treated water is stored up to a predetermined level in the decompression chamber and stored in the decompression chamber located above. A first treated water flow mechanism that causes the treated water to flow down into a decompression chamber located below by overflow, and a predetermined level of treated water in the decompression chamber provided at the bottom of the inner cylinder and located at the lowest position. A second treated water flow-down mechanism for storing the treated water in the decompression chamber to the outside from the outflow port, a rotor blade disposed opposite to the upper end opening of the outer cylinder, and the rotor blade Generator driven by rotation The treated water is introduced into the space from the treated water inlet, and air having a predetermined air volume and a predetermined static pressure is ejected from the first air outlet into the space. And generating a mixed vortex with the water to be treated that rises while swirling along the inner circumference of the outer cylinder, and the lowermost decompression chamber and the lowermost portion communicated with the vortex in the space and the space. The decompression chamber is decompressed in the upper decompression chamber communicated with the first treated water flow-down mechanism, and the treated water is expanded by aeration and cluster decomposition. The water to be treated in the vortex is primarily cooled by the action of jet expansion of the static pressure air in the interior, and the water to be treated that has been primarily cooled is separated by the gas-liquid separation means, and the water from the upper end opening of the inner cylinder is Drop into the inner cylinder and front The gas vortex separated by the gas-liquid separation means is configured to drive the generator by jetting out the outer cylinder from the upper end opening of the outer cylinder and rotating the rotor blades. The treated water introduced into the cylinder flows in order from the uppermost decompression chamber to the lowermost decompression chamber through the first treated water flow-down mechanism, and the treated water evaporates due to the decompression of each decompression chamber. The present invention is characterized in that the water to be treated in the decompression chamber is secondarily cooled.

請求項8の発明は、請求項7記載の水処理装置を利用した発電装置において、前記外筒体の下端部に位置する内周壁に前記外筒体の周方向に互いに離間して該外筒体の全周に亘り交互に多数配列され前記空間内の底部に貯留された被処理水を電気分解して酸素及び水素を発生させるための陽電極及び陰電極と、前記各陽電極と陰電極との間に直流電圧を供給する直流電源と、前記陽電極及び陰電極と対向する前記外筒体の側壁に設けられ該外筒体内に空気を前記陽電極及び陰電極の内周面と内接する方向に噴出させる少なくとも1つの第2空気噴出口と、前記第2空気噴出口に接続され該第2空気噴出口から所定風量と所定静圧の空気を噴出して前記空間内の底部に貯留された被処理水を前記陽電極及び陰電極の内周面に沿い流動攪拌することで前記電極の電気分解による被処理水からの酸素及び水素の発生を促進させる第2空気供給手段とを備えることを特徴とする。   The invention according to claim 8 is the power generation device using the water treatment device according to claim 7, wherein the outer cylinder is separated from each other in the circumferential direction of the outer cylinder on the inner peripheral wall located at the lower end of the outer cylinder. A positive electrode and a negative electrode for electrolyzing water to be treated which are alternately arranged over the entire circumference of the body and stored in the bottom of the space to generate oxygen and hydrogen, and each positive electrode and negative electrode A direct-current power source for supplying a direct-current voltage between the positive electrode and the negative electrode, and the outer cylinder provided with air on the inner peripheral surface and the inner surface of the positive electrode and the negative electrode. At least one second air outlet that is ejected in the direction of contact, and the second air outlet that is connected to the second air outlet and ejects air of a predetermined air volume and a predetermined static pressure to be stored in the bottom of the space. The treated water is fluidly stirred along the inner peripheral surfaces of the positive electrode and the negative electrode. In characterized in that it comprises a second air supply means to promote the generation of oxygen and hydrogen from the treated water by electrolysis of the electrodes.

請求項9の発明は、請求項7または8記載の水処理装置を利用した発電装置において、前記最下位の減圧室と前記空間との間は前記内筒体の側壁に設けた複数の吸引穴により連通され、前記空間の底部に貯留された被処理水及び前記最下位の減圧室に貯留された被処理水は前記内筒体の下端縁に設けた複数の流通穴を通して流出入されるように構成したことを特徴とする。
請求項10の発明は、請求項7または8記載の水処理装置を利用した発電装置において、前記最下位の減圧室と前記第1空気供給手段の静圧空気吐出側との間は導管により接続されていることを特徴とする。
A ninth aspect of the present invention is the power generation apparatus using the water treatment apparatus according to the seventh or eighth aspect, wherein a plurality of suction holes provided in a side wall of the inner cylindrical body are provided between the lowermost decompression chamber and the space. The treated water stored at the bottom of the space and the treated water stored in the lowermost decompression chamber flow in and out through a plurality of flow holes provided at the lower end edge of the inner cylinder. It is characterized by comprising.
The invention of claim 10 is the power generation apparatus using the water treatment apparatus according to claim 7 or 8, wherein the lowermost decompression chamber and the static air discharge side of the first air supply means are connected by a conduit. It is characterized by being.

請求項11の発明は、請求項7ないし10の何れか1項に記載の水処理装置を利用した発電装置において、前記気液分離手段は、前記空間の上方に位置する前記外筒体の内壁面に該内壁面の内周方向に沿って配設された複数の気液分離羽根で構成されていることを特徴とする。
請求項12の発明は、請求項7ないし10の何れか1項に記載の水処理装置を利用した発電装置において、前記外筒体の上端部に前記外筒体内を旋回しながら上昇する気体渦流の風量を増大する送風機を設けたことを特徴とする。
請求項13の発明は、請求項7ないし10または12の何れか1項に記載の水処理装置を利用した発電装置において、前記外筒体の上端部側壁に、外気を吸い込んで前記気体渦流の旋回エネルギーを増大させる空気吸入スリットを前記外筒体の円周方向に沿って複数形成したことを特徴とする。
An eleventh aspect of the present invention is the power generation device using the water treatment device according to any one of the seventh to tenth aspects, wherein the gas-liquid separation means is located inside the outer cylinder located above the space. It is characterized by comprising a plurality of gas-liquid separation blades arranged on the wall surface along the inner circumferential direction of the inner wall surface.
The invention of claim 12 is the power generator using the water treatment apparatus according to any one of claims 7 to 10, wherein the gas vortex rising while swirling the outer cylinder at the upper end of the outer cylinder It is characterized by providing a blower that increases the air volume.
A thirteenth aspect of the present invention is the power generation device using the water treatment device according to any one of the seventh to tenth or twelfth aspects, wherein the outside air is sucked into an upper end side wall of the outer cylindrical body to A plurality of air suction slits for increasing swirling energy are formed along the circumferential direction of the outer cylinder.

本発明の水処理装置によれば、被処理水投入口から前記空間内に被処理水を投入するとともに前記第1空気供給手段から所定風量と所定静圧の空気を前記空間内に噴出して前記外筒体の内周に沿い旋回しながら上昇する被処理水との混合渦流を発生させ、この合渦流で空間内及び該空間に連通する最下位の減圧室及び該最下位の減圧室に第1処理水流下機構を介して連通される上位の減圧室内を減圧するとともに被処理水をエアーレーション及びクラスタ分解して膨張させ、この被処理水の膨張作用と空間内での静圧空気の噴出膨張作用により混合渦流中の被処理水を一次冷却し、この一次冷却された被処理水を気液分離手段により分離して内筒体の上端開口から内筒体内に投下し、また、気液分離手段により分離された気体の渦流を外筒体の上端開口から外筒体外へ放出し、さらに、内筒体内に投入された被処理水を第1処理水流下機構を通して最上位の減圧室から最下位の減圧室へ順に流下し、各減圧室内の減圧に伴う被処理水の蒸発により減圧室内の被処理水を二次冷却されるようにしたので、水処理設備の小規模化が容易になるとともに被処理水の大量な冷却処理を高効率にかつ低コストで行うことができる。   According to the water treatment apparatus of the present invention, the water to be treated is introduced into the space from the treated water inlet, and air having a predetermined air volume and a predetermined static pressure is ejected from the first air supply means into the space. A mixed vortex with the water to be treated that rises while turning along the inner periphery of the outer cylinder is generated, and the combined vortex flows in the space and in the lowest pressure reducing chamber and the lowest pressure reducing chamber communicating with the space. The upper decompression chamber communicated via the first treated water flow mechanism is decompressed and the treated water is expanded by aeration and cluster decomposition, and the expansion action of the treated water and the static pressure air in the space are expanded. The treated water in the mixed vortex is primarily cooled by the jet expansion action, and the primarily cooled treated water is separated by the gas-liquid separation means and dropped into the inner cylinder from the upper end opening of the inner cylinder. Gas vortex separated by liquid separation means The water to be treated is discharged from the upper end opening to the outside of the outer cylinder, and further, the treated water introduced into the inner cylinder is sequentially flowed from the uppermost decompression chamber to the lowermost decompression chamber through the first treated water flow-down mechanism. Since the water to be treated in the decompression chamber is secondarily cooled by the evaporation of the water to be treated due to the decompression, the water treatment facility can be easily reduced in scale and the large amount of water to be treated can be efficiently processed. And it can be performed at low cost.

また、本発明の水処理装置によれば、外筒体の下端部内周壁に設けた陽電極と陰電極との間に直流電圧を印加した状態で、第2空気供給手段から所定風量と所定静圧の空気を陽電極と陰電極の内周面に内接する方向に噴出することにより被処理水を旋回運動させて陽電極及び陰電極の内周面に接触させながらエアーレーションし、陽電極及び陰電極の電極反応に伴う還元反応で水素を生成するとともに酸化反応で酸素を生成できるようにしたので、この水素及び酸素をエアーレーションで被処理水中に混入して溶存酸素量を増大させ得るとともに、被処理水を浄化・冷却でき、さらに旋回する気体渦流の気化熱を利用して浄化・殺菌された水を冷却して再生するようにしたので、被処理水に電解液などの処理液を混入させることなく、被処理水の浄化・殺菌及び冷却処理を高効率にかつ低コストで行うことができる。   Further, according to the water treatment apparatus of the present invention, the second air supply means applies a predetermined air volume and a predetermined static voltage in a state where a DC voltage is applied between the positive electrode and the negative electrode provided on the inner peripheral wall of the lower end portion of the outer cylinder. The air to be treated is swirled in a direction inscribed in the inner circumferential surfaces of the positive electrode and the negative electrode, and aerated while being in contact with the inner peripheral surfaces of the positive electrode and the negative electrode. Since hydrogen is generated by the reduction reaction accompanying the electrode reaction of the negative electrode and oxygen can be generated by the oxidation reaction, this hydrogen and oxygen can be mixed into the water to be treated by aeration, and the amount of dissolved oxygen can be increased. Since the water to be treated can be purified and cooled, and the purified and sterilized water is cooled and regenerated using the heat of vaporization of the swirling gas vortex, a treatment liquid such as an electrolyte is added to the water to be treated. Processed without mixing And purification, sterilization and cooling process with high efficiency can be performed at low cost.

また、本発明の水処理装置を利用した発電装置によれぱ、気液分離手段により分離された気体渦流を外筒体の上端開口から外筒体外へ噴出して回転翼を回転し発電機を駆動するように構成したので、被処理水の浄化・冷却処理に使用された気体渦流を利用して発電を効率よく、かつ低コストで行うことができる。
また、本発明の発電装置によれば、外筒体内を旋回しながら上昇する気体渦流の風量を送風機により増大し、この風量の増大された気体渦流により発電機を駆動するようにしたので、発電機の発電能力を同一の水処理装置を利用して大幅に向上できる。
Further, according to the power generation device using the water treatment device of the present invention, the gas vortex separated by the gas-liquid separation means is ejected from the upper end opening of the outer cylindrical body to the outside of the outer cylindrical body, and the rotor is rotated to rotate the generator. Since it is configured to be driven, power generation can be performed efficiently and at low cost by using the gas vortex used for purification and cooling of the water to be treated.
Further, according to the power generation device of the present invention, the air volume of the gas vortex rising while swirling in the outer cylinder is increased by the blower, and the generator is driven by the gas vortex with the increased air volume. The power generation capacity of the machine can be greatly improved by using the same water treatment device.

本発明にかかる水処理装置並びにこれを利用した発電装置の最良な実施の形態について図面を参照して説明する。   BEST MODE FOR CARRYING OUT THE INVENTION A water treatment apparatus according to the present invention and a power generation apparatus using the same will be described with reference to the drawings.

図1は本発明の実施例1における水処理装置並びにこれを用いた発電装置の一部を切り欠いて示す全体の構成図、図2は図1の2−2線に沿う横断平面図、図3は図1の3−3線に沿う横断拡大平面図、図4は図1の4−4線に沿う横断平面図である。   1 is an overall configuration diagram showing a part of a water treatment apparatus and a power generation apparatus using the same in Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional plan view taken along line 2-2 in FIG. 3 is a cross-sectional enlarged plan view taken along line 3-3 in FIG. 1, and FIG. 4 is a cross-sectional plan view taken along line 4-4 in FIG.

図1に示す水処理装置100は、基台10上に鉛直に設置された所定の径(例えば、450mm)及び所定の長さ(例えば、1200mm)を有する外筒体11と、この外筒体11内に位置する基台10上に鉛直にかつ外筒体11と同心に配設された、外筒体11より小さい所定の径(例えば、300mm)及び所定の長さ(例えば、900mm)を有する内筒体12を備える。前記外筒体11の下面は密閉され、外筒体11の上面は開口されている。また、前記内筒体12の下面は密閉され、その上面は開口されている。外筒体11の内周面と内筒体12の外周面との間には両者の径の差に応じた空間13が形成されている。   A water treatment apparatus 100 shown in FIG. 1 includes an outer cylinder 11 having a predetermined diameter (for example, 450 mm) and a predetermined length (for example, 1200 mm) installed vertically on a base 10, and the outer cylinder. A predetermined diameter (for example, 300 mm) and a predetermined length (for example, 900 mm) smaller than the outer cylindrical body 11 are arranged vertically and concentrically with the outer cylindrical body 11 on the base 10 located in the interior 11. The inner cylinder body 12 is provided. The lower surface of the outer cylinder 11 is sealed, and the upper surface of the outer cylinder 11 is opened. Further, the lower surface of the inner cylinder 12 is sealed and the upper surface thereof is opened. A space 13 is formed between the inner peripheral surface of the outer cylindrical body 11 and the outer peripheral surface of the inner cylindrical body 12 according to the difference in diameter between the two.

前記外筒体11の上端部寄り側壁には、図1及び図2に示すように、被処理水を外筒体11の内接方向に向けて空間13内に流入させるための一対の被処理水投入口111a,111bが外筒体11の円周方向に180度の間隔を離して設けられ、この各被処理水投入口111a,111bには内熱間圧延工程などの冷却に使用された被処理水を供給するための共通の供給管14が接続されている。   As shown in FIG. 1 and FIG. 2, a pair of treated objects for allowing treated water to flow into the space 13 toward the inscribed direction of the outer tubular body 11 on the side wall near the upper end portion of the outer tubular body 11. Water inlets 111a and 111b are provided at intervals of 180 degrees in the circumferential direction of the outer cylindrical body 11, and each of the treated water inlets 111a and 111b was used for cooling such as an internal hot rolling process. A common supply pipe 14 for supplying the water to be treated is connected.

前記被処理水投入口111より下方に位置する外筒体11の側壁には、図1及び図2に示すように、圧縮空気を外筒体11の内接方向に向けて空間13内に噴出させるための一対の第1空気噴出口112a,112bが外筒体11の円周方向に180度の間隔を離して設けられ、この各第1空気噴出口112a,112bには、別々の空気供給管15a,15bを介して別々の第1空気供給手段16a,16bがそれぞれ接続されている。
前記第1空気供給手段16a,16bは、これからの所定風量と所定静圧の空気を第1空気噴出口112a,112bを通して空間13内に噴出することにより、被処理水投入口111a,111bから空間13内に投入された被処理水と気液混合するとともに外筒体11の内周に沿い旋回しながら上昇する渦流50を発生させるためのもので、例えば、風量が14.5m/minで、静圧が9.30kPaの空気を供給する送風機161と、この送風機161を駆動する電動機(2.2kW)とから構成され、この各第1空気供給手段16aと16bは別々の設置台17a,17Bを介して基台10上に設置されている。
As shown in FIGS. 1 and 2, compressed air is jetted into the space 13 toward the inscribed direction of the outer cylinder 11 on the side wall of the outer cylinder 11 located below the treated water inlet 111. A pair of first air jets 112a and 112b are provided at an interval of 180 degrees in the circumferential direction of the outer cylinder 11, and a separate air supply is provided to each of the first air jets 112a and 112b. Separate first air supply means 16a and 16b are connected via pipes 15a and 15b, respectively.
The first air supply means 16a, 16b ejects air of a predetermined air volume and a predetermined static pressure from the treated water inlets 111a, 111b to the space 13 through the first air outlets 112a, 112b. 13 for generating a vortex 50 that is mixed with gas to be treated and water to be treated and is swung along the inner periphery of the outer cylinder 11, for example, with an air volume of 14.5 m 3 / min. The fan 161 supplies air with a static pressure of 9.30 kPa, and an electric motor (2.2 kW) that drives the fan 161, and each of the first air supply means 16a and 16b has separate installation bases 17a, It is installed on the base 10 via 17B.

前記外筒体11内の空間13の上方に位置する箇所には、図1及び図2に示すように、気液分離手段18が配設されている。この気液分離手段18は、空間13内を外筒体11の内周に沿って旋回しながら上昇してくる混合渦流から被処理水と空気とに分離するもので、空間13の上方に位置する外筒体11の内壁面に内壁面の内周方向に沿って配設された複数の気液分離羽根181により構成されている。また、この気液分離羽根181は渦流50の旋回方向に傾斜されているとともに外筒体11の中心方向に延在され、内筒体12の上端開口に臨む形状に構成されている。   As shown in FIGS. 1 and 2, a gas-liquid separation means 18 is disposed at a location located above the space 13 in the outer cylinder 11. This gas-liquid separating means 18 separates the mixed vortex rising while turning in the space 13 along the inner periphery of the outer cylinder 11 into water to be treated and air, and is positioned above the space 13. It comprises a plurality of gas-liquid separation blades 181 disposed on the inner wall surface of the outer cylindrical body 11 along the inner circumferential direction of the inner wall surface. The gas-liquid separation blade 181 is inclined in the swirl direction of the vortex 50 and extends in the center direction of the outer cylinder 11, and is configured to face the upper end opening of the inner cylinder 12.

前記内筒体12内は、図1に示すように、内筒体12内を水平な隔壁19で鉛直方向に複数に区画することで形成された複数の減圧室20を備え、この各減圧室20は、気液分離手段18で分離された被処理水を減圧室20内の減圧に伴う被処理水の蒸発により冷却するものである。
また、上下に位置する減圧室20間には、減圧室20内に被処理水を所定のレベルまで貯留するとともに上部に位置する減圧室20内に貯留された被処理水をオーバフローにより下部に位置する減圧室20内に流下させる第1処理水流下機構21が設けられている。
さらに、内筒体12の底部には、最下位に位置する減圧室20−1内に被処理水を所定のレベルまで貯留するとともに最下位の減圧室20−1内の被処理水9を流出管23を介して外部へ流出させる第2処理水流下機構22が設けられている。
前記流出管23は最下位の減圧室20−1内が1トル以下の低圧力に減圧されても大気圧の影響を受けることなく減圧室20−1の被処理水が装置外へ流出できるように構成されている。
As shown in FIG. 1, the inner cylinder 12 includes a plurality of decompression chambers 20 formed by dividing the inner cylinder 12 into a plurality of vertical directions by horizontal partition walls 19. 20 is for cooling the water to be treated separated by the gas-liquid separation means 18 by evaporation of the water to be treated accompanying the decompression in the decompression chamber 20.
Further, between the decompression chambers 20 positioned above and below, the treated water is stored in the decompression chamber 20 to a predetermined level, and the treated water stored in the decompression chamber 20 located in the upper part is positioned in the lower part due to overflow. A first treated water flow mechanism 21 is provided to flow down into the decompression chamber 20.
Further, at the bottom of the inner cylindrical body 12, the water to be treated is stored up to a predetermined level in the decompression chamber 20-1 located at the lowest position, and the treated water 9 in the lowest pressure reduction chamber 20-1 flows out. A second treated water flow-down mechanism 22 that flows out to the outside through the pipe 23 is provided.
The outflow pipe 23 allows the water to be treated in the decompression chamber 20-1 to flow out of the apparatus without being affected by atmospheric pressure even when the pressure in the lowest decompression chamber 20-1 is reduced to a low pressure of 1 Torr or less. It is configured.

前記第1処理水流下機構21は、図1及び図2に示すように、隔壁19の中央部に形成した開口211と、隔壁19上に開口211と同心に設けられ減圧室20内に貯留された被処理水のオーバフローレベルを設定する所定長さの円筒管212と、この円筒管212全体を上方から覆うようにして隔壁19上に設けられ、かつ隔壁19との接合縁部に複数の流出口213を有するキャップ部材214とから構成されている。したがって、減圧室20内に貯留された被処理水9はキャップ部材214の流出口213から円筒管212の上端開口をオーバフローして下部に位置する減圧室20内に順に流下される。
前記第2処理水流下機構22は、図1及び図3に示すように、内筒体12の底部中央に形成した開口221と、内筒体12の底部上に開口221と同心に設けられ最下位の減圧室20−1内に貯留された被処理水のオーバフローレベルを設定する所定長さの円筒管222と、この円筒管222全体を上方から覆うようにして内筒体12の底部上に設けられ、かつ内筒体12の底部との接合縁部に複数の流出口223を有するキャップ部材224とから構成されている。したがって、最下位の減圧室20−1内に貯留された被処理水9はキャップ部材224の流出口223から円筒管222の上端開口を通してオバーフローされ、さらに流出管23から外部へ流出される。
As shown in FIGS. 1 and 2, the first treated water flow down mechanism 21 is provided in the central portion of the partition wall 19, and provided on the partition wall 19 concentrically with the opening 211 and stored in the decompression chamber 20. A cylindrical tube 212 having a predetermined length for setting the overflow level of the treated water, and the cylindrical tube 212 is provided on the partition wall 19 so as to cover the entire cylindrical tube 212 from above. And a cap member 214 having an outlet 213. Therefore, the water to be treated 9 stored in the decompression chamber 20 overflows from the outlet 213 of the cap member 214 to the upper end opening of the cylindrical tube 212 and then flows down into the decompression chamber 20 located below.
As shown in FIGS. 1 and 3, the second treated water flow-down mechanism 22 is provided at the center of the bottom of the inner cylinder 12, and is provided on the bottom of the inner cylinder 12 so as to be concentric with the opening 221. A cylindrical tube 222 having a predetermined length for setting an overflow level of the water to be treated stored in the lower decompression chamber 20-1 and the bottom of the inner cylinder 12 so as to cover the entire cylindrical tube 222 from above. The cap member 224 is provided and has a plurality of outlets 223 at the joint edge with the bottom of the inner cylindrical body 12. Therefore, the to-be-processed water 9 stored in the lowest decompression chamber 20-1 is overflowed from the outlet 223 of the cap member 224 through the upper end opening of the cylindrical tube 222, and further flows out from the outlet tube 23 to the outside.

最下位の減圧室20−1と空間13との間は内筒体12の側壁に設けた複数の吸引穴294により連通され、さらに、空間13の底部に貯留された被処理水9及び最下位の減圧室20−1に貯留された被処理水9は内筒体12の下端縁に設けた複数の流通穴25を通して流出入されるように構成されている。
また、最下位の減圧室20−1と第1空気供給手段16a,16bに接続された空気供給管15a,15bの静圧空気吐出側との間は導管26,26により接続されている。
また、最上位の減圧室20−2と空間13との間は内筒体12の側壁に該側壁の円周方向に沿い設けた複数の通気穴37により連通されている。この通気穴37は減圧室20−2に貯留される被処理水9の水面より上方に位置している。
The lowermost decompression chamber 20-1 and the space 13 are communicated with each other by a plurality of suction holes 294 provided in the side wall of the inner cylinder 12, and the treated water 9 stored at the bottom of the space 13 and the lowest portion The to-be-processed water 9 stored in the decompression chamber 20-1 is configured to flow in and out through a plurality of flow holes 25 provided at the lower end edge of the inner cylindrical body 12.
Further, the lowermost decompression chamber 20-1 and the static pressure air discharge side of the air supply pipes 15 a and 15 b connected to the first air supply means 16 a and 16 b are connected by conduits 26 and 26.
The uppermost decompression chamber 20-2 and the space 13 are communicated with the side wall of the inner cylinder 12 by a plurality of vent holes 37 provided along the circumferential direction of the side wall. The vent hole 37 is located above the water surface of the water 9 to be treated stored in the decompression chamber 20-2.

陽電極27及び陰電極28は、空間13の底部に貯留された被処理水9及び最下位の減圧室20−1に貯留された被処理水9を電気分解して多量の水素及び酸素を生成するもので、この陽電極27は、例えばニッケルメッキを施した鉄材を短冊状に加工したものから構成され、また、陰電極28は、例えば鉄材を短冊状に加工したものから構成される。
これら陽電極27と陰電極28は、図1及び図3に示すように、空間13の底部に貯留された被処理水9に対応する外筒体11の内周壁にその全周に亘り設けた電気絶縁材29の内周面に、電気絶縁材29の周方向に互いに1〜2mm程度離間して交互にかつ電気絶縁材29の全周に亘り配列され、そして、これら各陽電極27と陰電極28は給電端子を兼ねたボルトナット27A,28Aにより電気絶縁材29に固定されている。また、ボルトナット27A,28Aの一部は外筒体11の側壁を貫通して外筒体11外に突出され、このボルトナット27A,28Aを介して陽電極27及び陰電極28に直流電源30から直流電圧が供給されるように構成されている。
なお、前記陽電極27及び陰電極28を構成する材質は、上述した材質のものに限定されず、イオン化傾向の異なる導電性の金属材であればよい。
The positive electrode 27 and the negative electrode 28 electrolyze the treated water 9 stored in the bottom of the space 13 and the treated water 9 stored in the lowest decompression chamber 20-1 to generate a large amount of hydrogen and oxygen. Therefore, the positive electrode 27 is composed of, for example, a nickel-plated iron material processed into a strip shape, and the negative electrode 28 is composed of, for example, an iron material processed into a strip shape.
As shown in FIGS. 1 and 3, the positive electrode 27 and the negative electrode 28 are provided on the inner peripheral wall of the outer cylindrical body 11 corresponding to the treated water 9 stored in the bottom of the space 13 over the entire circumference. On the inner peripheral surface of the electrical insulating material 29, they are alternately arranged in the circumferential direction of the electrical insulating material 29 at a distance of about 1 to 2 mm and over the entire circumference of the electrical insulating material 29. The electrode 28 is fixed to the electrical insulating material 29 by bolts and nuts 27A and 28A that also serve as power supply terminals. Further, a part of the bolt nuts 27A, 28A penetrates the side wall of the outer cylindrical body 11 and protrudes out of the outer cylindrical body 11. The DC power source 30 is supplied to the positive electrode 27 and the negative electrode 28 via the bolt nuts 27A, 28A. Is configured to be supplied with a DC voltage.
In addition, the material which comprises the said positive electrode 27 and the negative electrode 28 is not limited to the thing of the material mentioned above, What is necessary is just the electroconductive metal material from which an ionization tendency differs.

前記陽電極27及び陰電極28と対向する外筒体11の側壁には、図1及び図3に示すように、外筒体11内に空気を陽電極27及び陰電極28の内周面と内接する方向に噴出させる第2空気噴出口31が形成され、この第2空気噴出口31には、空気供給管32を介して第2空気供給手段33が接続されている。
前記第2空気供給手段33は、これからの所定風量と所定静圧の空気を第2空気噴出口31を通して陽電極27及び陰電極28の内周面と内接する方向に噴出することにより、空問13内の底部に貯留された被処理水9を陽電極27及び陰電極28の内周面に沿い流動攪拌させ、陽電極27及び陰電極28の電気分解による被処理水9からの酸素及び水素の発生を促進させるためのもので、例えば風量が1.6m/minで、静圧が0.47kPaの空気を供給する送風機331と、この送風機331を駆動する電動機332(0.4kW)とから構成され、この第2空気供給手段33は基台10上に設置されている。
As shown in FIGS. 1 and 3, air is introduced into the outer cylinder 11 on the side walls of the outer cylinder 11 facing the positive electrode 27 and the negative electrode 28, and the inner peripheral surfaces of the positive electrode 27 and the negative electrode 28. A second air outlet 31 is formed to be ejected in the inscribed direction, and a second air supply means 33 is connected to the second air outlet 31 via an air supply pipe 32.
The second air supply means 33 evacuates the air of a predetermined air volume and a predetermined static pressure from the air through the second air outlet 31 in a direction inscribed in the inner peripheral surfaces of the positive electrode 27 and the negative electrode 28. Oxygen and hydrogen from the water 9 to be treated by electrolysis of the positive electrode 27 and the negative electrode 28 are caused to flow and stir along the inner peripheral surfaces of the positive electrode 27 and the negative electrode 28. For example, a blower 331 that supplies air with an air volume of 1.6 m 3 / min and a static pressure of 0.47 kPa, and an electric motor 332 (0.4 kW) that drives the blower 331, The second air supply means 33 is installed on the base 10.

発電装置40は、図1に示すように、外筒体11の上端開口11aから放出される気体渦流により回転される回転翼41を有し、この回転翼41は外筒体11の上端開口11aに相対向して配設され、さらに、この回転翼41は発電機42の回転軸42aに固定されている。
また、外筒体11の上端部側壁には、外気を吸い込んで気体渦流51の風量を増大させる空気吸入スリット34が外筒体11の内周方向に沿って複数形成されている。さらに、外筒体11の上端部外側には、図4に示すように、外筒体11内を旋回しながら上昇する気体渦流51の風量を増大するための一対の送風機35(所定の風量と所定の静圧を有する送風機である)が外筒体11の円周方向に180度の間隔を離して配設され、この一対の送風機35のエア吐出側に接続したエア供給管36は外筒体11の側壁を貫通して外筒体11内に開口され、このエア供給管36の開口からの空気は気体渦流51の旋回方向に向けて噴出される構成になっている。
As shown in FIG. 1, the power generation device 40 includes a rotating blade 41 that is rotated by a gas vortex discharged from an upper end opening 11 a of the outer cylinder 11, and the rotating blade 41 is an upper end opening 11 a of the outer cylinder 11. Further, the rotor blade 41 is fixed to the rotating shaft 42a of the generator 42.
Further, a plurality of air suction slits 34 are formed on the side wall of the upper end portion of the outer cylinder 11 along the inner circumferential direction of the outer cylinder 11 to suck in the outside air and increase the air volume of the gas vortex 51. Further, on the outer side of the upper end portion of the outer cylinder 11, as shown in FIG. 4, a pair of blowers 35 (a predetermined air quantity and The air supply pipe 36 connected to the air discharge side of the pair of blowers 35 is arranged as an outer cylinder. The air is passed through the side wall of the body 11 and opened in the outer cylinder 11, and air from the opening of the air supply pipe 36 is ejected in the swirling direction of the gas vortex 51.

次に、本実施例1における水処理装置100および発電装置40の動作について説明する。
まず、第1空気供給手段16a,16bを起動して、それぞれの送風機161から所定風量と所定静圧の空気、例えば、風量が14.5m/min、静圧が9.30kPaの空気を第1空気噴出口112a,112bから空間13内に噴出する。
また、熱間圧延工程などの冷却に使用された被処理水中に混入している粉粒物質などは、図示省略した沈殿槽や濾過槽などの除去装置により予め除去される。このように前処理された被処理水は供給管14及び被処理水投入口111a,111bを通して空間13内に投入されると、この被処理水は第1空気噴出口112a,112bから噴出される静圧空気と気液混合されるとともに、外筒体11の内周に沿い高速で旋回しながら上昇する渦流50となる。この時の渦流50の中心部分は1トル以下の低圧状態に保持される。そして、渦流50が高速旋回しながら上昇すると、空間13内は1トル以下の低圧状態(真空の状態)に減圧されるとともに、吸引口24を通して連通された最下位の減圧室20−1内も1トル以下の低圧状態に減圧される。同時に、この最下位の減圧室20−1に第1処理水流下機構21を介して連通される上位の減圧室20内の圧力も1トル以下の低圧状態に減圧される。また、最下位の減圧室20−1は導管26,26を介して第1空気供給手段16a,16bの空気供給管15a,15bに連通されているため、ベルヌーイの定理により生じる圧力差で最下位の減圧室20−1内が吸引され、この減圧室20−1内は更に減圧される。
Next, operations of the water treatment apparatus 100 and the power generation apparatus 40 in the first embodiment will be described.
First, the first air supply means 16a and 16b are activated, and air of a predetermined air volume and a predetermined static pressure, for example, air having an air volume of 14.5 m 3 / min and a static pressure of 9.30 kPa is supplied from each blower 161. The air is jetted into the space 13 from the air outlets 112a and 112b.
Moreover, the particulate matter mixed in the water to be treated used for cooling in the hot rolling process or the like is removed in advance by a removal device such as a precipitation tank or a filtration tank (not shown). When the pretreated water thus pretreated is introduced into the space 13 through the supply pipe 14 and the treated water inlets 111a and 111b, the treated water is ejected from the first air outlets 112a and 112b. While being mixed with static pressure air and gas and liquid, the vortex 50 rises while swirling at high speed along the inner periphery of the outer cylinder 11. At this time, the central portion of the vortex 50 is maintained in a low pressure state of 1 Torr or less. When the vortex 50 rises while swirling at a high speed, the inside of the space 13 is decompressed to a low pressure state (vacuum state) of 1 Torr or less, and the lowest pressure decompression chamber 20-1 communicated through the suction port 24 is also formed. The pressure is reduced to a low pressure state of 1 Torr or less. At the same time, the pressure in the upper decompression chamber 20 communicated with the lowest decompression chamber 20-1 via the first treated water flow mechanism 21 is also reduced to a low pressure state of 1 Torr or less. Further, since the lowest decompression chamber 20-1 communicates with the air supply pipes 15a and 15b of the first air supply means 16a and 16b via the conduits 26 and 26, the lowest pressure chamber is caused by the pressure difference caused by Bernoulli's theorem. The decompression chamber 20-1 is sucked, and the decompression chamber 20-1 is further decompressed.

一方、渦流50が発生すると、被処理水は渦流50によってエアーレーションされ霧状になるとともにクラスタ分解されて膨張する。これに伴い、被処理水は、上記被処理水の膨張作用と空間13内での静圧空気の噴出による膨張作用により冷却される。これを被処理水の一次冷却という。ここで、例えば水処理装置100に投入される被処理水の温度が70℃である場合、上述の一次冷却では70℃の被処理水を42℃程度まで冷却できることが確認された。
一次冷却された被処理水が高速旋回しながら上昇する渦流50と共に外筒体11の内周面に沿い上昇して気液分離手段18の気液分離羽根181に達すると、空気より比重の大きい被処理水は気液分離羽根181により分離捕集され、気液分離羽根181の先端部分から内筒体12の上端開口から内筒体12内にシャワー状に投下される。
On the other hand, when the eddy current 50 is generated, the water to be treated is aerated by the eddy current 50 to become a mist and is decomposed into clusters to expand. Accordingly, the water to be treated is cooled by the expansion action of the water to be treated and the expansion action caused by the ejection of static pressure air in the space 13. This is called primary cooling of the water to be treated. Here, for example, when the temperature of the water to be treated put into the water treatment apparatus 100 is 70 ° C., it was confirmed that the water to be treated at 70 ° C. can be cooled to about 42 ° C. in the primary cooling described above.
When the first-cooled water to be treated rises along the inner peripheral surface of the outer cylinder 11 together with the vortex 50 that rises while swirling at high speed and reaches the gas-liquid separation blade 181 of the gas-liquid separation means 18, the specific gravity is greater than that of air. The water to be treated is separated and collected by the gas-liquid separation blade 181 and dropped into the inner cylinder 12 from the top end portion of the gas-liquid separation blade 181 into the inner cylinder 12 from the upper end opening.

また、気液分離羽根181により分離された比重の小さい気体渦流51(霧状になった水蒸気分を含む)は外筒体11内をその内周面に沿って上昇し、同時に空気吸入スリット34から外気を吸い込んで気体渦流51の風量を増大させて外筒体11の上端開口11aから放出される。さらに、送風機35を起動し、この送風機35から所定の風量と静圧の空気を外筒体11内に噴出することで気体渦流51の風量を増大させる。
上述のように風量の増大された気体渦流51が外筒体11の上端開口11aから噴出されると、この気体渦流51によって回転翼41が高速で回転され、回転翼41が回転されることにより発電機42を駆動する。これにより、水処理装置100の水処理に利用した気体渦流51を用いて発電することができる。
Further, the gas vortex 51 having a small specific gravity separated by the gas-liquid separation blade 181 (including the water vapor in the form of mist) rises along the inner peripheral surface of the outer cylindrical body 11 and at the same time the air suction slit 34. Then, the outside air is sucked in to increase the air volume of the gas vortex 51 and is discharged from the upper end opening 11 a of the outer cylinder 11. Furthermore, the air blower 35 is started, and the air volume of the gas vortex 51 is increased by ejecting air of a predetermined air volume and static pressure from the fan 35 into the outer cylindrical body 11.
As described above, when the gas vortex 51 having an increased air volume is ejected from the upper end opening 11a of the outer cylindrical body 11, the rotating wing 41 is rotated at a high speed by the gas vortex 51, and the rotating wing 41 is rotated. The generator 42 is driven. Thereby, it is possible to generate electric power using the gas vortex 51 used for the water treatment of the water treatment apparatus 100.

気液分離手段18で分離された一次冷却の被処理水が最上位の減圧室20−2内にシャワー状に投入されると、このシャワー状の被処理水は減圧室20−2内の被処理水9の水面及び第1処理水流下機構21を構成するキャップ部材214の上面に降り注がれるとともにこれらと衝突することで飛散され、その一部は霧化して膨張される。そして、霧化された成分は通気穴37を通して上記高速旋回しながら上昇する渦流50により吸引され、再び上記渦流50に混入される。このように最上位の減圧室20−2内が渦流50による吸引作用を受けると減圧室20−2内が減圧され、この減圧作用により減圧室20−2内での水の蒸発が促進される。この場合、減圧室20−2内は1トル以下の低圧状態に減圧される。このため、最上位の減圧室20−2内に貯留された被処理水9は減圧に伴う水の蒸発作用で二次冷却される。また、減圧室20−2内の被処理水9の水位が第1処理水流下機構21で設定された水位以上になると、この減圧室20−2内の被処理水9はキャップ部材214の流出口213から円筒管212の上端開口を通してオーバフローされ、このオーバフローに伴う被処理水の流下作用でも減圧室20−2内は減圧される。
上段の減圧室20からオーバフローされた被処理水は次段に位置する減圧室20内に流下され、次段の減圧室20内に貯留された被処理水9の水面及び第1処理水流下機構21を構成するキャップ部材214の上面と衝突することで飛散されるとともに膨張される。
これに伴い、次段に位置する減圧室20内を1トル以下の低圧状態に減圧され、この減圧室20内に貯留された被処理水9も二次冷却される。
また、上記次段に位置する減圧室20内に貯留された被処理水9の水位が第1処理水流下機構21で設定された水位以上になると、この減圧室20内の被処理水9は第1処理水流下機構21を通してオーバフローされ、さらに次段に位置する減圧室20内に流下されるとともに、上記次段に位置する減圧室20内を1トル以下の低圧状態に減圧する。これにより、上記と同様に、該減圧室20内の被処理水9を二次冷却する。
When the water to be treated for primary cooling separated by the gas-liquid separation means 18 is introduced into the uppermost decompression chamber 20-2 in a shower shape, the treated water in the shower shape is treated in the decompression chamber 20-2. It falls on the water surface of the treated water 9 and the upper surface of the cap member 214 constituting the first treated water flow-down mechanism 21 and is scattered by colliding with them, and a part thereof is atomized and expanded. The atomized component is sucked by the vortex 50 that rises while rotating at high speed through the vent hole 37 and is mixed into the vortex 50 again. When the uppermost decompression chamber 20-2 is sucked by the vortex 50 as described above, the decompression chamber 20-2 is decompressed, and this decompression action promotes evaporation of water in the decompression chamber 20-2. . In this case, the inside of the decompression chamber 20-2 is decompressed to a low pressure state of 1 Torr or less. For this reason, the to-be-processed water 9 stored in the uppermost decompression chamber 20-2 is secondarily cooled by the evaporation of water accompanying decompression. Further, when the water level of the water 9 to be treated in the decompression chamber 20-2 becomes equal to or higher than the water level set by the first treated water flow-down mechanism 21, the water 9 to be treated in the decompression chamber 20-2 flows through the cap member 214. It overflows from the outlet 213 through the upper end opening of the cylindrical tube 212, and the inside of the decompression chamber 20-2 is depressurized by the flowing-down action of the water to be treated accompanying this overflow.
The treated water overflowed from the upper decompression chamber 20 flows down into the decompression chamber 20 located at the next stage, the water surface of the treated water 9 stored in the subsequent decompression chamber 20, and the first treated water flow mechanism. 21 is scattered and inflated by colliding with the upper surface of the cap member 214 constituting 21.
Accordingly, the inside of the decompression chamber 20 located in the next stage is decompressed to a low pressure state of 1 Torr or less, and the water 9 to be treated stored in the decompression chamber 20 is also secondary cooled.
Further, when the water level of the treated water 9 stored in the decompression chamber 20 located in the next stage becomes equal to or higher than the water level set by the first treated water flow-down mechanism 21, the treated water 9 in the decompression chamber 20 is It overflows through the first treated water flow-down mechanism 21 and further flows down into the decompression chamber 20 located at the next stage, and the inside of the decompression chamber 20 located at the next stage is decompressed to a low pressure state of 1 Torr or less. Thereby, the to-be-processed water 9 in this decompression chamber 20 is secondary-cooled similarly to the above.

以下同様にして、上部に位置する減圧室20内の被処理水9を第1処理水流下機構21を通してオーバフローにより下部に位置する減圧室20内に順に流下し、最下位の減圧室20−1へと流下する。このように被処理水9を最上位の減圧室20から最下位の減圧室20−1を通過させることにより、被処理水9は順に二次冷却される。この時、各段の減圧室20及び20−1で二次冷却し得る温度は、因みに3℃〜5℃程度であることが確認された。したがって、一次冷却された被処理水の温度を42℃とすると、図1に示す4段の減圧室20では、42℃−((3℃〜5℃)×4)=30℃−22℃となり、42℃の被処理水を30℃−22℃の温度まで冷却することができる。   Similarly, the treated water 9 in the decompression chamber 20 located in the upper part flows down into the decompression chamber 20 located in the lower part by the overflow through the first treated water flow-down mechanism 21, and the lowest decompression chamber 20-1. Flow down. Thus, the to-be-processed water 9 is secondary-cooled in order by passing the to-be-processed water 9 through the lowest pressure-reducing chamber 20-1 from the uppermost decompression chamber 20. FIG. At this time, it was confirmed that the temperature that can be secondarily cooled in the decompression chambers 20 and 20-1 of each stage is about 3 ° C to 5 ° C. Therefore, assuming that the temperature of the first cooled water to be treated is 42 ° C., in the four-stage decompression chamber 20 shown in FIG. 1, 42 ° C .− ((3 ° C. to 5 ° C.) × 4) = 30 ° C.-22 ° C. The water to be treated at 42 ° C. can be cooled to a temperature of 30 ° C.-22 ° C.

次に、空間13の底部及び最下位の減圧室20−1に貯留されている被処理水9を電解処理する場合の動作について説明する。
この場合は各陽電極27を直流電源30の正極に並列に接続し、更に各陰電極28を直流電源30の負極に並列に接続して、両陽電極27と陰電極28に、例えば1〜2.5V程度の直流電圧を供給する。この時、隣接する陽電極27と陰電極28との間に流れる電流は5mmA〜10mmA程度である。
Next, the operation in the case of subjecting the water to be treated 9 stored in the bottom of the space 13 and the lowest decompression chamber 20-1 to electrolytic treatment will be described.
In this case, each positive electrode 27 is connected in parallel to the positive electrode of the DC power source 30 and each negative electrode 28 is connected in parallel to the negative electrode of the DC power source 30 to connect both the positive electrode 27 and the negative electrode 28 to, for example, 1 to Supply a DC voltage of about 2.5V. At this time, the current flowing between the adjacent positive electrode 27 and negative electrode 28 is about 5 mmA to 10 mmA.

かかる状態で、第2空気供給手段33を起動して、送風機331から所定風量と所定静圧の空気、例えば風量が1.6m/min、静圧が0.47kPaの空気を空気供給管32を通して第2空気噴出口31から陽電極27及び陰電極28の内側へ、その内周面と内接する方向に噴出する。これにより、空間13内の底部に貯留された被処理水9は陽電極27及び陰電極28の内周面に沿い流動攪拌される。これにより、陽電極27及び陰電極28と被処理水との界面では、陽電極27及び陰電極28内の電子と被処理水中のイオンとの間で電化の受け渡しをする電荷移動反応が進行する。すなわち、互いに隣接する陽電極27と陰電極28との間に電流が流れることにより、それぞれの陽電極27では、その電極反応に伴い被処理水が電子と反応する還元反応が行われ、水素を生成する。また、それぞれの陰電極28では、その電極反応に伴い電子が陰電極28から外部回路へ引き出される酸化反応が行われ、酸素を生成する。このような電気分解は最下位の減圧室20−1に貯留されている被処理水9に対しても行われる。 In this state, the second air supply means 33 is activated, and air having a predetermined air volume and a predetermined static pressure, for example, air having an air volume of 1.6 m 3 / min and a static pressure of 0.47 kPa is supplied from the blower 331 to the air supply pipe 32. Through the second air jet port 31 to the inside of the positive electrode 27 and the negative electrode 28 in a direction inscribed in the inner peripheral surface thereof. Thereby, the to-be-processed water 9 stored at the bottom in the space 13 is fluidly stirred along the inner peripheral surfaces of the positive electrode 27 and the negative electrode 28. As a result, at the interface between the positive electrode 27 and the negative electrode 28 and the water to be treated, a charge transfer reaction that transfers the charge between the electrons in the positive electrode 27 and the negative electrode 28 and the ions in the water to be treated proceeds. . That is, when a current flows between the positive electrode 27 and the negative electrode 28 adjacent to each other, each positive electrode 27 undergoes a reduction reaction in which the water to be treated reacts with electrons in accordance with the electrode reaction, and hydrogen is removed. Generate. Each negative electrode 28 undergoes an oxidation reaction in which electrons are extracted from the negative electrode 28 to an external circuit in accordance with the electrode reaction, thereby generating oxygen. Such electrolysis is also performed on the water to be treated 9 stored in the lowest pressure reducing chamber 20-1.

前記生成された水素及び酸素が空間13の底部及び最下位の減圧室20−1に貯留されている被処理水9中に混入されると、被処理水9は浄化、殺菌及び冷却されるとともに被処理水9中の溶存酸素量も8.1ppm以上となる。このように浄化、殺菌及び冷却された被処理水9は第2処理水流下機構22を通して流出管23から外部へ流出される。その後、図示省略の排水管を通して熱間圧延工程の加熱炉や圧延機ロールの冷却部などに供給され、所定の冷却処理が実行される。
また、上記電気分解により生成された水素及び酸素の一部は混合渦流中にも混入されるため、混合渦流の浄化が下能になる。また、被処理水中に含まれるC(炭素)成分,N(窒素)成分およびS(硫黄)成分などの除去も可能である。
When the generated hydrogen and oxygen are mixed into the treated water 9 stored in the bottom of the space 13 and the lowest decompression chamber 20-1, the treated water 9 is purified, sterilized and cooled. The amount of dissolved oxygen in the water 9 to be treated is also 8.1 ppm or more. The treated water 9 thus purified, sterilized and cooled flows out from the outflow pipe 23 through the second treated water flow-down mechanism 22. Then, it supplies to the heating furnace of a hot rolling process, the cooling part of a rolling mill roll, etc. through the drain pipe not shown in figure, and a predetermined | prescribed cooling process is performed.
Moreover, since part of hydrogen and oxygen produced | generated by the said electrolysis is mixed also in a mixed vortex, purification | cleaning of a mixed vortex becomes inferior. Further, it is possible to remove C (carbon) component, N (nitrogen) component, S (sulfur) component and the like contained in the water to be treated.

なお、エアーレーションされた被処理水が陽電極27及び陰電極28の内周面に接触しながら旋回運動すると、被処理水及び空気が陽電極27及び陰電極28の内周面と摩擦されるため、その水と空気はイオン化され、帯電反応により、隣接する陽電極27と陰電極28との間には、電圧を印加しなくとも微小電流が流れることが認められた。このため、陽電極27と陰電極28間に印加される電圧が1〜2.5V程度でも効果的な電極反応が可能である。
また、空気の噴き込みによる被処理水の旋回速度を大きくすれば、陽電極27と陰電極28間に流れる電流は増大して10mm〜30mmとなり、陽電極27及び陰電極28での電気分解が、より促進され、水素及び酸素の発生量を増大させることができるとともに被処理水の浄化及び冷却を促進できる。
In addition, when the aerated water to be treated is swiveled while contacting the inner peripheral surfaces of the positive electrode 27 and the negative electrode 28, the water to be treated and air are rubbed against the inner peripheral surfaces of the positive electrode 27 and the negative electrode 28. Therefore, the water and air were ionized, and it was recognized that a minute current flows between the adjacent positive electrode 27 and negative electrode 28 without applying voltage due to the charging reaction. For this reason, an effective electrode reaction is possible even if the voltage applied between the positive electrode 27 and the negative electrode 28 is about 1 to 2.5V.
Further, if the swirl speed of the water to be treated due to the injection of air is increased, the current flowing between the positive electrode 27 and the negative electrode 28 increases to 10 mm to 30 mm, and electrolysis at the positive electrode 27 and the negative electrode 28 occurs. Therefore, the generation amount of hydrogen and oxygen can be increased, and the purification and cooling of the water to be treated can be promoted.

このような本実施例1に示す水処理装置によれば、被処理水投入口111から空間13内に被処理水を投入するとともに第1空気供給手段16a,16bから所定風量と所定静圧の空気を空間13内に噴出することにより外筒体11の内周に沿い旋回しながら上昇する被処理水との混合渦流50を発生させ、この渦流50で空間13内及び空間13に連通する最下位の減圧室20−1及び最下位の減圧室20−1に第1処理水流下機構21を介して連通される上位の減圧室20内を減圧するとともに被処理水をエアーレーション及びクラスタ分解して膨張させ、この被処理水の膨張作用と空間13内での静圧空気の噴出膨張作用により渦流50中の被処理水を一次冷却し、この一次冷却された被処理水を気液分離手段18により分離して内筒体12の上端開口から内筒体12内に投下し、また、気液分離手段18により分離された気体渦流51を外筒体11の上端開口から外筒体11外へ放出し、さらに、内筒体12内に投入された被処理水9を第1処理水流下機構21を通して最上位の減圧室20から最下位の減圧室20−1へ順に流下し、各減圧室20,20−1内の減圧に伴う被処理水の蒸発により減圧室20,20−1内の被処理水を二次冷却されるようにしたので、被処理水の大量な冷却処理を高効率にかつ低コストで行うことができる。因みに、本実施例1に示す水処理設備によれば、一日当り1000トン水を冷却処理することができるとともに水処理設備の小規模化を容易に実現できる。   According to such a water treatment apparatus shown in the first embodiment, water to be treated is introduced into the space 13 from the water inlet 111 to be treated, and a predetermined air volume and a predetermined static pressure are supplied from the first air supply means 16a and 16b. By jetting air into the space 13, a mixed vortex 50 is generated with the water to be treated that rises while turning along the inner periphery of the outer cylinder 11, and the vortex 50 communicates with the interior of the space 13 and the space 13. The upper decompression chamber 20 communicated with the lower decompression chamber 20-1 and the lowest decompression chamber 20-1 via the first treated water flow mechanism 21 is decompressed, and the water to be treated is aerated and decomposed into clusters. The treated water in the vortex 50 is primarily cooled by the expansion action of the water to be treated and the jet expansion action of the static pressure air in the space 13, and the first-cooled water to be treated is gas-liquid separating means. 18 separated by inner cylinder 12 is dropped into the inner cylinder 12 from the upper end opening of the gas 12, and the gas vortex 51 separated by the gas-liquid separation means 18 is discharged from the upper end opening of the outer cylinder 11 to the outside of the outer cylinder 11, and further the inner cylinder The treated water 9 introduced into the body 12 flows down from the uppermost decompression chamber 20 to the lowermost decompression chamber 20-1 through the first treated water flow mechanism 21 in order, Since the water to be treated in the decompression chambers 20 and 20-1 is secondarily cooled by evaporation of the water to be treated due to decompression, a large amount of cooling treatment of the water to be treated can be performed with high efficiency and at low cost. Can do. Incidentally, according to the water treatment facility shown in the first embodiment, 1000 tons of water per day can be cooled and the water treatment facility can be easily reduced in size.

また、本実施例1に示す水処理装置によれぱ、外筒体11の下端部内周壁に設けた陽電極27と陰電極28との間に直流電圧を印加した状態で、第2空気供給手段33から所定風量と所定静圧の空気を陽電極27と陰電極28の内周面に内接する方向に噴出することにより被処理水を旋回運動させて陽電極27及び陰電極28の内周面に接触させながらエアーレーションし、陽電極27及び陰電極28の電極反応に伴う還元反応で水素を生成するとともに酸化反応で酸素を生成できるようにしたので、この水素及び酸素をエアーレーションで被処理水中に混入して溶存酸素量を増大させることができるとともに、被処理水を浄化・冷却でき、さらに旋回する気体渦流の気化熱を利用して浄化・殺菌された水を冷却して再生するようにしたので、被処理水に電解液などの処理液を混入させることなく、被処理水の浄化・殺菌及び冷却処理を高効率にかつ低コストで行うことができる。   Moreover, according to the water treatment apparatus shown in the first embodiment, the second air supply means is applied with a DC voltage applied between the positive electrode 27 and the negative electrode 28 provided on the inner peripheral wall of the lower end portion of the outer cylindrical body 11. 33, the air to be treated is swirled by injecting air of a predetermined air volume and a predetermined static pressure in a direction inscribed in the inner peripheral surfaces of the positive electrode 27 and the negative electrode 28, and the inner peripheral surfaces of the positive electrode 27 and the negative electrode 28. Since aeration was carried out while being in contact with hydrogen, hydrogen was generated by the reduction reaction accompanying the electrode reaction of the positive electrode 27 and the negative electrode 28 and oxygen could be generated by the oxidation reaction, so this hydrogen and oxygen were treated by aeration. It is possible to increase the amount of dissolved oxygen by mixing in the water, purify and cool the water to be treated, and cool and regenerate the purified and sterilized water using the heat of vaporization of the swirling gas vortex Because Without contaminating the treatment liquid such as an electrolytic solution to the water to be treated can be carried out in and the purification and sterilization and cooling process of the for-treatment water with high efficiency and low cost.

また、本実施例1に示す水処理装置によれば、渦流50を生じさせる空間13と最下位の減圧室20−1との間を吸引穴24で連通させ、さらに最下位の減圧室20−1と第1空気供給手段16a,16bの静圧空気吐出側との間を導管26,26により連結する構成にしたので、最下位の減圧室20−1内および第1処理水流下機構21を介して連通される上位の減圧室20内を被処理水の二次冷却に必要な1トル以下の低圧状態に容易に減圧することができる。
また、本実施例1に示す水処理装置によれば、最上位の減圧室20−2と空間13との間を内筒体12の側壁に設けた複数の通気穴37により連通する構成にしたので、最上位13の減圧室20−2内を被処理水の二次冷却に必要な1トル以下の低圧状態に容易に減圧することができる。
Moreover, according to the water treatment apparatus shown in the first embodiment, the space 13 in which the vortex 50 is generated and the lowest decompression chamber 20-1 are communicated with each other through the suction hole 24, and further, the lowest decompression chamber 20-. 1 and the static air discharge side of the first air supply means 16a, 16b are connected by the conduits 26, 26, so that the lowermost decompression chamber 20-1 and the first treated water flow mechanism 21 are It is possible to easily depressurize the upper decompression chamber 20 communicated to the low pressure state of 1 Torr or less necessary for secondary cooling of the water to be treated.
Moreover, according to the water treatment apparatus shown in the first embodiment, the uppermost decompression chamber 20-2 and the space 13 are configured to communicate with each other through the plurality of vent holes 37 provided in the side wall of the inner cylindrical body 12. Therefore, the inside of the decompression chamber 20-2 in the uppermost 13 can be easily decompressed to a low pressure state of 1 Torr or less necessary for secondary cooling of the water to be treated.

また、本実施例1に示す水処理装置を利用した発電装置によれば、気液分離手段18により分離された気体渦流51を外筒体11の上端開口から外筒体11外へ噴出して回転翼41を回転し発電機42を駆動するように構成したので、被処理水の浄化・冷却処理に使用された気体渦流51を利用して発電を効率よく、かつ低コストで行うことができる。
また、本実施例1に示す水処理装置を利用した発電装置によれば、外筒体11内を旋回しながら上昇する気体渦流51の風量を送風機により増大し、この風量の増大された気体渦流により発電機42を駆動するようにしたので、発電機42の発電能力を同一の水処理装置を利用して大幅に向上することができる。因みに、送風機31から筒体20に圧送される静圧空気の出力を0.4kWであるとすると、本実施の形態1に示す水処理装置を用いた発電機62の出力は約10kWであることが認められた。
また、本実施例1によれば、外気を吸い込んで気体渦流51の風量を増大させる空気吸入スリット34を外筒体11の上端部側壁に設けたので、空気吸入スリット34から外気を吸い込んで気体渦流51の風量を増大できるとともに発電機42の発電能力を大幅に向上できる。
Further, according to the power generation apparatus using the water treatment apparatus shown in the first embodiment, the gas vortex 51 separated by the gas-liquid separation means 18 is ejected from the upper end opening of the outer cylinder 11 to the outside of the outer cylinder 11. Since the rotating blade 41 is rotated and the generator 42 is driven, power generation can be performed efficiently and at low cost by using the gas vortex 51 used for purification and cooling of the water to be treated. .
Further, according to the power generation apparatus using the water treatment apparatus shown in the first embodiment, the air volume of the gas vortex 51 that rises while swirling in the outer cylinder 11 is increased by the blower, and the gas vortex with the increased air volume is increased. Since the generator 42 is driven by this, the power generation capacity of the generator 42 can be greatly improved by using the same water treatment device. Incidentally, if the output of the static pressure air pumped from the blower 31 to the cylinder 20 is 0.4 kW, the output of the generator 62 using the water treatment device shown in the first embodiment is about 10 kW. Was recognized.
Further, according to the first embodiment, the air suction slit 34 that sucks in the outside air and increases the air volume of the gas vortex 51 is provided on the side wall of the upper end portion of the outer cylinder 11. The air volume of the vortex 51 can be increased and the power generation capacity of the generator 42 can be greatly improved.

なお、上記図1に示す実施例1では、陽電極27、陰電極28及び第2空気供給手段33を組み込んで被処理水の浄化、殺菌処理を可能にした水処理装置100について説明したが、本発明はこれに限らず、陽電極27、陰電極28及び第2空気供給手段33を省いた水処理装置であってもよい。
また、上記図1に示す実施例1では、陽電極27、陰電極28及び第2空気供給手段33を組み込んで被処理水の浄化、殺菌処理を可能にした水処理装置100を利用してなる発電装置40について説明したが、本発明はこれに限定されず、陽電極27、陰電極28及び第2空気供給手段33を省いた水処理装置100を利用してなる発電装置であってもよい。
また、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において、具体的な構成、機能、作用効果において、他の種々の形態によっても実施することができる。
In the first embodiment shown in FIG. 1, the water treatment apparatus 100 has been described in which the positive electrode 27, the negative electrode 28, and the second air supply means 33 are incorporated to enable purification and sterilization of the water to be treated. The present invention is not limited to this, and may be a water treatment apparatus that omits the positive electrode 27, the negative electrode 28, and the second air supply means 33.
Further, in the first embodiment shown in FIG. 1, the water treatment apparatus 100 that incorporates the positive electrode 27, the negative electrode 28, and the second air supply means 33 to enable purification and sterilization of the water to be treated is used. Although the power generation device 40 has been described, the present invention is not limited to this, and may be a power generation device using the water treatment device 100 in which the positive electrode 27, the negative electrode 28, and the second air supply means 33 are omitted. .
In addition, the present invention is not limited to the above-described embodiment, and can be implemented in various other forms in specific configurations, functions, and effects without departing from the spirit of the present invention.

発明の実施の形態1における水処理装置並びにこれを利用した発電装置の一部を切り欠いて示す全体の構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the whole block diagram which notches and shows a part of water treatment apparatus in Embodiment 1 of invention and the electric power generating apparatus using the same. 図1の2ー2線に沿う横断平面図である。FIG. 2 is a cross-sectional plan view taken along line 2-2 in FIG. 図1の3ー3線に沿う横断拡大平面図である。FIG. 3 is a cross-sectional enlarged plan view taken along line 3-3 in FIG. 1. 図1の4ー4線に沿う横断平面図である。FIG. 4 is a cross-sectional plan view taken along line 4-4 in FIG.

符号の説明Explanation of symbols

100 水処理装置
11 外筒体
111a,111b 被処理水投入口
112a,112b 第1空気噴出口
12 内筒体
13 空間
16a,16b 第1空気供給手段
18 気液分離手段
20,20−1 減圧室
21 第1処理水流下機構
22 第2処理水流下機構
26 導管
27 陽電極
28 陰電極
30 直流電源
31a,31b 第2空気噴出口
33 第2空気供給手段
35 送風機
37 通気穴
40 発電装置
41 回転翼
42 発電機
100 Water treatment apparatus 11 Outer cylinders 111a, 111b To-be-treated water inlets 112a, 112b First air outlet 12 Inner cylinder 13 Spaces 16a, 16b First air supply means 18 Gas-liquid separation means 20, 20-1 Decompression chamber 21 First treated water flow mechanism 22 Second treated water flow mechanism 26 Conduit 27 Positive electrode 28 Negative electrode 30 DC power supply 31a, 31b Second air outlet 33 Second air supply means 35 Blower 37 Vent hole 40 Power generation device 41 Rotor blade 42 Generator

Claims (13)

下面が密閉され上面が開口されているとともに鉛直方向に延在する所定の径及び所定の長さを有する外筒体と、
下面が密閉され上面が開口されているとともに下端部が前記外筒体に連通され、かつ前記外筒体内に所定間隔の空間を介して同心に配設された、前記外筒体より小さい所定の径及び所定の長さを有する内筒体と、
前記空間の上方に配設された気液分離手段と、
前記外筒体の上端部寄り側壁に設けられ前記空間内に連通する少なくとも1つの被処理水投入口と、
前記被処理水投入口より下方に位置する前記外筒体の側壁に設けられ所定の静圧空気を前記外筒体の内接方向に向けて前記空間内に噴出させる少なくとも1つの第1空気噴出口と、
前記第1空気噴出口に接続され前記空間内に所定風量と所定静圧の空気を噴出供給する第1空気供給手段と、
前記内筒体内に該内筒体内を鉛直方向に複数に区画することで形成され、かつ減圧による被処理水の蒸発で被処理水を冷却する複数の減圧室と、
上下に位置する前記減圧室間に設けられ該減圧室内に被処理水を所定のレベルまで貯留するとともに上部に位置する減圧室内に貯留された被処理水をオーバフローにより下部に位置する減圧室内に流下させる第1処理水流下機構と、
前記内筒体の底部に設けられ最下位に位置する前記減圧室内に被処理水を所定のレベルまで貯留するとともに該減圧室内の被処理水を流出口から外部へ流出させる第2処理水流下機構とを備え、
前記被処理水投入口から前記空間内に被処理水を投入するとともに前記第1空気供給手段から所定風量と所定静圧の空気を前記第1空気噴出口から前記空間内に噴出して前記外筒体の内周に沿い旋回しながら上昇する被処理水との混合渦流を発生させ、この混合渦流により前記空間内及び該空間に連通する前記最下位に位置する減圧室及び該最下位の減圧室に前記第1処理水流下機構を介して連通される上位の減圧室内を減圧するとともに前記被処理水をエアーレーション及びクラスタ分解して膨張させ、この被処理水の膨張作用と前記空間内での前記静圧空気の噴出膨張作用により混合渦流中の被処理水を一次冷却し、この一次冷却された被処理水を前記気液分離手段により分離して前記内筒体の上端開口から該内筒体内に投下し、かつ前記気液分離手段により分離された気体の渦流を前記外筒体の上端開口から外筒体外へ放出するように構成し、
前記内筒体内に投入された被処理水を前記第1処理水流下機構を通して最上位の前記減圧室から最下位の前記減圧室へ順に流下し、前記各減圧室内の減圧に伴う被処理水の蒸発により減圧室内の被処理水を二次冷却するように構成したことを特徴とする水処理装置。
An outer cylinder having a predetermined diameter and a predetermined length extending in the vertical direction while the lower surface is sealed and the upper surface is opened;
The lower surface is sealed and the upper surface is opened, and the lower end portion is in communication with the outer cylinder, and is concentrically disposed in the outer cylinder via a space of a predetermined interval. An inner cylinder having a diameter and a predetermined length;
Gas-liquid separation means disposed above the space;
At least one treated water inlet provided on the side wall near the upper end of the outer cylinder and communicating with the space;
At least one first air jet provided on a side wall of the outer cylindrical body located below the treated water inlet and ejecting predetermined static pressure air into the space toward the inscribed direction of the outer cylindrical body. Exit,
A first air supply means connected to the first air outlet and for supplying and supplying air of a predetermined air volume and a predetermined static pressure into the space;
A plurality of decompression chambers formed by dividing the inner cylinder into a plurality of vertical directions in the inner cylinder, and cooling the treated water by evaporation of the treated water by decompression;
Provided between the decompression chambers located above and below, the treated water is stored in the decompression chamber to a predetermined level, and the treated water stored in the decompression chamber located at the upper part flows down into the decompression chamber located at the lower part due to overflow. A first treated water flow down mechanism,
A second treated water flow-down mechanism that stores the treated water up to a predetermined level in the decompression chamber located at the bottom and provided at the bottom of the inner cylinder, and causes the treated water in the decompression chamber to flow out from the outlet. And
The treated water is introduced into the space from the treated water inlet and air having a predetermined air volume and a predetermined static pressure is ejected from the first air supply means into the space through the first air outlet. A mixed vortex with the water to be treated that rises while swirling along the inner periphery of the cylindrical body is generated, and by this mixed vortex, the decompression chamber located at the lowest position in the space and communicated with the space and the lowest pressure reduction The upper decompression chamber communicated with the chamber via the first treated water flow-down mechanism is decompressed and the treated water is expanded by aeration and cluster decomposition, and the expansion action of the treated water and in the space The water to be treated in the mixed vortex is primarily cooled by the expansion and expansion action of the static pressure air, and the water that has been primarily cooled is separated by the gas-liquid separation means, and the inner water is separated from the upper end opening of the inner cylinder. Drop into the cylinder and before Configure vortex separated gas by the gas-liquid separating means from the upper end opening of said outer cylindrical member so as to release the outer cylinder outside,
The treated water introduced into the inner cylinder flows in order from the uppermost decompression chamber to the lowermost decompression chamber through the first treated water flow mechanism, and the treated water accompanying decompression in each decompression chamber. A water treatment apparatus configured to secondary-cool water to be treated in a decompression chamber by evaporation.
前記外筒体の下端部に位置する内周壁に前記外筒体の周方向に互いに離間して該外筒体の全周に亘り交互に多数配列され前記空間内の底部に貯留された被処理水を電気分解して酸素及び水素を発生させるための陽電極及び陰電極と、前記各陽電極と陰電極との間に直流電圧を供給する直流電源と、前記陽電極及び陰電極と対向する前記外筒体の側壁に設けられ該外筒体内に空気を前記陽電極及び陰電極の内周面と内接する方向に噴出させる少なくとも1つの第2空気噴出口と、前記第2空気噴出口に接続され該第2空気噴出口から所定風量と所定静圧の空気を噴出して前記空間内の底部に貯留された被処理水を前記陽電極及び陰電極の内周面に沿い流動攪拌することで前記電極の電気分解による被処理水からの酸素及び水素の発生を促進させる第2空気供給手段とを備えることを特徴とする請求項1記載の水処理装置。   A plurality of objects to be processed which are arranged on the inner peripheral wall located at the lower end portion of the outer cylinder and spaced apart from each other in the circumferential direction of the outer cylinder and alternately arranged over the entire circumference of the outer cylinder and stored in the bottom of the space A positive electrode and a negative electrode for electrolyzing water to generate oxygen and hydrogen, a direct current power source for supplying a direct current voltage between each positive electrode and the negative electrode, and opposite to the positive electrode and the negative electrode At least one second air outlet provided on a side wall of the outer cylinder and injecting air into the outer cylinder in a direction inscribed in the inner peripheral surfaces of the positive electrode and the negative electrode; and the second air outlet Flowing and agitating the water to be treated stored in the bottom of the space along the inner peripheral surfaces of the positive electrode and the negative electrode by ejecting air having a predetermined air volume and a predetermined static pressure from the connected second air outlet To promote the generation of oxygen and hydrogen from the water to be treated by electrolysis of the electrode. Water treatment device according to claim 1, characterized in that it comprises a second air supply means. 前記最上位の減圧室と前記空間との間は前記内筒体の側壁に設けた複数の通気穴により連通されるように構成したことを特徴とする請求項1または2記載の水処理装置。   3. The water treatment apparatus according to claim 1, wherein the uppermost decompression chamber and the space are configured to communicate with each other through a plurality of vent holes provided in a side wall of the inner cylinder. 前記最下位の減圧室と前記空間との間は前記内筒体の側壁に設けた複数の吸引穴により連通され、前記空間の底部に貯留された被処理水及び前記最下位の減圧室に貯留された被処理水は前記内筒体の下端縁に設けた複数の流通穴を通して流出入されるように構成したことを特徴とする請求項1、2または3の何れか1項に記載の水処理装置。   The lowermost decompression chamber and the space communicate with each other through a plurality of suction holes provided in a side wall of the inner cylinder, and are stored in the treated water stored at the bottom of the space and the lowermost decompression chamber. 4. The water according to claim 1, wherein the water to be treated is configured to flow in and out through a plurality of flow holes provided in a lower end edge of the inner cylindrical body. Processing equipment. 前記最下位の減圧室と前記第1空気供給手段の静圧空気吐出側との間は導管により接続されていることを特徴とする請求項1、2または3の何れか1項に記載の水処理装置。   4. The water according to claim 1, wherein the lowermost decompression chamber and the static air discharge side of the first air supply means are connected by a conduit. Processing equipment. 前記気液分離手段は、前記空間の上方に位置する前記外筒体の内壁面に該内壁面の内周方向に沿って配設された複数の気液分離羽根で構成されていることを特徴とする請求項1ないし5の何れか1項に記載の水処理装置。   The gas-liquid separation means is composed of a plurality of gas-liquid separation blades disposed along the inner circumferential direction of the inner wall surface on the inner wall surface of the outer cylindrical body located above the space. The water treatment apparatus according to any one of claims 1 to 5. 下面が密閉され上面が開口されているとともに鉛直方向に延在する所定の径及び所定の長さを有する外筒体と、
下面が密閉され上面が開口されているとともに下端部が前記外筒体に連通され、かつ前記外筒体内に所定間隔の空間を介して同心に配設された、前記外筒体より小さい所定の径及び所定の長さを有する内筒体と、
前記空間の上方に配設された気液分離手段と、
前記外筒体の上端部寄り側壁に設けられ前記空間内に連通する少なくとも1つの被処理水投入口と、
前記被処理水投入口より下方に位置する前記外筒体の側壁に設けられ所定の静圧空気を前記外筒体の内接方向に向けて前記空間内に噴出させる少なくとも1つの第1空気噴出口と、
前記第1空気噴出口に接続され前記空間内に所定風量と所定静圧の空気を噴出供給する第1空気供給手段と、
前記内筒体内に該内筒体内を鉛直方向に複数に区画することで形成され、かつ減圧による被処理水の蒸発で被処理水を冷却する複数の減圧室と、
上下に位置する前記減圧室間に設けられ該減圧室内に被処理水を所定のレベルまで貯留するとともに上部に位置する減圧室内に貯留された被処理水をオーバフローにより下部に位置する減圧室内に流下させる第1処理水流下機構と、
前記内筒体の底部に設けられ最下位に位置する前記減圧室内に被処理水を所定のレベルまで貯留するとともに該減圧室内の被処理水を流出口から外部へ流出させる第2処理水流下機構と、
前記外筒体の上端開口に相対向して配設された回転翼及び前記回転翼の回転により駆動される発電機とを備え、
前記被処理水投入口から前記空間内に被処理水を投入するとともに前記第1空気供給手段から所定風量と所定静圧の空気を前記第1空気噴出口から前記空間内に噴出して前記外筒体の内周に沿い旋回しながら上昇する被処理水との混合渦流を発生させ、この混合渦流により前記空間内及び該空間に連通する前記最下位に位置する減圧室及び該最下位の減圧室に前記第1処理水流下機構を介して連通される上位の減圧室内を減圧するとともに前記被処理水をエアーレーション及びクラスタ分解して膨張させ、この被処理水の膨張作用と前記空間内での前記静圧空気の噴出膨張作用により混合渦流中の被処理水を一次冷却し、この一次冷却された被処理水を前記気液分離手段により分離して前記内筒体の上端開口から該内筒体内に投下し、かっ前記気液分離手段により分離された気体の渦流を前記外筒体の上端開口から外筒体外へ噴出して前記回転翼を回転することにより前記発電機を駆動するように構成し、
前記内筒体内に投入された被処理水を前記第1処理水流下機構を通して最上位の前記減圧室から最下位の前記減圧室へ順に流下し、前記各減圧室内の減圧に伴う被処理水の蒸発熱により減圧室内の被処理水を二次冷却するように構成したことを特徴とする水処理装置を利用した発電装置。
An outer cylinder having a predetermined diameter and a predetermined length extending in the vertical direction while the lower surface is sealed and the upper surface is opened;
The lower surface is sealed and the upper surface is opened, and the lower end portion is in communication with the outer cylinder, and is concentrically disposed in the outer cylinder via a space of a predetermined interval. An inner cylinder having a diameter and a predetermined length;
Gas-liquid separation means disposed above the space;
At least one treated water inlet provided on the side wall near the upper end of the outer cylinder and communicating with the space;
At least one first air jet provided on a side wall of the outer cylindrical body located below the treated water inlet and ejecting predetermined static pressure air into the space toward the inscribed direction of the outer cylindrical body. Exit,
A first air supply means connected to the first air outlet and for supplying and supplying air of a predetermined air volume and a predetermined static pressure into the space;
A plurality of decompression chambers formed by dividing the inner cylinder into a plurality of vertical directions in the inner cylinder, and cooling the treated water by evaporation of the treated water by decompression;
Provided between the decompression chambers located above and below, the treated water is stored in the decompression chamber to a predetermined level, and the treated water stored in the decompression chamber located at the upper part flows down into the decompression chamber located at the lower part due to overflow. A first treated water flow down mechanism,
A second treated water flow-down mechanism that stores the treated water up to a predetermined level in the decompression chamber located at the bottom and provided at the bottom of the inner cylinder, and causes the treated water in the decompression chamber to flow out from the outlet. When,
A rotating blade disposed opposite to the upper end opening of the outer cylinder and a generator driven by the rotation of the rotating blade,
The treated water is introduced into the space from the treated water inlet and air having a predetermined air volume and a predetermined static pressure is ejected from the first air supply means into the space through the first air outlet. A mixed vortex with the water to be treated that rises while swirling along the inner periphery of the cylindrical body is generated, and the lowermost decompression chamber and the lowest decompression in the space and in communication with the space by the mixed vortex The upper decompression chamber communicated with the chamber via the first treated water flow-down mechanism is decompressed and the treated water is expanded by aeration and cluster decomposition, and the expansion action of the treated water and in the space The water to be treated in the mixed vortex is primarily cooled by the expansion and expansion action of the static pressure air, and the water that has been primarily cooled is separated by the gas-liquid separation means, and the inner water is separated from the upper end opening of the inner cylinder. Drop into the cylinder The vortex of separated gas by the gas-liquid separating means from the upper end opening of the outer cylindrical body and ejected to the outer tube outside and configured to drive the generator by rotating the rotor blades,
The treated water introduced into the inner cylinder flows in order from the uppermost decompression chamber to the lowermost decompression chamber through the first treated water flow mechanism, and the treated water accompanying decompression in each decompression chamber. A power generation device using a water treatment device, wherein water to be treated in a decompression chamber is secondarily cooled by heat of evaporation.
前記外筒体の下端部に位置する内周壁に前記外筒体の周方向に互いに離間して該外筒体の全周に亘り交互に多数配列され前記空間内の底部に貯留された被処理水を電気分解して酸素及び水素を発生させるための陽電極及び陰電極と、前記各陽電極と陰電極との間に直流電圧を供給する直流電源と、前記陽電極及び陰電極と対向する前記外筒体の側壁に設けられ該外筒体内に空気を前記陽電極及び陰電極の内周面と内接する方向に噴出させる少なくとも1つの第2空気噴出口と、前記第2空気噴出口に接続され該第2空気噴出口から所定風量と所定静圧の空気を噴出して前記空間内の底部に貯留された被処理水を前記陽電極及び陰電極の内周面に沿い流動攪拌することで前記電極の電気分解による被処理水からの酸素及び水素の発生を促進させる第2空気供給手段とを備えることを特徴とする請求項7記載の水処理装置を利用した発電装置。   A plurality of objects to be processed which are arranged on the inner peripheral wall located at the lower end portion of the outer cylinder and spaced apart from each other in the circumferential direction of the outer cylinder and alternately arranged over the entire circumference of the outer cylinder and stored in the bottom of the space A positive electrode and a negative electrode for electrolyzing water to generate oxygen and hydrogen, a direct current power source for supplying a direct current voltage between each positive electrode and the negative electrode, and opposite to the positive electrode and the negative electrode At least one second air outlet provided on a side wall of the outer cylinder and injecting air into the outer cylinder in a direction inscribed in the inner peripheral surfaces of the positive electrode and the negative electrode; and the second air outlet Flowing and agitating the water to be treated stored in the bottom of the space along the inner peripheral surfaces of the positive electrode and the negative electrode by ejecting air having a predetermined air volume and a predetermined static pressure from the connected second air outlet To promote the generation of oxygen and hydrogen from the water to be treated by electrolysis of the electrode. A power generator using water treatment apparatus according to claim 7, characterized in that it comprises a second air supply means. 前記最下位の減圧室と前記空間との間は前記内筒体の側壁に設けた複数の吸引穴により連通され、前記空間の底部に貯留された被処理水及び前記最下位の減圧室に貯留された被処理水は前記内筒体の下端縁に設けた複数の流通穴を通して流出入されるように構成したことを特徴とする請求項7または8記載の水処理装置を利用した発電装置。   The lowermost decompression chamber and the space communicate with each other through a plurality of suction holes provided in a side wall of the inner cylinder, and are stored in the treated water stored at the bottom of the space and the lowermost decompression chamber. The power generation device using the water treatment device according to claim 7 or 8, wherein the treated water is configured to flow in and out through a plurality of flow holes provided in a lower end edge of the inner cylindrical body. 前記最下位の減圧室と前記第1空気供給手段の静圧空気吐出側との間は導管により接続されていることを特徴とする請求項7または8記載の水処理装置を利用した発電装置。
The power generator using a water treatment apparatus according to claim 7 or 8, wherein the lowermost decompression chamber and the static air discharge side of the first air supply means are connected by a conduit.
前記気液分離手段は、前記空間の上方に位置する前記外筒体の内壁面に該内壁面の内周方向に沿って配設された複数の気液分離羽根で構成されていることを特徴とする請求項7ないし10の何れか1項に記載の水処理装置を利用した発電装置。   The gas-liquid separation means is composed of a plurality of gas-liquid separation blades disposed along the inner circumferential direction of the inner wall surface on the inner wall surface of the outer cylindrical body located above the space. A power generator using the water treatment device according to any one of claims 7 to 10. 前記外筒体の上端部に前記外筒体内を旋回しながら上昇する気体渦流の風量を増大する送風機を設けたことを特徴とする請求項7ないし10の何れか1項に記載の水処理装置を利用した発電装置。   11. The water treatment apparatus according to claim 7, wherein a blower that increases an air volume of a gas vortex rising while swirling in the outer cylinder is provided at an upper end portion of the outer cylinder. Power generation device using 前記外筒体の上端部側壁に、外気を吸い込んで前記気体渦流の旋回エネルギーを増大させる空気吸入スリットを前記外筒体の円周方向に沿って複数形成したことを特徴とする請求項7ないし11または12の何れか1項に記載の水処理装置を利用した発電装置。
8. The air cylinder according to claim 7, wherein a plurality of air suction slits are formed along a circumferential direction of the outer cylinder so as to suck outside air and increase swirling energy of the gas vortex in the upper end side wall of the outer cylinder. A power generation device using the water treatment device according to any one of 11 and 12.
JP2006005649A 2006-01-13 2006-01-13 Water treatment apparatus and generating set Pending JP2007185601A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006005649A JP2007185601A (en) 2006-01-13 2006-01-13 Water treatment apparatus and generating set
KR1020060022971A KR101065221B1 (en) 2006-01-13 2006-03-13 Water treatment apparatus and power generator using the same
KR1020070002881A KR20070076437A (en) 2006-01-13 2007-01-10 Water treatment system and generating equipment based on the utilization thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005649A JP2007185601A (en) 2006-01-13 2006-01-13 Water treatment apparatus and generating set

Publications (1)

Publication Number Publication Date
JP2007185601A true JP2007185601A (en) 2007-07-26

Family

ID=38341135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005649A Pending JP2007185601A (en) 2006-01-13 2006-01-13 Water treatment apparatus and generating set

Country Status (2)

Country Link
JP (1) JP2007185601A (en)
KR (2) KR101065221B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104775988A (en) * 2015-03-03 2015-07-15 杭州博洽智能科技有限公司 Whirlwind driven generator
CN105084612A (en) * 2015-08-03 2015-11-25 哈尔滨工业大学 Efficient industrial waste heat conversion and self-power-supply dirt removal integrated system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101701280B1 (en) * 2015-10-06 2017-02-13 두산중공업 주식회사 Cyclone type liquid-vapor separator and forced circulation type evaporator using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979793A (en) * 1995-09-12 1997-03-28 Mitsubishi Plastics Ind Ltd Orthogonally intersection flow type cooling tower
JP2001234708A (en) 2000-02-24 2001-08-31 Hitachi Ltd Water recovery apparatus for high humidity exhaust gas and water recovery method for high humidity exhaust gas
JP2004232925A (en) 2003-01-29 2004-08-19 Yae Kogyo:Kk Method and device for manufacturing cool water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104775988A (en) * 2015-03-03 2015-07-15 杭州博洽智能科技有限公司 Whirlwind driven generator
CN105084612A (en) * 2015-08-03 2015-11-25 哈尔滨工业大学 Efficient industrial waste heat conversion and self-power-supply dirt removal integrated system

Also Published As

Publication number Publication date
KR101065221B1 (en) 2011-09-19
KR20070076352A (en) 2007-07-24
KR20070076437A (en) 2007-07-24

Similar Documents

Publication Publication Date Title
US8465642B2 (en) Method and apparatus for separating impurities from a liquid stream by electrically generated gas bubbles
JP7152635B1 (en) Treatment system and process for waste acid-containing wastewater in copper smelting
US8308146B2 (en) Gaseous effluent treatment apparatus
CN107406275A (en) By acoustic-electric chemistry come the system and method for the treatment of fluid
JP2007185601A (en) Water treatment apparatus and generating set
CN102230185A (en) Device and method for absorbing chlorine acid mist in electrodeposited cobalt production process
JPS61502038A (en) Polluted liquid electrochemical purification device
CN106061904B (en) Electrolysis system
JP3731806B2 (en) Organic wastewater treatment method and apparatus
KR20170115178A (en) Metal Waste Contained Oily Ingredient Elimination Method and Apparatus Thereof Using Quantum Energy Generator
JP2007185579A (en) Water treatment method and system
US3925203A (en) System for introducing flocculating ions and air into waste water treatment systems
CN209740797U (en) Waste water treatment device
CN207738495U (en) A kind of electric flocculation air-floating apparatus
US10287189B2 (en) Electrocoagulation reactors having pellet flow circuits
CN212712744U (en) Equipment for removing hydrogen peroxide in sulfuric acid
JP2007014928A (en) Water treatment device and power generation device
CN212050667U (en) Waste water treatment device
CN204058031U (en) A kind of sewage treatment equipment
CN202968216U (en) Electrolytic dephosphorizing device
CN109775840A (en) A kind of wastewater treatment equipment
CN111517556A (en) Electroplating wastewater treatment process and system
CN106145270A (en) Electrolytic sewage purifying processing device and electrolytic sewage cleaning system
CN220056584U (en) Sewage treatment device based on ozone oxidation
CN115784382B (en) Method for treating circulated water electrochemical water