JP2007185553A - Charge transfer catalyst, oxidation/reduction functional material utilizing the catalyst and charge transfer catalyst-containing material - Google Patents

Charge transfer catalyst, oxidation/reduction functional material utilizing the catalyst and charge transfer catalyst-containing material Download PDF

Info

Publication number
JP2007185553A
JP2007185553A JP2005026286A JP2005026286A JP2007185553A JP 2007185553 A JP2007185553 A JP 2007185553A JP 2005026286 A JP2005026286 A JP 2005026286A JP 2005026286 A JP2005026286 A JP 2005026286A JP 2007185553 A JP2007185553 A JP 2007185553A
Authority
JP
Japan
Prior art keywords
electron
charge transfer
oxidation
catalyst
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005026286A
Other languages
Japanese (ja)
Other versions
JP4024251B2 (en
Inventor
Shoji Ichimura
昭二 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ichimura Fukuyo
Original Assignee
Ichimura Fukuyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ichimura Fukuyo filed Critical Ichimura Fukuyo
Priority to JP2005026286A priority Critical patent/JP4024251B2/en
Priority to KR1020077011242A priority patent/KR20070100699A/en
Priority to CN2005800476661A priority patent/CN101146619B/en
Priority to JP2007501504A priority patent/JPWO2006082671A1/en
Priority to PCT/JP2005/016479 priority patent/WO2006082671A1/en
Publication of JP2007185553A publication Critical patent/JP2007185553A/en
Application granted granted Critical
Publication of JP4024251B2 publication Critical patent/JP4024251B2/en
Priority to HK08105690.4A priority patent/HK1116125A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charge transfer catalyst capable of exhibiting an oxidation catalyst and reduction catalyst function even if an oxidation activating agent and a reduction activating agent are not adopted, an oxidation/reduction functional material utilizing the catalyst and a constitution of a charge transfer catalyst-containing material. <P>SOLUTION: The charge transfer catalyst is formed by a mixture of a composite oxide crystal comprising an electron donating element, an electron accepting element, an electron carrier element for promoting transfer of an electron from the electron donating element to the electron accepting element, a reduction center element for performing a reduction reaction by the electron transferred to the electron accepting element and an oxidation center element for performing an oxidation reaction by a positive hole of the electron donating element generated by transfer of the electron; or a composite oxide crystal comprising the electron donating element, the electron accepting element, the electron carrier element and the reduction center element, and a composite oxide crystal comprising the electron donating element, the electron accepting element, the electron carrier element and the oxidation center element. The oxidation/reduction functional material utilizing the catalyst and the charge transfer catalyst-containing material are provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、触媒内での電荷移動により酸化反応及び/又は還元反応を行う、複合酸化物からなる電荷移動型触媒、該触媒を利用した酸化還元機能材及び電荷移動型触媒含有材に関する。   The present invention relates to a charge transfer catalyst composed of a composite oxide that performs an oxidation reaction and / or a reduction reaction by charge transfer in the catalyst, a redox functional material using the catalyst, and a charge transfer catalyst-containing material.

従来、基材表面に光触媒機能を有する層(例えばアナターゼ型酸化チタンを含有する層)を形成し、光触媒を光励起させて層の表面を親水化させ、防汚性を付与するようにしたものが知られている。この光触媒方式では、紫外線と水の存在が必須条件となるが、天候、季節、昼夜、建物の向きなどの環境条件により変化し効果が一定でない。例えば、天気の良い日は紫外線は強いが水分がなく、雨の日は水分はあるが紫外線が弱いという相反する条件が必要となる。   Conventionally, a layer having a photocatalytic function (for example, a layer containing anatase-type titanium oxide) is formed on the surface of a substrate, and the photocatalyst is photoexcited to hydrophilize the surface of the layer to impart antifouling properties. Are known. In this photocatalytic method, the presence of ultraviolet rays and water is an essential condition, but the effect varies depending on environmental conditions such as weather, season, day and night, and the direction of the building, and the effect is not constant. For example, on a sunny day, ultraviolet rays are strong but there is no moisture, and on rainy days there is a conflicting condition that there is moisture but ultraviolet rays are weak.

このような技術上の問題点を克服するために、光や水の存在といった環境条件の変化に関わりなく、防汚性を付与可能にし、また抗菌性や防臭性の付与も可能にした電荷移動型触媒として、特許第3514702号(公報の発行日:平成16年3月31日)に係る発明(以下、「先願発明」と略称する。)が提唱されている。   In order to overcome such technical problems, charge transfer can be imparted with antifouling property and antibacterial and deodorant properties regardless of changes in environmental conditions such as the presence of light and water. As a mold catalyst, an invention according to Japanese Patent No. 3514702 (issue date of publication: March 31, 2004) (hereinafter referred to as “prior application invention”) has been proposed.

先願発明は、
(a)モリブデン又はタングステンの少なくとも一方による電子供与元素と、アルミニウムによる電子受容元素と、前記電子供与元素から前記電子受容元素への電子の移動を促進するためのジルコニウムによる電子キャリアー元素と、前記電子受容元素に移動した電子により還元反応を行うためのパラジウムによる還元中心元素と、電子の移動により生じた前記電子供与元素の正孔により酸化反応を行うための白金による酸化中心元素に基づく複合酸化物からなり、該複合酸化物の結晶構造内外に酸化反応を活性化するためのリチウムによる酸化活性剤と、還元反応を活性化するためのイットリウムによる還元活性剤とを含んでいることを特徴とする電荷移動型触媒、
又は、
(b)モリブデン又はタングステンの少なくとも一方による電子供与元素と、アルミニウムによる電子受容元素と、前記電子供与元素から前記電子受容元素への電子の移動を促進するためのジルコニウムによる電子キャリアー元素と、前記電子受容元素に移動した電子により還元反応を行うためのパラジウムによる還元中心元素に基づく複合酸化物の結晶からなり、該複合酸化物の結晶構造内外に還元反応を活性化するためのイットリウムによる還元活性剤を含んでなることによる電荷移動型触媒と、
モリブデン又はタングステンの少なくとも一方による電子供与元素と、アルミニウムによる電子受容元素と、前記電子供与元素から前記電子受容元素への電子の移動を促進するためのジルコニウムによる電子キャリアー元素と、電子の移動により生じた前記電子供与元素の正孔により酸化反応を行うための白金による酸化中心元素との複合酸化物からなり、該複合酸化物の結晶内外に、酸化反応を活性化するためのリチウムによる酸化活性剤を含んでいる電子移動型触媒と、
の混合物による電荷移動型触媒、
によって構成されている。
The invention of the prior application
(A) an electron donating element by at least one of molybdenum or tungsten, an electron accepting element by aluminum, an electron carrier element by zirconium for accelerating the movement of electrons from the electron donating element to the electron accepting element, and the electrons A composite oxide based on a reduction center element by palladium for performing a reduction reaction by electrons transferred to an acceptor element and an oxidation center element by platinum for performing an oxidation reaction by holes of the electron donating element generated by the electron transfer And comprising a lithium oxidation activator for activating the oxidation reaction inside and outside the crystal structure of the composite oxide and a yttrium reduction activator for activating the reduction reaction. Charge transfer catalyst,
Or
(B) an electron donating element by at least one of molybdenum or tungsten, an electron accepting element by aluminum, an electron carrier element by zirconium for accelerating the movement of electrons from the electron donating element to the electron accepting element, and the electrons A reduction activator with yttrium for activating the reduction reaction in and out of the crystal structure of the composite oxide, comprising a crystal of a composite oxide based on a reduction center element with palladium for performing a reduction reaction with electrons transferred to an acceptor element A charge transfer catalyst comprising:
An electron donating element by at least one of molybdenum or tungsten, an electron accepting element by aluminum, an electron carrier element by zirconium for accelerating the movement of electrons from the electron donating element to the electron accepting element, and the electron transfer. In addition, an oxidation activator with lithium for activating the oxidation reaction inside and outside the crystal of the composite oxide, comprising a complex oxide with an oxidation center element by platinum for performing an oxidation reaction with holes of the electron donating element An electron transfer catalyst comprising:
A charge transfer catalyst with a mixture of
It is constituted by.

しかしながら、前記先願発明の構成においては、リチウムによる酸化活性剤、及びイットリウムによる還元活性化剤を不可欠としており、このため、製造工程も煩雑であり、かつその結晶構造もまた複雑である。   However, in the structure of the invention of the prior application, an oxidation activator by lithium and a reduction activator by yttrium are indispensable, so that the production process is complicated and the crystal structure is also complicated.

特許第3514702号公報Japanese Patent No. 3514702

本発明は、酸化活性化剤、還元活性化剤を必要とせずに、先願発明と同様の機能を発揮し、かつ課題を解決し得るような電荷移動型触媒、及び該触媒を利用した酸化還元機能材及び電荷移動型触媒含有材を提供することを課題としている。   The present invention provides a charge transfer catalyst that exhibits the same function as the invention of the prior application and does not require an oxidation activator or a reduction activator and can solve the problem, and an oxidation using the catalyst. It is an object to provide a reducing functional material and a charge transfer type catalyst-containing material.

前記課題を解決するために、本発明の基本構成は、
(1)電子供与元素と電子受容元素と前記電子供与元素から前記電子受容元素への電子の移動を促進する電子キャリアー元素と前記電子受容元素に移動した電子により還元反応を行う還元中心元素と電子の移動により生じた前記電子供与元素の正孔により酸化反応を行う酸化中心元素との複合酸化物結晶からなる電荷移動型触媒であって、前記電子供与元素として、モリブデン又はタングステンの少なくとも一方を採用しており、前記電子受容元素として、アルミニウムを採用しており、前記電子キャリアー元素として、アルミナ、シリカによる複合酸化物又は混合物を採用しており、前記酸化中心元素として、ロジウムを採用し、前記還元中心元素として、バリウムを採用したことに基づく電荷移動型触媒、
(2)電子供与元素と電子受容元素と前記電子供与元素から前記電子受容元素への電子の移動を促進する電子キャリアー元素と電子の移動により生じた前記電子供与元素の正孔により酸化反応を行う酸化中心元素との複合酸化物結晶からなり、該複合酸化物の結晶構造内外に酸化反応を活性化する酸化活性化剤を含んでなることを特徴とする電荷移動型触媒であって、前記電子供与元素として、モリブデン又はタングステンの少なくとも一方を採用しており、前記電子受容元素として、アルミニウムを採用しており、前記電子キャリアー元素として、アルミナ、シリカによる複合酸化物又は混合物を採用しており、前記酸化中心元素として、ロジウムを採用していることを特徴とする電荷移動型触媒、
(3)電子供与元素と電子受容元素と前記電子供与元素から前記電子受容元素への電子の移動を促進する電子キャリアー元素と前記電子受容元素に移動した電子により還元反応を行う還元中心元素との複合酸化物結晶からなり、該複合酸化物の結晶構造内外に還元反応を活性化する還元活性化剤を含んでなることを特徴とする電荷移動型触媒であって、前記電子供与元素として、モリブデン又はタングステンの少なくとも一方を採用しており、前記電子受容元素として、アルミニウムを採用しており、前記電子キャリアー元素として、アルミナ、シリカによる複合酸化物又は混合物を採用しており、前記還元中心元素として、バリウムを採用したことに基づく電荷移動型触媒、
(4)前記(2)の酸化反応型の電荷移動型触媒と前記(3)に記載の還元反応型の電荷移動型触媒との混合物からなる電荷移動型触媒、
からなる。
In order to solve the above problems, the basic configuration of the present invention is as follows.
(1) An electron-donating element, an electron-accepting element, an electron carrier element that promotes the movement of electrons from the electron-donating element to the electron-accepting element, and a reduction center element and an electron that perform a reduction reaction by electrons transferred to the electron-accepting element A charge transfer catalyst comprising a composite oxide crystal with an oxidation center element that performs an oxidation reaction by holes of the electron donating element generated by the transfer of electron, and employs at least one of molybdenum or tungsten as the electron donating element In addition, aluminum is employed as the electron accepting element, a composite oxide or mixture of alumina and silica is employed as the electron carrier element, rhodium is employed as the oxidation center element, A charge transfer catalyst based on the use of barium as a reducing center element,
(2) An oxidation reaction is performed by the electron donating element, the electron accepting element, the electron carrier element that promotes the electron transfer from the electron donating element to the electron accepting element, and the holes of the electron donating element generated by the electron transfer. A charge transfer catalyst comprising a complex oxide crystal with an oxidation center element, comprising an oxidation activator for activating an oxidation reaction inside and outside the crystal structure of the complex oxide, wherein the electron Adopting at least one of molybdenum or tungsten as a donor element, adopting aluminum as the electron accepting element, adopting a composite oxide or mixture of alumina and silica as the electron carrier element, A charge transfer catalyst characterized by employing rhodium as the oxidation center element;
(3) An electron donating element, an electron accepting element, an electron carrier element that promotes electron transfer from the electron donating element to the electron accepting element, and a reducing center element that performs a reduction reaction by the electrons transferred to the electron accepting element. A charge transfer catalyst comprising a complex oxide crystal and comprising a reduction activator for activating a reduction reaction inside and outside the crystal structure of the complex oxide, wherein the electron donating element is molybdenum Alternatively, at least one of tungsten is employed, aluminum is employed as the electron accepting element, a composite oxide or mixture of alumina and silica is employed as the electron carrier element, and the reducing center element is employed. , A charge transfer catalyst based on the use of barium,
(4) a charge transfer catalyst comprising a mixture of the oxidation reaction type charge transfer catalyst of (2) and the reduction reaction type charge transfer catalyst of (3),
Consists of.

本発明は、更に前記基本構成を応用した構成として、
(5)前記(1)、又は前記(4)記載の電荷移動型触媒を含有する層を、基材表面に形成したことを特徴とする酸化還元機能材、
(6)前記(1)、(4)記載の電荷移動型触媒が分散媒に混合分散されてなることを特徴とする電荷移動型触媒含有材、
を採用している。
The present invention further applies the above basic configuration as a configuration.
(5) A redox functional material, wherein a layer containing the charge transfer catalyst according to (1) or (4) is formed on a substrate surface,
(6) The charge transfer catalyst-containing material, wherein the charge transfer catalyst according to (1) or (4) is mixed and dispersed in a dispersion medium,
Is adopted.

本発明においては、アルミナ(Al2O3)、シリカ(SiO2)による混合物又は複合酸化物を電子キャリアー元素として採用することに基づき、酸化活性化剤、還元活性化剤を含有せずとも、先願発明の場合と同じような触媒機能を発揮することが可能となる。 In the present invention, based on adopting a mixture or composite oxide of alumina (Al 2 O 3 ), silica (SiO 2 ) as an electron carrier element, without containing an oxidation activator or a reduction activator, It is possible to exhibit the same catalytic function as in the prior invention.

即ち、前記(1)の構成によれば、一触媒内に酸化中心と還元中心とを有するため、触媒に触れた物質を酸化還元反応により分解し、防汚性、抗菌性、防臭性等を発揮することができ、
前記(2)の構成によれば、一触媒内に酸化中心を有するため、触媒に触れた物質の内、酸化反応により分解する成分を分解することができ、
前記(3)の構成によれば、一触媒内に還元中心を有するため、触媒に触れた物質の内、還元反応により分解する成分を分解することができ、
前記(4)の構成によれば、酸化中心を有する触媒と還元中心を有する触媒との混合物からなるため、触媒に触れた物質を酸化分解して、防汚性、抗菌性、防臭性等を発揮することができる。
That is, according to the configuration of the above (1), since one catalyst has an oxidation center and a reduction center, a substance touching the catalyst is decomposed by an oxidation-reduction reaction, and antifouling properties, antibacterial properties, deodorizing properties, etc. Can demonstrate,
According to the configuration of (2), since one catalyst has an oxidation center, it is possible to decompose a component that is decomposed by an oxidation reaction among substances that come into contact with the catalyst,
According to the configuration of (3), since one catalyst has a reduction center, it is possible to decompose a component that is decomposed by a reduction reaction among substances that come into contact with the catalyst,
According to the configuration of the above (4), since it consists of a mixture of a catalyst having an oxidation center and a catalyst having a reduction center, the substance that touches the catalyst is oxidatively decomposed to provide antifouling properties, antibacterial properties, deodorizing properties, etc. It can be demonstrated.

このように、本発明による電荷移動型触媒によれば、触媒内での電荷の移動に基づく酸化還元反応により触媒に触れた物質を分解するので、先願発明の場合と同様に、光や水の存在といった環境条件に左右されることがない。   As described above, according to the charge transfer type catalyst of the present invention, the substance that has come into contact with the catalyst is decomposed by the oxidation-reduction reaction based on the charge transfer in the catalyst. It is not affected by environmental conditions such as the existence of

前記(6)の構成によれば、電荷移動型触媒を含有する層を基材表面に形成したので、基材に防汚性、抗菌性、防臭性等を付与することができ、
前記(7)の構成によれば、電荷移動型触媒を分散媒に混合分散させたので、各種基材の表面にコーティングするのに便利である。
According to the configuration of (6), since the layer containing the charge transfer catalyst is formed on the surface of the base material, it is possible to impart antifouling properties, antibacterial properties, deodorizing properties, etc. to the base material,
According to the configuration (7), the charge transfer catalyst is mixed and dispersed in the dispersion medium, which is convenient for coating on the surface of various substrates.

前記各効果は、先願発明の効果と概略同一であるが、本発明においては、酸化活性剤、還元活性剤を伴わずに、前記各作用効果を達成することができるので、製造工程が簡便であるばかりか、製造コストにおいても有利である。   Each of the above effects is substantially the same as the effect of the invention of the prior application, but in the present invention, since each of the above effects can be achieved without an oxidizing activator and a reducing activator, the manufacturing process is simple. In addition, it is advantageous in terms of manufacturing cost.

以下本発明の実施の形態を具体的に説明する。   Embodiments of the present invention will be specifically described below.

前記(1)の基本構成における電荷移動型触媒は、先願発明の場合と同様に電子供与元素(ドナー)と電子受容元素(アクセプター)と電子キャリアー元素と還元中心元素と酸化中心元素との複合酸化物結晶からなる。ここで、電子供与元素は電子を電子受容元素に供与し、電子受容元素は電子供与元素からの電子を受容し、電子キャリアー元素は電子供与元素から電子受容元素への電子の移動を橋渡す機能をそれぞれ有している。また還元中心元素は電子受容元素に移動した電子を受け取って還元反応を行い、酸化中心元素は電子の移動により生じた電子供与体の正孔を受け取って酸化反応を行う機能をそれぞれ有している。   The charge transfer type catalyst in the basic constitution (1) is a composite of an electron donating element (donor), an electron accepting element (acceptor), an electron carrier element, a reducing center element and an oxidation center element as in the case of the prior invention. It consists of oxide crystals. Here, the electron donating element donates electrons to the electron accepting element, the electron accepting element accepts electrons from the electron donating element, and the electron carrier element functions to bridge the movement of electrons from the electron donating element to the electron accepting element. Respectively. The reduction center element has a function of receiving electrons transferred to the electron-accepting element to perform a reduction reaction, and the oxidation center element has a function of receiving holes of the electron donor generated by the electron transfer and performing an oxidation reaction. .

本発明による電荷移動型触媒における電荷移動は、先願発明の場合と同様に構成元素中の電子供与元素と電子受容元素との間で行われる電子移動による電荷分離を指しており、化合物結晶格子の熱的振動により生ずると考えられる。このときの電子移動は電子供与元素と電子受容元素とのd−d軌道間,d−f軌道間,s−d軌道間,p−d軌道間で行われると考えられる(但し、この点に関する具体的な究明は、十分行われている訳ではない。)。   Charge transfer in the charge transfer catalyst according to the present invention refers to charge separation by electron transfer performed between an electron donating element and an electron accepting element in the constituent elements as in the case of the prior invention, and is a compound crystal lattice. It is thought to be caused by thermal vibration of The electron transfer at this time is considered to be performed between dd orbits, df orbitals, sd orbitals, and pd orbitals of the electron donating element and the electron accepting element (however, regarding this point). The specific investigation is not fully conducted.)

かかる電荷(電子)の結晶内移動を有効かつ効率的に行わせるため、本発明による電荷移動型触媒は、電子供与元素と電子受容元素を配位した結晶格子間に、酸化物が半導体特性を持つ元素(電子キャリアー元素)を配位させたペロブスカイト構造酸化物結晶又はスピネル構造酸化物結晶、或いはこれらの混晶である。なお、電子供与元素、電子受容元素、電子キャリアー元素の3元素を含む複合酸化物結晶構造であれば、上記の結晶構造に限られるものではない。そして、電子供与元素と電子受容元素間の電子移動による電荷分離を駆動力(ドライビング力)として結晶構造内に配位した酸化反応点で酸化反応を、還元反応点で還元反応を行わせるため、酸化中心元素及び還元中心元素を格子点に配位せしめる。   In order to effectively and efficiently transfer the charges (electrons) within the crystal, the charge transfer type catalyst according to the present invention has an oxide having a semiconductor property between crystal lattices in which an electron donating element and an electron accepting element are coordinated. A perovskite structure oxide crystal or a spinel structure oxide crystal in which an element (electron carrier element) is coordinated, or a mixed crystal thereof. Note that the crystal structure is not limited to the above as long as it is a complex oxide crystal structure including three elements of an electron donating element, an electron accepting element, and an electron carrier element. And, in order to cause the oxidation reaction at the oxidation reaction point coordinated in the crystal structure as the driving force (driving force) by the charge separation by the electron transfer between the electron donating element and the electron accepting element, the reduction reaction point is performed at the reduction reaction point. The oxidation center element and the reduction center element are coordinated to the lattice points.

ここで、電子供与元素としては、モリブデン、タングステン、ニッケル、及びコバルトからなる群から選ばれる一種以上の元素が採用可能と考えられるが、本発明においては、モリブデン、タングステンの一種以上を採用しており、電子受容元素としては、アルミニウム、ケイ素、錫、チタン、及び鉄からなる群から選ばれる一種以上の元素が採用可能と考えられるが、本発明においては、アルミニウムを採用している。   Here, as the electron donating element, it is considered that one or more elements selected from the group consisting of molybdenum, tungsten, nickel, and cobalt can be adopted, but in the present invention, one or more of molybdenum and tungsten are adopted. As the electron-accepting element, one or more elements selected from the group consisting of aluminum, silicon, tin, titanium, and iron can be used. In the present invention, aluminum is used.

電子キャリアー元素としては、その酸化物が半導体特性をもち電子移動度の高い元素であることを必要としており、先願発明においては、ジルコニウムを採用していたが、本発明においては、アルミナ(Al2O3)とシリカ(SiO2)の混合物又は複合酸化物を採用している。 As the electron carrier element, the oxide needs to be an element having semiconductor characteristics and high electron mobility. In the invention of the prior application, zirconium was used, but in the present invention, alumina (Al 2 O 3 ) and silica (SiO 2 ) mixture or composite oxide is used.

酸化中心元素としては、ホール移動度の高い元素であることが要求され、先願発明においては、白金が採用されていたが、本発明においては、ロジウム(Rh)を採用している。   As the oxidation center element, it is required to be an element having a high hole mobility. In the invention of the prior application, platinum was adopted, but in the present invention, rhodium (Rh) is adopted.

還元中心元素としては、電子移動度の高い元素であることが要求され、先願発明においてはパラジウムが採用されていたが、本発明においては、バリウム(Ba)が採用されている。   The reduction center element is required to be an element having a high electron mobility, and palladium has been adopted in the prior invention, but barium (Ba) is adopted in the present invention.

これら各機能元素は結晶構造内において酸化物の形態で存在する。即ち、電子供与体は電子供与元素の酸化物、電子受容体は電子受容元素の酸化物、電子キャリアーは電子キャリアー元素の酸化物、酸化中心体は酸化中心元素の酸化物、還元中心体は酸化中心元素の酸化物の形態で存在する。   Each of these functional elements exists in the form of an oxide in the crystal structure. That is, an electron donor is an oxide of an electron donor element, an electron acceptor is an oxide of an electron acceptor element, an electron carrier is an oxide of an electron carrier element, an oxidation center is an oxide of an oxidation center element, and a reduction center is an oxidation It exists in the form of an oxide of the central element.

そして、上記各機能成分の配合割合は、モル比で、
電子供与体:電子受容体:電子キャリアー:酸化中心体:還元中心体=1:1:0.5〜1:0.2〜1:0.2〜1の範囲が好ましい。
And the compounding ratio of each said functional component is a molar ratio,
The range of electron donor: electron acceptor: electron carrier: oxidation center: reduction center = 1: 1: 0.5-1: 0.2-1: 0.2-1 is preferable.

前記(1)の基本構成による電荷移動型触媒の作用を説明する。本発明による触媒結晶構造内のドナー元素から電子が電子キャリアー元素を介してアクセプター元素へ移動すると、ドナー元素は正電荷(+)、アクセプター元素は負の電荷(−)をもつ。そして、アクセプター元素の近くの格子点に配位した還元中心元素では、アクセプター元素へ移動した電子を受け取って、外部から近づいた物質に対し還元反応を行う。一方、ドナー元素の近くの格子点に配位した酸化中心元素では、ドナー元素に生じた正孔が酸化中心元素へ移動(ホール移動)して、外部から近づいた物質に対し酸化反応を行う。   The operation of the charge transfer catalyst having the basic configuration (1) will be described. When electrons move from the donor element in the catalyst crystal structure according to the present invention to the acceptor element via the electron carrier element, the donor element has a positive charge (+) and the acceptor element has a negative charge (-). The reducing center element coordinated at a lattice point near the acceptor element receives electrons transferred to the acceptor element and performs a reduction reaction on a substance approaching from the outside. On the other hand, in an oxidation center element coordinated at a lattice point near the donor element, holes generated in the donor element move to the oxidation center element (hole movement), and an oxidation reaction is performed on a substance approaching from the outside.

これら、酸化反応と還元反応を一つの触媒内で行わせて、外部から近づいた物質を酸化分解及び還元分解する機能を有している。従って、先願発明の場合と同様に外部から近づいた汚れ成分、各種菌類、臭い成分等を酸化還元分解して、防汚性、抗菌性、防臭性等の機能を発揮する。   These oxidation reaction and reduction reaction are performed in one catalyst, and have a function of oxidative decomposition and reductive decomposition of a substance approaching from the outside. Therefore, as in the case of the invention of the prior application, the stain components, various fungi, odor components and the like approached from the outside are oxidized and reduced to exhibit functions such as antifouling properties, antibacterial properties, and deodorizing properties.

前記(2)の基本構成における電荷移動型触媒は、電子供与元素と電子受容元素と電子キャリアー元素と酸化反応を行う酸化中心元素との複合酸化物結晶からなる。かかる前記(2)の基本構成における電荷移動型触媒は、酸化反応により分解する成分に対して有効に作用する。   The charge transfer catalyst in the basic configuration (2) is composed of a complex oxide crystal of an electron donating element, an electron accepting element, an electron carrier element, and an oxidation center element that performs an oxidation reaction. The charge transfer catalyst in the basic configuration (2) effectively acts on components that are decomposed by an oxidation reaction.

前記(3)の基本構成における電荷移動型触媒は、電子供与元素と電子受容元素と電子キャリアー元素と還元反応を行う還元中心元素との複合酸化物結晶からなり、該複合酸化物の結晶構造内外に還元反応を活性化する還元活性化剤を含んでなる。かかる前記(3)の基本構成における電荷移動型触媒は、還元反応により分解する成分に対して有効に作用する。   The charge transfer catalyst in the basic configuration (3) comprises a complex oxide crystal of an electron donating element, an electron accepting element, an electron carrier element, and a reducing center element that performs a reduction reaction. And a reduction activator for activating the reduction reaction. The charge transfer catalyst in the basic configuration (3) effectively acts on components that are decomposed by the reduction reaction.

前記(4)の基本構成における電荷移動型触媒は、前記(2)の基本構成における酸化反応型の電荷移動型触媒と前記(3)の基本構成における還元反応型の電荷移動型触媒との混合物からなる。前記(4)の基本構成における電荷移動型触媒は、酸化反応により分解する成分に対しては前記(2)の基本構成における酸化反応型の電荷移動型触媒が、還元反応により分解する成分に対しては前記(3)の基本構成における還元反応型の電荷移動型触媒がそれぞれ有効に作用する。   The charge transfer catalyst in the basic configuration (4) is a mixture of the oxidation reaction type charge transfer catalyst in the basic configuration (2) and the reduction reaction type charge transfer catalyst in the basic configuration (3). Consists of. The charge transfer catalyst in the basic configuration of (4) is less than the component decomposed by the oxidation reaction, while the oxidation reaction type charge transfer catalyst in the basic configuration of (2) is decomposed by the reduction reaction. Thus, each of the reduction reaction type charge transfer catalysts in the basic configuration (3) works effectively.

前記(2)、(3)、(4)の各基本構成において、電荷移動の原理、結晶構造、各機能元素の具体例、各機能成分の配合割合、作用等は前記(1)の基本構成において述べたとおりである。   In the basic configurations of (2), (3), and (4), the principle of charge transfer, crystal structure, specific examples of each functional element, blending ratio of each functional component, action, etc. are the basic configuration of (1). As described in.

前記(5)の構成による酸化還元機能材は、前記(1)、(4)の基本構成における電荷移動型触媒の微粉末を含有する層を、各種基材の表面に形成したものである。   The redox functional material having the constitution (5) is obtained by forming layers containing fine particles of the charge transfer catalyst in the basic constitutions (1) and (4) on the surfaces of various substrates.

前記基材としては、タイルその他の陶磁器、レンガ、瓦、各種プラスチック材、繊維、布地、人工大理石などが挙げられるが、これらに限定されるものではない。   Examples of the base material include, but are not limited to, tiles and other ceramics, bricks, tiles, various plastic materials, fibers, fabrics, and artificial marble.

前記(6)の構成による電荷移動型触媒含有材は、前記(1)、(4)の基本構成における電荷移動型触媒の微粉末を分散媒に混合分散させたものである。ここで、分散媒としては、釉薬、塗料、スプレー塗布用の各種溶剤などである。   The charge transfer catalyst-containing material having the constitution (6) is obtained by mixing and dispersing a fine powder of the charge transfer catalyst in the basic constitutions (1) and (4) in a dispersion medium. Here, examples of the dispersion medium include glazes, paints, and various solvents for spray application.

以下は本発明の内容をより具体的に説明するためのものである。これらの実施例により本発明の範囲が限定されるものではない。   The following is for more specifically explaining the contents of the present invention. These examples do not limit the scope of the present invention.

〔電荷移動型酸化還元触媒の製造:その1〕
電子供与体として酸化モリブデンを還元することによって得られたモリブデン、電子受容体として酸化アルミニウム、即ちアルミナを還元することによって得られたアルミニウム、電子キャリア(運搬体)としてアルミナとシリカとの混合物(但し、双方のモル比は1:1)、酸化中心体を構成する元素としてロジウム微粉末、還元中心体を構成する元素としてバリウム微粉末を各等モルづつ(即ち、モリブデン、アルミニウム、アルミナ、シリカ、ロジウム、バリウムのモル比を1:1:1:1:1)となるように混合したうえで撹拌した後、7重量%のポリビニルアルコール水溶液をバインダーとして適量加え、2〜3時間混合微粉砕装置にかけて微粉砕して泥奨を作る。この泥奨をロータリーキルン式焼成炉で焼成温度1350℃にて約1時間程焼成する。そこで得られたセラミックス状微粉末を超微粉化するために、らい潰機にて24時間粉砕し、粒径3μm以下の触媒粉末を得た。
[Production of Charge Transfer Type Redox Catalyst: Part 1]
Molybdenum obtained by reducing molybdenum oxide as an electron donor, aluminum oxide as an electron acceptor, that is, aluminum obtained by reducing alumina, a mixture of alumina and silica as an electron carrier (carrier) (however, , The molar ratio of both is 1: 1), rhodium fine powder as the element constituting the oxidation center body, and barium fine powder as the element constituting the reduction center body in equimolar amounts (that is, molybdenum, aluminum, alumina, silica, After mixing the mixture so that the molar ratio of rhodium and barium is 1: 1: 1: 1: 1), an appropriate amount of 7% by weight polyvinyl alcohol aqueous solution is added as a binder, and mixing and pulverizing apparatus for 2 to 3 hours. To make a mud award. This mud is baked in a rotary kiln type baking furnace at a baking temperature of 1350 ° C. for about 1 hour. In order to pulverize the obtained ceramic-like fine powder, the powder was pulverized for 24 hours with a crusher to obtain a catalyst powder having a particle size of 3 μm or less.

触媒を構成する各成分の配合比は非化学量論的であるが、焼成過程でペロブスカイト結晶やスピネル結晶の結晶構造を有しており、それぞれの成分は化学量論的配位を形成している。その場合、過剰な成分は結晶粒界に分布し、また、触媒結晶の中に発生する空格子の部分に酸素が配位していると考えられる。   The mixing ratio of each component constituting the catalyst is non-stoichiometric, but it has a crystal structure of perovskite crystal or spinel crystal in the firing process, and each component forms a stoichiometric coordination. Yes. In that case, it is considered that excessive components are distributed at the grain boundaries, and oxygen is coordinated in the vacant portion generated in the catalyst crystal.

〔電荷移動型の酸化触媒と還元触媒との混合物の製造:その2〕
電子供与体として酸化タングステンを還元したことによるタングステン、電子受容体として酸化アルミニウム、即ちアルミナを還元することによって得られたアルミニウム、電子キャリア(運搬体)としてアルミナとシリカとの複合酸化物(但し、アルミナとシリカとのモル比は1:1)、酸化中心体を構成する元素としてロジウム微粉末を各等モルづつ(タングステン、アルミニウム、アルミナとシリカとの複合酸化物、ロジウムの各モル比を1:1:1:1)混合撹拌した後、その後前記製造例1に準じた工程により酸化触媒の微粉末を製造する。
[Production of Mixture of Charge Transfer Type Oxidation Catalyst and Reduction Catalyst: Part 2]
Tungsten by reducing tungsten oxide as an electron donor, aluminum oxide as an electron acceptor, that is, aluminum obtained by reducing alumina, composite oxide of alumina and silica as an electron carrier (carrier) (however, The molar ratio of alumina to silica is 1: 1), and rhodium fine powder is used as an element constituting the oxidation center, each equimolar amount (tungsten, aluminum, composite oxide of alumina and silica, and rhodium molar ratio is 1). 1: 1: 1) After mixing and stirring, a fine powder of an oxidation catalyst is then produced by a process according to Production Example 1.

また、電子供与体として酸化タングステンを還元したことによるタングステン、電子受容体として酸化アルミニウム、即ちアルミナを還元することによって得られたアルミニウム、電子キャリア(運搬体)としてアルミナとシリカとの複合酸化物(但し、アルミナとシリカとのモル比は1:1)、還元中心体を構成する元素としてバリウム微粉末を各等モルづつ(タングステン、アルミニウム、アルミナとシリカとの複合酸化物、バリウムの各モル比を1:1:1:1)混合撹拌した後、その後前記製造例1に準じた工程により還元触媒の微粉末を製造する。   In addition, tungsten obtained by reducing tungsten oxide as an electron donor, aluminum oxide as an electron acceptor, that is, aluminum obtained by reducing alumina, composite oxide of alumina and silica as an electron carrier (transporter) ( However, the molar ratio of alumina to silica is 1: 1), and each equimolar amount of barium fine powder as an element constituting the reducing center (tungsten, aluminum, composite oxide of alumina and silica, each molar ratio of barium) 1: 1: 1: 1) After mixing and stirring, a fine powder of a reduction catalyst is produced by the process according to Production Example 1 after that.

これら酸化触媒と還元触媒を等量づつ混合して、電荷移動型の酸化還元触媒を得る。
〔タイルへの応用〕
一般にタイルは、タイル用素地の上に釉薬を薄く被覆し、1100〜1260℃で焼成して製造する。本発明の触媒をタイルに応用する場合には、釉薬に本触媒を4〜10重量%混合し、一般タイルの製造工程における施釉工程でタイル素地に薄く被覆した後、一般タイルの製造法に準じ1100〜1260℃で焼成し、タイル表面に本発明による電荷移動型触媒を含有する層を形成する。
An equal amount of these oxidation catalyst and reduction catalyst is mixed to obtain a charge transfer type oxidation reduction catalyst.
[Application to tiles]
Generally, a tile is manufactured by covering a tile base with a thin layer of glaze and firing at 1100 to 1260 ° C. When the catalyst of the present invention is applied to tiles, 4 to 10% by weight of the catalyst is mixed with glaze, and the tile substrate is thinly coated in the glazing process in the general tile manufacturing process, and then according to the general tile manufacturing method. Baking at 1100 to 1260 ° C. forms a layer containing the charge transfer catalyst according to the present invention on the tile surface.

タイル表面に本発明による触媒含有層を形成したことによる新しい機能として、防汚、抗菌の機能が付与された。それらの効果の実証は以下の如くである。
(試験片の製造)
1260℃焼成用釉薬に製造例1及び同2により得た触媒を4重量%混合したことによる釉薬を作成し、陶土を成形し乾燥させたタイル素地の表面に触媒を含有する釉薬を薄く塗布し、トンネル炉に入れて昇温し、1260℃で1〜2時間焼成し、室温まで降温して、表面に本発明による触媒を含有する層を形成したタイルを製造した(製造例1によるタイルを〔実施例1〕と称し、製造例2によるタイルを〔実施例2〕と称することにする。)。
Antifouling and antibacterial functions were added as new functions by forming the catalyst-containing layer according to the present invention on the tile surface. The demonstration of these effects is as follows.
(Manufacture of test pieces)
A glaze was prepared by mixing 4% by weight of the catalyst obtained in Production Example 1 and 2 with a glaze for baking at 1260 ° C, and the glaze containing the catalyst was thinly applied to the surface of the tile base that was formed from ceramic clay and dried. The tile was heated in a tunnel furnace, fired at 1260 ° C. for 1 to 2 hours, and cooled to room temperature to produce a tile having a layer containing the catalyst according to the present invention formed on the surface (the tile according to Production Example 1). (Example 1) and the tile according to Production Example 2 will be referred to as [Example 2].)

他方、釉薬として、前記(a)、(b)の先願発明の構成による触媒を4重量%混合したことによる釉薬を作成し、その余の工程は、実施例1及び同2と同じ条件で処理して、表面に触媒を含まない一般のタイルを製造した(比較例(a)、(b))。
(水との接触角の測定)
実施例1と先願発明による比較例(a)、(b)による各タイルの表面に水を散布した場合、実施礼1及び前記比較例(a)、(b)においては、共に水滴が形成された。
On the other hand, as a glaze, a glaze was prepared by mixing 4% by weight of the catalyst according to the structure of the prior invention of the above (a) and (b), and the remaining steps were performed under the same conditions as in Examples 1 and 2. The general tile which did not contain a catalyst on the surface was manufactured (comparative example (a), (b)).
(Measurement of contact angle with water)
When water is sprayed on the surface of each tile according to Example 1 and the comparative examples (a) and (b) according to the invention of the prior application, water drops are formed in both the embodiment 1 and the comparative examples (a) and (b). It was done.

当該水滴とタイル表面との接触角の経時変化を測定したところ、以下のような測定結果を得た。   When the change with time of the contact angle between the water droplet and the tile surface was measured, the following measurement results were obtained.

Figure 2007185553
Figure 2007185553

前記のように、先願発明による比較例(a)、(b)よりも、実施例1の場合の方が、長時間の経過と共に、大きな接触角度を形成しており、タイル表面において、水が分散し、かつ水滴が形成し易い状態であることが判明する。   As described above, the comparative example (a) and (b) according to the invention of the prior application formed a larger contact angle with the passage of a long time in the case of Example 1, and the water on the tile surface Is dispersed and water droplets are easily formed.

このような状況は、タイル表面と接触している水の分子に対し、実施例1及び前記比較例(a)、(b)の各タイルは、共に水及び内部の構成物質との間において、電子及び正孔の授受を行い、水及び内部の構成物質との間にイオン結合の要素を付与することによって、内部結合を増強させているが、その程度において、実施例1の方が、前記比較例(a)、(b)よりも大きいことを示している。
(汚染テスト)
実施例2によるタイルと比較例(a)、(b)によるタイル表面に、汚染液(墨汁)を10ml/cm2の割合で滴下し、数分放置して乾燥させ、その後水の噴流(500ml/分)で汚染されたタイル表面を洗浄した。その結果、実施例2によるタイル及び前記比較例(a)、(b)によるタイルは、共に汚染物質を速やかに洗い流すことが判明した。
(抗菌性テスト)
抗菌性は、24時間以内に生菌数が初期菌数の2桁以下に減少していること、と定義されている。
Such a situation is that the tiles of Example 1 and Comparative Examples (a) and (b) are both in contact with water and the internal constituent materials, while the water molecules are in contact with the tile surface. The exchange of electrons and holes is performed, and the internal bond is enhanced by providing an element of ionic bond between water and the internal constituent material. To that extent, Example 1 is It shows that it is larger than Comparative Examples (a) and (b).
(Contamination test)
Contaminated liquid (inkbrush) was dropped at a rate of 10 ml / cm 2 on the tile surface of Example 2 and the tile surface of Comparative Examples (a) and (b), left to dry for several minutes, and then a water jet (500 ml) The contaminated tile surface was cleaned at As a result, it was found that both the tile according to Example 2 and the tile according to the comparative examples (a) and (b) quickly wash away the contaminants.
(Antimicrobial test)
Antibacterial activity is defined as a reduction in viable cell counts to less than two orders of magnitude of the initial cell count within 24 hours.

抗菌性テストは、カバーガラス法(フィルム密着法)により行った。この方法は、20時間NA培地で前培養を行った腸炎ビブリオ菌(V.alginolyticus )を200倍に希釈したNB培地中に菌数が2.0×105〜1.0×106/mlとなるように加える。次いで、菌液5mlを実施例1及び同2によるタイル表面、更には、前記比較例(a)によるタイル表面上に滴下し、ストマッカー用ポリ袋を被せ、35℃で、所定時間培養し、SCDLP培地を10ml加え菌を洗い出し、蛍光試薬(DAPI,PI)を加えて、混釈平板培養法により生残菌数を測定する。その結果、実施例1及び同2の場合、比較例(a)と同じように、5時間後には、初期の菌数より2桁以上菌数が減少していることが明らかで、抗菌性を有することが判明した。
〔繊維への応用〕
前記汚染テスト及び抗菌性テストからも明らかなように、本発明による触媒微粉末をバインダーを介して天然繊維又は合成繊維に対し、コーティングした場合には、先願発明と同じように、防汚、防臭、抗菌の機能をもたせることができる。合成繊維においては、先願発明の場合と同様に、コーティングの他、モノマーの段階で触媒微粉末を添加し、重合させることによって、重合体自体に防汚、防臭、抗菌の機能をもたせることができる。この機能性重合体から繊維を製造すれば、機能繊維を製造することができる。また、布地の表面にコーティングするようにしてもよい。
〔その他の応用〕
本発明による触媒の利用形態としては、先願発明の場合と同様に触媒微粉末、又はそれを溶剤に分散させた液状のものとして利用することができる。そして、触媒微粉末を各種材料(基材)に混合したり、適宜の溶剤に分散させたものを塗布したり、その利用形態は多様である。例えば、合成樹脂に混合又は樹脂表面にコーティング、塗料に混合、目地材に混合、陶磁器の釉薬に混合、レンガや瓦の表面にコーティング、合成樹脂製の人工大理石の樹脂に混合又は表面にコーティングするなどが挙げられるが、これらに限定される訳ではない。
The antibacterial test was performed by the cover glass method (film adhesion method). In this method, the number of bacteria is 2.0 × 10 5 to 1.0 × 10 6 / ml in NB medium in which Vibrio parahaemolyticus (V. alginolyticus) precultured in NA medium for 20 hours is diluted 200 times. Add to be. Subsequently, 5 ml of the bacterial solution is dropped on the tile surface according to Examples 1 and 2 and further on the tile surface according to the comparative example (a), covered with a plastic bag for stomacher, cultured at 35 ° C. for a predetermined time, and SCDLP 10 ml of the medium is added to wash out the bacteria, a fluorescent reagent (DAPI, PI) is added, and the number of surviving bacteria is measured by the pour plate culture method. As a result, in the case of Example 1 and Example 2, as in Comparative Example (a), after 5 hours, it is clear that the number of bacteria has decreased by two orders of magnitude or more from the initial number of bacteria, and the antibacterial property is improved. It turned out to have.
[Application to fiber]
As is clear from the contamination test and the antibacterial test, when the catalyst fine powder according to the present invention is coated on a natural fiber or a synthetic fiber via a binder, Deodorant and antibacterial functions can be provided. In the case of synthetic fibers, in the same manner as in the invention of the prior application, in addition to coating, catalyst fine powder is added at the monomer stage and polymerized, thereby allowing the polymer itself to have antifouling, deodorizing and antibacterial functions. it can. If a fiber is manufactured from this functional polymer, a functional fiber can be manufactured. Moreover, you may make it coat on the surface of a fabric.
[Other applications]
As a utilization form of the catalyst according to the present invention, it can be utilized as a fine catalyst powder or a liquid in which the catalyst is dispersed in a solvent as in the case of the prior invention. And there are various usage forms such as catalyst fine powder mixed in various materials (base materials), or dispersed in an appropriate solvent. For example, mixed with synthetic resin or coated on resin surface, mixed with paint, mixed with joint material, mixed with ceramic glaze, coated on brick or tile surface, mixed with synthetic marble resin made of synthetic resin or coated on surface However, it is not necessarily limited to these.

本発明は、前記のように、電荷移動を基本原理とする酸化及び還元触媒機能を有していることによって、前記のような防汚、防臭、抗菌の分野において利用できるのみならず、排気ガスの浄化機能も発揮することが原理的に可能と考えられ、当該分野においても、利用可能であることが期待される。
As described above, the present invention has an oxidation and reduction catalytic function based on charge transfer as a basic principle, so that it can be used in the fields of antifouling, deodorizing, and antibacterial as well as exhaust gas. It is considered that it is possible in principle to exhibit this purification function, and is expected to be usable in this field.

Claims (6)

電子供与元素と電子受容元素と前記電子供与元素から前記電子受容元素への電子の移動を促進する電子キャリアー元素と前記電子受容元素に移動した電子により還元反応を行う還元中心元素と電子の移動により生じた前記電子供与元素の正孔により酸化反応を行う酸化中心元素との複合酸化物結晶からなる電荷移動型触媒であって、前記電子供与元素として、モリブデン又はタングステンの少なくとも一方を採用しており、前記電子受容元素として、アルミニウムを採用しており、前記電子キャリアー元素として、アルミナ、シリカによる複合酸化物又は混合物を採用しており、前記酸化中心元素として、ロジウムを採用し、前記還元中心元素として、バリウムを採用したことに基づく電荷移動型触媒。   An electron-donating element, an electron-accepting element, an electron carrier element that promotes the movement of electrons from the electron-donating element to the electron-accepting element, a reduction center element that performs a reduction reaction by electrons transferred to the electron-accepting element, and the movement of electrons A charge transfer catalyst comprising a composite oxide crystal with an oxidation center element that undergoes an oxidation reaction by the generated holes of the electron donating element, wherein at least one of molybdenum or tungsten is employed as the electron donating element In addition, aluminum is employed as the electron accepting element, a composite oxide or mixture of alumina and silica is employed as the electron carrier element, rhodium is employed as the oxidation center element, and the reduction center element is employed. As a charge transfer catalyst based on the use of barium. 電子供与元素と電子受容元素と前記電子供与元素から前記電子受容元素への電子の移動を促進する電子キャリアー元素と電子の移動により生じた前記電子供与元素の正孔により酸化反応を行う酸化中心元素との複合酸化物結晶からなり、該複合酸化物の結晶構造内外に酸化反応を活性化する酸化活性化剤を含んでなることを特徴とする電荷移動型触媒であって、前記電子供与元素として、モリブデン又はタングステンの少なくとも一方を採用しており、前記電子受容元素として、アルミニウムを採用しており、前記電子キャリアー元素として、アルミナ、シリカによる複合酸化物又は混合物を採用しており、前記酸化中心元素として、ロジウムを採用していることを特徴とする電荷移動型触媒。   An electron-donating element, an electron-accepting element, an electron carrier element that promotes the movement of electrons from the electron-donating element to the electron-accepting element, and an oxidation center element that performs an oxidation reaction by holes of the electron-donating element generated by the movement of electrons A charge transfer catalyst comprising an oxide activator for activating an oxidation reaction inside and outside the crystal structure of the composite oxide, wherein the electron donating element is Employs at least one of molybdenum or tungsten, employs aluminum as the electron accepting element, employs a complex oxide or mixture of alumina and silica as the electron carrier element, and employs the oxidation center. A charge transfer catalyst characterized by employing rhodium as an element. 電子供与元素と電子受容元素と前記電子供与元素から前記電子受容元素への電子の移動を促進する電子キャリアー元素と前記電子受容元素に移動した電子により還元反応を行う還元中心元素との複合酸化物結晶からなり、該複合酸化物の結晶構造内外に還元反応を活性化する還元活性化剤を含んでなることを特徴とする電荷移動型触媒であって、前記電子供与元素として、モリブデン又はタングステンの少なくとも一方を採用しており、前記電子受容元素として、アルミニウムを採用しており、前記電子キャリアー元素として、アルミナ、シリカによる複合酸化物又は混合物を採用しており、前記還元中心元素として、バリウムを採用したことに基づく電荷移動型触媒。   A composite oxide of an electron donor element, an electron acceptor element, an electron carrier element that promotes the movement of electrons from the electron donor element to the electron acceptor element, and a reducing center element that performs a reduction reaction by electrons transferred to the electron acceptor element A charge transfer catalyst comprising a reduction activator comprising a crystal and activating a reduction reaction inside and outside the crystal structure of the composite oxide, wherein the electron donating element is molybdenum or tungsten. At least one is employed, aluminum is employed as the electron accepting element, a composite oxide or mixture of alumina and silica is employed as the electron carrier element, and barium is employed as the reducing center element. Charge transfer type catalyst based on adoption. 請求項2の酸化反応型の電荷移動型触媒と請求項3に記載の還元反応型の電荷移動型触媒との混合物からなる電荷移動型触媒。   A charge transfer catalyst comprising a mixture of the oxidation reaction type charge transfer catalyst according to claim 2 and the reduction reaction type charge transfer catalyst according to claim 3. 請求項1、又は請求項4記載の電荷移動型触媒を含有する層を、基材表面に形成したことを特徴とする酸化還元機能材。   An oxidation-reduction functional material, wherein a layer containing the charge transfer catalyst according to claim 1 or 4 is formed on a substrate surface. 請求項1、請求項4記載の電荷移動型触媒が分散媒に混合分散されてなることを特徴とする電荷移動型触媒含有材。


5. A charge transfer type catalyst-containing material, wherein the charge transfer type catalyst according to claim 1 is mixed and dispersed in a dispersion medium.


JP2005026286A 2005-02-02 2005-02-02 Charge transfer catalyst, redox functional material using the catalyst, and charge transfer catalyst-containing material Expired - Fee Related JP4024251B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005026286A JP4024251B2 (en) 2005-02-02 2005-02-02 Charge transfer catalyst, redox functional material using the catalyst, and charge transfer catalyst-containing material
KR1020077011242A KR20070100699A (en) 2005-02-02 2005-09-01 Charge transfer type catalyst, functional oxidation/reduction material utilizing the catalyst, and material containing charge transfer type catalyst
CN2005800476661A CN101146619B (en) 2005-02-02 2005-09-01 Charge transfer type catalyst, functional oxidation/reduction material utilizing the catalyst, and material containing charge transfer type catalyst
JP2007501504A JPWO2006082671A1 (en) 2005-02-02 2005-09-01 Charge transfer catalyst, redox functional material using the catalyst, and charge transfer catalyst-containing material
PCT/JP2005/016479 WO2006082671A1 (en) 2005-02-02 2005-09-01 Charge transfer type catalyst, functional oxidation/reduction material utilizing the catalyst, and material containing charge transfer type catalyst
HK08105690.4A HK1116125A1 (en) 2005-02-02 2008-05-22 Charge transfer type catalyst, functional oxidation/reduction material utilizing the catalyst, and material containing charge transfer type catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005026286A JP4024251B2 (en) 2005-02-02 2005-02-02 Charge transfer catalyst, redox functional material using the catalyst, and charge transfer catalyst-containing material

Publications (2)

Publication Number Publication Date
JP2007185553A true JP2007185553A (en) 2007-07-26
JP4024251B2 JP4024251B2 (en) 2007-12-19

Family

ID=36777063

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2005026286A Expired - Fee Related JP4024251B2 (en) 2005-02-02 2005-02-02 Charge transfer catalyst, redox functional material using the catalyst, and charge transfer catalyst-containing material
JP2007501504A Pending JPWO2006082671A1 (en) 2005-02-02 2005-09-01 Charge transfer catalyst, redox functional material using the catalyst, and charge transfer catalyst-containing material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007501504A Pending JPWO2006082671A1 (en) 2005-02-02 2005-09-01 Charge transfer catalyst, redox functional material using the catalyst, and charge transfer catalyst-containing material

Country Status (5)

Country Link
JP (2) JP4024251B2 (en)
KR (1) KR20070100699A (en)
CN (1) CN101146619B (en)
HK (1) HK1116125A1 (en)
WO (1) WO2006082671A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203769A (en) * 2012-03-27 2013-10-07 Shin-Etsu Chemical Co Ltd Coating composition containing low temperature-curable charge transfer type catalyst and surface-treated base material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103061061B (en) * 2012-09-14 2015-05-13 方孝贤 Method for manufacturing fabric with peculiar-smell dispelling and antimicrobic functions
CN107541117B (en) * 2017-08-30 2020-10-27 深圳先进技术研究院 Nano fishing net water-based antifouling paint and preparation method and application thereof
CN109423094B (en) * 2017-08-30 2021-07-20 深圳先进技术研究院 Charge transfer type automatic oxidation reduction nano material, preparation method thereof and antifouling and antibacterial coating
CN108002545B (en) * 2017-12-07 2021-04-20 深圳先进技术研究院 Pollutant degradation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114539A (en) * 1990-06-14 1991-05-15 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for exhaust gas cleaning and its preparation
JP2000126594A (en) * 1998-10-27 2000-05-09 Nissan Motor Co Ltd Catalyst for purifying exhaust gas
JP3514702B2 (en) * 2000-06-23 2004-03-31 ファイラックインターナショナル株式会社 Charge transfer catalyst, redox functional material using the catalyst, and charge transfer catalyst-containing material
JP2003164760A (en) * 2001-11-29 2003-06-10 Denso Corp Ceramic catalyst body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203769A (en) * 2012-03-27 2013-10-07 Shin-Etsu Chemical Co Ltd Coating composition containing low temperature-curable charge transfer type catalyst and surface-treated base material

Also Published As

Publication number Publication date
CN101146619B (en) 2012-01-18
HK1116125A1 (en) 2008-12-19
JP4024251B2 (en) 2007-12-19
WO2006082671A1 (en) 2006-08-10
CN101146619A (en) 2008-03-19
JPWO2006082671A1 (en) 2008-06-26
KR20070100699A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP3852284B2 (en) Method for producing functional material having photocatalytic function and apparatus therefor
CA2671772C (en) Photocatalytic coating
US8993471B2 (en) Photocatalytic coating
KR100408470B1 (en) Photocatalyst composition, substance containing photocatalyst, and material functioning as photocatalyst and process for producing the same
JP4024251B2 (en) Charge transfer catalyst, redox functional material using the catalyst, and charge transfer catalyst-containing material
RO134047A2 (en) Photocatalytic biocidal ceramic glaze composition and a photocatalytic method for disinfection of surfaces of ceramic products, porcelain sanitary objects and ceramic-tile lined surfaces
JP4011705B2 (en) Photocatalyst compound, photocatalyst-containing material, photocatalyst function material and method for producing the same
JP3514702B2 (en) Charge transfer catalyst, redox functional material using the catalyst, and charge transfer catalyst-containing material
JP3885248B2 (en) Photocatalyst composition
CN108314469B (en) Preparation method of composite nano photocatalytic water-permeable ceramic pavement brick
JP3806998B2 (en) PHOTOCATALYST COMPOSITION, FORMING AGENT THEREOF, AND SUBSTRATE WITH PHOTOCATALYST COMPOSITION
JPH10212120A (en) Production of titanium dioxide film and titanium dioxide dispersion liquid composition
JP2000237597A (en) Photocatalyst composite material
KR101299412B1 (en) Bricks coated with ultraviolet-active and visible-light-active photocatalyst and the synthesis method thereof
JP2001031483A (en) Production of ceramic building material having photocatalytic function
JPH10249211A (en) Manufacture of thin coat having photocatalytic activity
JPH08175887A (en) Structural material of ceramic or pottery-based having photocatalyst function and its production
JP2007106632A (en) New heteropolyacid salt, photocatalyst using it and photocatalytic function member
JP3759806B2 (en) Method for forming thin film having photocatalytic activity
JPH11347421A (en) Photocatalytic composition, photocatalytic member and production of photocatalytic member
KR20010096668A (en) Transparent TiO2 sol manufacturing method for normal temperature coating
JP2003155425A (en) Two-pack type photocatalytic coating material and photocatalyst-containing coating film, method for forming the photocatalyst-containing coating film
JP6069865B2 (en) Low temperature curable charge transfer catalyst-containing coating composition and surface treatment substrate
JPH1135887A (en) Coating liquid for forming fouling removing film and photocatalyst-supporting substrate produced by using the same
JP2006062935A (en) Glaze containing material having photocatalytic function and product having photocatalytic function which is formed using the same

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees