JP2007184117A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2007184117A
JP2007184117A JP2006000114A JP2006000114A JP2007184117A JP 2007184117 A JP2007184117 A JP 2007184117A JP 2006000114 A JP2006000114 A JP 2006000114A JP 2006000114 A JP2006000114 A JP 2006000114A JP 2007184117 A JP2007184117 A JP 2007184117A
Authority
JP
Japan
Prior art keywords
target
power
fuel cell
calculated
oxidant gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006000114A
Other languages
English (en)
Inventor
Hayato Chikugo
隼人 筑後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006000114A priority Critical patent/JP2007184117A/ja
Publication of JP2007184117A publication Critical patent/JP2007184117A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】システムの運転状態に応じて、燃料電池スタックに供給する空気流量を適正に制御する。
【解決手段】目標ネット電力演算部30aは、外部システムから要求される目標ネット電力TPNを算出する。目標空気圧力演算部30dは、算出された目標ネット電力TPNに基づいて、燃料電池に供給される目標空気圧力TPAを算出する。目標空気流量演算部30gは、算出された目標空気圧力TPAと、算出された目標ネット電力TPNとに基づいて、目標空気流量TQAを算出する。
【選択図】図2

Description

本発明は、反応ガスを電気化学的に反応させて発電を行う燃料電池を備える燃料電池システムに係り、特に、システムに備えられたアクチュエータの制御手法に関する。
従来より、燃料極に燃料ガス(例えば、水素)が供給されるとともに、酸化剤極に酸化剤ガス(例えば、空気)が供給されることにより、これらのガスを電気化学的に反応させて発電を行う燃料電池が知られている。この燃料電池は、酸化剤ガスを供給するコンプレッサ、燃料ガスを循環させる水素循環ポンプといったように、燃料電池を動作させる種々の補機を備えることで、燃料電池システムとして構成されている。燃料電池システムは、車両を駆動するモータの電源といったように、外部システムに適用されていることが一般的な形態であり、通常、外部システムからの要求に応じた目標電力(目標ネット電力)を発電するように制御されている。
この燃料電池システムにおいて、燃料電池に供給される燃料ガスおよび酸化剤ガスの流量および圧力は、システムに備えられたアクチュエータを制御することにより調整可能となっており、目標ネット電力からアクチュエータの制御目標値を演算することで、システムが適切な運転状態に保たれる。
外部システムからの要求に応じて燃料電池が発電を行う場合には、目標ネット電力と、コンプレッサ等の補機の消費電力とを考慮することが重要である。例えば、特許文献1によれば、補機自身の消費電力を含んでいない目標ネット電力に基づいて、補機に必要とされる電力を求めている。これにより、外部システムへ供給する電力の変化に対応したコンプレッサの要求電力の変化が、再度コンプレッサの要求電力に影響する現象、所謂、ポジティブフィードバックを抑制しながら、目標ネット電力および補機の消費電力を含む燃料電池の最終的な目標発電電力(目標グロス電力)を得ることができる。
特開2004−185821号公報
しかしながら、例えば、燃料電池の発電電力を過渡的に低下させた場合、燃料電池に要求される目標ガス圧力に比べて実際のガス圧力が大きくなるといったように、目標ガス圧力と実ガス圧力との間に乖離が生じる場合があり、ケースによって、この状態が数分継続する場合がある。
この場合、燃料電池システムの運転状態によっては、目標ネット電力と目標グロス電力との関係は必ずしも一通りでなく、したがって、必ずしも最適なアクチュエータ(例えば、コンプレッサを駆動するモータ)の制御目標値を目標ネット電力から演算することができない可能性がある。その結果、空気供給が定常的に不足する、或いは、空気供給が定常的に過剰となり、出力低下や燃料電池の性能劣化を招く虞がある。
本発明はこのような事情に鑑みてなされたものであり、その目的は、システムの運転状態に応じて、燃料電池スタックに供給する空気流量を適正に制御することにある。
かかる課題を解決するために、本発明は、燃料電池システムを提供する。この燃料電池システムは、燃料電池と、酸化剤ガス供給手段と、酸化剤ガス圧力調整手段と、目標ネット電力演算手段と、目標酸化剤ガス圧力演算手段と、目標酸化剤ガス流量演算手段とを主体に構成される。ここで、燃料電池は、燃料ガスが供給されるとともに、酸化剤ガスが供給されることにより、燃料ガスと酸化剤ガスとを電気化学的に反応させて発電を行う。酸化剤ガス供給手段は、酸化剤ガス供給流路を介して、燃料電池に酸化剤ガスを供給する。酸化剤ガス圧力調整手段は、酸化剤ガス供給流路に設けられており、燃料電池に供給される酸化剤ガスの圧力を調整する。目標ネット電力演算手段は、外部システムから燃料電池に要求される発電電力の目標値である目標ネット電力を算出する。目標酸化剤ガス圧力演算手段は、算出された目標ネット電力に基づいて、燃料電池に供給される酸化剤ガスの圧力目標値を目標酸化剤ガス圧力として算出する。目標酸化剤ガス流量演算手段は、算出された目標酸化剤ガス圧力と、算出された目標ネット電力とに基づいて、燃料電池に供給される酸化剤ガスの流量目標値を、目標酸化剤ガス流量として算出する。
本発明によれば、目標ネット電力に加えて、目標酸化剤ガス圧力のパラメータを使用することにより、燃料電池システムの運転状態がその演算過程に反映されるため、適切な目標酸化剤ガス流量を演算することができる。
図1は、本発明の実施形態に係る燃料電池システムの全体構成図である。この燃料電池システムは、固体高分子電解質膜を挟んで酸化剤極と燃料極とを対設した燃料電池構造体をセパレータで挟持した単位セルを複数積層して構成される燃料電池スタック1を備える。この燃料電池スタック1では、個々の単位セルにおいて、燃料極に燃料ガスが供給され、酸化剤に酸化剤ガスが供給されることにより、これらのガスを電気化学的に反応させて発電電力を発生する。本実施形態では、燃料ガスとして水素を燃料極に導入すると共に、酸化剤ガスとして酸素を含む空気を酸化剤極に導入するケースについて説明する。この燃料電池スタック1には、各セルの燃料極と連通した水素流路1aと、各セルの酸化剤極と連通した空気流路1bとが設けられている。
この燃料電池スタック1を備える燃料電池システムには、燃料電池スタック1に水素を供給するための水素系10と、燃料電池スタック1に空気を供給するための空気系20とが備えられている。
水素系10において、燃料ガスである水素は、例えば、燃料タンク(燃料ガス供給手段)11である高圧水素ボンベに貯蔵された状態から、水素供給流路(燃料ガス供給流路)10aを介して燃料電池スタック1の水素流路1aに供給される。具体的には、燃料タンク11の下流には燃料タンク元弁(図示せず)が設けられており、この燃料タンク元弁が開状態となると、燃料タンク11からの高圧水素は、その下流に設けられた減圧弁(図示せず)によって機械的に所定の圧力まで減圧される。減圧された水素は、減圧弁よりも下流に設けられた水素調圧弁(燃料ガス圧力調整手段)12によって更に減圧された後に、水素流路1aに供給される。水素調圧弁12は、燃料電池スタック1へ供給される水素圧力(すなわち、燃料極における水素圧力)が所望の値(目標水素圧力)となるように、後述する制御部30によってその開度が制御される。燃料極に供給される水素圧力を調整することで、燃料極に供給する水素流量を調整することができる。
燃料電池スタック1からの排出ガス(未使用の水素を含むガス)、すなわち、各セルの燃料極からの排出ガスは、水素流路1aを介して水素循環流路(燃料ガス循環流路)10bへと排出される。この水素循環流路10bは、水素供給流路10aの水素調圧弁12よりも下流側に接続されており、この流路10bには、例えば、燃料ガス循環手段として機能する水素循環ポンプ13が設けられている。水素循環ポンプ13を駆動することにより、燃料電池スタック1からの排出ガスは燃料電池スタック1の水素の供給側へと循環して供給される。これにより、反応効率の向上を図ることができる。水素循環ポンプ13の駆動量、すなわち、ポンプの回転数は、燃料電池スタック1へ供給される水素流量が所望の値(目標水素流量)となるように、目標水素圧力をも考慮素した上で、制御部30によって制御される。
ところで、酸化剤ガスとして空気を用いた場合、空気中の窒素が酸化剤極から燃料極に拡散するため、水素系10内におけるガスの窒素濃度が増加し、水素分圧が減少する傾向となる。そのため、水素循環流路10bには、水素系10内のガスを排出する水素排出流路10cが設けられている。この水素排出流路10cには、パージ弁(図示せず)が設けられており、このパージ弁を開閉することにより、水素循環流路10bを流れる排出ガス(窒素、未使用な水素等を含むガス)を外部に排出している。このパージ弁は、燃料電池スタック1の運転状態に応じて、その開閉状態が制御部30によって制御される。パージ弁は、基本的に、閉状態に制御されているが、例えば、燃料極における窒素濃度を推定し、必要に応じて、閉状態から開状態へと切り替えられる。これにより、未反応な水素とともに窒素が水素系10からパージされ、水素分圧の減少を抑制する。
空気系20において、酸化剤ガスである空気は、例えば、大気がコンプレッサ(酸化剤ガス供給手段)21によって加圧され、空気供給流路(酸化剤ガス供給流路)20aを介して燃料電池スタック1の空気流路1bに供給される。この空気供給流路20aには、加湿装置(図示せず)が設けられており、燃料電池スタック1に供給される空気は、燃料電池スタック1の発電性能を低下させない程度に加湿される。燃料電池スタック1からの排出ガス、すなわち、個々のセルの酸化剤極から空気流路1bへと排出された排出ガスは、空気排出流路20bを介して外部(大気)へと排出される。この空気排出流路20bには、空気調圧弁(酸化剤ガス圧力調整手段)22が設けられている。この空気調圧弁22は、燃料電池スタック1へ供給される空気の圧力(酸化剤極における空気の圧力)が所望の値(目標空気圧力)となるように、その開度が制御部30によって制御される。酸化剤極に供給される空気圧力を調整することで、空気中の水蒸気量の管理、圧力による出力密度の管理、電解質膜にかかる水素と空気との差圧の管理などを行うことができる。また、コンプレッサ21の駆動量、すなわち、コンプレッサ21の回転数は、目標空気圧力をも加味した上で、燃料電池スタック1へ供給される空気流量が所望の値(目標空気流量)となるように、制御部30によって制御される。
このような燃料電池システムにおいて、燃料電池スタック1には出力取出装置(図示せず)が接続されている。出力取出装置は、制御部30によって制御され、燃料電池スタック1から必要な出力(例えば、電力)を取り出して、この取り出した出力を、車両を駆動するモータ(図示せず)や、燃料電池システムを動作させる種々の補機(例えば、水素循環ポンプ13、コンプレッサ21など)へと供給する。
制御部30は、燃料電池システムの運転状態に基づいて、システムの各部を制御することにより、燃料電池スタック1の発電動作を制御する。制御部30としては、例えば、CPU、ROM、RAM、入出力インターフェースを主体に構成されるマイクロコンピュータを用いることができる。本実施形態との関係において、制御部30は、ROMに記憶された制御プログラムに従い、水素調圧弁12の開度演算、空気調圧弁22の開度演算、水素循環ポンプ13の回転数演算、およびコンプレッサ21の回転数演算を行う。そして、制御部30は、この演算によって算出された制御量(制御信号)を各種アクチュエータに対して出力し、水素調圧弁12の開度、空気調圧弁22の開度、水素循環ポンプの回転数、およびコンプレッサ21の回転数を制御する。この制御部30には、燃料電池スタック1の運転状態を検出すべく、各種の検出部31〜33からの検出信号が入力されている。
水素圧力検出部(燃料ガス圧力検出手段)31は、燃料電池スタック1へ供給される水素圧力、すなわち、燃料極における水素圧力RPHを検出する。空気圧力検出部32は、燃料電池スタック1へ供給される空気圧力、すなわち、酸化剤極における空気圧力RPAを検出する。スタック温度検出部33は、燃料電池スタック1の運転温度を検出する。スタック温度検出部33としては、例えば、燃料電池スタック1を冷却する冷却系(図示せず)において、燃料電池スタック1から排出される冷却媒体の温度を検出するセンサなどを用いることができる。
図2は、制御部30のブロック構成図である。制御部30は、これを機能的に捉えた場合、目標ネット電力演算部(目標ネット電力演算手段)30a、仮想目標グロス電力演算部30b、目標水素圧力演算部(目標燃料ガス圧力演算手段)30c、目標空気圧力演算部(目標酸化剤ガス圧力演算手段)30d、目標グロス電力演算部(目標グロス電力演算手段)30e、目標水素流量演算部(目標燃料ガス流量演算手段)30f、目標空気流量演算部(目標酸化剤ガス流量演算手段)30g、水素循環ポンプ回転数演算部(燃料ガス用制御目標値演算手段)30h、コンプレッサ回転数演算部(酸化剤ガス用制御目標値演算手段)30i、空気調圧弁開度演算部30jおよび水素調圧弁開度演算部30kを有する。制御部30は、これらの各要素30a〜30ikが相互に作用しながら、アクチュエータの制御を行う。以下、制御部30によって実行される燃料電池システムの制御方法について説明する。
図3は、仮想目標グロス電力TPGVの演算処理を示すフローチャートである。このフローチャートに示す処理は、目標ネット電力演算部30aおよび仮想目標グロス電力演算部30bによって実行される。外部システム(例えば、車両)から要求される目標電力(以下「目標ネット電力」という)TPNに応じた発電動作を行う場合には、燃料電池スタック1が目標ネット電力TPNを発電する際に必要となる補機の消費電力、すなわち、コンプレッサ21および水素循環ポンプ13の消費電力を目標ネット電力TPNに加算した上で、これを燃料電池スタック1が発電すべき電力の目標値(以下「目標グロス電力」)TPGとする。この図3に示す処理では、まずは、仮想的な目標グロス電力TPGである仮想目標グロス電力TPGVを算出する。なお、燃料電池システムを構成する補機には、コンプレッサ21および水素循環ポンプ13以外にも種々の要素を挙げることができるが、消費電力といった観点では、コンプレッサ21および水素循環ポンプ13の要素が支配的であるため、本実施形態では、コンプレッサ21および水素循環ポンプ13を補機として便宜的に扱うこととする。
具体的には、まず、ステップ10において、目標ネット電力演算部30aは目標ネット電力TPNを演算する。目標ネット電力TPNは、外部システムである車両から要求される電力の実効値を用いることができる。算出された目標ネット電力TPNは、仮想目標グロス電力演算部30bに対して出力される。
ステップ11において、仮想目標グロス電力演算部30bはTPGV演算テーブルを参照する。このTPGV演算テーブルは、燃料電池スタック1の定常的な発電状態を前提に、目標ネット電力TPNと、これに対応する仮想目標グロス電力TPGVとの対応関係が規定されたテーブルである。このTPGV演算テーブルは、以下に示す概念から導くことができる。
図4は、燃料電池スタック1の目標グロス電力の傾向を示す説明図である。同図(a)は、目標グロス電力と、この目標グロス電力を発電する上で必要となる目標空気流量との対応関係を示し、同図(b)は、目標グロス電力と、この目標グロス電力を発電する上で必要となる目標水素流量との対応関係を示している。同図(a),(b)に示すように、目標空気流量および目標水素流量は、目標グロス電力が増加する程、その値も概ね単調増加する傾向となっている。同図(a),(b)に示す関係は、燃料電池スタック1の電流−電圧特性や、燃料極および酸化剤極における反応ガス(水素および空気)の流入や排出のばらつき、流路1a,1bの圧力損失などの実験値や設計値などから、事前に取得することができる。
図5は、燃料電池スタック1の目標グロス電力の傾向を示す説明図である。同図(a)は、目標グロス電力と、この目標グロス電力を発電する上で必要となる目標空気圧力との対応関係を示し、同図(b)は、目標グロス電力と、この目標グロス電力を発電する上で必要となる目標水素圧力との対応関係を示している。同図(a),(b)に示すように、目標空気圧力および目標水素圧力は、目標グロス電力が増加する程、その値も概ね単調増加する傾向となっている。同図(a),(b)に示す関係は、燃料電池スタック1の電流−電圧特性の圧力感度や、燃料極および酸化剤極における水蒸気量管理などの観点から、事前に取得することができる。
供給される水素および空気の目標流量と実際の流量とが概ね一致している、さらには、供給される水素および空気の目標圧力と実際の圧力とが概ね一致している定常的な発電状態では、図4及び図5に示す関係を参照することにより、目標グロス電力から、コンプレッサ21や水素循環ポンプ13の運転状態が一通りに決定される。そのため、コンプレッサ21および水素循環ポンプ13の運転状態から、これらの消費電力(以下「補機消費電力」という)を特定することができる。この補機消費電力を、目標グロス電力から減算した値が目標ネット電力となるので、補機消費電力と、目標ネット電力との間には、図6に示すような関係が規定される。同図に示すように、補機消費電力は、目標ネット電力が増加する程、その値も概ね単調増加する傾向となっている。また、目標ネット電力と、これに対応する補機消費電力との和が目標グロス電力となるので、目標ネット電力と、これに対応する目標グロス電力との関係も規定することができ、これらの関係がテーブル化され、TPGV演算テーブルとして制御部30のROM内に格納されている。
ステップ12において、仮想目標グロス電力演算部30bは、TPGV演算テーブルを参照し、算出された目標ネット電力TPNから仮想目標グロス電力TPGVを算出する。
図7は、目標水素圧力TPHの演算処理を示すフローチャートである。このフローチャートに示す処理は、目標水素圧力演算部30cによって実行される。まず、ステップ20において、仮想目標グロス電力演算部30bによって算出された仮想目標グロス電力TPGVが入力される。そして、ステップ21において、TPH演算マップが参照される。このTPH演算マップは、図5(b)に示したように、燃料電池スタック1の定常的な発電状態を前提に、目標グロス電力と、この目標グロス電力を得るために必要な目標水素圧との対応関係が規定されたマップであり、実験やシミュレーションを通じて予め取得され、制御部30のROM内に格納されている。ステップ22において、目標水素圧力演算部30cは、TPH演算マップを用いることにより、算出された仮想目標グロス電力TPGVから目標水素圧力TPHを算出する。
図8は、目標空気圧力TPAの演算処理を示すフローチャートである。このフローチャートに示す処理は、目標空気圧力演算部30dによって実行される。目標空気圧力TPAは、目標水素圧力TPHの演算処理と同様、燃料電池スタック1の定常的な発電状態を前提に、目標空気圧力と目標グロス電力との対応関係(図5(a)参照)を規定したマップを参照することにより、仮想目標グロス電力TPGVから一義的に決定することができる。しかしながら、燃料電池スタック1の各セルの電解質膜にかかる差圧管理の観点から、空気圧力と水素圧力とは許容可能な圧力範囲において一致していることが好ましく、本実施形態では、水素圧力検出部31によって検出された水素圧力RPHを目標空気圧力TPAとして設定する。具体的には、ステップ30において、目標空気圧力演算部30dは、水素圧力検出部31によって検出される水素圧力RPHを読み込む。ステップ31において、読み込んだ水素圧力RPHを目標空気圧力TPAとして算出(設定)する。
図9は、目標グロス電力TPGの演算処理を示すフローチャートである。まず、ステップ40において、目標ネット電力演算部30aにおいて算出された目標ネット電力TPNが入力され、ステップ41において、目標空気圧力演算部30dにおいて算出された目標空気圧力TPAとが入力される。
ステップ42において、TPHRP演算テーブルが参照される。図10は、目標ネット電力と、水素循環ポンプ13の消費電力との対応関係を示す説明図である。燃料電池スタック1が定常状態である場合、目標ネット電力と、この目標ネット電力を発電するために必要な水素を燃料電池スタック1へと供給する際の水素循環ポンプ13の消費電力との間は、図10に示すような傾向が存在する。具体的には、水素循環ポンプ13の消費電力は、目標ネット電力が増加する程、その値も概ね単調増加する傾向を示す。TPHRP演算テーブルは、図10に示されるように、燃料電池スタック1の定常的な発電状態を前提に、目標ネット電力と、水素循環ポンプ13の消費電力との対応関係を規定したテーブルであり、実験やシミュレーションを通じて予め取得され、制御部30のROM内に格納されている。
ステップ43において、TPCMP演算マップが参照される。図11は、目標ネット電力および空気圧力と、コンプレッサ21の消費電力との対応関係を示す説明図である。燃料電池スタック1の定常的な発電状態を前提に、目標ネット電力と、この目標ネット電力を発電するために必要な空気を燃料電池スタック1へと供給する際のコンプレッサ21の消費電力との間には、図10の実線に示すような傾向が存在する。具体的には、コンプレッサ21の消費電力は、目標ネット電力が増加する程、その値も概ね単調増加する傾向を示す。なお、目標空気圧力と実空気圧力との間に乖離が生じた場合には、目標ネット電力に対応するコンプレッサ21の消費電力にも、定常的な発電状態を基準とした際の状態から乖離が生じる。そのため、図11の破線や点線で示すように、目標ネット電力とコンプレッサ21の消費電力との関係は、更に、目標空気圧力をパラメータとして規定することができる。具体的には、定常的な発電状態における対応関係を基準に、目標空気圧力が大きい程、目標ネット電力に対するコンプレッサ21の消費電力は相対的に大きくなり(点線参照)、逆に、目標空気圧力が小さい程、目標ネット電力に対するコンプレッサ21の消費電力は小さくなる傾向となる(破線参照)。TPCMP演算マップは、これらの観点から、目標ネット電力と、コンプレッサ21の消費電力との対応関係が、目標空気圧力に応じて規定されたマップであり、実験やシミュレーションを通じて予め取得され、制御部30のROM内に格納されている。
ステップ44において、TPHRP演算テーブルを用いることにより、入力された目標ネット電力TPNから、水素循環ポンプ13の消費電力TPHRPが算出される。これに続くステップ45において、TPCMP演算マップを用いることにより、入力された目標ネット電力TPNおよび目標空気圧力TPAから、コンプレッサ21の消費電力TPCMPが算出される。ステップ46において、目標グロス電力TPGが算出される。この目標グロス電力TPGは、目標ネット電力TPNと、補機の消費電力である水素循環ポンプ13の消費電力TPHRPおよびコンプレッサ21の消費電力TPCMPの和とを加算することにより算出される。
図12は、目標水素流量TQHの演算処理を示すフローチャートである。このフローチャートに示す処理は、目標水素流量演算部30fによって実行される。まず、ステップ50において、目標グロス電力演算部30eにおいて算出された目標グロス電力TPGが入力される。
ステップ51において、TQH演算テーブルが参照される。図13は、目標グロス電力と、反応ガスの流量との対応関係を示す説明図であり、同図(a)は、燃料電池スタック1の定常的な発電状態を前提に、目標グロス電力と、この目標グロス電力を燃料電池スタック1が発電するために必要な目標水素流量との対応関係を示している。同図(a)に示すように、目標水素流量は、目標グロス電力が増加する程、その値も概ね単調増加する傾向となっている。このTQH演算テーブルは、図13に示すように、目標グロス電力と、目標水素流量との対応関係が規定されたテーブルであり、実験やシミュレーションを通じて予め取得され、制御部30のROM内に格納されている。
ステップ52において、目標水素流量TQHが算出される。この目標水素流量TQHは、TQH演算テーブルを用いることにより、入力された目標グロス電力TPGから一義的に算出される。
図14は、目標空気流量TQAの演算処理を示すフローチャートである。このフローチャートに示す処理は、目標空気流量演算部30gによって実行される。まず、ステップ60において、目標グロス電力演算部30eにおいて算出された目標グロス電力TPGが入力される。
ステップ61において、TQA演算テーブルが読み込まれる。図13(b)は、燃料電池スタック1の定常的な発電状態を前提に、目標グロス電力と、この目標グロス電力を燃料電池スタック1が発電するために必要な目標空気量流との対応関係を示している。同図(b)に示すように、目標空気流量は、目標グロス電力が増加する程、その値も概ね単調増加する傾向となっている。このTQA演算テーブルは、同図(b)に示すように、燃料電池スタック1の定常的な発電状態を前提に、目標グロス電力と、目標空気量流との対応関係が規定されたテーブルであり、実験やシミュレーションを通じて予め取得され、制御部30のROM内に格納されている。
ステップ62において、目標空気流量TQAが算出される。この目標空気流量TQAは、TQA演算テーブルを用いることにより、入力された目標グロス電力TPGから一義的に算出される。
図15は、水素循環ポンプ13の目標回転数TNHRPの演算処理を示すフローチャートである。このフローチャートに示す処理は、水素循環ポンプ回転数演算部30hによって実行される。まず、ステップ70において、目標水素流量演算部30fによって算出された目標水素流量TQHが入力される。そして、ステップ71において、目標水素圧力演算部30cによって算出された目標水素圧力TPHが入力される。
ステップ72において、TNHRP演算マップが読み込まれる。図16は、反応ガスの目標流量と、目標回転数との関係を示す説明図であり、同図(a)は、目標水素流量、目標水素圧力および水素循環ポンプ13の目標回転数の対応関係を示す説明図である。燃料電池スタック1の定常的な発電状態を前提に、目標水素流量と、水素循環ポンプ13の目標回転数との間には、同図(a)の実線に示すような傾向が存在する。具体的には、水素循環ポンプ13の目標回転数は、目標水素流量が増加する程、その値も概ね単調増加する傾向を示す。一方で、目標回転数と目標水素流量との関係は、目標水素圧力によっても支配される。具体的には、定常的な発電状態における対応関係を基準に、目標水素圧力が大きい程、目標水素流量に対する水素循環ポンプ13の目標回転数も概ね相対的に大きなくなる傾向を示し(図中の点線参照)、逆に、目標水素圧力が小さい程、目標水素流量に対する水素循環ポンプ13の目標回転数も概ね相対的に小さくなる傾向を示す(図中の破線参照)。TNHRP演算マップは、これらの観点から、目標水素流量と水素循環ポンプ13の目標回転数との対応関係が、目標水素圧力に応じて規定されたマップであり、実験やシミュレーションを通じて予め取得され、制御部30のROM内に格納されている。
再び図15を参照するに、ステップ73において、水素循環ポンプ13の目標回転数TNHRPが算出される。この目標回転数TNHRPは、読み込まれたTNHRP演算マップを用いることにより、入力された目標水素流量TQHおよび目標水素圧力TPHから一義的に算出される。
図17は、コンプレッサ21の目標回転数TNCMPの演算処理を示すフローチャートである。このフローチャートに示す処理は、コンプレッサ回転数演算部30iによって実行される。まず、ステップ80において、目標空気流量演算部30gによって算出された目標空気流量TQAが入力される。そして、ステップ81において、目標空気圧力演算部30dによって算出された目標空気圧力TPAが入力される。
ステップ82において、TNCMP演算マップが読み込まれる。図16(b)は、目標空気流量、目標空気圧力およびコンプレッサ21の目標回転数の対応関係を示す説明図である。燃料電池スタック1の定常的な発電状態を前提に、目標空気流量と、コンプレッサ21の目標回転数との対応関係は一義的に決定される(図中の実線参照)。具体的には、コンプレッサ21の目標回転数は、目標空気流量が増加する程、その値も概ね単調増加する傾向を示す。一方で、目標回転数と目標空気流量との関係は、目標空気圧力によっても支配される。具体的には、定常的な発電状態における対応関係を基準に、目標空気圧力が大きい程、目標空気流量に対するコンプレッサ21の目標回転数も概ね相対的に大きなくなる傾向を示し(図中の点線参照)、逆に、目標空気圧力が小さい程、目標空気流量に対するコンプレッサ21の目標回転数も概ね相対的に小さくなる傾向を示す(図中の破線参照)。TNCMP演算マップは、これらの観点から、目標空気流量とコンプレッサ21の目標回転数との対応関係が、目標空気圧力に応じて規定されたマップであり、実験やシミュレーションを通じて予め取得され、制御部30のROM内に格納されている。
再び図17を参照するに、ステップ83において、コンプレッサ21の目標回転数TNCMPが算出される。この目標回転数TNCMPは、読み込まれたTNCMP演算マップを用いることにより、入力された目標空気流量TQAおよび目標空気圧力TPAから一義的に算出される。
さらに、空気調圧弁22の目標開度である目標空気調圧弁開度TBAは、空気調圧弁開度演算部30jによって演算される。この空気調圧弁開度演算部30jは、目標空気圧力演算部30dによって算出された目標空気圧力TPAと、空気圧力検出部32によって検出された空気圧力RPAとを参照して、その目標空気調圧弁開度TBAを演算する。具体的には、検出された空気圧力RPAがフィードバックされ、この値が目標空気圧力TPAに近づくように、空気調圧弁22の目標空気調圧弁開度TBAが算出される。また、水素調圧弁12の目標開度である目標水素調圧弁開度TBHは、水素調圧弁開度演算部30kによって演算される。この水素調圧弁開度演算部30kは、目標水素圧力演算部30cによって算出された目標水素圧力TPHと、水素圧力検出部31によって検出された水素圧力RPHとを参照して、目標水素調圧弁開度TBHを算出する。具体的には、検出された水素圧力RPHがフィードバックされ、この値が目標水素圧力TPHに近づくように、水素調圧弁12の目標水素調圧弁開度TBHが算出される。
上述した一連の処理によって算出された目標空気調圧弁開度TBA、目標水素調圧弁開度TBH、水素循環ポンプ13の目標回転数TNHRP、およびコンプレッサ21の目標回転数TNCMPは、制御目標値として対応するアクチュエータにそれぞれ出力される。そして、これらの制御目標値に従ってアクチュエータが動作することにより、空気調圧弁22の開度、水素調圧弁12の開度、水素循環ポンプ13の回転数およびコンプレッサ21の回転数が目標値に応じた状態に制御される。
このように本実施形態によれば、目標ネット電力演算部30aによって、外部システムから燃料電池スタック1に要求される発電電力の実効値である目標ネット電力TPNが算出される。目標空気圧力演算部30dは、算出された目標ネット電力TPNに基づいて、燃料電池スタック1に供給される空気の圧力目標値を目標空気圧力TPAとして算出する。目標空気流量演算部30gは、算出された目標空気圧力TPAと、算出された目標ネット電力TPNとに基づいて、燃料電池スタック1に供給される空気の流量目標値を、目標空気流量TQAとして算出する。
なお、本実施形態において、目標空気圧力演算部30dは、燃料電池スタック1の差圧管理の観点から、水素圧力検出部31によって検出される水素圧力RPHを目標空気圧力TPAとして設定している。ただし、上述したように、水素圧力RPHは、目標ネット電力TPNに基づいて算出される目標水素圧力TPHに対応して制御される値であるため、水素圧力RPHを目標空気圧力TPAとして設定する場合であっても、広義において、この目標空気圧力TPAは、目標ネット電力TPNに基づいて算出される値であるとみなす。
図18は、補機消費電力の傾向を示す説明図である。同図は、空気圧力および空気流量と、これに対応するコンプレッサ21の消費電力との関係を示す。同図に示すように、コンプレッサ21の消費電力は、空気流量の増加に対して線形的に増加する傾向となっているが、これらの関係は、空気圧力が高い程、相対的に高い値を推移し、また、空気圧力が低い程、相対的に低い値を推移する。このように、コンプレッサ21の消費電力は、その流量制御において、圧力要素を十分に考慮する必要がある。
この点、目標空気流量演算部30gは、目標ネット電力TPNから目標空気流量TQAを算出する際に、目標空気圧力TPAのパラメータを使用している。そのため、空気圧力RPAが、定常状態における空気圧力から乖離した場合であっても、この目標空気圧力TPAを考慮することにより、要求された目標ネット電力TPNに応じた適切な目標空気流量TQAを算出することができる。
具体的には、目標グロス電力演算部30eは、TPCMP演算マップを用いて、算出された目標ネット電力TPNと、算出された目標空気圧力TPAとからコンプレッサ21の消費電力TPCMPを算出し、そして、この算出された消費電力TPCMPと、算出された目標ネット電力TPNとに基づいて、目標グロス電力TPGを算出する。この場合、目標空気流量演算部30gは、目標空気圧力TPAと目標ネット電力TPNとから目標グロス電力演算部30eによって算出された目標グロス電力TPGに基づいて、目標空気流量TQAを算出する。かかる構成によれば、目標ネット電力TPNから目標グロス電力TPGを算出するにあたり、目標ネット電力TPNからコンプレッサ21の消費電力を算出する際に、空気圧力のパラメータを使用している。そのため、空気圧力RPAが、定常状態における空気圧力から乖離した場合であっても、コンプレッサ21の消費電力TPCMPの演算精度を向上させることができる。そして、コンプレッサ21の消費電力TPCMPが考慮された目標グロス電力TPGを用いることにより、要求されたネット電力に応じた適切な目標空気流量TQAを算出することができる。
また、本実施形態において、コンプレッサ回転数演算部30iは、算出された目標空気流量TQAと、算出された目標空気圧力TPAとに基づいて、コンプレッサ21の制御目標値、すなわち、目標回転数TNCMPを算出する。精度よく算出された目標空気流量TQAを用いることにより、空気流量を制御するコンプレッサ21の目標回転数TNCMPを精度よく算出することができる。これにより、外部システムから要求されたネット電力に応じた発電を行うことが可能となる。
また、本実施形態において、目標水素流量演算部30fは、算出された目標空気圧力TPAと、算出された目標ネット電力TPNとから、燃料電池スタック1に供給される水素の流量目標値を、目標水素流量TQHとして算出する。この点、目標水素流量演算部30fは、目標ネット電力TPNから目標水素流量TQHを算出する際に、目標空気圧力TPAのパラメータを使用している。そのため、空気圧力RPAが、定常状態における空気圧力から乖離した場合であっても、この目標空気圧力TPAを考慮することにより、要求された目標ネット電力TPNに応じた適切な目標水素流量TQHを算出することができる。
具体的には、目標グロス電力演算部30eは、TPHRP演算テーブルを用いて、算出された目標ネット電力TPNから水素循環ポンプ13の消費電力TPHRPを算出するとともに、この算出された水素循環ポンプ13の消費電力TPHRPと、算出されたコンプレッサ21の消費電力TPCMPと、算出された目標ネット電力TPNとに基づいて、目標グロス電力TPGを算出している。この場合、目標水素流量演算部30fは、消費電力TPHRP,消費電力TPCMPと、目標ネット電力TPNとから算出される目標グロス電力TPGに基づいて、目標水素流量TQHを算出する。
かかる構成によれば、目標ネット電力TPNから目標グロス電力TPGを算出するにあたり、目標ネット電力TPNからコンプレッサ21の消費電力を算出する際に、空気圧力のパラメータを使用している。そのためそのため、空気圧力RPAが、定常状態における空気圧力から乖離した場合であっても、コンプレッサ21の消費電力TPCMPの演算精度を向上させることができる。そして、コンプレッサ21の消費電力TPCMPが考慮された目標グロス電力TPGを用いることにより、要求されたネット電力に応じた適切な目標水素流量TQHを算出することができる。
なお、目標空気流量演算部30gは、水素循環ポンプ13およびコンプレッサ21の消費電力TPHRP,TPCMPと、前記目標ネット電力TPNとから算出される目標グロス電力TPGに基づいて、目標空気流量を算出することが好ましい。これにより、補機の消費電力を精度よく演算することができるので、目標空気流量TQAの演算精度の向上を図ることができる。
また、本実施形態において、水素循環ポンプ回転数演算部30hは、算出された目標水素流量TQHと、算出された目標水素圧力TPHとから、水素循環ポンプ13の制御目標値、すなわち、目標回転数TNHRPを算出する。そのため、精度よく算出された目標空気流量TQAを用いることにより、水素流量を制御する水素循環ポンプ13の目標回転数TNHRPを精度よく算出することができる。これにより、外部システムから要求されたネット電力に応じた発電を行うことが可能となる。
さらに、本実施形態において、目標空気圧力演算部30dは、目標空気圧力TPAを、水素圧力検出部31によって検出された水素圧力に設定する。これにより、制御系に不定な制御ループを作ることなく、補記消費電力の演算精度を向上させることができる。
本発明の実施形態に係る燃料電池システムの全体構成図 図1に示す制御部のブロック構成図 仮想目標グロス電力TPGVの演算処理を示すフローチャート 燃料電池スタックの目標グロス電力の傾向を示す説明図 燃料電池スタックの目標グロス電力の傾向を示す説明図 補機消費電力と目標ネット電力との関係を示す説明図 目標水素圧力TPHの演算処理を示すフローチャート 目標空気圧力TPAの演算処理を示すフローチャート 目標グロス電力TPGの演算処理を示すフローチャート 目標ネット電力と水素循環ポンプの消費電力との対応関係を示す説明図 目標ネット電力および空気圧力とコンプレッサの消費電力との対応関係を示す説明図 目標水素流量の演算処理を示すフローチャート 目標グロス電力と反応ガスの流量との対応関係を示す説明図 目標空気流量の演算処理を示すフローチャート 水素循環ポンプの目標回転数TNHRPの演算処理を示すフローチャート 反応ガスの目標流量と目標回転数との関係を示す説明図 空気供給用のコンプレッサの目標回転数TNCMPの演算処理を示すフローチャート 補機消費電力の傾向を示す説明図
符号の説明
1 燃料電池スタック
1a,1b 水素流路
10 水素系
10a 水素供給流路
10b 水素循環流路
10c 水素排出流路
11 燃料タンク
12 水素調圧弁
13 水素循環ポンプ
20 空気系
20a 空気供給流路
20b 空気排出流路
21 コンプレッサ
22 空気調圧弁
30 制御部
30a 目標ネット電力演算部
30b 仮想目標グロス電力演算部
30c 目標水素圧力演算部
30d 空気圧力演算部
30e 目標グロス電力演算部
30f 目標水素流量演算部
30g 目標空気流量演算部
30h 水素循環ポンプ回転数演算部
30i コンプレッサ回転数演算部
30j 空気調圧弁開度演算部
30k 水素調圧弁開度演算部
31 水素圧力検出部
32 空気圧力検出部
33 スタック温度検出部

Claims (9)

  1. 燃料ガスが供給されるとともに、酸化剤ガスが供給されることにより、前記燃料ガスと前記酸化剤ガスとを電気化学的に反応させて発電を行う燃料電池と、
    酸化剤ガス供給流路を介して、前記燃料電池に前記酸化剤ガスを供給する酸化剤ガス供給手段と、
    前記酸化剤ガス供給流路に設けられており、前記燃料電池に供給される前記酸化剤ガスの圧力を調整する酸化剤ガス圧力調整手段と、
    外部システムから前記燃料電池に要求される発電電力の目標値である目標ネット電力を算出する目標ネット電力演算手段と、
    前記算出された目標ネット電力に基づいて、前記燃料電池に供給される前記酸化剤ガスの圧力目標値を、目標酸化剤ガス圧力として算出する目標酸化剤ガス圧力演算手段と、
    前記算出された目標酸化剤ガス圧力と、前記算出された目標ネット電力とに基づいて、前記燃料電池に供給される前記酸化剤ガスの流量目標値を、目標酸化剤ガス流量として算出する目標酸化剤ガス流量演算手段と
    を有することを特徴とする燃料電池システム。
  2. 前記目標ネット電力と、当該目標ネット電力を発電するために必要な前記酸化剤ガスを前記燃料電池へ供給する際の前記酸化剤ガス供給手段の消費電力との対応関係が、前記目標酸化剤ガス圧力に応じて規定された第1の対応関係を用いて、前記算出された目標ネット電力と前記算出された目標酸化剤ガス圧力とから前記酸化剤ガス供給手段の消費電力を算出するとともに、当該算出された酸化剤ガス供給手段の消費電力と、前記算出された目標ネット電力とに基づいて、前記燃料電池が発電すべき電力目標値である目標グロス電力を算出する目標グロス電力演算手段をさらに有し、
    前記目標酸化剤ガス流量演算手段は、前記目標グロス電力演算手段によって算出された前記目標グロス電力に基づいて、前記目標酸化剤ガス流量を算出することを特徴とする請求項1に記載された燃料電池システム。
  3. 前記第1の対応関係は、前記燃料電池の定常的な発電状態における前記目標ネット電力と前記酸化剤ガス供給手段の消費電力との対応関係が規定されているとともに、当該対応関係を基準に、前記目標酸化剤ガス圧力が大きい程、前記目標ネット電力に対する前記酸化剤ガス供給手段の消費電力が相対的に大きくなり、前記目標酸化剤ガス圧力が小さい程、前記目標ネット電力に対する前記酸化剤ガス供給手段の消費電力が相対的に小さくなるような前記目標ネット電力と前記酸化剤ガス供給手段の消費電力との対応関係が規定されていることを特徴とする請求項2に記載された燃料電池システム。
  4. 前記算出された目標酸化剤ガス流量と、前記算出された目標酸化剤ガス圧力とに基づいて、前記酸化剤ガス供給手段の制御目標値を算出する酸化剤ガス用制御目標値演算手段をさらに有することを特徴とした請求項1から3のいずれかに記載された燃料電池システム。
  5. 燃料ガス供給流路を介して、前記燃料電池に前記燃料ガスを供給する燃料ガス供給手段と、
    前記燃料ガス供給流路に設けられており、前記燃料電池に供給される前記燃料ガスの圧力を調整する燃料ガス圧力調整手段と、
    燃料ガス循環流路を介して、前記燃料電池から排出される燃料ガスを前記燃料ガス供給流路へと循環して供給する燃料ガス循環手段と、
    前記算出された目標酸化剤ガス圧力と、前記算出された目標ネット電力とに基づいて、前記燃料電池に供給される前記燃料ガスの流量目標値を、目標燃料ガス流量として算出する目標燃料ガス流量演算手段と
    をさらに有することを特徴とした請求項2に記載された燃料電池システム。
  6. 前記目標グロス電力演算手段は、前記目標ネット電力と、当該目標ネット電力を発電するために必要な前記燃料ガスを前記燃料電池へ供給する際の前記燃料ガス循環手段の消費電力との対応関係が規定された第2の対応関係を用いて、前記算出された目標ネット電力から前記燃料ガス循環手段の消費電力を算出するとともに、当該算出された燃料ガス循環手段の消費電力と、前記算出された酸化剤ガス供給手段の消費電力と、前記算出された目標ネット電力とに基づいて、前記目標グロス電力を算出しており、
    前記目標燃料ガス流量演算手段は、前記燃料ガス循環手段の消費電力と、前記酸化剤ガス供給手段の消費電力と、前記目標ネット電力とから前記目標グロス電力演算手段によって算出された前記目標グロス電力に基づいて、前記目標燃料ガス流量を算出することを特徴とする請求項5に記載された燃料電池システム。
  7. 前記目標酸化剤ガス流量演算手段は、前記燃料ガス循環手段の消費電力と、前記酸化剤ガス供給手段の消費電力と、前記目標ネット電力とから前記目標グロス電力演算手段によって算出された前記目標グロス電力に基づいて、前記目標酸化剤ガス流量を算出することを特徴とする請求項6に記載された燃料電池システム。
  8. 前記算出された目標ネット電力に基づいて、前記燃料電池に供給される前記燃料ガスの圧力目標値を、目標燃料ガス圧力として算出する目標燃料ガス圧力演算手段と、
    前記算出された目標燃料ガス流量と、前記算出された目標燃料ガス圧力とに基づいて、前記燃料ガス循環手段の制御目標値を算出する燃料ガス用制御目標値演算手段と
    をさらに有することを特徴とした請求項5から7のいずれかに記載された燃料電池システム。
  9. 前記燃料電池に供給される前記燃料ガスの圧力を、燃料ガス圧力として検出する燃料ガス圧力検出手段をさらに有し、
    前記目標酸化剤ガス圧力演算手段は、前記目標酸化剤ガス圧力として、前記燃料ガス圧力検出手段によって検出された燃料ガス圧力を設定することを特徴とした請求項1から8のいずれかに記載された燃料電池システム。
JP2006000114A 2006-01-04 2006-01-04 燃料電池システム Pending JP2007184117A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000114A JP2007184117A (ja) 2006-01-04 2006-01-04 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000114A JP2007184117A (ja) 2006-01-04 2006-01-04 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2007184117A true JP2007184117A (ja) 2007-07-19

Family

ID=38340028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000114A Pending JP2007184117A (ja) 2006-01-04 2006-01-04 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2007184117A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299480A (ja) * 2008-06-10 2009-12-24 Toyota Motor Corp ポンプ駆動制御装置
JP2010009966A (ja) * 2008-06-27 2010-01-14 Panasonic Corp 電源装置
JPWO2013080410A1 (ja) * 2011-11-30 2015-04-27 パナソニックIpマネジメント株式会社 直接酸化型燃料電池システム
CN112820899A (zh) * 2019-11-15 2021-05-18 现代自动车株式会社 燃料电池车辆的驱动控制***和驱动控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299480A (ja) * 2008-06-10 2009-12-24 Toyota Motor Corp ポンプ駆動制御装置
JP2010009966A (ja) * 2008-06-27 2010-01-14 Panasonic Corp 電源装置
JPWO2013080410A1 (ja) * 2011-11-30 2015-04-27 パナソニックIpマネジメント株式会社 直接酸化型燃料電池システム
CN112820899A (zh) * 2019-11-15 2021-05-18 现代自动车株式会社 燃料电池车辆的驱动控制***和驱动控制方法
US11440437B2 (en) * 2019-11-15 2022-09-13 Hyundai Motor Company Driving control system and control method of fuel cell vehicle
CN112820899B (zh) * 2019-11-15 2024-03-29 现代自动车株式会社 燃料电池车辆的驱动控制***和驱动控制方法

Similar Documents

Publication Publication Date Title
JP4886170B2 (ja) 燃料電池システム
JP4972943B2 (ja) 燃料電池システムの制御装置及び燃料電池システムの制御方法
JP2009016170A (ja) 燃料電池システムおよび燃料電池システムの制御装置
JP2007220538A (ja) 燃料電池システム
JP5109611B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2018018682A (ja) 燃料電池システムの制御方法
JP2007220625A (ja) 燃料電池システム
JP5636153B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2007184117A (ja) 燃料電池システム
JP2009117066A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP7038301B2 (ja) 燃料電池システムおよび燃料電池システムの運転方法
JP2007280804A (ja) 燃料電池運転システム及び燃料電池運転システムにおける弁の協調制御方法
JP2007157587A (ja) 燃料電池システム
JP4935125B2 (ja) 流体制御システム
JP2004146240A (ja) 燃料電池システム
EP2164125B1 (en) Fuel cell system and air supply method thereof
JP5210495B2 (ja) 燃料電池システム
JP2007059348A (ja) 燃料電池システムおよび燃料電池システムの起動方法
JP2006294498A (ja) 燃料電池システム
JP2004178990A (ja) 燃料電池システムの酸化剤流量制御方法
JP2005197156A (ja) 燃料電池システム
KR100792723B1 (ko) 연료전지 시스템 및 그 구동방법
JP5411901B2 (ja) 燃料電池システム
JP2006294497A (ja) 燃料電池システム
JP2004362825A (ja) 燃料電池システム