JP2007183212A - Heat resistor type fluid flow rate measuring device - Google Patents

Heat resistor type fluid flow rate measuring device Download PDF

Info

Publication number
JP2007183212A
JP2007183212A JP2006002567A JP2006002567A JP2007183212A JP 2007183212 A JP2007183212 A JP 2007183212A JP 2006002567 A JP2006002567 A JP 2006002567A JP 2006002567 A JP2006002567 A JP 2006002567A JP 2007183212 A JP2007183212 A JP 2007183212A
Authority
JP
Japan
Prior art keywords
sub
passage
fluid
air
surface portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006002567A
Other languages
Japanese (ja)
Other versions
JP4836179B2 (en
Inventor
Chihiro Kobayashi
千尋 小林
Yukio Kato
幸夫 加藤
Kiyotomo Ide
聖智 井手
Takeshi Morino
毅 森野
Hiroki Okamoto
裕樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006002567A priority Critical patent/JP4836179B2/en
Publication of JP2007183212A publication Critical patent/JP2007183212A/en
Application granted granted Critical
Publication of JP4836179B2 publication Critical patent/JP4836179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid flow rate measuring device capable of suppressing a change in the output characteristics of a heat resistor caused by adhesion etc. of a liquid such as water to the inside of a sub-air passage where the heat resistor is installed, in a low flow speed range. <P>SOLUTION: The sub-air passage 110 includes a first sub-air passage 110 starting from a sub-air passage inlet 111 in a quadrangular shape and having a bent passage portion 113, an outlet portion 112, and a second sub-air passage 114 being between the passage inlet 111 and the bent portion 113. The first passage 110 includes an inner circulative surface portion 125, an outer circulative surface portion 123, and both side surface portions 117, 118. One wall surface of the second passage 114 is formed of a part of an inclined surface 116, and another wall surface 122 faces the one wall surface and is approximately parallel. If water enters the first passage 110 and a flow speed changes rapidly from a high flow speed state to a low flow speed state, waterdrops are not moved by an air flow, are collected by gravity in the ground direction along the inclined surface 116, and are discharged outside from the second passage 114. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、流体の流量を測定するために用いられる発熱抵抗体式流体流量測定装置に係わり、特に、ガス状流体と一緒に吸入される水等の液体による流量計測誤差の低減に関する。   The present invention relates to a heating resistor type fluid flow rate measuring apparatus used for measuring a flow rate of a fluid, and more particularly to reduction of flow rate measurement error due to a liquid such as water sucked together with a gaseous fluid.

流体流量測定装置の一例として、内燃機関用の空気流量を測定する発熱抵抗体式空気流量測定装置が知られている。これは発熱抵抗体の奪われる熱量が空気流入流量に対して単調に増加する関係が有ることを利用したものであり、質量流量を直接測定出来るため、特に自動車で空燃比制御用の流量計として広く使われている。   As an example of a fluid flow rate measuring device, a heating resistor type air flow rate measuring device for measuring an air flow rate for an internal combustion engine is known. This utilizes the fact that the amount of heat taken away by the heating resistor increases monotonously with the air inflow flow rate, and since the mass flow rate can be measured directly, it is particularly useful as a flow meter for air-fuel ratio control in automobiles. Widely used.

発熱抵抗体式空気流量測定装置は、車輌の吸気ダクトの一部に装着され、吸入空気流量を測定する役割を持つ。車輌の吸気ダクトは、通常、アクセルに連動して吸入空気流量が流れるが、雨天時等においては空気と一緒に水滴等も吸入されてしまう。   The heating resistor type air flow rate measuring device is attached to a part of the intake duct of a vehicle and has a role of measuring the intake air flow rate. Normally, the intake air flow of the vehicle flows in conjunction with the accelerator, but in the case of rainy weather, water drops and the like are also sucked together with the air.

吸入された水滴が、流量検出素子である発熱抵抗体に衝突すると、発熱抵抗体式空気流量測定装置の発熱量が過大となり、計測誤差を生じてしまう。これは、空気への熱伝達と比べ、水滴への熱伝達が大きいために生じるものである。   If the sucked water droplet collides with the heating resistor that is a flow rate detecting element, the amount of heat generated by the heating resistor type air flow measuring device becomes excessive, resulting in a measurement error. This occurs because heat transfer to water droplets is larger than heat transfer to air.

このため、特許文献1には、発熱抵抗体の上流側に迂回部を設け、遠心力により水滴と空気とを分離させる通路が記載されている。   For this reason, Patent Document 1 describes a passage in which a bypass is provided on the upstream side of the heating resistor, and water droplets and air are separated by centrifugal force.

また、特許文献1には、副空気通路内で遠心力方向に通路内を分離させて発熱抵抗体が設置される通路以外に水滴を遠心力を使って排出させる機能を持つ排出穴も合わせて記載されている。   Patent Document 1 also includes a discharge hole having a function of discharging water droplets using centrifugal force in addition to the passage in which the heating resistor is installed by separating the passage in the direction of centrifugal force in the sub air passage. Are listed.

特開2004−37131号公報JP 2004-37131 A

従来技術の発熱抵抗体流量測定装置においては、充分に流体の流速の速い条件では、水等が副空気通路内に飛散した時に、曲り通路の遠心力により、液体を曲り通路に沿って移動させ、発熱抵抗体に接触させること無く、副通路の外側に分離させる事が可能で有る。   In the conventional heating resistor flow rate measuring device, under conditions where the fluid flow rate is sufficiently fast, when water or the like is scattered in the secondary air passage, the liquid is moved along the bending passage by the centrifugal force of the bending passage. It can be separated outside the sub-passage without contacting the heating resistor.

しかし、例えば、車輌が急停止した時等には、流体流速が速い状況から、流体流速が遅くなる状況に急激に変化するため、副空気通路内に残った液体が流体によって移動させることができず残留してしまう。   However, for example, when the vehicle suddenly stops, the fluid flow rate suddenly changes from a fast fluid flow rate to a slow fluid flow rate, so the liquid remaining in the sub air passage can be moved by the fluid. It will remain.

残留した水分により、副空気通路の有効断面積が変化し、その結果、発熱抵抗体の計測する流速が変化して発熱抵抗体の出力特性に誤差が生じてしまう。   Residual moisture changes the effective cross-sectional area of the sub-air passage. As a result, the flow rate measured by the heating resistor changes and an error occurs in the output characteristics of the heating resistor.

近年においては、エンジンの空燃比制御の高精度化が望まれており、空気流量計に代表される流体流量計測装置の計測精度の向上化も望まれている。   In recent years, higher accuracy of air-fuel ratio control of an engine has been desired, and improvement of measurement accuracy of a fluid flow rate measuring device represented by an air flow meter is also desired.

しかし、上述のような、高流量から低流量への急激な変化による水分残留現象は、認識されておらず、このための有効な対策もなされてはいなかった。   However, the moisture residual phenomenon due to the rapid change from the high flow rate to the low flow rate as described above has not been recognized, and no effective countermeasure has been taken for this purpose.

本発明の目的は、広範囲な流体流量範囲において、流量検出素子である発熱抵抗体が設置される副空気通路内への水等の液体付着等による発熱抵抗体の出力特性の変化量を最小限に抑える事が可能な流体流量測定装置を実現することである。   The object of the present invention is to minimize the amount of change in the output characteristics of the heating resistor due to the adhesion of liquid such as water to the sub-air passage where the heating resistor, which is a flow rate detecting element, is installed in a wide range of fluid flow rates. It is to realize a fluid flow rate measuring device that can be suppressed to a minimum.

本発明による発熱抵抗体式流体流量計測装置は、主通路に流れる流体を流体入り口部から流入する副流体通路と、この副流体通路内に配置される発熱抵抗体と、この発熱的抵抗体に加熱電流を供給し、流体の流量を計測する流量計測部とを有する。   A heating resistor type fluid flow rate measuring device according to the present invention includes a sub-fluid passage through which a fluid flowing in a main passage flows from a fluid inlet, a heating resistor disposed in the sub-fluid passage, and heating to the heating resistor. A flow rate measuring unit that supplies current and measures the flow rate of the fluid.

そして、副流体通路は、内回り面部及び外回り面部を有する第1の副流体通路と、第1の副流体通路の残留水分を副流体通路外には排出する第2の副流体通路とを備え、上記外回り面部は、上記流体入り口部に続く第1の平面部と、第1の平面部に対して傾斜する傾斜面部と、曲面部と、第2の平面部とを有する。   The sub-fluid passage includes a first sub-fluid passage having an inner surface portion and an outer surface portion, and a second sub-fluid passage that discharges residual moisture in the first sub-fluid passage out of the sub-fluid passage, The outer surface portion includes a first flat surface portion that follows the fluid inlet portion, an inclined surface portion that is inclined with respect to the first flat surface portion, a curved surface portion, and a second flat surface portion.

また、第2の副流体通路は、第1の副流体通路の第1の平面部と傾斜面部との間に形成され、傾斜面部の延長面である一壁面と、この一壁面に対向し、ほぼ平行な壁面とを有する。   The second sub-fluid passage is formed between the first flat surface portion and the inclined surface portion of the first sub-fluid passage, and is opposed to the one wall surface that is an extended surface of the inclined surface portion, With substantially parallel walls.

また、本発明の発熱抵抗体式流体流量測定装置は、加熱電流を流して発熱し、吸入流体への放熱を基に流体流量を測定する発熱抵抗体式流体流量測定装置であり、少なくとも一つの曲り部を有し、主通路に流れる流体が流入される副流体通路を備え、上記副流体通路内の曲り部の下流側に、流体流量を計測するための発熱抵抗体が配置される。   Further, the heating resistor type fluid flow rate measuring device of the present invention is a heating resistor type fluid flow rate measuring device that generates heat by flowing a heating current and measures the fluid flow rate based on heat radiation to the suction fluid, and includes at least one bent portion. And a heating fluid resistor for measuring the fluid flow rate is disposed downstream of the bent portion in the auxiliary fluid passage.

そして、この発熱抵抗体式流体流量測定装置において、副流体通路は、副流体通路入口と曲り部との間で少なくとも二つの通路に分流し、上記発熱抵抗体と曲り部とを有する第1の副流体通路と、この第1の副流体通路を流れる流体の持つ慣性力とは異なる方向に通路方向を有する第2の副流体通路とを備え、第2の副流体通路の出口は、上記主通路に流れる流体の流れ方向とほぼ直交して開口している。   In this heating resistor type fluid flow measuring device, the sub-fluid passage is divided into at least two passages between the sub-fluid passage inlet and the bent portion, and the first sub-passage having the heating resistor and the bent portion. A fluid passage and a second subsidiary fluid passage having a passage direction different from the inertial force of the fluid flowing through the first subsidiary fluid passage, and the outlet of the second subsidiary fluid passage is the main passage. It is opened substantially perpendicular to the flow direction of the fluid flowing through the.

上記構成により、広範囲な流体流量範囲において、流量検出素子である発熱抵抗体が設置される副空気通路内への水等の液体付着等による発熱抵抗体の出力特性の変化量を最小限に抑える事が可能な流体流量測定装置を実現することができる。   With the above configuration, the amount of change in the output characteristics of the heating resistor due to liquid adhering to the auxiliary air passage where the heating resistor, which is the flow detection element, is installed is minimized in a wide range of fluid flow rates. Therefore, it is possible to realize a fluid flow rate measuring device capable of operating.

つまり、水等が吸気管内に飛散した時に曲り通路の遠心力により、液体を曲り外側に分離させ、更に急激に車輌が停止した時等に副空気通路内に残った水等を重力により副空気通路外に排出する事ができる。   In other words, when water or the like splashes into the intake pipe, the centrifugal force of the bending passage causes the liquid to bend and separate to the outside, and when the vehicle stops suddenly, the water or the like remaining in the auxiliary air passage due to gravity It can be discharged out of the passage.

また、本発明の第2の副流体通路は流れの慣性力とは違う方向に開口させるため、副流体通路から流出する流体量は殆ど無く、仮に表面張力等により水膜が穴を塞いだとしても、発熱抵抗体設置部の流速変化は少なくて済む。   In addition, since the second sub-fluid passage of the present invention is opened in a direction different from the inertial force of the flow, there is almost no amount of fluid flowing out from the sub-fluid passage, and it is assumed that the water film has blocked the hole due to surface tension etc. However, the flow rate change in the heating resistor installation portion is small.

このため、広範囲な流体流量範囲において、流量検出素子である発熱抵抗体が設置される副流体通路内への水等の液体付着等による発熱抵抗体の出力特性の変化量を最小限に抑える事が可能となる。   For this reason, in a wide range of fluid flow rates, the amount of change in the output characteristics of the heating resistor due to the adhesion of liquid such as water to the sub-fluid passage where the heating resistor, which is a flow detection element, is installed is minimized. Is possible.

以下、添付図面を参照して、本発明の実施形態について、説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

なお、発熱抵抗体式流体流量計測装置として、自動車用の内燃機関に吸入される空気流量を測定するために用いられる発熱抵抗体式空気流量測定装置を例として説明する。   A heating resistor type air flow rate measuring device used for measuring an air flow rate sucked into an automobile internal combustion engine will be described as an example of the heating resistor type fluid flow rate measuring device.

まず、最初に発熱抵抗体式空気流量測定装置の動作原理について説明する。   First, the operation principle of the heating resistor type air flow measuring device will be described.

図7は、発熱抵抗体式空気流量測定装置の概略構成回路図である。発熱抵抗体式空気流量測定装置の駆動回路CBは大きく分けてブリッジ回路とフィードバック回路とを備えている。   FIG. 7 is a schematic circuit diagram of the heating resistor air flow rate measuring device. The driving circuit CB of the heating resistor type air flow rate measuring device is roughly divided into a bridge circuit and a feedback circuit.

吸入空気流量測定を行うための発熱抵抗体RHと、吸入空気温度を補償するための感温抵抗体RC及びR10、R11とでブリッジ回路を組む。そして、オペアンプOP1とトランジスタTrとを使いフィードバックをかけながら発熱抵抗体RHと感温抵抗体RCとの間に一定温度差を保つように発熱抵抗体RHに加熱電流Ihを流して空気流量に応じた出力信号を出力する。   A heating circuit RH for measuring the intake air flow rate and a temperature sensitive resistor RC and R10, R11 for compensating the intake air temperature form a bridge circuit. A heating current Ih is supplied to the heating resistor RH so as to maintain a constant temperature difference between the heating resistor RH and the temperature sensitive resistor RC while applying feedback using the operational amplifier OP1 and the transistor Tr. Output the output signal.

つまり、空気流速が速い場合には、発熱抵抗体RHから奪われる熱量が多いため加熱電流Ihを多く流す。これに対して、空気流速が遅い場合には、発熱抵抗体Rhから奪われる熱量が少ないため加熱電流も少なくてすむのである。   That is, when the air flow rate is high, a large amount of heat is taken from the heating resistor RH, so that a large heating current Ih is passed. On the other hand, when the air flow rate is low, the amount of heat taken away from the heat generating resistor Rh is small, so that the heating current can be reduced.

図5は、本発明とは異なり、一般的な発熱抵抗体式空気流量計の一例における横断面図であり、図6は図5の空気流量計を、上流(左側)から見た外観図である。   5 is a cross-sectional view of an example of a general heating resistor type air flow meter, unlike the present invention, and FIG. 6 is an external view of the air flow meter of FIG. 5 as viewed from the upstream (left side). .

図5及び図6において、発熱抵抗体式空気流量測定装置の構成部品としては駆動回路を構成する回路基板2を内蔵するハウジング部材1及び非導電性部材により形成される副空気通路構成部材10等がある。   5 and 6, the components of the heating resistor type air flow measuring device include a housing member 1 containing a circuit board 2 constituting a driving circuit, a sub air passage constituting member 10 formed by a non-conductive member, and the like. is there.

副空気通路構成部材10の中には空気流量検出のための発熱抵抗体3と、吸入空気温度を補償するための感温抵抗体4とが導電性部材により構成された支持体5を介して回路基板2と電気的に接続されるように配置される。そして、ハウジング構成部材1、回路基板2、副空気通路14、発熱抵抗体3、感温抵抗体4等は、発熱抵抗体式空気流量測定装置に一体となったモジュールとして構成されている。   In the auxiliary air passage constituting member 10, a heating resistor 3 for detecting the air flow rate and a temperature sensitive resistor 4 for compensating the intake air temperature are provided via a support 5 constituted by a conductive member. Arranged so as to be electrically connected to the circuit board 2. The housing component 1, the circuit board 2, the auxiliary air passage 14, the heating resistor 3, the temperature sensitive resistor 4 and the like are configured as a module integrated with the heating resistor type air flow measuring device.

また、吸気管路を構成する主空気構成部材20の壁面には穴25が形成されており、この穴25より発熱抵抗体式空気流量測定装置の副空気通路14部分を外部より挿入して副空気通路構成部材10の壁面とハウジング部材1とをネジ7等で機械的強度を保つように固定されている。   Further, a hole 25 is formed in the wall surface of the main air constituting member 20 constituting the intake pipe, and the sub air passage 14 portion of the heating resistor type air flow measuring device is inserted from the hole 25 from the outside to obtain the sub air. The wall surface of the passage constituting member 10 and the housing member 1 are fixed with screws 7 or the like so as to maintain mechanical strength.

また、副空気通路構成部材10と主空気通路構成部材20との間にシール材6を取り付けて、吸気管内外との気密性を保っている。   Moreover, the sealing material 6 is attached between the sub air passage constituting member 10 and the main air passage constituting member 20 to maintain the airtightness between the inside and outside of the intake pipe.

次に、水滴飛散時の発熱抵抗体式空気流量測定装置の計測誤差について図3を使い説明する。   Next, the measurement error of the heating resistor type air flow measuring device when water droplets are scattered will be described with reference to FIG.

図3は、発熱抵抗体に水滴が付着する様子を簡易モデルで記載した図である。図3において、水滴202は、吸入空気203により吸気管の入口から移動され、エアクリーナ200内のエアフィルタ201でトラップされる。   FIG. 3 is a diagram describing a state in which water droplets adhere to the heating resistor using a simple model. In FIG. 3, the water droplet 202 is moved from the inlet of the intake pipe by the intake air 203 and is trapped by the air filter 201 in the air cleaner 200.

このエアフィルタ201における水滴のトラップ量が多くなると、エアフィルタ201でトラップ出来る限界を超えてしまい、エアフィルタ201から吸気管内に水滴204が飛散してしまう。   When the trap amount of water droplets in the air filter 201 increases, the limit that can be trapped by the air filter 201 is exceeded, and the water droplets 204 are scattered from the air filter 201 into the intake pipe.

このため、エアフィルタ201の下流にある発熱抵抗体式空気流量測定装置205まで再飛散した水滴204が飛んでくると、発熱抵抗体206に水滴が衝突してしまう。   For this reason, when the water droplet 204 re-sprayed to the heating resistor type air flow measuring device 205 downstream of the air filter 201 flies, the water droplet collides with the heating resistor 206.

発熱抵抗体206は、常時100℃以上に加熱するため、水滴が衝突すると水を加熱するための加熱電流を必要とする。このため、発熱抵抗体206の計測信号が瞬時に跳ね上がり、水が蒸発してしまうと通常の加熱電流に戻る。したがって、発熱抵抗体の計測信号は、図4に示すようにスパイク状のような波形となる。   Since the heating resistor 206 is constantly heated to 100 ° C. or higher, it requires a heating current for heating water when a water droplet collides. For this reason, when the measurement signal of the heating resistor 206 jumps up instantaneously and the water evaporates, it returns to the normal heating current. Therefore, the measurement signal of the heating resistor has a spike-like waveform as shown in FIG.

また、水滴が連続して発熱抵抗体206に衝突すると、スパイク波形が連続して生じ、水の蒸発が終わる前に次の水滴が衝突し、発熱抵抗体の計測空気流量信号の平均値自身が上昇してしまう計測誤差となってしまう。   Further, when water droplets continuously collide with the heating resistor 206, a spike waveform is continuously generated, and the next water droplet collides before the evaporation of water ends, and the average value of the measured air flow signal of the heating resistor itself is The measurement error will rise.

したがって、水滴の発熱抵抗体への衝突は、極力回避しなければならず、副通路内の水滴は、発熱抵抗体に衝突する以前に外部に排出する必要がある。   Therefore, the collision of water droplets with the heating resistor must be avoided as much as possible, and the water droplets in the sub-passage must be discharged outside before colliding with the heating resistor.

次に、本発明の一実施形態における発熱抵抗体式空気流量測定装置の副空気通路構造について図1、図2を参照して説明する。   Next, the auxiliary air passage structure of the heating resistor type air flow rate measuring device according to one embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の一実施形態である発熱抵抗体式空気流量測定装置の要部縦断面図であり、図2の(A)は、図1のA−A線に沿った断面図(ただし、ターミナル部材102は省略)、図2の(B)は、図1に示した発熱抵抗体式空気流量測定装置を底面から見た図である。   FIG. 1 is a longitudinal sectional view of a main part of a heating resistor type air flow measuring device according to an embodiment of the present invention. FIG. 2A is a sectional view taken along the line AA in FIG. The terminal member 102 is omitted), and FIG. 2B is a view of the heating resistor type air flow measuring device shown in FIG. 1 as viewed from the bottom.

図1及び図2において、副空気通路は、副空気通路構成部材120により形成され、四角形状の副空気通路入口111から始まり、曲り通路部113を有する第1の副空気通路110と、出口部112(112a、112b)と、副空気通路入口111と曲り通路部113の間にある第2の副空気通路114とを備える。   1 and 2, the auxiliary air passage is formed by the auxiliary air passage constituting member 120, starts from a rectangular auxiliary air passage inlet 111, has a first auxiliary air passage 110 having a curved passage portion 113, and an outlet portion. 112 (112a, 112b) and a second sub air passage 114 between the sub air passage inlet 111 and the curved passage portion 113.

第1の副空気通路110は、内回り面部125と、外回り面部123と、両側面部117、118とを備える。そして、外回り面部123は、入り口111と連絡する第1の平面部127と、傾斜面部116と、この傾斜面部116に続く曲面部126と、この曲面部126に続く、第2の平面部124とを備えている。   The first sub air passage 110 includes an inner surface portion 125, an outer surface portion 123, and both side surfaces 117 and 118. The outer peripheral surface portion 123 includes a first flat surface portion 127 communicating with the entrance 111, an inclined surface portion 116, a curved surface portion 126 following the inclined surface portion 116, and a second flat surface portion 124 following the curved surface portion 126. It has.

第1の平面部126の延長面と傾斜面部116とのなす角度は、0度を超え、90度未満となっている。   The angle formed between the extended surface of the first flat surface portion 126 and the inclined surface portion 116 is more than 0 degree and less than 90 degrees.

第1の副空気通路110内の、上記平面部124及び内回り面部125により形成される通路121内には、吸入空気流量測定を行うための発熱抵抗体100と、この発熱抵抗体100に近接して吸入空気温度の補償用の感温抵抗体101とが設置される。これら発熱抵抗体100及び感温抵抗体101は、各々ターミナル部材102を介して制御回路(図示せず)と電気的に接続されている。   In the passage 121 formed by the flat surface portion 124 and the inner peripheral surface portion 125 in the first sub air passage 110, a heating resistor 100 for measuring the intake air flow rate and a proximity to the heating resistor 100 are provided. A temperature sensitive resistor 101 for compensating the intake air temperature is installed. The heating resistor 100 and the temperature sensitive resistor 101 are each electrically connected to a control circuit (not shown) via a terminal member 102.

また、第2の副空気通路114の一壁面は傾斜面116の延長面により形成される。そして、第2の副空気通路114は、上記傾斜面116の延長面よりなる一壁面と、この一壁面に対向するとともにほぼ平行な他の壁面122と、側面部117及び118とにより形成される。   One wall surface of the second sub air passage 114 is formed by an extended surface of the inclined surface 116. The second sub air passage 114 is formed by one wall surface formed by an extension surface of the inclined surface 116, another wall surface 122 that is opposed to and substantially parallel to the one wall surface, and side surface portions 117 and 118. .

また、第2の副空気通路114の出口面上流側(空気流れの上流側)面115は斜面又は翼型になっている。そして、第2の副空気通路114の空気流れ方向は、翼型に沿うような流れ方向となっており、曲り通路部113の空気流れ方向とほぼ一致する方向となる。これにより、入り口111から第1の副空気通路110に入った空気は、第2の副空気通路114から排出されることはない。出口面上流側面115のさらに上流側は、平面部(底面部)119が形成されている。   Further, the upstream surface (upstream side of the air flow) 115 of the outlet surface of the second sub air passage 114 has a slope or a blade shape. The air flow direction of the second sub air passage 114 is a flow direction along the airfoil, and is substantially coincident with the air flow direction of the curved passage portion 113. As a result, the air that has entered the first sub air passage 110 from the inlet 111 is not discharged from the second sub air passage 114. A flat surface portion (bottom surface portion) 119 is formed further upstream of the outlet surface upstream side surface 115.

また、第2の副空気通路114の通路長さは図示の破線の範囲となっており非常に短い距離で、穴に近いような通路構成となっている。この第2の副空気通路114の通路長さは、幅寸法(図2の(B)に示す寸法W)より短い値となっている。   Further, the passage length of the second sub air passage 114 is in the range indicated by the broken line in the drawing, and has a passage configuration that is very short and close to the hole. The passage length of the second sub air passage 114 is shorter than the width dimension (dimension W shown in FIG. 2B).

流量検出部である発熱抵抗体100の上流側における曲り通路部113は進入してきた水滴を遠心分離の効果により曲りの外側壁面126に追いやる働きを持っている。この効果により、発熱抵抗体100には水滴が衝突せず、前記したようなスパイク波形のような計測誤差を発生する事は無い。   The curved passage portion 113 on the upstream side of the heating resistor 100 that is a flow rate detecting portion has a function of driving the water droplets that have entered into the curved outer wall surface 126 by the effect of centrifugal separation. Due to this effect, water droplets do not collide with the heating resistor 100, and a measurement error such as a spike waveform as described above does not occur.

ここで、第1の副空気通路110の設置は図示したように図1の上側が天方向であり、下側が地方向になるように設置される。このため、第2の副空気通路114は地方向に出口が開口するような向きに取り付けられる。   Here, the first sub air passage 110 is installed so that the upper side in FIG. 1 is the top direction and the lower side is the ground direction as shown in the figure. For this reason, the second sub air passage 114 is attached in such a direction that the outlet opens in the ground direction.

このため、仮に図1に示すような状態で、第1の副空気通路110内に水が浸入し、高流速状態から、低流速状態に急激に変化した場合、水滴は、空気流により移動されることはなく、重力により傾斜面116に沿って地方向に集まり、第2の水抜き穴である第2の副空気通路114から外部に排出されてしまう。   Therefore, if water enters the first auxiliary air passage 110 in the state shown in FIG. 1 and changes rapidly from a high flow rate state to a low flow rate state, the water droplets are moved by the air flow. It collects in the ground direction along the inclined surface 116 due to gravity, and is discharged to the outside from the second sub air passage 114 which is the second drain hole.

これにより、第1の副空気通路110内に水は溜まらず、上述したように、急激に車輌が停止した時等に副空気通路内に水等が残らず、水等の液体による空気流量計測誤差を低減することが可能となる。   As a result, water does not accumulate in the first sub air passage 110, and as described above, when the vehicle stops suddenly, water does not remain in the sub air passage, and air flow measurement with a liquid such as water is performed. The error can be reduced.

この第2の副空気通路114の開口断面積は、水膜が形成されない程度の大きさとする必要がある。水膜が形成されると、充分に水滴が排出されない可能性があるからである。例えば、4mm×4mm以上の開口面積を有すればよい。   The opening cross-sectional area of the second sub air passage 114 needs to be large enough not to form a water film. This is because if the water film is formed, water droplets may not be sufficiently discharged. For example, what is necessary is just to have an opening area of 4 mm x 4 mm or more.

以上のように、本発明の一実施形態によれば、空気流量計測装置の副空気通路に、空気流の流れ方向に変動を与えることなく、かつ、空気流の流速が低流速の状態で、副空気通路内に滞留した水滴を、重力方向に副空気通路から排出する第2の副空気通路114とを備え、水滴による有効断面積の減少を防止することができる。   As described above, according to one embodiment of the present invention, the sub-air passage of the air flow rate measuring device does not vary in the flow direction of the air flow, and the flow rate of the air flow is low. A second sub-air passage 114 that discharges water droplets staying in the sub-air passage from the sub-air passage in the direction of gravity can be provided to prevent a reduction in effective cross-sectional area due to the water droplets.

したがって、広範囲な空気流量範囲において、流量検出素子である発熱抵抗体が設置される副空気通路内への水等の液体付着等による発熱抵抗体の出力特性の変化量を最小限に抑える事が可能な空気流量測定装置を実現することができる。   Therefore, in a wide range of air flow, it is possible to minimize the amount of change in the output characteristics of the heating resistor due to liquid adhesion such as water in the sub air passage where the heating resistor as the flow rate detection element is installed. A possible air flow measuring device can be realized.

本発明の一実施形態は、上述と言い方を変えれば、副流体通路入口と曲り部との間で少なくとも二つの通路に分流し、発熱抵抗体と曲り部とを有する第1の副流体通路と、この第1の副流体通路を流れる空気の持つ慣性力とは異なる方向に通路方向を有する第2の副流体通路とを備え、第2の副流体通路の出口は、上記主通路に流れる流体の流れ方向とほぼ直交して開口している。   In other words, the embodiment of the present invention is divided into at least two passages between the inlet of the auxiliary fluid passage and the bent portion, and the first auxiliary fluid passage having the heating resistor and the bent portion. And a second sub-fluid passage having a passage direction different from the inertial force of the air flowing through the first sub-fluid passage, and an outlet of the second sub-fluid passage is a fluid flowing through the main passage The opening is almost perpendicular to the flow direction.

また、第2の副空気通路114の出口の、主通路に流れる空気の上流側には、斜面又は翼型部材115が形成され、主流体通路の流れ方向から第2の副流体通路114の出口を投影した際に、上記斜面又は翼型の形状により第2の副空気通路114の出口が隠されている。   Further, an inclined surface or an airfoil member 115 is formed on the upstream side of the air flowing in the main passage at the outlet of the second auxiliary air passage 114, and the outlet of the second auxiliary fluid passage 114 is formed from the flow direction of the main fluid passage. Is projected, the outlet of the second auxiliary air passage 114 is concealed by the shape of the slope or airfoil.

次に、本発明の他の実施形態について、図8を参照して説明する。
この実施形態は、本発明を電子燃料噴射方式の内燃機関制御システム(内燃機関の燃料噴射システム)に適用した場合の例である。
Next, another embodiment of the present invention will be described with reference to FIG.
This embodiment is an example when the present invention is applied to an electronic fuel injection type internal combustion engine control system (fuel injection system for an internal combustion engine).

図8において、エアクリーナ54から吸入された吸入空気67は、図1、図2に示した副空気通路110を有する発熱抵抗式空気流量測定装置のボディ53、吸入ダクト55、スロットルボディ58及び燃料が供給されるインジェクタ60を備えたインテークマニホールド59を経て、エンジンシリンダ62に吸入される。一方、エンジンシリンダ62で発生したガス63は排気マニホールド64を経て外部に排出される。   In FIG. 8, the intake air 67 drawn from the air cleaner 54 includes the body 53, the suction duct 55, the throttle body 58, and the fuel of the heating resistance type air flow measuring device having the auxiliary air passage 110 shown in FIGS. The gas is sucked into the engine cylinder 62 through an intake manifold 59 provided with an injector 60 to be supplied. On the other hand, the gas 63 generated in the engine cylinder 62 is discharged to the outside through the exhaust manifold 64.

発熱抵抗式空気流量測定装置の回路モジュール52から出力される空気流量信号、温度センサ51からの吸入空気温度信号、スロットル角度センサ57から出力されるスロットルバルブ角度信号、排気マニホールド64に設けられた酸素濃度計65から出力される酸素濃度信号及び、エンジン回転速度計61から出力されるエンジン回転速度信号等は、コントロールユニット66に入力される。   Air flow signal output from the circuit module 52 of the heating resistance type air flow measuring device, intake air temperature signal from the temperature sensor 51, throttle valve angle signal output from the throttle angle sensor 57, oxygen provided in the exhaust manifold 64 The oxygen concentration signal output from the concentration meter 65, the engine rotation speed signal output from the engine rotation speed meter 61, and the like are input to the control unit 66.

そして、コントロールユニット66は、入力されたこれらの信号を逐次演算して最適な燃料噴射量とアイドルエアコントロールバルブ56の開度を求め、その値を使って前記インジェクタ60及びアイドルコントロールバルブ56を制御する。   The control unit 66 sequentially calculates these input signals to obtain the optimum fuel injection amount and the opening degree of the idle air control valve 56, and controls the injector 60 and the idle control valve 56 using the values. To do.

以上のように、本発明の一実施形態による空気流量計測装置を電子燃料噴射方式の内燃機関に適用すれば、高精度に吸入空気流量を測定することができ、高精度のエンジン制御を行うことができる。   As described above, when the air flow rate measuring device according to one embodiment of the present invention is applied to an electronic fuel injection type internal combustion engine, the intake air flow rate can be measured with high accuracy, and highly accurate engine control is performed. Can do.

なお、上述した例は、空気車輌でのエンジン制御が主な使用用途になるが、船舶や発電機等のディーゼルエンジンを使った制御に対しても同様に利用が可能となる。   The above-described example is mainly used for engine control in an air vehicle, but can also be used for control using a diesel engine such as a ship or a generator.

また、上述した例は、本発明を空気流量測定装置に適用した場合の例であるが、空気以外の流体、例えば、水素ガス等のガス状流体の流量計測装置にも、本発明は適用可能である。   Moreover, although the example mentioned above is an example at the time of applying this invention to an air flow measuring device, this invention is applicable also to the flow measuring device of fluids other than air, for example, gaseous fluids, such as hydrogen gas. It is.

本発明の一実施形態である空気流量計測装置の要部縦断面図である。It is a principal part longitudinal cross-sectional view of the air flow measuring device which is one Embodiment of this invention. 図1のA−A線に沿った断面及び底面を示す図である。It is a figure which shows the cross section and bottom face which followed the AA line of FIG. 吸気系における流量計計測相装置への水飛散を説明する図である。It is a figure explaining the water scattering to the flowmeter measurement phase apparatus in an intake system. 吸気系の水飛散時の計測誤差発生の説明図である。It is explanatory drawing of measurement error generation | occurrence | production at the time of water scattering of an intake system. 一般的な空気流量測定装置における発熱抵抗体の配置構造の説明図である。It is explanatory drawing of the arrangement structure of the heating resistor in a general air flow measuring device. 図5に示した装置を空気が流れる上流側から見た図である。It is the figure which looked at the apparatus shown in FIG. 5 from the upstream which the air flows. 発熱抵抗体式空気流量測定装置の概略回路構成図である。It is a schematic circuit block diagram of a heating resistor type air flow measuring device. 本発明の他の実施形態である発熱抵抗体式空気流量測定装置を使った電子燃料噴射方式の内燃機関制御システムの全体概略構成図である。It is the whole schematic block diagram of the internal combustion engine control system of the electronic fuel injection system using the heating resistor type air flow measuring device which is other embodiments of the present invention.

符号の説明Explanation of symbols

51 吸気温度センサ
52 回路モジュール
53 発熱抵抗体式空気流量測定装置のボディ
54 エアクリーナ
55 吸入ダクト
56 アイドルエアコントロールバルブ
57 スロットル角度センサ
58 スロットルボディ
59 吸気マニホールド
60 インジェクタ
61 エンジン回転速度計
62 エンジンシリンダ
63 ガス
64 排気マニホールド
65 酸素濃度計
66 コントロールユニット
67 吸入空気
100 発熱抵抗体
101 感温抵抗体
102 ターミナル部材
110 第1の副空気通路
111 副空気通路入口
112 副空気通路出口
113 曲り通路
114 第2の副空気通路
115 第2の副空気通路114の出口傾斜面
116 第1の副空気通路の傾斜面
117、118 側面部
119 平面部(底面部)
120 副空気通路構成部材
122 他の壁面
123 外回り面部
124 第2の平面部
125 内回り面部
126 曲面部
127 第1の平面部
DESCRIPTION OF SYMBOLS 51 Intake temperature sensor 52 Circuit module 53 Body of heating resistor type air flow measuring device 54 Air cleaner 55 Intake duct 56 Idle air control valve 57 Throttle angle sensor 58 Throttle body 59 Intake manifold 60 Injector 61 Engine tachometer 62 Engine cylinder 63 Gas 64 Exhaust manifold 65 Oxygen concentration meter 66 Control unit 67 Intake air 100 Heating resistor 101 Temperature sensitive resistor 102 Terminal member 110 First sub air passage 111 Sub air passage inlet 112 Sub air passage outlet 113 Curved passage 114 Second sub air Passage 115 The outlet inclined surface of the second sub air passage 114 116 The inclined surface of the first sub air passage 117, 118 Side surface portion 119 Flat surface portion (bottom surface portion)
120 Sub-air passage constituting member 122 Other wall surface 123 Outer surface portion 124 Second plane portion 125 Inner surface portion 126 Curved portion 127 First plane portion

Claims (7)

主通路に流れる流体を流体入り口部から流入する副流体通路と、この副流体通路内に配置される発熱抵抗体と、この発熱的抵抗体に加熱電流を供給し、流体の流量を計測する流量計測部とを有する発熱抵抗体式流体流量計測装置において、
上記副流体通路は、内回り面部及び外回り面部を有する第1の副流体通路と、この第1の副流体通路に残留する水分を副流体通路外に排出する第2の副流体通路とを備え、
上記第1の副流体通路の外回り面部は、上記流体入り口部に続く第1の平面部と、この第1の平面部に対して傾斜する傾斜面部と、この傾斜面部に続く曲面部と、この曲面部に続く第2の平面部とを有し、
上記第2の副流体通路は、上記第1の副流体通路の第1の平面部と傾斜面部との間に形成され、上記傾斜面部の延長面である一壁面と、この一壁面に対向し、ほぼ平行な壁面とを有することを特徴とする発熱抵抗体式流体流量計測装置。
A sub-fluid passage through which the fluid flowing in the main passage flows from the fluid inlet, a heating resistor disposed in the sub-fluid passage, and a flow rate for supplying a heating current to the exothermic resistor and measuring the flow rate of the fluid In a heating resistor type fluid flow measuring device having a measuring unit,
The sub-fluid passage includes a first sub-fluid passage having an inner face portion and an outer face portion, and a second sub-fluid passage that discharges moisture remaining in the first sub-fluid passage to the outside of the sub-fluid passage,
The outer peripheral surface portion of the first sub-fluid passage includes a first flat surface portion following the fluid inlet portion, an inclined surface portion inclined with respect to the first flat surface portion, a curved surface portion following the inclined surface portion, A second flat surface portion following the curved surface portion,
The second sub-fluid passage is formed between the first flat surface portion and the inclined surface portion of the first sub-fluid passage, and is opposed to the one wall surface that is an extension surface of the inclined surface portion. A heating resistor type fluid flow rate measuring device characterized by having a substantially parallel wall surface.
加熱電流を流して発熱し、吸入流体への放熱を基に流体流量を測定する発熱抵抗体式流体流量測定装置であり、少なくとも一つの曲り部を有し、主通路に流れる流体が流入される副流体通路を備え、上記副流体通路内の曲り部の下流側に、流体流量を計測するための発熱抵抗体が配置される発熱抵抗体式流体流量測定装置において、
上記副流体通路は、副流体通路入口と曲り部との間で少なくとも二つの通路に分流し、上記発熱抵抗体と曲り部とを有する第1の副流体通路と、この第1の副流体通路を流れる流体の持つ慣性力とは異なる方向に通路方向を有する第2の副流体通路とを備えることを特徴とする発熱抵抗体式流体流量測定装置。
A heating resistor type fluid flow measuring device that generates heat by flowing a heating current and measures a fluid flow rate based on heat radiation to an intake fluid, and has at least one bent portion, and a sub-flow into which a fluid flowing into a main passage is introduced. In a heating resistor type fluid flow measuring device comprising a fluid passage, and a heating resistor for measuring a fluid flow rate is disposed downstream of the bent portion in the sub-fluid passage,
The sub-fluid passage is divided into at least two passages between the sub-fluid passage inlet and the bent portion, the first sub-fluid passage having the heating resistor and the bent portion, and the first sub-fluid passage. And a second sub-fluid passage having a passage direction in a direction different from the inertial force of the fluid flowing through the heating resistor.
請求項1又は2記載の発熱抵抗体式流体流量測定装置において、上記第2の副流体通路の流体の流れ方向長さは、この第2の副流体通路の幅寸法よりも短いことを特徴とする発熱抵抗体式流体流量測定装置。   3. The heating resistor type fluid flow measuring device according to claim 1, wherein a length of the second sub-fluid passage in a fluid flow direction is shorter than a width dimension of the second sub-fluid passage. Heating resistor type fluid flow measuring device. 請求項1又は2記載の発熱抵抗体式流体流量測定装置において、上記第2の副流体通路の出口開口面積は、少なくとも4mm×4mmを有することを特徴とする発熱抵抗体式空気流量測定装置。   3. The heating resistor type air flow measuring device according to claim 1, wherein an outlet opening area of the second sub-fluid passage is at least 4 mm × 4 mm. 請求項1又は2記載の発熱抵抗体式流体流量測定装置において、上記第2の副流体通路の出口の、主通路に流れる流体の上流側には、斜面又は翼型部材が形成され、主流体通路の流れ方向から第2の副流体通路の出口を投影した際に、上記斜面又は翼型の形状により第2の副流体通路の出口が隠されていることを特徴とする発熱抵抗体式流体流量測定装置。   3. The heating resistor type fluid flow measuring device according to claim 1, wherein a slope or an airfoil member is formed on the upstream side of the fluid flowing in the main passage at the outlet of the second sub-fluid passage, and the main fluid passage. A heating resistor type fluid flow measurement characterized in that when the exit of the second sub-fluid passage is projected from the flow direction of the second sub-fluid, the exit of the second sub-fluid passage is concealed by the shape of the slope or wing shape. apparatus. 請求項1又は2記載の発熱抵抗体式流体流量測定装置において、上記流体は空気であることを特徴とする発熱抵抗体式流体流量測定装置。   3. A heating resistor type fluid flow rate measuring apparatus according to claim 1, wherein the fluid is air. 内燃機関と、この内燃機関に燃料を噴射する燃料噴射弁と、上記内燃機関に空気を供給する主通路と、この空気通路内に配置され、内燃機関に供給される空気流量を調節する空気量調整手段と、上記空気通路を流れる空気流量を測定する空気流量測定手段と、この空気流量測定手段からの空気流量信号に基づいて、上記燃料噴射弁から噴射される燃料噴射量を制御するコントロールユニットとを有する内燃機関の燃料噴射システムにおいて、
上記空気流量測定手段は、
主通路に流れる空気を空気入り口部から流入する副流体通路と、この副空気通路内に配置される発熱抵抗体と、この発熱的抵抗体に加熱電流を供給し、空気流量を計測する流量計測部とを有し、
上記副空気通路は、内回り面部及び外回り面部を有する第1の副空気通路と、この第1の副空気通路に残留する水分を副空気通路外には排出する第2の副空気通路とを備え、
上記第1の副空気通路の外回り面部は、上記空気入り口部に続く第1の平面部と、この第1の平面部に対して傾斜する傾斜面部と、この傾斜面部に続く曲面部と、この曲面部に続く第2の平面部とを有し、
上記第2の副空気通路は、上記第1の副空気通路の第1の平面部と傾斜面部との間に形成され、上記傾斜面部の延長面である一壁面と、この一壁面に対向し、ほぼ平行な他の壁面とを有することを特徴とする内燃機関の燃料噴射システム。
An internal combustion engine, a fuel injection valve that injects fuel into the internal combustion engine, a main passage that supplies air to the internal combustion engine, and an air amount that is disposed in the air passage and adjusts an air flow rate supplied to the internal combustion engine An adjusting unit, an air flow rate measuring unit for measuring an air flow rate through the air passage, and a control unit for controlling the fuel injection amount injected from the fuel injection valve based on an air flow rate signal from the air flow rate measuring unit In a fuel injection system of an internal combustion engine having
The air flow rate measuring means is
Flow measurement that measures the air flow by supplying a heating current to the sub-fluid passage that flows the air flowing into the main passage from the air inlet, the heating resistor disposed in the sub-air passage, and the heating resistor And
The sub air passage includes a first sub air passage having an inner surface portion and an outer surface portion, and a second sub air passage that discharges moisture remaining in the first sub air passage to the outside of the sub air passage. ,
The outer surface portion of the first sub air passage includes a first flat surface portion following the air inlet portion, an inclined surface portion inclined with respect to the first flat surface portion, a curved surface portion following the inclined surface portion, A second flat surface portion following the curved surface portion,
The second sub air passage is formed between the first flat surface portion and the inclined surface portion of the first sub air passage, and is opposed to the one wall surface that is an extension surface of the inclined surface portion. And a fuel injection system for an internal combustion engine, characterized by having other substantially parallel wall surfaces.
JP2006002567A 2006-01-10 2006-01-10 Heating resistor type fluid flow measuring device Active JP4836179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006002567A JP4836179B2 (en) 2006-01-10 2006-01-10 Heating resistor type fluid flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006002567A JP4836179B2 (en) 2006-01-10 2006-01-10 Heating resistor type fluid flow measuring device

Publications (2)

Publication Number Publication Date
JP2007183212A true JP2007183212A (en) 2007-07-19
JP4836179B2 JP4836179B2 (en) 2011-12-14

Family

ID=38339432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002567A Active JP4836179B2 (en) 2006-01-10 2006-01-10 Heating resistor type fluid flow measuring device

Country Status (1)

Country Link
JP (1) JP4836179B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075518A (en) * 2009-10-02 2011-04-14 Hitachi Automotive Systems Ltd Thermal fluid rate measurement device
JP2013024654A (en) * 2011-07-19 2013-02-04 Denso Corp Air flow measurement device
JP2013190447A (en) * 2013-07-04 2013-09-26 Denso Corp Air flow measurement instrument
JP6289585B1 (en) * 2016-10-25 2018-03-07 三菱電機株式会社 Flow measuring device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10217883A1 (en) * 2002-04-22 2003-11-06 Siemens Ag Air flow meter for a motor vehicle combustion engine has a drain hole in the measurement channel to permit the escape of water brought in with the inlet air and prevent damage to a hot-film probe
JP2004037131A (en) * 2002-07-01 2004-02-05 Hitachi Ltd Equipment for measuring gas flow rate
JP2004519690A (en) * 2001-04-20 2004-07-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus for measuring at least one parameter of a medium flowing in a conduit
JP2004226315A (en) * 2003-01-24 2004-08-12 Hitachi Ltd Thermal flow rate measuring device
JP2004340785A (en) * 2003-05-16 2004-12-02 Mitsubishi Electric Corp Air flow rate measuring device
JP2005509150A (en) * 2001-11-05 2005-04-07 シーメンス アクチエンゲゼルシヤフト Device comprising an air suction pipe and an air mass sensor device inserted into the air suction pipe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519690A (en) * 2001-04-20 2004-07-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus for measuring at least one parameter of a medium flowing in a conduit
JP2005509150A (en) * 2001-11-05 2005-04-07 シーメンス アクチエンゲゼルシヤフト Device comprising an air suction pipe and an air mass sensor device inserted into the air suction pipe
DE10217883A1 (en) * 2002-04-22 2003-11-06 Siemens Ag Air flow meter for a motor vehicle combustion engine has a drain hole in the measurement channel to permit the escape of water brought in with the inlet air and prevent damage to a hot-film probe
JP2004037131A (en) * 2002-07-01 2004-02-05 Hitachi Ltd Equipment for measuring gas flow rate
JP2004226315A (en) * 2003-01-24 2004-08-12 Hitachi Ltd Thermal flow rate measuring device
JP2004340785A (en) * 2003-05-16 2004-12-02 Mitsubishi Electric Corp Air flow rate measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075518A (en) * 2009-10-02 2011-04-14 Hitachi Automotive Systems Ltd Thermal fluid rate measurement device
JP2013024654A (en) * 2011-07-19 2013-02-04 Denso Corp Air flow measurement device
JP2013190447A (en) * 2013-07-04 2013-09-26 Denso Corp Air flow measurement instrument
JP6289585B1 (en) * 2016-10-25 2018-03-07 三菱電機株式会社 Flow measuring device
US10612955B2 (en) 2016-10-25 2020-04-07 Mitsubishi Electric Corporation Flow measuring device having plurality of bending portions

Also Published As

Publication number Publication date
JP4836179B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4979262B2 (en) Flow measuring device
JP3709373B2 (en) Flow measuring device
JP5049996B2 (en) Thermal flow meter
US7654134B2 (en) Air flow measuring device
JP5168223B2 (en) Air flow measurement device
US7360414B2 (en) Device for determining at least one parameter of a medium flowing in a conduit and having a separation opening in the bypass passage
JP2005315740A (en) Air flow rate measuring instrument
JP4836179B2 (en) Heating resistor type fluid flow measuring device
JP2004226315A (en) Thermal flow rate measuring device
US6868722B2 (en) Air flow rate measuring apparatus
JP2004037131A (en) Equipment for measuring gas flow rate
WO2020202722A1 (en) Physical-quantity detection device
JP5085889B2 (en) Heating resistor type flow measuring device
CN109196311B (en) Thermal flowmeter
JP5542614B2 (en) Flow measuring device
JP5272801B2 (en) Air flow measurement device
JP4909561B2 (en) Heating resistor type air flow measuring device
JP5010877B2 (en) Thermal gas flow measuring device
JP2009063391A (en) Intake-system component mounted with heating resistor type air flow rate measuring device
JP5462114B2 (en) Heating resistor type air flow measuring device
JP2003161652A (en) Flow rate measuring device
JP2021012122A (en) Physical quantity detection device
JPH08278179A (en) Exothermic resistance type air flow measuring device
JPH109921A (en) Air flow rate measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350