JP2007182991A - Vacuum heat insulation material and glass fiber - Google Patents

Vacuum heat insulation material and glass fiber Download PDF

Info

Publication number
JP2007182991A
JP2007182991A JP2006330508A JP2006330508A JP2007182991A JP 2007182991 A JP2007182991 A JP 2007182991A JP 2006330508 A JP2006330508 A JP 2006330508A JP 2006330508 A JP2006330508 A JP 2006330508A JP 2007182991 A JP2007182991 A JP 2007182991A
Authority
JP
Japan
Prior art keywords
glass
heat insulating
vacuum heat
insulating material
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006330508A
Other languages
Japanese (ja)
Other versions
JP2007182991A5 (en
JP5013836B2 (en
Inventor
Takeshi Katsube
毅 勝部
Hitoshi Ozaki
仁 尾崎
Tomonao Amayoshi
智尚 天良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006330508A priority Critical patent/JP5013836B2/en
Publication of JP2007182991A publication Critical patent/JP2007182991A/en
Publication of JP2007182991A5 publication Critical patent/JP2007182991A5/ja
Application granted granted Critical
Publication of JP5013836B2 publication Critical patent/JP5013836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat insulation performance by reducing heat conduction of a solid component in a core material part, by restraining high density of a core material by atmospheric compression and an increase in a fiber contact part, by enhancing raw material strength of glass fiber used for the core material of a vacuum heat insulation material. <P>SOLUTION: This vacuum heat insulation material 1 is formed by sealing the core material 2 composed of the glass fiber under reduced pressure by an external capsule material 4 having gas barrier performance. The glass fiber is alkali boro-silicate glass including B<SB>2</SB>O<SB>3</SB>of 5 to 12 wt.% and the total of Al<SB>2</SB>O<SB>3</SB>and CaO of 9 to 12.8 wt.%, and a Young's modulus of the glass is set to 77.8 GPa or more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、真空断熱材及びガラス繊維に関するものである。   The present invention relates to a vacuum heat insulating material and glass fiber.

近年、地球温暖化の防止を目的に省エネルギー化が望まれており、民生用機器に対しても省エネルギー化の推進が行われている。特に、冷凍冷蔵庫に関しては、冷熱を効率的に利用するという観点から、優れた断熱性を有する断熱材が求められている。   In recent years, energy saving has been desired for the purpose of preventing global warming, and energy saving has been promoted for consumer devices. In particular, with respect to a refrigerator-freezer, a heat insulating material having excellent heat insulating properties is required from the viewpoint of efficiently using cold heat.

一般的な断熱材としては、グラスウールなどの繊維体やウレタンフォームなどの発泡体が用いられている。しかし、これらの断熱材の断熱性を向上するには断熱材の厚みを増大して適用する必要がある。よって、断熱材を設置できる内部空間に制限がある場合や、省スペース化や空間の有効利用が必要な場合には、従来の断熱材の適用は望ましくない。   As a general heat insulating material, a fiber body such as glass wool or a foam body such as urethane foam is used. However, it is necessary to increase the thickness of the heat insulating material in order to improve the heat insulating properties of these heat insulating materials. Therefore, when the internal space in which the heat insulating material can be installed is limited, or when space saving or effective use of the space is necessary, application of the conventional heat insulating material is not desirable.

このような課題を解決する一手段として、多孔体からなる芯材と、芯材を外包材によって覆い内部を減圧密閉して構成した真空断熱材がある。真空断熱材は、近年、省エネ競争が激化するなか、より一層、断熱性能の優れた真空断熱材が求められている。   As a means for solving such a problem, there are a core material made of a porous body and a vacuum heat insulating material configured by covering the core material with an outer packaging material and sealing the inside under reduced pressure. In recent years, vacuum heat insulating materials that are further superior in heat insulating performance have been demanded in the face of intensifying competition for energy saving in recent years.

一般に、断熱材の伝熱は、固体と気体成分の熱伝導、輻射、対流熱伝達により引き起こされる。一方、外包材内部を減圧してなる真空断熱材は、気体成分の熱伝導と対流熱伝達に関してはその影響は小さい。また、常温以下の温度領域での使用においては、輻射の寄与もほとんどない。   In general, heat transfer of a heat insulating material is caused by heat conduction, radiation, and convective heat transfer between a solid and a gas component. On the other hand, the vacuum heat insulating material formed by reducing the pressure inside the outer packaging material has little effect on the heat conduction and convective heat transfer of the gas component. In addition, there is almost no contribution of radiation when used in a temperature range below room temperature.

よって、常温以下で使用する保冷機器等に適用する真空断熱材においては、固体成分の熱伝導を抑制することが重要となる。そこで、断熱性能に優れる真空断熱材用の芯材として、種々の繊維材料が報告されている。   Therefore, it is important to suppress the heat conduction of the solid component in the vacuum heat insulating material applied to a cold insulation device used at room temperature or lower. Therefore, various fiber materials have been reported as a core material for vacuum heat insulating materials having excellent heat insulating performance.

例えば、芯材に、ガラス繊維、セラミック繊維、スラグウール繊維、ロックウール繊維等を用い、平均繊維長1mm以下、平均繊維径0.5乃至3μmと形状を適正化した無機質繊維が熱伝導の方向に対して垂直方向に配向されている真空断熱材が提案されている(例えば、特許文献1参照)。   For example, glass fibers, ceramic fibers, slag wool fibers, rock wool fibers, etc. are used as the core material, and the average fiber length is 1 mm or less, the average fiber diameter is 0.5 to 3 μm, and the shape of the inorganic fibers is the direction of heat conduction. There has been proposed a vacuum heat insulating material oriented in the vertical direction with respect to (see, for example, Patent Document 1).

本構成により、真空断熱材の芯材部分では、伝熱方向に対して一本の繊維を熱が伝わっていくような固体成分の熱伝導ではなく、各繊維間の接触点を介して次々と隣り合う繊維へと熱が伝わっていくため、伝熱方向に対しては接触している繊維間の熱伝導となる。   With this configuration, in the core material part of the vacuum heat insulating material, heat conduction of a single component is not performed so that heat is transmitted through one fiber in the heat transfer direction, but one after another through contact points between the fibers. Since heat is transferred to adjacent fibers, heat transfer is performed between the fibers in contact with each other in the heat transfer direction.

よって、繊維間の接触熱抵抗が存在するため、繊維一本がそのまま伝熱方向へ熱を伝えるような芯材と比べて芯材部分の伝熱を抑制している。さらに、繊維径及び繊維長を制御することにより、汎用性のある無機質繊維の適用が可能で、真空断熱材としての熱伝導率が安定的に0.01W/mK以下としたものである。
特開平7−167376号公報
Therefore, since the contact thermal resistance between the fibers exists, heat transfer in the core material portion is suppressed as compared with a core material in which one fiber directly transfers heat in the heat transfer direction. Furthermore, by controlling the fiber diameter and fiber length, it is possible to apply versatile inorganic fibers, and the thermal conductivity as a vacuum heat insulating material is stably set to 0.01 W / mK or less.
JP 7-167376 A

しかしながら、上記従来の真空断熱材の構成では、汎用性を備え、かつ真空断熱材の芯材部分における固体成分の熱伝導をこれ以上低減することは不可能であった。   However, the configuration of the conventional vacuum heat insulating material has versatility, and it has been impossible to further reduce the heat conduction of the solid component in the core portion of the vacuum heat insulating material.

本発明は、さらに芯材部分における固体成分の熱伝導を低減する新たな設計方針について、以下に述べる。   The present invention further describes a new design policy for reducing the heat conduction of the solid component in the core part.

無機質繊維を真空断熱材の芯材として適用した場合、減圧封止後に繊維全体としての反発力が大気圧縮応力と釣り合った状態で内部空間が保持される。この芯材を構成する繊維の素材強度を向上すれば、芯材は高反発性とすることができ、より低い嵩密度の芯材でも内部空間を保持することが実現し、伝熱媒体となる芯材固体を低減することができると考えられる。   When the inorganic fiber is applied as the core material of the vacuum heat insulating material, the internal space is maintained in a state where the repulsive force of the entire fiber is balanced with the atmospheric compressive stress after the vacuum sealing. If the material strength of the fibers constituting the core material is improved, the core material can be made to have high resilience, and it is possible to maintain the internal space even with a core material having a lower bulk density, which becomes a heat transfer medium. It is considered that the core material solid can be reduced.

また、芯材が高反発性となることで、より少ない繊維接触点数でも大気圧縮応力を支えられること、さらには大気圧縮応力による各繊維間の接触部が押し潰されることによる接触面積の増大をも抑制できるのではないかと考えられる。   In addition, since the core material has high resilience, the atmospheric compressive stress can be supported even with a smaller number of fiber contact points, and the contact area between the fibers due to the atmospheric compressive stress is crushed and the contact area can be increased. Can be suppressed.

つまり、材料及び製造面でのコストが安価なガラス繊維を芯材として用いる場合、そのガラス素材の強度を高めることができれば、汎用性を備え、かつ真空断熱材の断熱性能をさらに向上させ得ると考えた。   In other words, when using glass fiber with a low cost in terms of material and production as a core material, if the strength of the glass material can be increased, it has versatility and can further improve the heat insulating performance of the vacuum heat insulating material. Thought.

また、セラミック繊維を用いる場合には、高強度であるために大気圧縮時にも芯材部分の高密度化を抑制し、断熱性能を高めることは可能であるが、材料コストが高いこと、及び繊維化するための製造コストが極めて高いために汎用断熱材に用いる繊維としては好ましくない。   In addition, when using ceramic fibers, it is possible to suppress the densification of the core material part even during air compression and increase the heat insulation performance because of high strength, but the material cost is high and the fibers Since the manufacturing cost for converting to a very high temperature is not preferable as a fiber used for a general-purpose heat insulating material.

また、スラグウールやロックウールを用いる場合では、汎用ガラス繊維を用いるよりも更に断熱性能が悪化してしまう。これは、汎用ガラス繊維よりも更に強度が低いために、芯材部の高密度化、繊維接点数及びの接触面積増大が生じ、真空断熱材の断熱性能を低下させてしまっていると考えられる。   Moreover, in the case of using slag wool or rock wool, the heat insulation performance is further deteriorated compared to the case of using general-purpose glass fibers. This is because the strength is lower than that of general-purpose glass fiber, so that the density of the core part increases, the number of fiber contacts and the contact area increase occur, and it is considered that the heat insulation performance of the vacuum heat insulating material is lowered. .

本発明は、上記従来の課題を解決するもので、芯材部分の伝熱を抑制し、真空断熱材の断熱性能を飛躍的に向上させ、かつ製造コストを低減でき、汎用性が高く、さらには、芯材に適用する無機質繊維の機械強度及び耐久性を向上させ、芯材そのものは常圧下で建材等の断熱材としても有用な真空断熱材を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, suppresses heat transfer in the core material portion, dramatically improves the heat insulation performance of the vacuum heat insulating material, and can reduce the manufacturing cost, is highly versatile, An object of the present invention is to improve the mechanical strength and durability of the inorganic fiber applied to the core material, and to provide a vacuum heat insulating material that is useful as a heat insulating material for building materials or the like under normal pressure.

上記目的を達成するために、本発明は、B23が5乃至12重量%、Al23が0乃至7重量%、CaOが2乃至11重量%、Na2OとK2Oとの合計が8乃至20重量%を含むアルカリホウケイ酸ガラスであり、ガラスのヤング率が77.8GPa以上であるガラス繊維を、真空断熱材の芯材に用いたのである。 In order to achieve the above object, the present invention provides 5 to 12% by weight of B 2 O 3 , 0 to 7% by weight of Al 2 O 3 , 2 to 11% by weight of CaO, Na 2 O and K 2 O Glass fiber having a glass Young's modulus of 77.8 GPa or more is used as the core material of the vacuum heat insulating material.

これにより、汎用ガラスにおける素材自体の強度を高めることができるため、真空断熱材の芯材として適用した場合に、減圧封止後の大気圧縮応力による芯材の変形量を小さくでき、高密度化を抑制することができる。また、芯材の支持部となる各繊維同士の接触部においても、接触点数の減少が図れ、かつガラスの変形が小さいことは繊維間の接触部面積が小さいことを意味しており、各繊維間を伝わっていく熱量を低減できる。   As a result, the strength of the material itself in general-purpose glass can be increased, so when applied as a vacuum insulation core material, the amount of deformation of the core material due to atmospheric compressive stress after decompression sealing can be reduced and the density increased. Can be suppressed. Moreover, also in the contact part of each fiber used as the support part of a core material, the reduction | decrease of a contact point can be aimed at and the small deformation | transformation of glass means that the contact part area between fibers is small, and each fiber The amount of heat that travels between them can be reduced.

本発明の真空断熱材は、芯材部分における低い嵩密度を維持して、かつ繊維接触部の増大をも抑制することで、芯材部の繊維間伝熱量を低減できる。これにより、芯材固体成分の熱伝導を低減し、真空断熱材の断熱性能を飛躍的に改善する。よって、繊維長、繊維径や積層状態等、品質状態を変えることなく従来通りの製造で高い断熱効果が得られるため、製造が容易である。   The vacuum heat insulating material of the present invention can reduce the heat transfer amount between fibers in the core material part by maintaining a low bulk density in the core material part and also suppressing an increase in the fiber contact part. Thereby, the heat conduction of the core solid component is reduced, and the heat insulating performance of the vacuum heat insulating material is dramatically improved. Therefore, since a high heat insulation effect is obtained by conventional production without changing the quality state such as fiber length, fiber diameter, and lamination state, the production is easy.

本来、グラスウールにおけるガラス素材の硬さ及び強度は、断熱性能と無関係といえる物性であったにも関わらず、その素材の機械物性に着目し、より硬く強い繊維とすることで真空断熱材の断熱性能の改善効果が得られるということは驚くべき事実である。   Although the hardness and strength of the glass material in glass wool was originally a physical property that can be said to be irrelevant to the heat insulation performance, focusing on the mechanical properties of the material, heat insulation of the vacuum heat insulating material by making it a harder and stronger fiber It is a surprising fact that a performance improvement effect can be obtained.

また、これらのガラス繊維は、汎用グラスウールよりも高い機械強度を備えるために、取扱いも容易で、一般の建材用グラスウールや、補強材としても有用である。また、B23は溶融剤として機能するため、ガラス繊維製造時の熱エネルギーを抑えることができるだけでなく、従来品でも十分に安全性であるが、B23を5%以上含むガラス繊維は体内においてより迅速に溶解されるために人体安全性もさらに高まる方向である。 Moreover, since these glass fibers have higher mechanical strength than general-purpose glass wool, they are easy to handle and are useful as glass wool for general building materials and reinforcing materials. In addition, since B 2 O 3 functions as a melting agent, not only can heat energy during glass fiber production be suppressed, but even conventional products are sufficiently safe, but glass containing 5% or more of B 2 O 3 Since the fiber is dissolved more rapidly in the body, the safety of the human body is further increased.

請求項1記載の真空断熱材の発明は、ガラス繊維からなる芯材がガスバリア性を有する外包材で減圧密閉された真空断熱材であって、前記ガラス繊維は、B23が5乃至12重量%、Al23が0乃至7重量%、CaOが2乃至11重量%、Na2OとK2Oとの合計が8乃至20重量%を含むアルカリホウケイ酸ガラスであり、前記ガラスは、ヤング率が77.8GPa以上であるものである。 The invention of the vacuum heat insulating material according to claim 1 is a vacuum heat insulating material in which a core material made of glass fiber is hermetically sealed with an outer packaging material having a gas barrier property, and the glass fiber has 5 to 12 B 2 O 3. An alkali borosilicate glass containing, by weight, 0 to 7% by weight of Al 2 O 3 , 2 to 11% by weight of CaO, and 8 to 20% by weight of a total of Na 2 O and K 2 O. The Young's modulus is 77.8 GPa or more.

これにより、ガラス繊維の素材強度を高め、大気圧縮応力による芯材の高密度化を抑制する。さらには、ガラス繊維の変形量を小さくし、各繊維間の接触面積の増大を抑制できる。   Thereby, the raw material intensity | strength of glass fiber is raised and densification of the core material by an atmospheric compressive stress is suppressed. Furthermore, the deformation amount of the glass fiber can be reduced, and an increase in the contact area between the fibers can be suppressed.

以上の作用により、真空断熱材の芯材部分における固体成分の熱伝導を抑制し、断熱性能が向上する。   By the above effect | action, the heat conduction of the solid component in the core material part of a vacuum heat insulating material is suppressed, and heat insulation performance improves.

請求項2に記載の真空断熱材の発明は、請求項1記載の発明におけるガラスが、100Pa・sの粘度を示す温度が、990乃至1065℃であるものである。   According to a second aspect of the present invention, the glass according to the first aspect of the present invention has a temperature at which the viscosity of 100 Pa · s is 990 to 1065 ° C.

これにより、請求項1記載の作用・効果に加えて、一般的な遠心法による製造が可能である。したがって、製造コストが低減でき、より汎用性が高まる。   Thereby, in addition to the effect | action and effect of Claim 1, manufacture by a general centrifugation method is possible. Therefore, the manufacturing cost can be reduced and the versatility is further increased.

請求項3に記載の真空断熱材の発明は、請求項1記載の発明におけるガラスが、100Pa・sの粘度を示す温度で失透しないものである。   The invention of the vacuum heat insulating material according to claim 3 is such that the glass according to the invention of claim 1 is not devitrified at a temperature showing a viscosity of 100 Pa · s.

これにより、短繊維のガラス繊維を遠心法等で製造するときに、ガラスの失透が抑制されるので、ガラス繊維を安定的に生産することができる。   Thereby, when manufacturing the glass fiber of a short fiber with a centrifugal method etc., since the devitrification of glass is suppressed, glass fiber can be produced stably.

請求項4に記載の真空断熱材の発明は、請求項1記載の発明における減圧密閉された真空断熱材の熱伝導率が、0.0015乃至0.0019W/mKであるものである。   According to a fourth aspect of the present invention, there is provided the vacuum heat insulating material according to the first aspect, wherein the heat conductivity of the vacuum heat insulating material sealed under reduced pressure is 0.0015 to 0.0019 W / mK.

請求項5に記載の真空断熱材の発明は、請求項1記載の発明における減圧密閉された真空断熱材における芯材の嵩密度が、235乃至247kg/mであるものである。 According to a fifth aspect of the present invention, the bulk density of the core material in the vacuum heat-insulated vacuum-sealed material according to the first aspect of the invention is 235 to 247 kg / m 3 .

請求項6に記載の真空断熱材の発明は、請求項1記載の発明におけるガラス繊維の平均径が1乃至10μmであるものである。   According to a sixth aspect of the present invention, the glass fiber according to the first aspect of the present invention has an average diameter of 1 to 10 μm.

ガラス繊維の平均径を10μm以下とすることで、素材の強度を高めた場合において、プラスチックラミネートフィルム等の汎用性の高い外包材を適用しても、繊維による突き刺しピンホールの問題発生を抑制できる。また、ガラス繊維の平均径が1μm未満であれば製造時の熱エネルギーが極端に増大し、汎用性が大きく低下する。   When the average diameter of the glass fiber is 10 μm or less, even when a highly versatile outer packaging material such as a plastic laminate film is applied when the strength of the material is increased, it is possible to suppress the occurrence of the problem of piercing pinholes due to the fiber. . Moreover, if the average diameter of glass fiber is less than 1 micrometer, the heat energy at the time of manufacture will increase extremely and versatility will fall large.

以上の作用により、真空断熱材の品質を向上し、生産性を高める。   With the above actions, the quality of the vacuum heat insulating material is improved and the productivity is increased.

よって、本願の真空断熱材は、安価な材料を用いて構成され、ガラス素材強度が高く、かつ溶融性がよい。また、構造上安定であるために、耐久性が高い。   Therefore, the vacuum heat insulating material of the present application is configured by using an inexpensive material, has high glass material strength, and has good meltability. Moreover, since it is structurally stable, durability is high.

以上の作用により、本願発明に係る真空断熱材は、ガラス単体で用いても極めて安定で、高強度である上に安価で得られるため、従来のグラスウールよりも長期に渡って劣化が小さく、機械強度に優れた汎用断熱材として有用である。   Due to the above-described action, the vacuum heat insulating material according to the present invention is extremely stable even when used alone as a glass, is high in strength, and is obtained at a low cost. It is useful as a general-purpose heat insulating material excellent in strength.

また、本発明で使用できるガラスは、ガラス状態になり得るガラス形成酸化物からなる繊維であればよいが、特に汎用性、環境面を混慮すると、SiO2を主成分とするケイ酸塩系、ホウケイ酸塩系のガラスが好ましい。 In addition, the glass that can be used in the present invention may be a fiber made of a glass-forming oxide that can be in a glass state. However, when considering versatility and environmental aspects in particular, a silicate system mainly containing SiO 2. Borosilicate glass is preferred.

各成分における重量%において、SiO2は減少すれば液相温度が上昇し、ガラスの繊維化時に、ガラスの失透が問題となりガラス繊維の安定的製造が困難となる。また、SiO2の量が増大すれば粘性が高くなることで生産性が低下するため、50乃至70%の範囲が良いが、より好ましくは53.5乃至68%の範囲である。 When SiO 2 decreases in weight percent in each component, the liquidus temperature rises, and glass devitrification becomes a problem at the time of glass fiberization, and stable production of glass fiber becomes difficult. Further, if the amount of SiO 2 is increased, the viscosity is increased and the productivity is lowered. Therefore, the range of 50 to 70% is preferable, but the range of 53.5 to 68% is more preferable.

Al23が増加すると液相温度の上昇を招き、また粘性が高くなってしまうために、7%以下、より好ましくは6%以下が良い。また、Al23を含むことで素材強度が向上するために、0.1%以上、より好ましくは0.5%以上含むことが良く、Al23は0乃至7%、好ましくは0.1乃至7%、より好ましくは0.5乃至6%の範囲である。 When Al 2 O 3 increases, the liquidus temperature rises and the viscosity becomes high. Therefore, the content is preferably 7% or less, more preferably 6% or less. Further, in order to improve the material strength by including Al 2 O 3 , it is preferable to include 0.1% or more, more preferably 0.5% or more, and Al 2 O 3 is 0 to 7%, preferably 0%. .1 to 7%, more preferably 0.5 to 6%.

23は5%以上とすることで素材強度を高めることができるが、逆に12%を超えると、素材強度が低下するため5乃至12%の範囲がよく、より好ましくはB23が5.2%乃至12%以上、さらに好ましくは5.5乃至10%の範囲である。 The material strength can be increased by setting B 2 O 3 to 5% or more, but conversely if it exceeds 12%, the material strength decreases, so a range of 5 to 12% is preferable, and more preferably B 2 O. 3 is in the range of 5.2% to 12% or more, more preferably 5.5 to 10%.

Na2OとK2Oとの合計は、20%を超えると素材強度が低下するために20%以下であることが好ましいが、8%未満では溶融温度の上昇により生産性が低下するため、8乃至20%の範囲が良く、より好ましくは10乃至18%の範囲である。 The total of Na 2 O and K 2 O is preferably 20% or less because the strength of the material is reduced when it exceeds 20%, but if it is less than 8%, the productivity is lowered due to an increase in the melting temperature. A range of 8 to 20% is preferable, and a range of 10 to 18% is more preferable.

また、耐水性の問題からK2Oは5%以下である方が良いが、0.1%以上含むことで粘性の低減効果が大きく、かつ材料コストの問題から、K2Oは0.1乃至3.5%の範囲である方がより好ましい。 Further, K 2 O is preferably 5% or less from the viewpoint of water resistance. However, if 0.1% or more is contained, the effect of reducing the viscosity is great, and K 2 O is 0.1% from the problem of material cost. It is more preferable that it is in the range of 3.5%.

尚、アルカリ土類金属酸化物は、他のLiO2等を混合してもよく、その場合には素材強度の向上が得られるが、材料コストが増大するため、汎用面でNa2OとK2Oのみであることが望ましい。 The alkaline earth metal oxide may be mixed with other LiO 2 or the like. In this case, the material strength can be improved. However, since the material cost increases, Na 2 O and K are used in general terms. Desirably only 2 O.

MgOは、2%以上含むことで素材の強度を向上させ、また、6%を超えると液相温度の上昇を招くため、2乃至6%の範囲が良く、より好ましくは2乃至4.5%の範囲である。   MgO improves the strength of the material by containing 2% or more, and when it exceeds 6%, the liquidus temperature rises, so the range of 2 to 6% is preferable, more preferably 2 to 4.5%. Range.

CaOは2%以上含むことでMgOと同様にガラス素材の強度を高め、11%を超えると液相温度が上昇するので、2乃至11%の範囲、より好ましくは4乃至11%の範囲である。   When CaO is contained in an amount of 2% or more, the strength of the glass material is increased in the same manner as MgO, and when it exceeds 11%, the liquidus temperature rises, so the range is 2 to 11%, more preferably 4 to 11%. .

その他の成分としては、重量%で合計3%未満であれば、ガラス全体への影響はほとんどなく、原料としては不純物を含む天然原料を用いることが可能である。   As other components, if the total is less than 3% by weight, there is almost no influence on the whole glass, and natural raw materials containing impurities can be used as raw materials.

尚、P25を添加することで人体安全性が高まることは公知であり、その他3%以内の範囲で含んでも良い。その場合、ヤング率が低下してしまうことなく、粘性が低下し、生産性が増す。 In addition, it is publicly known that human body safety is enhanced by adding P 2 O 5, and may be included within a range of 3% or less. In that case, the viscosity decreases and the productivity increases without lowering the Young's modulus.

また、ガラスの製造時には、清澄剤を用いると泡切れを良好にし、生産性を向上させるために好ましく、Sb23等の公知のものが適用できる。 Moreover, it is preferable to use a refining agent at the time of manufacturing the glass in order to improve the bubble breakage and improve the productivity, and known materials such as Sb 2 O 3 can be applied.

また、本発明の真空断熱材においては水分吸着剤を使用することができる。使用される水分吸着剤は特に限定されるものではなく、真空断熱材の内部に存在する水蒸気を吸着し、内部雰囲気中の水蒸気量を減少されるものであればよい。   In the vacuum heat insulating material of the present invention, a moisture adsorbent can be used. The moisture adsorbent used is not particularly limited as long as it can adsorb water vapor present inside the vacuum heat insulating material and reduce the amount of water vapor in the internal atmosphere.

一例としては、合成ゼオライト、活性炭、活性アルミナ、シリカゲル、ドーソナイト、ハイドロタルサイトなどの物理吸着剤、アルカリ金属やアルカリ土類金属単体やその酸化物および水酸化物などの化学吸着剤などが適用可能である。さらに、空気成分が吸着できるゲッター材等を併用することで内部の気体成分の熱伝導を低減して、断熱性能を向上させることも可能である。   Examples include physical adsorbents such as synthetic zeolite, activated carbon, activated alumina, silica gel, dosonite, and hydrotalcite, and chemical adsorbents such as alkali metals and alkaline earth metals alone and their oxides and hydroxides. It is. Furthermore, by using together a getter material or the like that can adsorb an air component, it is possible to reduce the heat conduction of the internal gas component and improve the heat insulation performance.

また、本発明の外包材は、プラスチックラミネートフィルムが使用できるが、より高いガスバリア性を付与するためには金属箔や蒸着層が適用できる。なお、金属箔、および蒸着層は公知のもが利用でき、特に指定するものではない。   In addition, a plastic laminate film can be used as the outer packaging material of the present invention, but a metal foil or a vapor deposition layer can be applied in order to impart higher gas barrier properties. In addition, a metal foil and a vapor deposition layer can use a well-known thing, and it does not specify it in particular.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における真空断熱材1の断面図を示している。
(Embodiment 1)
FIG. 1 shows a cross-sectional view of a vacuum heat insulating material 1 according to Embodiment 1 of the present invention.

図1において、真空断熱材1は、芯材2と水分吸着剤3とを外包材4に挿入し、内部を減圧して構成している。   In FIG. 1, a vacuum heat insulating material 1 is configured by inserting a core material 2 and a moisture adsorbent 3 into an outer packaging material 4 and reducing the pressure inside.

真空断熱材1の作製は、芯材2を140℃の乾燥炉で30分間乾燥した後、ラミネートフィルムの三方を熱溶着によりシールして袋状に成形した外包材4に挿入し、減圧チャンバー内で、外包材4内部が10Pa以下になるように減圧し、開口部を熱溶着により密閉封止している。   The vacuum heat insulating material 1 is produced by drying the core material 2 in a drying furnace at 140 ° C. for 30 minutes, and then inserting the three sides of the laminate film into the outer packaging material 4 formed into a bag shape by heat sealing. Thus, the pressure is reduced so that the inside of the outer packaging material 4 becomes 10 Pa or less, and the opening is hermetically sealed by heat welding.

この時、外包材4は、表面保護層としてポリエチレンテレフタレートフィルム(12μm)、中間層にはアルミ箔(6μm)、熱溶着層として直鎖状低密度ポリエチレンフィルム(50μm)からなるラミネートフィルムにより構成している。   At this time, the outer packaging material 4 is composed of a laminate film composed of a polyethylene terephthalate film (12 μm) as a surface protective layer, an aluminum foil (6 μm) as an intermediate layer, and a linear low-density polyethylene film (50 μm) as a heat welding layer. ing.

また、水分吸着剤3は、酸化カルシウムを適用している。水分吸着剤3がない場合にも特に問題はないが、水分吸着剤3を備えることで、内部の残存水蒸気を吸着し、端面からの水蒸気侵入による内圧上昇を長期に渡って抑制できる。さらに、ガス吸着剤を併用することでより内圧を低減し、断熱性能を高めることも可能である。   In addition, calcium oxide is applied as the moisture adsorbent 3. Although there is no particular problem even when there is no moisture adsorbent 3, by providing the moisture adsorbent 3, it is possible to adsorb residual water vapor inside and suppress an increase in internal pressure due to water vapor intrusion from the end face over a long period of time. Furthermore, by using a gas adsorbent in combination, the internal pressure can be further reduced and the heat insulation performance can be improved.

一方、芯材2は、ガラス繊維の平均径が3.5μmであるガラス繊維集合体を加圧した状態で加熱し、密度が200kg/m3程度の形状を維持しているボード状のものを用いている。平均繊維径は1μm乃至10μmの範囲のものが品質、生産性の面で好ましい。 On the other hand, the core material 2 is a board-shaped one that is heated in a state where a glass fiber aggregate having an average diameter of glass fibers of 3.5 μm is pressurized and maintains a shape with a density of about 200 kg / m 3. Used. An average fiber diameter in the range of 1 μm to 10 μm is preferable in terms of quality and productivity.

また、断熱性能及び取扱い性の面で密封後の芯材部嵩密度は210乃至280kg/m3であることがより好ましく、この範囲となるように作製した。芯材部嵩密度は、芯材2のみの重量と密封後のサイズから算出している。 Moreover, the core part bulk density after sealing is more preferably 210 to 280 kg / m 3 in terms of heat insulation performance and handleability, and the core material was manufactured to be in this range. The core material bulk density is calculated from the weight of only the core material 2 and the size after sealing.

ここではバインダーを用いることなく芯材成形を行っているが、バインダーを用いてより低温で芯材2を成形しても良い。また、表面性が問題とならない場合には、ガラス繊維の集合体をそのまま密閉封止しても構わない。その場合には、製造工数が削減するために、生産性が向上する。   Here, the core material is formed without using a binder, but the core material 2 may be formed at a lower temperature using a binder. If the surface property does not matter, the glass fiber aggregate may be hermetically sealed as it is. In that case, since the number of manufacturing steps is reduced, productivity is improved.

また、用いたガラス組成の具体的な内容については、実施例の中で詳しく説明するが、本発明におけるガラスを繊維化後にグラスウールとして積層し、芯材2として作製した後に内部を減圧した外包材4で封止し、真空断熱材1を得た。   Further, the specific contents of the glass composition used will be described in detail in Examples, but the outer packaging material in which the glass in the present invention is laminated as glass wool after fiberization and produced as the core material 2 and then the inside is decompressed. 4 was sealed to obtain a vacuum heat insulating material 1.

以上のようにして形成した真空断熱材1の熱伝導率を英弘精機製のオートラムダにて測定した。結果、熱伝導率は、平均温度24℃にて0.0015W/mK乃至0.0019W/mKであり、汎用的な硬質ウレタンフォームの10倍以上、従来の真空断熱材と比較しても著しく優れた断熱性能を有していた。   The thermal conductivity of the vacuum heat insulating material 1 formed as described above was measured with an auto lambda manufactured by Eihiro Seiki. As a result, the thermal conductivity is 0.0015 W / mK to 0.0019 W / mK at an average temperature of 24 ° C., more than 10 times that of a general-purpose rigid urethane foam, which is remarkably superior to conventional vacuum heat insulating materials. It had a good thermal insulation performance.

このように、本構成により作製した真空断熱材1は、優れた断熱性能を有している。断熱性能の向上は、芯材2に用いたガラス繊維集合体において、ガラス自体の素材強度が高まるにつれてその効果が大きくなることが確認できる。   Thus, the vacuum heat insulating material 1 produced by this structure has the outstanding heat insulation performance. It can be confirmed that the improvement of the heat insulation performance increases in the glass fiber aggregate used for the core material 2 as the strength of the glass itself increases.

よって、従来、真空断熱材の伝熱要素の大部分を占めていた芯材部における固体成分の熱伝導をガラス素材の強度向上により抑制でき、真空断熱材1の断熱性能が大幅に改善するものである。   Therefore, the heat conduction of the solid component in the core material part which has conventionally occupied most of the heat transfer elements of the vacuum heat insulating material can be suppressed by improving the strength of the glass material, and the heat insulating performance of the vacuum heat insulating material 1 is greatly improved. It is.

このことは、ガラス素材強度としてのヤング率の評価結果、及び真空断熱材1の芯材部嵩密度と熱伝導率の関係を確認することからも素材強度と断熱性能の関連は明白である。   The relationship between the material strength and the heat insulating performance is clear from the evaluation result of the Young's modulus as the glass material strength and the relationship between the bulk density of the core material portion of the vacuum heat insulating material 1 and the thermal conductivity.

つまり、ガラスの素材強度向上により、芯材部の嵩密度を小さくして伝熱媒体を低減すること、繊維間の接触点が少なくても減圧圧縮後に内部空間を保持し得ること、芯材を構成する繊維同士間の接触点の変形防止により接触熱抵抗が増大すること、これらの要因により芯材部における固体成分の伝熱量を低減したと考えられる。   That is, by improving the material strength of the glass, the bulk density of the core material portion is reduced to reduce the heat transfer medium, the internal space can be retained after decompression compression even if there are few contact points between the fibers, It is considered that the contact heat resistance is increased by preventing deformation of the contact points between the constituent fibers, and that the heat transfer amount of the solid component in the core portion is reduced due to these factors.

ガラス素材の強度については、超音波測定法による常温でのヤング率を指標として用いた。すなわち、バルクガラスから30mm×30mm×5mmの試験片を加工し、ガラス試料片中の常温(15乃至30℃)超音波伝播速度と、アルキメデス法による密度とを測定し、常温におけるヤング率を算出した。   For the strength of the glass material, Young's modulus at room temperature by an ultrasonic measurement method was used as an index. That is, a 30 mm × 30 mm × 5 mm test piece is processed from bulk glass, and the normal temperature (15 to 30 ° C.) ultrasonic wave propagation speed in the glass sample piece and the density by Archimedes method are measured, and the Young's modulus at the normal temperature is calculated. did.

尚、Fe23は不純物として混入し易いが、特にこれにより問題となることはなく、輻射熱を吸収する効果があるために、輻射の寄与が大きい50℃以上の温度領域での適用には有用である。 Although Fe 2 O 3 is easy to be mixed as an impurity, it does not cause a problem in particular, and it has an effect of absorbing radiant heat. Therefore, for applications in a temperature range of 50 ° C. or more where radiation contributes greatly. Useful.

(実施の形態2)
本発明の実施の形態2におけるグラスウールからなる真空断熱材について説明する。各ガラス組成物は繊維状態に成形を行った。
(Embodiment 2)
The vacuum heat insulating material which consists of glass wool in Embodiment 2 of this invention is demonstrated. Each glass composition was formed into a fiber state.

本発明のガラス組成物からなる溶融物を平均繊維径が3.5μm程度になるように繊維化した。ガラス繊維の平均径は、1乃至10μmの範囲が良い。1μm未満では繊維化のコストが極端に増大し、10μmを超える場合は取扱い時に剛性のある繊維による不快感を伴う恐れがある。   The melt made of the glass composition of the present invention was fiberized so that the average fiber diameter was about 3.5 μm. The average diameter of the glass fiber is preferably in the range of 1 to 10 μm. If it is less than 1 μm, the cost of fiberization increases extremely, and if it exceeds 10 μm, there is a risk of discomfort due to rigid fibers during handling.

繊維化工程については、長繊維として連続紡糸、または短繊維として火炎法、遠心法等どのようにして行ってもよいが、生産性を考慮して遠心法によりグラスウールを作製した。チョップストランドマットや、ロービングクロス等のように長繊維を作製した後に加工して断熱材として用いることもできる。   Regarding the fiberizing step, continuous spinning may be used as long fibers, or flame method, centrifugal method, etc. may be used as short fibers, but glass wool was produced by a centrifugal method in consideration of productivity. A long fiber such as a chop strand mat or a roving cloth can be produced and then processed to be used as a heat insulating material.

このようにして作製したグラスウールを厚み方向に圧縮し、嵩密度が250kg/m3となる時の圧縮強度測定を行った。 The glass wool thus produced was compressed in the thickness direction, and the compression strength was measured when the bulk density was 250 kg / m 3 .

結果、本発明によるガラス組成物からなるグラスウールの圧縮強度は1020hPa以上であり、従来の汎用的なグラスウールよりも高い圧縮強度を示していた。これは、B23が5乃至12重量%、Al23とCaOとの合計が9乃至12.8重量%含むことで、ガラス素材自体の強度が高まり、グラスウール全体として強度が高まったためである。 As a result, the compressive strength of the glass wool made of the glass composition according to the present invention was 1020 hPa or more, indicating a higher compressive strength than the conventional general-purpose glass wool. This is because the strength of the glass material itself is increased by including 5 to 12% by weight of B 2 O 3 and 9 to 12.8% by weight of the total of Al 2 O 3 and CaO, and the strength of the whole glass wool is increased. It is.

よって、このように従来のものよりも高い素材強度を有するガラス組成のグラスウールとすることで、グラスウールの圧縮強度は高まり、建材用断熱材や補強材として有用で取扱い性及び施工性の良好なグラスウール(断熱材)を提供できる。   Therefore, glass wool with a glass composition having a higher material strength than conventional ones increases the compressive strength of glass wool, and is useful as a heat insulating material and reinforcing material for building materials, and has good handleability and workability. (Insulation) can be provided.

以下、実施例、および比較例を用いて、本発明を更に具体的に説明するが、本発明は本実施例のみに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited only to the Examples.

(実施例1)
本実施例はガラス組成の重量%において、SiO2が65.0%、B23が5.0%、Na2Oが14.3%、K2Oが0.9%、MgOが3.7%、CaOが9.7%、Fe23等のその他複数成分合計が1.4%からなるガラスを作製し、その素材ヤング率は78.1GPaであった。比較例11よりもヤング率が向上した要因は、B23の増加に伴うものである。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度は、1040℃であった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度での失透の有無を調べたところ、ガラスの失透は無かった。
Example 1
In this example, SiO 2 was 65.0%, B 2 O 3 was 5.0%, Na 2 O was 14.3%, K 2 O was 0.9%, and MgO was 3% by weight in the glass composition. A glass composed of 0.7%, CaO 9.7%, and a total of other components such as Fe 2 O 3 of 1.4% was produced, and the material Young's modulus was 78.1 GPa. The factor that improved the Young's modulus compared with Comparative Example 11 was accompanied by an increase in B 2 O 3 . The temperature at which the glass viscosity was 100 Pa · s (10 3 poise) was 1040 ° C. Moreover, when the presence or absence of devitrification at the temperature when the glass viscosity was 100 Pa · s (10 3 poise) was examined, there was no devitrification of the glass.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1055hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1055 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は246kg/m3、熱伝導率は0.0019W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 246 kg / m 3 and the thermal conductivity was 0.0019 W / mK.

(実施例2)
本実施例はガラス組成の重量%において、SiO2が64.0%、Al23が0.1%、B23が5.2%、Na2Oが14.5%、K2Oが0.1%、MgOが3.6%、CaOが9.5%、ZrO2、ZnO、TiO2、P25、Fe23等のその他複数成分合計が3.0%からなるガラスを作製し、その素材ヤング率は79.2GPaであった。実施例1と比較して、Al23をわずか0.1%加えただけでヤング率の向上を確認できた。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度は、1030℃であった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度での失透の有無を調べたところ、ガラスの失透は無かった。
(Example 2)
In this example, SiO 2 was 64.0%, Al 2 O 3 was 0.1%, B 2 O 3 was 5.2%, Na 2 O was 14.5%, and K 2 in terms of% by weight of the glass composition. O other than 0.1%, MgO 3.6%, CaO 9.5%, ZrO 2 , ZnO, TiO 2 , P 2 O 5 , Fe 2 O 3 etc. A glass having a material Young's modulus of 79.2 GPa was produced. Compared with Example 1, it was confirmed that the Young's modulus was improved only by adding 0.1% Al 2 O 3 . The temperature when the glass viscosity was 100 Pa · s (10 3 poise) was 1030 ° C. Moreover, when the presence or absence of devitrification at the temperature when the glass viscosity was 100 Pa · s (10 3 poise) was examined, there was no devitrification of the glass.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1095hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1095 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は243kg/m3、熱伝導率は0.0018W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 243 kg / m 3 and the thermal conductivity was 0.0018 W / mK.

(実施例3)
本実施例はガラス組成の重量%において、SiO2が56.5%、Al23が7.0%、B23が10.5%、Na2Oが13.8%、K2Oが3.5%、MgOが6.0%、CaOが4.0%、Fe23等のその他複数成分合計が0.7%からなるガラスを作成し、その素材ヤング率は83.7GPaであった。比較例14と比べ、CaOを2%以上含む場合にヤング率の向上を確認した。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度は、1040℃であった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度での失透の有無を調べたところ、ガラスの失透は無かった。
(Example 3)
In this example, SiO 2 is 56.5%, Al 2 O 3 is 7.0%, B 2 O 3 is 10.5%, Na 2 O is 13.8%, K 2 , in terms of% by weight of the glass composition. A glass composed of 3.5% O, 6.0% MgO, 4.0% CaO, and a total of 0.7% of other plural components such as Fe 2 O 3 was prepared. 7 GPa. Compared to Comparative Example 14, an improvement in Young's modulus was confirmed when CaO was contained in an amount of 2% or more. The temperature at which the glass viscosity was 100 Pa · s (10 3 poise) was 1040 ° C. Moreover, when the presence or absence of devitrification at the temperature when the glass viscosity was 100 Pa · s (10 3 poise) was examined, there was no devitrification of the glass.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1230hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1230 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は238kg/m3、熱伝導率は0.0016W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 238 kg / m 3 and the thermal conductivity was 0.0016 W / mK.

尚、Al23が7%を超えると液相温度が極端に増大し、繊維化が不可能であった。 When Al 2 O 3 exceeds 7%, the liquidus temperature is extremely increased and fiberization is impossible.

(実施例4)
本実施例はガラス組成の重量%において、SiO2が62.4%、Al23が6.0%、B23が12.0%、Na2Oが7.9%、K2Oが2.1%、MgOが2.0%、CaOが6.8%、Fe23等のその他複数成分合計が0.8%からなるガラスを作製し、その素材ヤング率は82.0GPaであった。実施例7と比べ、MgOを2%以上含むことでヤング率の向上を確認した。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度は、1060℃であった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度での失透の有無を調べたところ、ガラスの失透は無かった。
Example 4
In this example, SiO 2 is 62.4%, Al 2 O 3 is 6.0%, B 2 O 3 is 12.0%, Na 2 O is 7.9%, K 2 , in terms of% by weight of the glass composition. A glass having 2.1% O, 2.0% MgO, 6.8% CaO, and a total of 0.8% of other plural components such as Fe 2 O 3 is produced. 0 GPa. Compared with Example 7, the improvement of Young's modulus was confirmed by containing 2% or more of MgO. The temperature when the glass viscosity was 100 Pa · s (10 3 poise) was 1060 ° C. Moreover, when the presence or absence of devitrification at the temperature when the glass viscosity was 100 Pa · s (10 3 poise) was examined, there was no devitrification of the glass.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1160hPaであった。   The compression strength when this glass was laminated after fiberization to form glass wool was 1160 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は240kg/m3、熱伝導率は0.0017W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 240 kg / m 3 , and the thermal conductivity was 0.0017 W / mK.

(実施例5)
本実施例はガラス組成の重量%において、SiO2が68.0%、Al23が1.7%、B23が6.1%、Na2Oが7.7%、K2Oが0.3%、MgOが4.5%、CaOが11.0%、Fe23等のその他複数成分合計が0.7%からなるガラスを作製し、その素材ヤング率は84.8GPaであった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度は、1065℃であった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度での失透の有無を調べたところ、ガラスの失透は無かった。
(Example 5)
In this example, SiO 2 was 68.0%, Al 2 O 3 was 1.7%, B 2 O 3 was 6.1%, Na 2 O was 7.7%, and K 2 , in terms of% by weight of the glass composition. A glass composed of 0.3% O, 4.5% MgO, 11.0% CaO, and a total of 0.7% of other plural components such as Fe 2 O 3 was produced. It was 8 GPa. The temperature when the glass viscosity was 100 Pa · s (10 3 poise) was 1065 ° C. Moreover, when the presence or absence of devitrification at the temperature when the glass viscosity was 100 Pa · s (10 3 poise) was examined, there was no devitrification of the glass.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1275hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1275 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は235kg/m3、熱伝導率は0.0015W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 235 kg / m 3 and the thermal conductivity was 0.0015 W / mK.

尚、本実施例ではであるアルカリ金属酸化物(Na2OとK2Oの合計)が8%として他の実施例同様に問題なく繊維が得られたが、アルカリ金属酸化物を8%未満とした場合は、粘性が極端に増大し、溶融温度の上昇のため、大幅に生産性が低下した。 In this example, the alkali metal oxide (total of Na 2 O and K 2 O) was 8%, and a fiber was obtained without problems as in the other examples, but the alkali metal oxide was less than 8%. In this case, the viscosity was extremely increased, and the productivity was greatly reduced due to the increase in the melting temperature.

(実施例6)
本実施例はガラス組成の重量%において、SiO2が58.3%、Al23が0.5%、B23が5.5%、Na2Oが19.6%、K2Oが0.4%、MgOが5.0%、CaOが9.5%、Fe23等のその他複数成分合計が1.2%からなるガラスを作製し、その素材ヤング率は78.5GPaであった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度は、990℃であった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度での失透の有無を調べたところ、ガラスの失透は無かった。
(Example 6)
In this example, SiO 2 was 58.3%, Al 2 O 3 was 0.5%, B 2 O 3 was 5.5%, Na 2 O was 19.6%, and K 2 in terms of% by weight of the glass composition. A glass composed of 0.4% of O, 5.0% of MgO, 9.5% of CaO, and 1.2% of the total of other components such as Fe 2 O 3 is produced. It was 5 GPa. The temperature when the glass viscosity was 100 Pa · s (10 3 poise) was 990 ° C. Moreover, when the presence or absence of devitrification at the temperature when the glass viscosity was 100 Pa · s (10 3 poise) was examined, there was no devitrification of the glass.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1070hPaであった。   The compression strength when this glass was laminated after fiberizing into glass wool was 1070 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は244kg/m3、熱伝導率は0.0018W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 244 kg / m 3 and the thermal conductivity was 0.0018 W / mK.

(実施例7)
本実施例はガラス組成の重量%において、SiO2が70.0%、Al23が5.2%、B23が9.8%、Na2Oが8.3%、K2Oが2.0%、CaOが4.0%、Fe23等のその他複数成分合計が0.7%からなるガラスを作製し、その素材ヤング率は77.8GPaであった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度は、1115℃であった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度での失透の有無を調べたところ、ガラスの失透は無かった。
(Example 7)
In this example, SiO 2 was 70.0%, Al 2 O 3 was 5.2%, B 2 O 3 was 9.8%, Na 2 O was 8.3%, and K 2 in terms of% by weight of the glass composition. A glass composed of 2.0% O, 4.0% CaO, and a total of 0.7% of other plural components such as Fe 2 O 3 was produced, and the material Young's modulus was 77.8 GPa. The temperature at which the glass viscosity was 100 Pa · s (10 3 poise) was 1115 ° C. Moreover, when the presence or absence of devitrification at the temperature when the glass viscosity was 100 Pa · s (10 3 poise) was examined, there was no devitrification of the glass.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1050hPaであった。   The compression strength when this glass was laminated after fiberization to form glass wool was 1050 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は247kg/m3、熱伝導率は0.0019W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 247 kg / m 3 and the thermal conductivity was 0.0019 W / mK.

(比較例11)
本比較例は一般的なグラスウールであり、ガラス組成の重量%において、SiO2が63.6%、Al23が1.7%、B23が4.0%、Na2Oが14.5%、K2Oが0.8%、MgOが3.8%、CaOが10.0%、Fe23等のその他複数成分合計が1.6%からなるガラスを作製し、その素材ヤング率は75.0GPaであった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度は、1040℃であった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度での失透の有無を調べたところ、ガラスの失透は無かった。
(Comparative Example 11)
This comparative example is a general glass wool, in which the SiO 2 is 63.6%, the Al 2 O 3 is 1.7%, the B 2 O 3 is 4.0%, and the Na 2 O is 5% by weight of the glass composition. 14.5%, K 2 O 0.8%, MgO 3.8%, CaO 10.0%, and other multiple components such as Fe 2 O 3 total 1.6% glass, The material Young's modulus was 75.0 GPa. The temperature at which the glass viscosity was 100 Pa · s (10 3 poise) was 1040 ° C. Moreover, when the presence or absence of devitrification at the temperature when the glass viscosity was 100 Pa · s (10 3 poise) was examined, there was no devitrification of the glass.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1010hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1010 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は250kg/m3、熱伝導率は0.0022W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 250 kg / m 3 and the thermal conductivity was 0.0022 W / mK.

(比較例12)
本比較例は、ガラス組成の重量%において、SiO2が55.9%、Al23が0.1%、B23が14.2%、Na2Oが18.5%、K2Oが0.7%、MgOが3.5%、CaOが6.3%、Fe23等のその他複数成分合計が0.8%からなるガラスを作製し、その素材ヤング率は74.9GPaであった。B23が12%を超えたことでヤング率は一般的なグラスウールと同等であった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度は、930℃であった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度での失透の有無を調べたところ、ガラスの失透は無かった。
(Comparative Example 12)
In this comparative example, SiO 2 is 55.9%, Al 2 O 3 is 0.1%, B 2 O 3 is 14.2%, Na 2 O is 18.5%, K A glass composed of 0.7% of 2 O, 3.5% of MgO, 6.3% of CaO, and 0.8% of the total of other components such as Fe 2 O 3 was produced. It was 9 GPa. When B 2 O 3 exceeded 12%, Young's modulus was equivalent to that of general glass wool. The temperature when the glass viscosity was 100 Pa · s (10 3 poise) was 930 ° C. Moreover, when the presence or absence of devitrification at the temperature when the glass viscosity was 100 Pa · s (10 3 poise) was examined, there was no devitrification of the glass.

また、グラスウールとした時の圧縮強度は1015hPaであり、特に強度の向上効果は得られなかった。   Moreover, the compressive strength when it was set as glass wool was 1015 hPa, and the effect of improving the strength was not particularly obtained.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は250kg/m3、熱伝導率は0.0022W/mKと一般的なグラスウールを適用した場
合の比較例11と同等であった。
Moreover, when this glass wool is used as a core material and the vacuum heat insulating material is produced, the core material has a bulk density of 250 kg / m 3 and a thermal conductivity of 0.0022 W / mK, which is a comparative example 11 when a general glass wool is applied. It was equivalent.

(比較例13)
本比較例はガラス組成の重量%において、SiO2が66.8%、Al23が0.9%、B23が6.1%、Na2Oが19.8%、K2Oが1.2%、CaOが4.1%、Fe23等のその他複数成分合計が1.1%からなるガラスを作製し、その素材ヤング率は73.6GPaであった。Na2OとK2Oの合計が20%を超えたことで、ヤング率は低下した。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度は、1035℃であった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度での失透の有無を調べたところ、ガラスの失透は無かった。
(Comparative Example 13)
In this comparative example, SiO 2 was 66.8%, Al 2 O 3 was 0.9%, B 2 O 3 was 6.1%, Na 2 O was 19.8%, and K 2 in terms of% by weight of the glass composition. A glass composed of 1.2% O, 4.1% CaO, and 1.1% of the total of other components such as Fe 2 O 3 was produced, and the material Young's modulus was 73.6 GPa. The Young's modulus decreased because the total of Na 2 O and K 2 O exceeded 20%. The temperature at which the glass viscosity was 100 Pa · s (10 3 poise) was 1035 ° C. Moreover, when the presence or absence of devitrification at the temperature when the glass viscosity was 100 Pa · s (10 3 poise) was examined, there was no devitrification of the glass.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は960hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 960 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は264kg/m3、熱伝導率は0.0025W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 264 kg / m 3 and the thermal conductivity was 0.0025 W / mK.

(比較例14)
本比較例はガラス組成の重量%において、SiO2が68.1%、Al23が5.1%、B23が5.6%、Na2Oが17.0%、K2Oが0.7%、MgOが1.2%、CaOが1.5%、Fe23等のその他複数成分合計が0.8%からなるガラスを作製し、その素材ヤング率は74.5GPaであった。CaOが2%未満であることでヤング率が低下した。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度は、1085℃であった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度での失透の有無を調べたところ、ガラスの失透は無かった。
(Comparative Example 14)
In this comparative example, SiO 2 was 68.1%, Al 2 O 3 was 5.1%, B 2 O 3 was 5.6%, Na 2 O was 17.0%, and K 2 , in terms of% by weight of the glass composition. A glass composed of 0.8% of O, 1.2% of MgO, 1.5% of CaO, and 0.8% of the total of other plural components such as Fe 2 O 3 was produced. It was 5 GPa. The Young's modulus decreased because CaO was less than 2%. Further, the temperature when the glass viscosity was 100 Pa · s (10 3 poise) was 1085 ° C. Moreover, when the presence or absence of devitrification at the temperature when the glass viscosity was 100 Pa · s (10 3 poise) was examined, there was no devitrification of the glass.

このガラスを繊維化後に積層し、グラスウールとしたときの圧縮強度は1010hPaであった。   When this glass was laminated after fiberization to obtain glass wool, the compressive strength was 1010 hPa.

また、このグラスウールを芯材として、真空断熱材を作製したときの芯材部嵩密度は256kg/m3、熱伝導率は0.0024W/mKであった。 Further, when a vacuum heat insulating material was produced using this glass wool as a core material, the bulk density of the core material portion was 256 kg / m 3 and the thermal conductivity was 0.0024 W / mK.

(比較例15)
本比較例はガラス組成の重量%において、SiO2が58.0%、Al23が1.2%、B23が4.5%、Na2Oが15.0%、K2Oが0.6%、MgOが6.2%、CaOが14.0%、Fe23等のその他複数成分合計が0.5%からなるガラスを作製し、その素材ヤング率は85.7GPaであった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度は、1010℃であった。また、ガラス粘度が100Pa・s(10ポアズ)となるときの温度での失透の有無を調べたところ、ガラスが失透していた。そのため、ガラス繊維を安定的に生産することができなかった。
(Comparative Example 15)
In this comparative example, SiO 2 is 58.0%, Al 2 O 3 is 1.2%, B 2 O 3 is 4.5%, Na 2 O is 15.0%, and K 2 in terms of% by weight of the glass composition. A glass composed of 0.6% of O, 6.2% of MgO, 14.0% of CaO, and a total of other components such as Fe 2 O 3 of 0.5% is produced. 7 GPa. The temperature when the glass viscosity was 100 Pa · s (10 3 poise) was 1010 ° C. Further, when the presence or absence of devitrification at a temperature when the glass viscosity was 100 Pa · s (10 3 poise) was examined, the glass was devitrified. Therefore, glass fiber could not be produced stably.

なお、実施例1乃至7、および比較例11乃至15の結果について、表1及び表2にそれぞれまとめた。   The results of Examples 1 to 7 and Comparative Examples 11 to 15 are summarized in Table 1 and Table 2, respectively.

Figure 2007182991
Figure 2007182991

Figure 2007182991
Figure 2007182991

(比較例16)
本比較例はガラス組成を実施例1と同様とし、平均繊維径を11μmとなるようにガラスを繊維化後に積層した。これをグラスウールとした時の圧縮強度は1230hPaであったが、このグラスウールは繊維が太く、取扱い時には手に不快感を感じたため、汎用断熱材としては不適当であった。
(Comparative Example 16)
In this comparative example, the glass composition was the same as in Example 1, and the glass was laminated after fiberization so that the average fiber diameter was 11 μm. When this was made into glass wool, the compressive strength was 1230 hPa, but this glass wool was unsuitable as a general-purpose heat insulating material because it had thick fibers and felt uncomfortable in the hand during handling.

また、このグラスウールを芯材として、真空断熱材を作製したが、実施の形態に記載の構成のラミネートフィルムでは繊維突き刺しピンホールの発生があり、内部減圧状態の品質を確保することが困難であった。   In addition, a vacuum heat insulating material was produced using this glass wool as a core material. However, in the laminated film having the configuration described in the embodiment, fiber piercing pinholes were generated, and it was difficult to ensure the quality of the internal reduced pressure state. It was.

以上のように、本発明にかかる真空断熱材及びガラス繊維は、ガラスの素材強度を向上し、従来よりも優れた断熱性能を有するものである。その結果、真空断熱材は、さらなる高性能化により用途が広まるだけでなく、ガラス組成物単体としても、建材や車等、強度が要求される部材として適用が可能である。   As mentioned above, the vacuum heat insulating material and glass fiber concerning this invention improve the raw material intensity | strength of glass, and have the heat insulation performance superior to the past. As a result, the vacuum heat insulating material is not only widened in use due to further enhancement of performance, but can also be applied as a member requiring strength, such as a building material or a car, as a single glass composition.

本発明の実施の形態1における真空断熱材の断面図Sectional drawing of the vacuum heat insulating material in Embodiment 1 of this invention

符号の説明Explanation of symbols

1 真空断熱材
2 芯材
4 外包材
1 Vacuum insulation material 2 Core material 4 Outer packaging material

Claims (12)

ガラス繊維からなる芯材がガスバリア性を有する外包材で減圧密閉された真空断熱材であって、
前記ガラス繊維は、B23が5乃至12重量%、Al23が0乃至7重量%、CaOが2乃至11重量%、Na2OとK2Oとの合計が8乃至20重量%を含むアルカリホウケイ酸ガラスであり、
前記ガラスは、ヤング率が77.8GPa以上であることを特徴とする真空断熱材。
A core material made of glass fiber is a vacuum heat insulating material sealed under reduced pressure with an outer packaging material having gas barrier properties,
The glass fiber has 5 to 12% by weight of B 2 O 3 , 0 to 7% by weight of Al 2 O 3 , 2 to 11% by weight of CaO, and 8 to 20% by weight of Na 2 O and K 2 O. % Alkali borosilicate glass,
The glass has a Young's modulus of 77.8 GPa or more.
前記ガラスは、100Pa・sの粘度を示す温度が、990乃至1065℃であることを特徴とする、請求項1記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the glass has a viscosity of 990 to 1065 ° C that exhibits a viscosity of 100 Pa · s. 前記ガラスは、100Pa・sの粘度を示す温度で失透しないことを特徴とする、請求項1記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the glass is not devitrified at a temperature indicating a viscosity of 100 Pa · s. 減圧密閉された真空断熱材の熱伝導率が、0.0015乃至0.0019W/mKであることを特徴とする、請求項1記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the heat conductivity of the vacuum heat insulating material sealed under reduced pressure is 0.0015 to 0.0019 W / mK. 減圧密閉された真空断熱材における芯材の嵩密度が、235乃至247kg/mであることを特徴とする、請求項1記載の真空断熱材。 The vacuum heat insulating material according to claim 1, wherein the bulk density of the core material in the vacuum heat insulating material sealed under reduced pressure is 235 to 247 kg / m 3 . ガラス繊維の平均径が1乃至10μmであることを特徴とする、請求項1記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the glass fiber has an average diameter of 1 to 10 µm. 真空断熱材として、ガスバリア性を有する外包材の中に減圧密閉されるガラス繊維であって、
23が5乃至12重量%、Al23が0乃至7重量%、CaOが2乃至11重量%、Na2OとK2Oとの合計が8乃至20重量%を含むアルカリホウケイ酸ガラスであり、
前記ガラスは、ヤング率が77.8GPa以上であることを特徴とする真空断熱材用ガラス繊維。
As a vacuum heat insulating material, it is a glass fiber sealed under reduced pressure in an outer packaging material having gas barrier properties,
Alkaline borosilicate containing 5 to 12% by weight of B 2 O 3 , 0 to 7% by weight of Al 2 O 3 , 2 to 11% by weight of CaO, and 8 to 20% by weight of the total of Na 2 O and K 2 O Acid glass,
The glass has a Young's modulus of 77.8 GPa or more.
前記ガラスは、100Pa・sの粘度を示す温度が、990乃至1065℃であることを特徴とする、請求項7記載のガラス繊維。   The glass fiber according to claim 7, wherein the glass has a viscosity of 990 to 1065 ° C. showing a viscosity of 100 Pa · s. 前記ガラスは、100Pa・sの粘度を示す温度で失透しないことを特徴とする、請求項7記載のガラス繊維。   The glass fiber according to claim 7, wherein the glass does not devitrify at a temperature showing a viscosity of 100 Pa · s. 真空断熱材として、外包材の中に減圧密閉されたときの熱伝導率が、0.0015乃至0.0019W/mKであることを特徴とする、請求項7記載のガラス繊維。   8. The glass fiber according to claim 7, wherein the vacuum fiber has a thermal conductivity of 0.0015 to 0.0019 W / mK when sealed under reduced pressure in an outer packaging material. 9. 真空断熱材として、外包材の中に減圧密閉されたときの嵩密度が、235乃至247kg/mであることを特徴とする、請求項7記載のガラス繊維。 8. The glass fiber according to claim 7, wherein the vacuum fiber has a bulk density of 235 to 247 kg / m 3 when sealed under reduced pressure in an outer packaging material. 平均径が1乃至10μmであることを特徴とする、請求項7記載のガラス繊維。   The glass fiber according to claim 7, wherein an average diameter is 1 to 10 µm.
JP2006330508A 2005-12-08 2006-12-07 Vacuum insulation Active JP5013836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006330508A JP5013836B2 (en) 2005-12-08 2006-12-07 Vacuum insulation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005354378 2005-12-08
JP2005354378 2005-12-08
JP2006330508A JP5013836B2 (en) 2005-12-08 2006-12-07 Vacuum insulation

Publications (3)

Publication Number Publication Date
JP2007182991A true JP2007182991A (en) 2007-07-19
JP2007182991A5 JP2007182991A5 (en) 2010-01-14
JP5013836B2 JP5013836B2 (en) 2012-08-29

Family

ID=38339252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006330508A Active JP5013836B2 (en) 2005-12-08 2006-12-07 Vacuum insulation

Country Status (1)

Country Link
JP (1) JP5013836B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155172A (en) * 2007-12-27 2009-07-16 Asahi Fiber Glass Co Ltd Glass fiber laminate, and vacuum heat insulating material
JP2009228917A (en) * 2008-03-19 2009-10-08 Hitachi Appliances Inc Refrigerator
KR20140141420A (en) * 2013-05-31 2014-12-10 히타치 어플라이언스 가부시키가이샤 Vacuum insulating material and insulated equipment
CN104261684A (en) * 2014-09-17 2015-01-07 安徽吉曜玻璃微纤有限公司 Vacuum insulation board core material and manufacturing method thereof
CN106367887A (en) * 2016-08-31 2017-02-01 安徽吉曜玻璃微纤有限公司 High-density dry-method core material and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011709A (en) * 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011709A (en) * 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155172A (en) * 2007-12-27 2009-07-16 Asahi Fiber Glass Co Ltd Glass fiber laminate, and vacuum heat insulating material
JP2009228917A (en) * 2008-03-19 2009-10-08 Hitachi Appliances Inc Refrigerator
JP4695663B2 (en) * 2008-03-19 2011-06-08 日立アプライアンス株式会社 refrigerator
KR20140141420A (en) * 2013-05-31 2014-12-10 히타치 어플라이언스 가부시키가이샤 Vacuum insulating material and insulated equipment
CN104214471A (en) * 2013-05-31 2014-12-17 日立空调·家用电器株式会社 Vacuum thermal insulation material and thermal insulation equipment
KR101579878B1 (en) 2013-05-31 2015-12-24 히타치 어플라이언스 가부시키가이샤 Vacuum insulating material and insulated equipment
CN104261684A (en) * 2014-09-17 2015-01-07 安徽吉曜玻璃微纤有限公司 Vacuum insulation board core material and manufacturing method thereof
CN106367887A (en) * 2016-08-31 2017-02-01 安徽吉曜玻璃微纤有限公司 High-density dry-method core material and manufacturing method thereof

Also Published As

Publication number Publication date
JP5013836B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP2008057745A (en) Vacuum heat insulation material and glass composition
JP2007057095A (en) Vacuum heat insulating material and heat insulating material
JP5013836B2 (en) Vacuum insulation
JP3712129B1 (en) Manufacturing method of glass wool molded body, glass wool molded body, and vacuum heat insulating material
JP6311704B2 (en) Double-glazed glass for architectural windows
JP5040433B2 (en) Vacuum insulation
EP2692946B1 (en) Inorganic-fiber based paper and method for manufacturing same
CA2472080A1 (en) High temperature resistant vitreous inorganic fiber
SG186384A1 (en) Multi-layer glass sheet made by co-drawing using the overflow downdraw fusion process
RU2009138527A (en) REFRIGERATOR FOR GLASS-FURNACE FURNACE REGENERATOR NOZZLE ELEMENT
JPH0848573A (en) High zirconia melting refractory
JP2007153649A (en) Glass composition, glass fiber, and vacuum heat insulating material
JP2007016806A (en) Vacuum heat insulating material
JP6190165B2 (en) Vacuum insulation and insulation equipment
JP5673617B2 (en) Vacuum insulation
JP2005344871A (en) Vacuum heat insulating material and production system of vacuum heat insulating material
JP2006038123A (en) Vacuum thermal insulation material and glass composition
JP6860582B2 (en) Glass wool and vacuum heat insulating material using it
JP2007084971A (en) Method for producing glass wool molding
JP4591288B2 (en) Manufacturing method of vacuum insulation
JP4556544B2 (en) Glass for sealing
JP2006002314A (en) Glass wool board and vacuum heat-insulating material
CN211471242U (en) Multilayer fireproof glass structure
JP2014222112A (en) Vacuum heat insulating material
JP2006161972A (en) Vacuum heat insulating material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5013836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150