JP2007180505A - Cooling device for electronic component - Google Patents

Cooling device for electronic component Download PDF

Info

Publication number
JP2007180505A
JP2007180505A JP2006301174A JP2006301174A JP2007180505A JP 2007180505 A JP2007180505 A JP 2007180505A JP 2006301174 A JP2006301174 A JP 2006301174A JP 2006301174 A JP2006301174 A JP 2006301174A JP 2007180505 A JP2007180505 A JP 2007180505A
Authority
JP
Japan
Prior art keywords
heat
plate
heat receiving
refrigerant
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006301174A
Other languages
Japanese (ja)
Inventor
Iku Sato
郁 佐藤
Haruhiko Kono
治彦 河野
Haruji Manabe
晴二 真鍋
Masaaki Arita
雅昭 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006301174A priority Critical patent/JP2007180505A/en
Publication of JP2007180505A publication Critical patent/JP2007180505A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device for an electronic component that can improve endothermic performance for heat generated from a high heat radiating electronic component. <P>SOLUTION: An indraft nozzle is perpendicularly arranged to a plate-shaped heat-drawing fin 4a of an endothermic body which is brought into contact with a heating element 2 to be cooled off, wherein part of the plate-shaped fin 4a is shaped to be an approximate V character or an approximate U character. Further, the cooling device can be structured to have an enhanced endothermic performance by selecting an appropriate dimensional ratio between the thickness of a heat receiving plate in contact with the heating element 2 and the length of the heating element, thus making it possible to efficiently cool off a high heat radiating electronic component. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、パーソナルコンピュータ等に使われるマイクロプロセッシングユニット(以下、MPUと略す)等の発熱する半導体、またはその他の発熱部を有する電子部品を冷却するのに用いられる電子部品の冷却装置に関するものである。   The present invention relates to a cooling device for an electronic component used for cooling a semiconductor that generates heat, such as a microprocessing unit (hereinafter abbreviated as MPU) used in a personal computer or the like, or an electronic component having other heat generating portions. is there.

近年、電子機器においては半導体等の電子部品の高集積化、動作クロックの高周波数化等に伴う発熱量の増大に対して、電子部品の正常動作の為に、それぞれの電子部品の接点温度を動作温度範囲内に如何に保つかが大きな問題となってきている。特に、MPUの高集積化、高周波数化はめざましく、動作の安定性、また動作寿命の確保などの点からも放熱対策が重要な問題となっている。   In recent years, in electronic devices, the contact temperature of each electronic component has been reduced for the normal operation of the electronic component against the increase in heat generation due to higher integration of electronic components such as semiconductors and higher operating clock frequencies. How to keep within the operating temperature range has become a major issue. In particular, high integration and high frequency of the MPU are remarkable, and heat radiation countermeasures are important problems from the viewpoints of operational stability and ensuring the operational life.

しかし、従来のようにヒートシンクとファンを組み合わせた空冷方式では高発熱量の電子部品に対しては能力不足の場合が多くなりつつある。そこで、例えば(特許文献1)に示すような冷媒を循環させる、より能力の高い高効率の冷却装置が提案されている。   However, the conventional air-cooling method combining a heat sink and a fan is increasingly lacking in capacity for electronic components with high heat generation. In view of this, for example, a highly efficient cooling device with higher capacity that circulates a refrigerant as shown in (Patent Document 1) has been proposed.

一般に、MPU等の高発熱量の発熱体を冷却するには、受熱部で吸収した熱を広い面積を有する放熱部から空気へ放熱する方法が採られている。   In general, in order to cool a heating element having a high calorific value such as an MPU, a method of radiating heat absorbed by the heat receiving portion from a heat radiating portion having a large area to the air is employed.

ここで(特許文献1)に示される従来の技術を図9、図10を用いて説明する。   Here, the conventional technique disclosed in (Patent Document 1) will be described with reference to FIGS.

図9(a)は、従来の冷却装置の構成図、図9(b)は、従来の冷却装置の受熱部構造を示す図である。通常、このような冷却装置は、図9(a)に示すように発熱体2から熱を除去する受熱部1と受熱部1で熱を受け取った冷媒を輸送する流路8と冷媒を動かすポンプ13および冷媒から熱を放熱する放熱部11から構成されている。その主な冷却原理は、同図のように発熱体2で発生した熱が、受熱部1の内部へ伝わり内部に循環する冷媒と熱交換することにより冷媒の温度が上昇する。次に、その冷媒がポンプ13により流路8を通って放熱部11へ輸送され、放熱部11の温度を高める。次に高温となった放熱部11の表面へ放熱部搭載のファン10から空気が送られ熱交換されることで空気中へ放散される方法が採られている。   Fig.9 (a) is a block diagram of the conventional cooling device, FIG.9 (b) is a figure which shows the heat-receiving part structure of the conventional cooling device. Normally, such a cooling device includes a heat receiving unit 1 that removes heat from the heating element 2, a flow path 8 that transports the refrigerant that has received heat in the heat receiving unit 1, and a pump that moves the refrigerant, as shown in FIG. 13 and a heat dissipating part 11 that dissipates heat from the refrigerant. The main cooling principle is that the heat generated in the heating element 2 is transferred to the inside of the heat receiving section 1 and exchanges heat with the refrigerant circulating inside as shown in FIG. Next, the refrigerant is transported by the pump 13 through the flow path 8 to the heat radiating portion 11, and the temperature of the heat radiating portion 11 is increased. Next, a method is adopted in which air is sent from the fan 10 mounted on the heat radiating unit to the surface of the heat radiating unit 11 that has reached a high temperature, and heat is exchanged to dissipate it into the air.

近年では、電子部品の小型化(製造プロセスの細線化)に伴い発熱体その物のサイズも小さくなる傾向にあり、単位面積当たりの熱密度は、増加の一途をたどっている。そのため、冷却装置の冷却性能は、受熱部と放熱部の両方の性能で決定されるが、特に受熱部の高性能化が大きな課題となっている。これは、例えば100Wの熱を発生する面積100平方mmの発熱体を仮に冷却できていた冷却装置でも、発熱面積が、電子部品製造プロセスの細線化によって50平方mmへ減少した場合には熱密度が2倍になるため吸熱性能の不足が発生し、同じ冷却装置では冷却できない事を意味している。   In recent years, along with the miniaturization of electronic components (thinning of manufacturing processes), the size of the heating element itself tends to decrease, and the heat density per unit area is steadily increasing. For this reason, the cooling performance of the cooling device is determined by the performance of both the heat receiving unit and the heat radiating unit, and in particular, high performance of the heat receiving unit is a major issue. This is because, for example, even in a cooling device that has been able to cool a heating element with an area of 100 square mm that generates heat of 100 W, the heat density is reduced when the heating area is reduced to 50 square mm by thinning the electronic component manufacturing process. Is doubled, resulting in a lack of endothermic performance, meaning that the same cooling device cannot be used for cooling.

また、前記した図9(a)の様な冷媒が循環する方式の受熱部では、図9(b)のような構造が採用されており、高い熱伝導率を有する金属(例えば、銅、アルミなど)の中を冷媒が循環する管路をもうける事で性能を高める工夫がされている。しかし、この場合でも熱が、受熱部内部で金属から冷媒へ熱交換される効率は、管路の内壁の面積に大きく依存するため、単純に管路を受熱部内部に配するだけでは、受熱面積が少なく十分な性能が得られ無い場合が多い。そして、今後の発熱体サイズの縮小で更に性能不足が顕著になると考えられる。   Further, in the heat receiving part of the system in which the refrigerant circulates as shown in FIG. 9A, a structure as shown in FIG. 9B is adopted, and a metal having high thermal conductivity (for example, copper, aluminum, etc.). Etc.) has been devised to improve the performance by creating a pipeline through which the refrigerant circulates. However, even in this case, the efficiency with which heat is exchanged from the metal to the refrigerant inside the heat receiving part greatly depends on the area of the inner wall of the pipe, so simply placing the pipe inside the heat receiving part In many cases, the area is small and sufficient performance cannot be obtained. And it is thought that performance shortage will become more remarkable by future reduction of the heating element size.

そこで、受熱部の吸熱性能を更に高める方法として、考案された他の従来の技術が、図10(a)従来の他の冷却装置の受熱部の斜視図、図10(b)従来の他の冷却装置の受熱部の側面流線図に示す様な受熱部にプレート状フィン4aを平行に配置した方式である。この方式の場合、同図のように受熱板3の上に多数のプレート状フィン4aが、ある間隔で立設された構造となっており、図9(b)に比べ遙かに大きな熱交換面積が確保されるため、より高い吸熱性能が得られる構成として提案されている。
特開平10−213370号公報
Therefore, as a method for further improving the heat absorption performance of the heat receiving part, another conventional technique devised is shown in FIG. 10 (a) a perspective view of the heat receiving part of another conventional cooling device, and FIG. 10 (b) another conventional technique. This is a system in which plate-like fins 4a are arranged in parallel to the heat receiving portion as shown in the side stream diagram of the heat receiving portion of the cooling device. In the case of this method, a large number of plate-like fins 4a are erected at a certain interval on the heat receiving plate 3 as shown in the figure, and the heat exchange is much larger than that in FIG. 9B. Since an area is ensured, it has been proposed as a configuration capable of obtaining higher heat absorption performance.
Japanese Patent Laid-Open No. 10-213370

しかしながら、半導体等の電子部品では、更なる高性能化の進展等によって益々発熱が大きくなるか、または、熱密度が上昇するという傾向にある事は前記した通りであり、図9の従来の冷却装置を用いた場合では、十分な冷却を行う事が困難な場合も出て来ている。これらの問題に対応することを考慮して考案されたのが図10(a)に示す受熱部であり、高性能を確保するためプレート状フィン4aの枚数を増やし、より多くの熱交換面積を確保する構造が採用されている。この場合、図10(b)のように冷媒は、流入口5からフィン間を通って流出口6へ抜ける流れが形成される構成となっている。   However, in the electronic parts such as semiconductors, as described above, the heat generation becomes higher or the heat density tends to increase due to further progress in performance, as described above. In the case of using an apparatus, there are cases where it is difficult to perform sufficient cooling. The heat receiving part shown in FIG. 10 (a) was devised in consideration of dealing with these problems, and in order to ensure high performance, the number of plate-like fins 4a is increased to increase the heat exchange area. The structure to secure is adopted. In this case, as shown in FIG. 10 (b), the refrigerant is configured to form a flow from the inlet 5 to the outlet 6 through the fins.

しかし、この構成でも、ある枚数まではプレート状フィン4aを増やす事で熱交換面積を増やし性能を向上させる事はできるが、ある枚数以上では性能が逆に低下するという問題が出てくる。これは、フィン枚数が多くなる事で、フィン間隔が狭くなり冷媒の圧力損失が増加するため逆に冷媒流量が減少し、性能も低下するためである。つまり、熱交換面積増と冷媒流量確保とは互いに相殺関係にあり、適度な条件を選択するしかないのが現状である。   However, even with this configuration, it is possible to increase the heat exchange area and improve the performance by increasing the number of plate-like fins 4a up to a certain number. However, when the number exceeds a certain number, there is a problem that the performance deteriorates conversely. This is because as the number of fins increases, the gap between the fins becomes narrower and the pressure loss of the refrigerant increases, so that the refrigerant flow rate decreases and the performance also decreases. That is, the increase in the heat exchange area and the securing of the refrigerant flow rate are in a mutually canceling relationship, and the current situation is that there is no choice but to select appropriate conditions.

また、フィン枚数を増やす方法で、更に高い性能を確保するには、フィン枚数増加に伴う圧力損失の急激な増加分を考慮したポンプの出力増が求められる事になりポンプの大型化は避けられず、装置全体を大型化してしまうという別の問題もあった。   Also, in order to secure even higher performance by increasing the number of fins, it is necessary to increase the pump output in consideration of the sudden increase in pressure loss accompanying the increase in the number of fins. However, there is another problem that the entire apparatus is enlarged.

本発明は上記の課題を解決するもので、発熱体から発生した熱を効率的に吸熱させるための受熱部の最大性能を引き出し、冷却性能に優れた電子部品の冷却装置を提供する事を目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described problems, and aims to provide a cooling device for electronic components with excellent cooling performance by drawing out the maximum performance of the heat receiving part for efficiently absorbing the heat generated from the heating element. And

本発明の冷却装置は、発熱体から発熱した熱を受熱する受熱部と、前記受熱部から冷媒を流入して前記受熱部の熱を含んだ前記冷媒の熱を外部に放熱する放熱部と、前記受熱部及び前記放熱部の間で前記冷媒をポンプにて循環させる循環路と、を有する冷却装置であって、前記受熱部の内部に配置され前記発熱体から発熱した熱を受熱する複数のプレート状のフィンと、前記複数のプレート状のフィンの中央部に冷媒を流入する流入ノズルと、前記流入した冷媒の流入方向と垂直方向に前記複数のプレート状のフィンの両側に冷媒を流出する流出ノズルと、を具備し、前記流入ノズルを介して前記複数のプレート状のフィンの中央部に流入した冷媒は、前記プレート状のフィンの間に入り込み、前記プレート状のフィンの間の底部に当接して流入方向と垂直方向に向きを変え、前記フィンに受熱された熱を吸収して、前記プレート状のフィンの間を通って、前記複数のプレート状のフィンの両側から前記流出ノズルを介して流出されることを特徴とする。   The cooling device of the present invention, a heat receiving portion that receives heat generated from the heating element, a heat radiating portion that flows in the refrigerant from the heat receiving portion and radiates the heat of the refrigerant including the heat of the heat receiving portion to the outside, A cooling path that circulates the refrigerant between the heat receiving portion and the heat radiating portion with a pump, and a plurality of the heat receiving portions that are arranged inside the heat receiving portion and receive heat generated from the heating element. The plate-shaped fins, the inflow nozzle that flows the refrigerant into the central portion of the plurality of plate-shaped fins, and the refrigerant flows out to both sides of the plurality of plate-shaped fins in a direction perpendicular to the inflow direction of the flowing-in refrigerant. The refrigerant that has flowed into the center of the plurality of plate-like fins through the inflow nozzle, enters between the plate-like fins, and enters the bottom between the plate-like fins. Abut The direction is changed in the vertical direction to the incoming direction, the heat received by the fins is absorbed, and the heat passes through the plate-like fins and flows out from both sides of the plurality of plate-like fins through the outlet nozzle. It is characterized by being.

次に、本発明の冷却装置は、前記受熱部の流入ノズルが、前記複数のプレート状フィンの長手方向の中央近傍に配されている事を特徴とする。   Next, the cooling device of the present invention is characterized in that the inflow nozzle of the heat receiving portion is arranged near the center in the longitudinal direction of the plurality of plate-like fins.

そして、本発明の冷却装置は、前記受熱部の流入ノズルの幅は、前記複数のプレート状フィンの配置幅と同じであることを特徴とする。   And the cooling device of this invention is characterized by the width | variety of the inflow nozzle of the said heat receiving part being the same as the arrangement | positioning width | variety of these plate-shaped fins.

さらに、前記受熱部の流入ノズルは、前記プレート状のフィンの底部に対して略垂直である事を特徴とする。   Further, the inflow nozzle of the heat receiving part is substantially perpendicular to the bottom of the plate-like fin.

そして、前記受熱部内部における受熱部の流入ノズル近傍の前記プレート状のフィンの1部が略V字形状か、略U字形状、または台形状に切りかかれている事を特徴とする。   A part of the plate-like fin in the vicinity of the inflow nozzle of the heat receiving part inside the heat receiving part is cut into a substantially V shape, a substantially U shape, or a trapezoidal shape.

また、前記受熱部の複数の前記プレート状フィンを接合し発熱体に対接する受熱板の厚みhと前記発熱体長さL2の寸法比(T=h/L2)が0.1〜0.5の範囲である事を特徴とする。   Further, the dimension ratio (T = h / L2) of the thickness h2 of the heat receiving plate that joins the plurality of plate-like fins of the heat receiving portion and contacts the heat generating member and the length L2 of the heat generating member is 0.1 to 0.5. It is characterized by a range.

加えて前記カバーの長さは前記プレート状フィンの長さと同等以上であることを特徴とする。   In addition, the length of the cover is equal to or longer than the length of the plate-like fin.

また、冷媒を循環するための閉循環路に放熱部と受熱部を含む受熱ユニットとポンプが設けられ、前記受熱ユニットが発熱電子部品(以下、発熱体)に対接されて前記受熱ユニット内部の冷媒との熱交換作用で前記発熱体から熱を奪い、前記ポンプにより冷媒は前記閉循環路を循環移送され、前記放熱部から放熱を行う冷却装置であって、前記受熱ユニットは冷媒が流入する受熱ユニットの流入口と前記発熱体の熱を受熱し冷媒に伝熱する前記受熱部と冷媒の流出口を有し、前記受熱部は前記発熱体の熱を受熱する受熱板と前記受熱板で受熱した熱を冷媒に伝熱する複数のプレート状のフィンと前記フィンを覆い、前記フィンの両端部が開放され前記フィンの上方に前記受熱ユニットの流入口と連接される受熱部の流入ノズルを形成するカバーを有することを特徴とする。   In addition, a heat receiving unit including a heat radiating portion and a heat receiving portion and a pump are provided in a closed circulation path for circulating the refrigerant, and the heat receiving unit is in contact with a heat generating electronic component (hereinafter referred to as a heat generating body) so as to be inside the heat receiving unit. A cooling device that removes heat from the heating element through heat exchange with the refrigerant, is circulated and transferred through the closed circuit by the pump, and radiates heat from the heat radiating unit, and the heat receiving unit receives the refrigerant. The heat receiving unit includes an inlet and a heat receiving portion that receives heat from the heating element and transfers heat to the refrigerant, and a refrigerant outlet, and the heat receiving portion includes a heat receiving plate and the heat receiving plate that receive heat from the heating element. Covering the fins with a plurality of plate-like fins that transfer the heat received to the refrigerant, an inflow nozzle of the heat receiving unit that is open at both ends of the fins and connected to the inlet of the heat receiving unit above the fins Hippo forming Characterized in that it has a.

以上のように本実施の形態の冷却装置は、受熱部に複数のプレート状フィンとそのフィンを覆うカバーを有し、受熱部内部への最適な冷媒流入ノズルの位置と方向を選択し、前記プレート状フィン形状を一部変更する事でフィン内に発生する淀み領域を防止することができる。更に発熱体と前記受熱部の受熱板のサイズが近い場合には受熱板厚みhと発熱体長さLの適度な寸法比範囲を採用する事で受熱部の最大吸熱性能を引き出し、冷却性能に優れた電子部品の冷却装置を提供する事が可能である。   As described above, the cooling device of the present embodiment has a plurality of plate-like fins and a cover that covers the fins in the heat receiving part, selects an optimal position and direction of the refrigerant inflow nozzle into the heat receiving part, By partially changing the shape of the plate-like fin, it is possible to prevent a stagnation region generated in the fin. In addition, when the size of the heat receiving plate of the heat receiving portion is close to that of the heat receiving portion, the maximum heat absorbing performance of the heat receiving portion is derived by adopting an appropriate size ratio range of the heat receiving plate thickness h and the length of the heat generating length L, and excellent in cooling performance. It is possible to provide a cooling device for electronic components.

請求項1に記載の発明は、発熱体から発熱した熱を受熱する受熱部と、前記受熱部から冷媒を流入して前記受熱部の熱を含んだ前記冷媒の熱を外部に放熱する放熱部と、前記受熱部及び前記放熱部の間で前記冷媒をポンプにて循環させる循環路と、を有する冷却装置であって、前記受熱部の内部に配置され前記発熱体から発熱した熱を受熱する複数のプレート状のフィンと、前記複数のプレート状のフィンの中央部に冷媒を流入する流入ノズルと、流入した冷媒の流入方向と垂直方向に前記複数のプレート状のフィンの両側に冷媒を流出する流出ノズルと、を具備し、流入ノズルを介して前記複数のプレート状のフィンの中央部に流入した冷媒は、前記プレート状のフィンの間に入り込み、前記プレート状のフィンの間の底部に当接して流入方向と垂直方向に向きを変え、前記フィンに受熱された熱を吸収して、前記プレート状のフィンの間を通って、前記複数のプレート状のフィンの両側から前記流出ノズルを介して流出することで、流入冷媒の熱交換を行うフィン間へ確実に誘導することができる。   The invention according to claim 1 is a heat receiving portion that receives heat generated from the heating element, and a heat radiating portion that flows the refrigerant from the heat receiving portion and radiates the heat of the refrigerant including the heat of the heat receiving portion to the outside. A cooling path that circulates the refrigerant between the heat receiving unit and the heat radiating unit by a pump, and receives heat generated from the heating element that is disposed inside the heat receiving unit. A plurality of plate-shaped fins, an inflow nozzle for flowing the refrigerant into the center of the plurality of plate-shaped fins, and a refrigerant flowing out on both sides of the plurality of plate-shaped fins in a direction perpendicular to the inflow direction of the flowed-in refrigerant The refrigerant flowing into the central portion of the plurality of plate-like fins through the inflow nozzle and entering between the plate-like fins, and entering the bottom portion between the plate-like fins. In contact and inflow The direction is changed to the vertical direction, the heat received by the fins is absorbed, the heat passes through the plate-shaped fins, and flows out from both sides of the plurality of plate-shaped fins through the outflow nozzle. By this, it can guide | invade reliably between the fins which heat-exchange an inflow refrigerant | coolant.

請求項2に記載の発明は、流入ノズルをプレート状フィンの長手方向の中央近傍に配する事で、流路が左右に分岐させる。これにより、流路長が約半分に短縮され大幅に圧力損失が低減するため、吸熱に寄与する流量が増加し、結果的に受熱部の吸熱特性を高める事ができる。   According to the second aspect of the present invention, the flow path branches right and left by arranging the inflow nozzle near the center in the longitudinal direction of the plate-like fin. As a result, the flow path length is shortened to about half and the pressure loss is greatly reduced, so the flow rate contributing to heat absorption increases, and as a result, the heat absorption characteristics of the heat receiving portion can be enhanced.

請求項3に記載の発明は、前記受熱部の流入ノズルの幅が、前記複数のプレート状フィンの配置幅と同じであることにより、全てのプレート状フィンに均等に冷媒を導くことができる。   According to a third aspect of the present invention, since the width of the inflow nozzle of the heat receiving portion is the same as the arrangement width of the plurality of plate-like fins, the refrigerant can be evenly guided to all the plate-like fins.

請求項4に記載の発明は、前記受熱部の冷媒流入ノズルは、前記プレート状のフィンの底部に対して略垂直である事により冷媒の本流を発熱体直上近傍の最も温度の高い部分へ誘導し吸熱特性を高める事ができる。   According to a fourth aspect of the present invention, the refrigerant inflow nozzle of the heat receiving portion is substantially perpendicular to the bottom of the plate-like fin, so that the main flow of the refrigerant is guided to the highest temperature portion near the heating element. The endothermic properties can be improved.

請求項5に記載の発明は、受熱部内部における冷媒流入ノズル近傍のプレート状フィンの1部が略V字形状か、略U字形状、または台形状に切りかく事で、フィンの熱交換面積を増やすためにプレート状フィンの高さを高くした場合でも、発熱体直上近傍まで冷媒を運ぶ事が可能となり、更に高い吸熱特性を得る事ができる。   According to the fifth aspect of the present invention, a portion of the plate-like fin in the vicinity of the refrigerant inflow nozzle in the heat receiving portion is cut into a substantially V shape, a substantially U shape, or a trapezoidal shape, so that the heat exchange area of the fin Even when the height of the plate-like fins is increased in order to increase the temperature, the refrigerant can be carried to the vicinity immediately above the heating element, and higher heat absorption characteristics can be obtained.

請求項6に記載の発明は、受熱部の複数のプレート状フィンを接合し発熱体に対接する受熱板の厚みhと前記発熱体長さL2の寸法比(T=h/L2)が0.1〜0.5の範囲である事で、発熱体に接触する金属部分の熱抵抗を可能な限り小さくし、更に高い吸熱特性を得る事ができる。   In a sixth aspect of the present invention, a dimensional ratio (T = h / L2) between the thickness h of the heat receiving plate that joins the plurality of plate-like fins of the heat receiving portion and contacts the heat generating member and the length L2 of the heat generating member is 0.1. By being in the range of ˜0.5, the thermal resistance of the metal portion that contacts the heating element can be made as small as possible, and higher endothermic characteristics can be obtained.

請求項7に記載の発明は、前記カバーの長さは前記プレート状フィンの長さと同等以上である事で、流入する冷媒を積極的に高温部へ導くことがきで、熱交換の効率を高める事ができる。   According to a seventh aspect of the present invention, the length of the cover is equal to or longer than the length of the plate-like fins, so that the inflowing refrigerant can be actively guided to the high temperature part, and the efficiency of heat exchange is increased. I can do things.

請求項8に記載の発明は、冷媒を循環するための閉循環路に放熱部と受熱部を含む受熱ユニットとポンプが設けられ、前記受熱ユニットが発熱電子部品(以下、発熱体)に対接されて前記受熱ユニット内部の冷媒との熱交換作用で前記発熱体から熱を奪い、前記ポンプにより冷媒は前記閉循環路を循環移送され、前記放熱部から放熱を行う冷却装置であって、前記受熱ユニットは冷媒が流入する受熱ユニットの流入口と前記発熱体の熱を受熱し冷媒に伝熱する前記受熱部と冷媒の流出口を有し、前記受熱部は前記発熱体の熱を受熱する受熱板と前記受熱板で受熱した熱を冷媒に伝熱する複数のプレート状のフィンと前記フィンを覆い、前記フィンの両端部が開放され前記フィンの上方に前記受熱ユニットの流入口と連接される受熱部の流入ノズルを形成するカバーを有することで、流入冷媒の熱交換を行うフィン間へ確実に誘導することができる。   According to an eighth aspect of the present invention, a closed circuit for circulating the refrigerant is provided with a heat receiving unit including a heat radiating portion and a heat receiving portion, and a pump, and the heat receiving unit contacts a heat generating electronic component (hereinafter referred to as a heat generating body). The cooling device takes heat from the heating element by heat exchange with the refrigerant inside the heat receiving unit, the refrigerant is circulated and transferred through the closed circuit by the pump, and radiates heat from the heat radiating section, The heat receiving unit includes an inlet of the heat receiving unit into which the refrigerant flows and a heat receiving portion that receives heat from the heating element and transfers the heat to the refrigerant and an outlet of the refrigerant, and the heat receiving portion receives the heat of the heating element. The heat receiving plate and a plurality of plate-like fins that transfer heat received by the heat receiving plate to the refrigerant and the fin are covered, and both ends of the fin are opened and connected to the inlet of the heat receiving unit above the fin. Inflow of heat receiving part By having a cover forming the Le, it can be reliably guided to between the fins for heat exchange refrigerant flowing.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、(a)本発明の実施の形態1における冷却装置をパーソナルコンピュータ(以下、PC)筐体内に配置した場合の斜視図、図1(b)は、受熱ユニットの拡大構造図である。図1(a)において、16は、PC筐体であり、その中に電源ユニット15,マザーボード20などのPC部品と共に本発明の冷却装置が配置されている。本発明の冷却装置は、受熱部1を含む受熱ユニット18と放熱部11、および冷媒を循環させるポンプ13の3つの主要部品とそれらを接続する流路8から構成されている。実際の冷却では、まず冷媒が、ポンプ13から送り出され流路8を通って流入口5から受熱を行う受熱ユニット18へ流入する。受熱ユニット18は、発熱体ソケット17に装着された発熱体2(図2(b)参照)に対接しており、受熱ユニット18の内部には、受熱を行う図1(b)に示すような受熱部1が中央に配されている。受熱ユニット18は、入口側流路8につながる流入口5がユニットカバー19の上部19aに、そして出口側流路8につながる流出口6が同ユニットカバー19の側壁19bに設けられている。また、受熱部1は、ユニットカバー19の底部19cに液密に取り付けられている。ここでの図1(b)は、受熱ユニット18からユニットカバー19の一部を取り除いた状態での斜視図である。
(Embodiment 1)
FIG. 1A is a perspective view when a cooling device according to Embodiment 1 of the present invention is arranged in a personal computer (hereinafter, PC) housing, and FIG. 1B is an enlarged structural view of a heat receiving unit. . In FIG. 1A, reference numeral 16 denotes a PC housing in which the cooling device of the present invention is arranged together with PC components such as the power supply unit 15 and the mother board 20. The cooling device of the present invention includes a heat receiving unit 18 including the heat receiving unit 1, a heat radiating unit 11, and three main parts of a pump 13 that circulates a refrigerant, and a flow path 8 that connects them. In actual cooling, first, the refrigerant is sent out from the pump 13, passes through the flow path 8, and flows into the heat receiving unit 18 that receives heat from the inlet 5. The heat receiving unit 18 is in contact with the heat generating element 2 (see FIG. 2B) mounted on the heat generating element socket 17, and inside the heat receiving unit 18 as shown in FIG. The heat receiving part 1 is arranged in the center. In the heat receiving unit 18, the inlet 5 connected to the inlet-side flow path 8 is provided in the upper portion 19 a of the unit cover 19, and the outlet 6 connected to the outlet-side flow path 8 is provided in the side wall 19 b of the unit cover 19. Further, the heat receiving unit 1 is liquid-tightly attached to the bottom 19 c of the unit cover 19. FIG. 1B is a perspective view of the heat receiving unit 18 with a part of the unit cover 19 removed.

冷媒は、受熱部1の略平行に配置された複数のプレート状フィン4aの中央部へ流入ノズル9を介して流入し、流線7a,7bの様に左右に分岐した後、流出口6へ向かう。この時、冷媒は、発熱体2からの熱で高温になったフィン間を通る際に熱を受け取り、発熱体2を冷却することになる。次に熱を受け取った冷媒は、受熱ユニット18の流出口6から矢印の方向に流路8を通って放熱部11へ流入し放熱部11の温度を高める。そして、放熱部搭載のファン10からの空気が高温となった放熱部11の表面へ送られ熱交換されることで、熱が、空気中へ放散される。   The refrigerant flows into the central portion of the plurality of plate-like fins 4a arranged substantially in parallel with the heat receiving portion 1 through the inflow nozzle 9, branches to the left and right like the flow lines 7a and 7b, and then to the outflow port 6. Head. At this time, the refrigerant receives heat when passing between the fins that have become high temperature due to heat from the heating element 2, and cools the heating element 2. Next, the refrigerant that has received the heat flows from the outlet 6 of the heat receiving unit 18 through the flow path 8 in the direction of the arrow to the heat radiating portion 11 and raises the temperature of the heat radiating portion 11. And heat is dissipated in the air by the air from the fan 10 mounted on the heat radiating section being sent to the surface of the heat radiating section 11 where the temperature has become high and exchanging heat.

次に、図2および図3を用いて、受熱部1のより詳細な構造と特性について説明する。図2(a)は、本発明の実施の形態1における冷却装置の受熱部の斜視図、図2(b)は、受熱部の側面流線図である。図2(a)において、1は、受熱部1の全体を表している。2は、発熱体であり(図2(b)参照)、3は、発熱体2と接触し熱を吸収する受熱板で、熱抵抗の少ない例えば、銅、アルミニュウム等の材料が用いられ、厚みはユニットカバー19より厚く、ユニットカバーの底部より突出している。このことで発熱体2に取り付ける位置が明確になり、発熱体2を取り付けるのが容易になる。5は、冷媒が受熱部1へ流入するための流入口であり、一端は流路8につながる。4aは、受熱板3上に配されたプレート状フィンで、例えば、銅、アルミニュウム等の高伝熱性の材料が用いられ、複数枚が略並行に所定の間隔をもって配置されている。12は、プレート状フィン4aを覆う受熱部カバーで、プレー状フィン4aのz方向長さより長く、プレート状フィン4aの両端側に受熱部カバー12で流路が形成される。受熱部カバー12のプレート状フィン4aに沿う方向(Z方向)の両端は開放されて冷媒の流出口6a,6bを形成する。受熱部カバー12の上部でプレート状フィン4aの長手方向の中央近傍に冷媒が流入する流入ノズル9が搭載されている。9は、流入口5から流入した冷媒を各プレート状フィン4aに分配するために受熱部カバー12に搭載された流入ノズルで、一端は流入口5につながっている。流入ノズル9の幅(X方向)は複数のプレー状フィン4aの配置幅と略同じで、受熱部カバー12上部に略垂直に搭載されている。流入ノズル9は本実施の形態では、別体で製作し受熱部カバー12に搭載したが、受熱部カバー12と一体で製作してもよい。   Next, a more detailed structure and characteristics of the heat receiving unit 1 will be described with reference to FIGS. 2 and 3. FIG. 2A is a perspective view of the heat receiving portion of the cooling device according to Embodiment 1 of the present invention, and FIG. 2B is a side stream diagram of the heat receiving portion. In FIG. 2A, 1 represents the entire heat receiving unit 1. 2 is a heating element (see FIG. 2B), 3 is a heat receiving plate that contacts the heating element 2 and absorbs heat, and is made of a material having a low thermal resistance, such as copper, aluminum, etc. Is thicker than the unit cover 19 and protrudes from the bottom of the unit cover. This makes it clear where to attach the heating element 2 and makes it easier to attach the heating element 2. Reference numeral 5 denotes an inflow port through which the refrigerant flows into the heat receiving unit 1, and one end is connected to the flow path 8. Reference numeral 4a denotes a plate-like fin disposed on the heat receiving plate 3, for example, a highly heat-conductive material such as copper or aluminum is used, and a plurality of the fins are arranged substantially in parallel with a predetermined interval. Reference numeral 12 denotes a heat receiving part cover that covers the plate-like fins 4a. The heat-receiving part cover 12 is longer than the length in the z direction of the plate-like fins 4a, and a flow path is formed by the heat receiving part cover 12 at both ends of the plate-like fins 4a. Both ends of the heat receiving portion cover 12 in the direction (Z direction) along the plate-like fins 4a are opened to form refrigerant outlets 6a and 6b. The inflow nozzle 9 into which the refrigerant flows is mounted near the center of the plate-like fin 4a in the longitudinal direction above the heat receiving part cover 12. 9 is an inflow nozzle mounted on the heat receiving part cover 12 to distribute the refrigerant flowing in from the inflow port 5 to the plate-like fins 4 a, and one end is connected to the inflow port 5. The width (X direction) of the inflow nozzle 9 is substantially the same as the arrangement width of the plurality of play-like fins 4 a and is mounted substantially vertically on the heat receiving part cover 12. In this embodiment, the inflow nozzle 9 is manufactured separately and mounted on the heat receiving unit cover 12, but may be manufactured integrally with the heat receiving unit cover 12.

また、破線で示した18は、図1で示した受熱ユニット18を略して示したものである。ユニットカバー19の底部19cには開口部が形成され、受熱部1の受熱板3がユニットカバー19の底部の開口部に挿入され、ロウ付、圧接、溶着等で液密に取り付けられる。ここで発熱体2としては、IC、LSI、MPU等の半導体やトランジスタ等の発熱する電子部品である。   Moreover, 18 shown with the broken line is abbreviate | omitting and shows the heat receiving unit 18 shown in FIG. An opening is formed in the bottom portion 19c of the unit cover 19, and the heat receiving plate 3 of the heat receiving portion 1 is inserted into the opening in the bottom portion of the unit cover 19, and is attached in a liquid-tight manner by brazing, pressure welding, welding or the like. Here, the heating element 2 is an electronic component that generates heat, such as a semiconductor such as an IC, LSI, or MPU, or a transistor.

受熱部1では、前記した通り冷媒が、流入口5から流入ノズル9に流入し、流入ノズル9内で各プレート状フィン4aへ分配される。流入ノズル9は、プレート状フィン4aの長手方向(z方向)のほぼ中央に配されており、フィン間に流入した冷媒は、プレート状フィン4aの長手方向中央部から左右に分岐し、流線7a,7bに示すような経路を通って、受熱部カバー12の2ヶ所の流出口6a,6bから流出するルートを取る。このフィン間を冷媒が通過する際に熱交換が行われ、発熱体の冷却が行われる。   In the heat receiving section 1, as described above, the refrigerant flows into the inflow nozzle 9 from the inflow port 5 and is distributed to the plate-like fins 4 a in the inflow nozzle 9. The inflow nozzle 9 is arranged substantially at the center in the longitudinal direction (z direction) of the plate-like fin 4a, and the refrigerant flowing between the fins branches from the center in the longitudinal direction of the plate-like fin 4a to the left and right. The route which flows out from the two outflow ports 6a and 6b of the heat-receiving part cover 12 through the path | routes shown to 7a and 7b is taken. When the refrigerant passes between the fins, heat exchange is performed, and the heating element is cooled.

なお、図2で使用した座標系は、x方向がプレート状フィン4aの配置幅方向、y方向は、プレート状フィン4aへ冷媒が流入して来る方向、z方向は、プレート状フィン4aの長手方向を表しており、以後の説明には全て同じ座標系を使って説明する。   In the coordinate system used in FIG. 2, the x direction is the arrangement width direction of the plate fins 4a, the y direction is the direction in which the refrigerant flows into the plate fins 4a, and the z direction is the length of the plate fins 4a. The direction is shown, and the following description will be made using the same coordinate system.

一般に発熱体2に対接した受熱部1では、熱が、発熱体2と受熱板3の接触面(以下、受熱面)から吸熱されフィンに伝わり、フィン間を流れる冷媒との熱交換で熱が奪われることによって発熱体2の冷却を行う。しかし、発熱体2のサイズは、近年の小型化、低コスト化に伴って縮小の一途をたどっており、仮に発熱量自体がほとんど変化しなくとも、発熱体2からの熱密度(単位面積当たりの発熱量)は、サイズとは逆に急激に増加する事になる。この点は、前記した通りで大幅な吸熱性能の低下を意味しており、その理由を示したのが、図11である。このグラフは、同じ冷却装置を使用し、発熱量を固定して発熱サイズを変化させた場合の熱抵抗の変化を実験的に求めて表したグラフである。横軸は、発熱体2のサイズ(面積S:mm2)を表し、縦軸は、発熱体サイズを100mm2とした場合の冷却装置の熱抵抗R0とサイズが縮小した場合の熱抵抗R1の比をとった規格化熱抵抗比(R1/R0)を表している。また、上部横軸には各サイズを将来実現するために必要な半導体プロセスの最小線幅の世代例も付記している。同グラフより、発熱サイズが縮小すると熱抵抗も急激に悪化してくることがわかる。これは、前記した通り発熱サイズの縮小に伴う熱密度の増加が原因であり、実質的な冷却装置の吸熱性能の低下を意味している。さらに、ここで示した最小線幅の世代交代は、通常2年〜3年で行われており、その間の半導体素子数の増加を考慮しても、一世代で約70%までサイズが縮小すると言われている。そして、この世代交代による熱密度の増加に対応するだけの吸熱性能を現実的に確保する事が困難に成りつつあるという事が大きく顕在化して来ている。 In general, in the heat receiving portion 1 that is in contact with the heating element 2, heat is absorbed from the contact surface (hereinafter referred to as the heat receiving surface) between the heating element 2 and the heat receiving plate 3 and transferred to the fins, and heat is exchanged with the refrigerant flowing between the fins. The heat generating element 2 is cooled by taking away. However, the size of the heating element 2 is steadily decreasing with the recent reduction in size and cost, and even if the calorific value itself hardly changes, the heat density from the heating element 2 (per unit area) The calorific value) increases rapidly, contrary to the size. This point means a significant decrease in the endothermic performance as described above, and the reason is shown in FIG. This graph is a graph showing experimentally obtained changes in the thermal resistance when the same cooling device is used and the heat generation amount is fixed and the heat generation size is changed. The horizontal axis represents the size (area S: mm 2 ) of the heating element 2, and the vertical axis represents the thermal resistance R0 of the cooling device when the heating element size is 100 mm 2 and the thermal resistance R1 when the size is reduced. The normalized thermal resistance ratio (R1 / R0) is shown. The upper horizontal axis also shows an example of generation of the minimum line width of the semiconductor process necessary for realizing each size in the future. From the graph, it can be seen that as the heat generation size decreases, the thermal resistance also deteriorates rapidly. As described above, this is due to the increase in the heat density accompanying the reduction in the heat generation size, which means a substantial decrease in the endothermic performance of the cooling device. Furthermore, the generation change of the minimum line width shown here is normally performed in 2 to 3 years, and even if the increase in the number of semiconductor elements in the meantime is taken into account, the size is reduced to about 70% in one generation. It is said. The fact that it is becoming difficult to actually secure endothermic performance sufficient to cope with the increase in heat density due to this generational change has become increasingly apparent.

したがって、この問題に対して受熱部の高性能化が急務であることは言うまでもないが、そのためには、前記した通り受熱部の大きな熱交換面積を確保しつつ、大きな冷媒流量を確保するため、圧力損失を低減することが必要となる。   Therefore, it goes without saying that there is an urgent need to improve the performance of the heat receiving unit for this problem.To that end, in order to ensure a large heat exchange area of the heat receiving unit as described above, to ensure a large refrigerant flow rate, It is necessary to reduce the pressure loss.

そこで、本発明は、構造のプレート状フィンの上方から発熱体中心に向けて垂直に冷媒を流入させる方式を採用する事によって、大きな熱交換面積と圧力損失の低減による大流量の両方を確保し、吸熱性能に優れた冷却装置を実現した。   Therefore, the present invention secures both a large heat exchange area and a large flow rate by reducing pressure loss by adopting a system in which the refrigerant flows vertically from above the plate-shaped fins of the structure toward the center of the heating element. A cooling device with excellent endothermic performance has been realized.

前記した通り、図2(b)は、流入ノズル9からプレート状フィン上部のほぼ中央へ冷媒が流入する事で、冷媒の流線(7a、7b)が左右の分離した流れを形成できる事を示したものである。この構成の場合、図2(a)のように流入ノズル9と流出口6a、6bのそれぞれの断面積(斜線部)が同じとすると、従来の図10(a)の様に一方向へ抜ける場合の流線7cに比べてフィン間を通る流線7a、7bの長さは、左右に分岐するため約半分になる点と流出口の面積が二倍になるため、圧力損失がほぼ半分となる大幅な低減を実現する事ができるのである。これに伴い大幅な流量増をもたらす効果がある。   As described above, FIG. 2 (b) shows that the refrigerant flow lines (7a, 7b) can form a left and right separated flow when the refrigerant flows from the inflow nozzle 9 to the substantially upper center of the plate-like fin. It is shown. In the case of this configuration, if the cross-sectional areas (shaded portions) of the inflow nozzle 9 and the outflow ports 6a and 6b are the same as shown in FIG. 2 (a), they exit in one direction as shown in FIG. 10 (a). The length of the stream lines 7a and 7b passing between the fins compared to the stream line 7c in this case is about a half because it branches right and left, and the area of the outlet is doubled, so the pressure loss is almost half. The drastic reduction can be realized. Along with this, there is an effect of greatly increasing the flow rate.

さらに、ここで、実施の形態1の圧力損失低減効果の一例を実測値を示しながら説明する。図3(a)は、従来例の受熱部と本発明の実施の形態1における受熱部を用いて、一定流量Qに対して発生する圧力損失Pの低減効果を比較したグラフで、図2(a)と同様に流量と圧力損失の関係を各受熱部毎に表したものであり、A線が図10に示した従来の受熱部を、B線が図2に示した実施の形態1の場合を表している。同図より従来例、本実施の形態1の場合の各受熱部を用い、流量Qa(2.8L/min)を流した時の圧力損失は、それぞれPa(38kpa)、Pb(21kpa)である。従来例のPaに対して実施の形態1は、フィン上部中央からの流入によって圧力損失Pbが55%(Pb/Pa=0.55)まで減少することが確認できた。したがって、これらの受熱部に同一の性能(発生圧力)Paを有するポンプを用いると、流量はA線の従来例に対して、B線に交差するポイントまで増加することになる。すなわち、流量の増加率は、B線の実施の形態1の場合39%増(Qb/Qa=3.9/2.8)となり、かなりの流量増となる。しかし、ポンプからの発生圧力が、流量に対して一定ではないため前記した通りには、流量は増加しない。その点を示したのが図3(b)である。   Further, an example of the pressure loss reduction effect of the first embodiment will be described with showing actual measurement values. FIG. 3A is a graph comparing the effect of reducing the pressure loss P generated with respect to a constant flow rate Q using the heat receiving part of the conventional example and the heat receiving part in Embodiment 1 of the present invention. As in a), the relationship between the flow rate and the pressure loss is shown for each heat receiving part, and the A line represents the conventional heat receiving part shown in FIG. 10 and the B line of the first embodiment shown in FIG. Represents the case. From the figure, the pressure loss when the flow rate Qa (2.8 L / min) is flowed using the respective heat receiving portions in the conventional example and the first embodiment is Pa (38 kpa) and Pb (21 kpa), respectively. . In the first embodiment, it was confirmed that the pressure loss Pb was reduced to 55% (Pb / Pa = 0.55) by the inflow from the fin upper center with respect to the conventional Pa. Therefore, when pumps having the same performance (generated pressure) Pa are used for these heat receiving parts, the flow rate increases to a point intersecting the B line as compared with the conventional example of the A line. That is, the increase rate of the flow rate is 39% increase (Qb / Qa = 3.9 / 2.8) in the case of the first embodiment of the B line, which is a considerable increase in the flow rate. However, since the pressure generated from the pump is not constant with respect to the flow rate, the flow rate does not increase as described above. This point is shown in FIG.

図3(b)は、同一ポンプを用いた場合の受熱部の圧力Pと流量Qの関係を表したグラフであり、図3(a)のグラフにポンプのP−Qカーブ(D線)を付加した物になっている。同図より、ポンプを用いた場合の各受熱部の動作点が、ポンプのP−Qカーブ(D線)と各圧力損失のカーブが交差する点で表されている。つまり、受熱部の流量の増加率は、B線の場合32%増(Qb´/Qa´=3.7/2.8)となり、ポンプのP−Qカーブが一定でないため、図3(a)で示したほど流量の増加はない。しかし、この32%の流量増が大きな性能増加を可能とする。   FIG. 3B is a graph showing the relationship between the pressure P and the flow rate Q of the heat receiving part when the same pump is used, and the PQ curve (D line) of the pump is shown in the graph of FIG. It has been added. From this figure, the operating point of each heat receiving part when a pump is used is represented by the point where the PQ curve (D line) of the pump and the curve of each pressure loss intersect. That is, the rate of increase in the flow rate of the heat receiving portion is 32% increase (Qb ′ / Qa ′ = 3.7 / 2.8) in the case of line B, and the PQ curve of the pump is not constant. ) There is no increase in flow rate as indicated by. However, this 32% increase in flow rate allows a significant increase in performance.

なお、本実施の形態1で使用したポンプの最大締め切り圧力は、42kpaである。また、受熱部のプレート状フィン形状の立設寸法は、図2で示す形状でX,Y,Z方向が12×5×12mmであり、フィン間寸法は0.2mmである。一般に受熱部の性能を高めるには、受熱部のフィン数を増やしより多くの熱交換面積を確保しつつ多くの冷媒流量をフィン間に導く必要がある、しかし、フィン熱交換面積増加と流量増の関係は互いを相殺するトレードオフの関係にあることは前記した通りである。そこで、本発明による方法を用いれば、この相殺関係を打破することができ、高い吸熱性能を実現することが可能となるのである。   The maximum cutoff pressure of the pump used in the first embodiment is 42 kpa. Further, the standing dimensions of the plate-like fin shape of the heat receiving part are 12 × 5 × 12 mm in the X, Y, and Z directions in the shape shown in FIG. 2, and the inter-fin dimension is 0.2 mm. In general, in order to improve the performance of the heat receiving part, it is necessary to increase the number of fins in the heat receiving part and to guide more refrigerant flow between the fins while ensuring more heat exchange area. As described above, these relationships are in a trade-off relationship that cancel each other. Therefore, if the method according to the present invention is used, this canceling relationship can be overcome and high heat absorption performance can be realized.

次に図4(a)は、本発明の実施の形態1における受熱部と流入ノズルの位置関係を表す側面流線図、図4(b)は、本発明の実施の形態1における受熱部に対し一定流量Qを流した時の流入ノズル位置による熱抵抗への影響を表すグラフである。   Next, Fig.4 (a) is a side streamline figure showing the positional relationship of the heat receiving part and inflow nozzle in Embodiment 1 of this invention, FIG.4 (b) is a heat receiving part in Embodiment 1 of this invention. It is a graph showing the influence on the thermal resistance by the inflow nozzle position when the constant flow rate Q is made to flow.

図4(b)より、横軸は、流入ノズル9のフィン長手方向(z方向)流入位置Z1とフィン4aが立設した受熱板2の長さL1の比(Z1/L1)を表し、縦軸は、流入ノズル位置が中央(Z1/L1=0.5)の場合の 熱抵抗R0.5と各流入ノズル位置での熱抵抗Rxとの比である規格化熱抵抗比(Rx/R0.5)を表している。同図より、流入ノズル位置が中央(Z1/L1=0.5)の場合は、左右への流量は同じで、熱抵抗比は最大の1.0を示している。また、位置が偏ると熱抵抗比は低下する事が分かる。つまり、片側に偏ると流路長が短くなった方の圧力損失が低下し流量は増加するが、逆に圧力損失が増加した方の流量は急激に減少するため、総合吸熱性能は、低下する。したがって、この図より中央流入が最大性能を引き出せる位置である事を示していると言える。   4 (b), the horizontal axis represents the ratio (Z1 / L1) of the fin longitudinal direction (z direction) inflow position Z1 of the inflow nozzle 9 and the length L1 of the heat receiving plate 2 on which the fins 4a are erected. The axis represents the normalized thermal resistance ratio (Rx / R0... Rx), which is the ratio between the thermal resistance R0.5 when the inflow nozzle position is the center (Z1 / L1 = 0.5) and the thermal resistance Rx at each inflow nozzle position. 5). From the figure, when the inflow nozzle position is the center (Z1 / L1 = 0.5), the flow rate to the left and right is the same, and the thermal resistance ratio is 1.0, which is the maximum. It can also be seen that the thermal resistance ratio decreases when the position is biased. In other words, if it is biased to one side, the pressure loss when the flow path length is shortened decreases and the flow rate increases, but conversely, the flow rate when the pressure loss increases decreases sharply, so the overall endothermic performance decreases. . Therefore, it can be said that this figure shows that the central inflow is a position where the maximum performance can be extracted.

なお、流入ノズル9のx方向の流入幅は、各フィン間へ均等に冷媒が流入することを考慮するとプレート状フィン4aのx方向配置幅Wと同じであることが望ましい。   It is desirable that the inflow width in the x direction of the inflow nozzle 9 is the same as the arrangement width W in the x direction of the plate-like fins 4a, considering that the refrigerant flows evenly between the fins.

また、実際に受熱部1を受熱ユニット18に搭載する場合は、受熱部1の受熱板3が突出可能な穴をユニットカバー19にあらかじめあけておき、その部分に受熱部1をはめ込み固定する方法を採用すれば比較的低コストで受熱ユニット18を製作することが可能である。   When the heat receiving unit 1 is actually mounted on the heat receiving unit 18, a hole in which the heat receiving plate 3 of the heat receiving unit 1 can protrude is made in advance in the unit cover 19, and the heat receiving unit 1 is fitted and fixed to that portion. Can be used to produce the heat receiving unit 18 at a relatively low cost.

(実施の形態2)
図5は本発明の実施の形態2における冷却装置の実施例である。図5(a)は、本発明の実施の形態2における他の受熱部の斜視図、図5(b)は、本発明の実施の形態2における他の受熱部の側面流線図である。図5(a)の構成は、図2(a)とほぼ同様の構成であり、異なる点は、受熱板3上に配されたプレート状フィン4bの形状が、中央に略V字型の切りかき形状を有する事である。
(Embodiment 2)
FIG. 5 shows an example of the cooling device according to Embodiment 2 of the present invention. FIG. 5 (a) is a perspective view of another heat receiving portion in Embodiment 2 of the present invention, and FIG. 5 (b) is a side streamline diagram of another heat receiving portion in Embodiment 2 of the present invention. The configuration of FIG. 5 (a) is substantially the same as that of FIG. 2 (a), except that the shape of the plate-like fins 4b arranged on the heat receiving plate 3 is substantially V-shaped in the center. It has a shaved shape.

本発明の実施の形態2のように略V字型の切りかきを有するプレート状フィン4bの上部から発熱体中心に向けて垂直に冷媒を流入させる方式を採用する事によって、実施の形態1と同様に大きな熱交換面積と圧力損失低減による大流量の両方を確保できるため吸熱性能に優れた冷却装置を実現する事ができるのである。   As in the second embodiment of the present invention, by adopting a system in which the refrigerant is allowed to flow vertically from the upper part of the plate-like fin 4b having a substantially V-shaped notch toward the center of the heating element, Similarly, since it is possible to secure both a large heat exchange area and a large flow rate by reducing pressure loss, it is possible to realize a cooling device having excellent heat absorption performance.

図5(b)は、前記プレート状フィンに略V字型の切りかきを入れた場合の側面流線図である。図2(b)で説明した同様の性能向上の特徴を有している。特に、フィン高さを高くしてフィンの熱交換面積を増加させた場合でも、このようなプレート状フィン4aの上部の切りかき幅が広いV字構造を採用する事で中央から流入される冷媒を発熱体直上近傍まで導く事が可能となり、より大きな熱交換面積が確保し易くなるため、実施の形態1よりもさらに高い吸熱性能を実現する事ができるのである。   FIG.5 (b) is a side streamline figure at the time of putting a substantially V-shaped notch into the said plate-shaped fin. It has the same performance improvement feature as described in FIG. In particular, even when the fin height is increased to increase the heat exchange area of the fin, the refrigerant flowing from the center by adopting such a V-shaped structure with a wide notch width at the top of the plate-like fin 4a. It is possible to guide the heat to the vicinity immediately above the heating element, and it is easy to secure a larger heat exchange area, so that it is possible to achieve a higher heat absorption performance than that of the first embodiment.

通常、図2(a)に示すような構造で更に高い性能を得る事を目指して単にフィン高さを高くし、より多くの熱交換面積を確保しようとした場合などは、受熱部の側面流線図が、図6(a)の、本発明の実施の形態1および2における他の受熱部内の側面流線図に示すように、最も高い熱交換が期待できるフィン根元まで届かない状態となる。すなわち、同図の様に略V字型の切りかき形状を持たない状態でフィン高さHをある高さ以上にすると、冷媒流入方向の圧力損失が増加するため流線が本来、冷やすべき発熱体直上まで到達せず、その手前で曲がり発熱体直上近傍に淀み領域14を形成し易くなる。この淀み領域14は、熱の授受が少なく性能低下の原因となるため可能な限りその発生を押さえる事が必要である。そこで、フィン高さを高くして大きな熱交換面積を確保しながらこの淀み領域14の発生を防止し、且つ高い性能を実現する方法が、本発明の実施の形態2に示すような略V字型の切りかき形状をプレート状フィンの中央部に形成する方法なのである。なお、この略V字形状は略U字形状でも、ほぼ同じ効果が得られる。また、図5(b)の略V字形状の底部と受熱板3との高さy1は、小さい方が望ましい。理由は、ポンプ圧力に余裕があればy1を大きくすると、より広いフィン面積を確保できるようになるが、それでも、より大きなポンプサイズが必要になる可能性があるため現実的な選択では無い。また、この場合の流入ノズル9の流入形状は、圧損が少なくV字型の切りかき部へ十分な流量が確保できれば、V溝があるため必ずしもx方向の流入幅は、フィンのx方向配置幅Wと同じである必要はない。   In general, when the fin height is simply increased with the structure as shown in FIG. 2 (a) in order to obtain a higher heat exchange area, the lateral flow of the heat receiving part is desired. As shown in the side stream diagram in the other heat receiving part in the first and second embodiments of the present invention in FIG. 6A, the diagram does not reach the fin base where the highest heat exchange can be expected. . That is, if the fin height H is not less than a certain height without having a substantially V-shaped cutting shape as shown in the figure, the pressure loss in the refrigerant inflow direction increases, so that the heat generated by the streamline should be cooled. It does not reach just above the body, but bends in front of it, making it easy to form the stagnation region 14 in the vicinity immediately above the heating element. The stagnation region 14 is less likely to receive heat and cause performance degradation. Therefore, it is necessary to suppress the occurrence of the stagnation region 14 as much as possible. Therefore, a method of preventing the occurrence of the stagnation region 14 while ensuring a large heat exchange area by increasing the fin height and realizing high performance is substantially V-shaped as shown in the second embodiment of the present invention. This is a method of forming the notch shape of the mold at the center of the plate-like fin. In addition, even if this substantially V shape is substantially U shape, the substantially same effect is acquired. Further, it is desirable that the height y1 between the substantially V-shaped bottom portion of FIG. 5B and the heat receiving plate 3 is small. The reason is that if y1 is increased if there is a margin in the pump pressure, a wider fin area can be secured, but it is still not a realistic choice because a larger pump size may be required. In this case, the inflow shape of the inflow nozzle 9 is such that if there is little pressure loss and a sufficient flow rate can be secured to the V-shaped notch, the inflow width in the x direction is not necessarily the width of the fin in the x direction. It need not be the same as W.

図6(b)は、本発明の実施の形態1および2における他の受熱板近傍のフィン高さと規格化速度比の関係を示したグラフであり、略V字型の切りかき形状が有る場合と無い場合の効果を比較するために、横軸にプレート状フィンの高さH、縦軸に中央から流入する冷媒の流速V5と左右に分離した流線(7a、7b)の発熱体直上近傍の流速V7(片側流出速度)との速度比(Rv=V7/V5)を示したグラフである。ここで流出速度V7は、流入速度V5のちょうど半分の速度比率Rv=0.5程度になっている事が望ましい。なぜなら、発熱体直上近傍の速度比率Rvが、Rv=0.5とは、上部流入ノズル断面積と片側流出口の断面積がほぼ同じ状態を表しており、Rv=0.5以上では、流出速度は速くなるが圧力損失も増加し流量低下を招く、また、Rv=0.5以下では出口側の流速が遅すぎてフィン表面での十分な熱伝達係数が得られず、いずれの場合も性能の低下につながってしまう可能性が高いからである。   FIG. 6B is a graph showing the relationship between the fin height in the vicinity of the other heat receiving plate and the normalized speed ratio in Embodiments 1 and 2 of the present invention, where there is a substantially V-shaped notch shape. In order to compare the effects when there is no, the height H of the plate-like fins on the horizontal axis, the flow velocity V5 of the refrigerant flowing from the center on the vertical axis, and the vicinity immediately above the heating element of the streamlines (7a, 7b) separated to the left and right It is the graph which showed speed ratio (Rv = V7 / V5) with flow velocity V7 (one-side outflow speed). Here, it is desirable that the outflow speed V7 is about half the speed ratio Rv = 0.5 of the inflow speed V5. This is because the velocity ratio Rv immediately above the heating element is Rv = 0.5, which means that the cross-sectional area of the upper inflow nozzle and the cross-sectional area of the one-side outlet are almost the same. The speed increases but the pressure loss increases and the flow rate decreases, and if Rv = 0.5 or less, the flow velocity on the outlet side is too slow to obtain a sufficient heat transfer coefficient on the fin surface. This is because there is a high possibility that it will lead to a decrease in performance.

また、ここでは、流入ノズル9と流出口6a,6bのx方向幅(長辺)は、図5(a)のプレート状フィン配置幅Wと同じと仮定し、流入ノズル9のz方向幅(短辺幅)を5mmとし、プレート状フィン4aの高さHも5mmとした場合を例に説明する。ここでA線は、V字形状有りをB線はV字形状無しを表している。明らかにA線(V字形状有り)の方がB線(V字形状無し)より大きなフィン高さまでRv=0.5近い流速比率を維持している事が分かる。フィン高さHが2mm以下の場合、流速比率が急激に上昇しており、前記した通り圧力損失の増加による流量減少が原因の性能低下が予測される。B線の場合フィン高さが3mm程度から速度比の低下が見られるが、V字形状有りのA線の場合は、7mm程度まで大きな速度比の低下は見られない。   Further, here, it is assumed that the x-direction width (long side) of the inflow nozzle 9 and the outflow ports 6a and 6b is the same as the plate-shaped fin arrangement width W in FIG. The case where the short side width is 5 mm and the height H of the plate-like fin 4a is also 5 mm will be described as an example. Here, the A line represents the presence of a V shape and the B line represents the absence of a V shape. Obviously, the A-line (with V-shape) maintains a flow rate ratio close to Rv = 0.5 up to the fin height larger than the B-line (without V-shape). When the fin height H is 2 mm or less, the flow rate ratio increases rapidly, and as described above, a performance decrease due to a decrease in flow rate due to an increase in pressure loss is predicted. In the case of the B line, a reduction in the speed ratio is seen since the fin height is about 3 mm. However, in the case of the A line having the V shape, a large reduction in the speed ratio is not seen up to about 7 mm.

したがって、このグラフより流速比率Rv=0.5に近いフィン高さは、2〜7mmの範囲となり、V字形状がある場合の方が、より大きな熱交換面積が得られるフィン高さまで速度比率0.5近くを維持するができる事を意味している。   Therefore, the fin height close to the flow rate ratio Rv = 0.5 from this graph is in the range of 2 to 7 mm, and in the case where there is a V shape, the speed ratio is 0 to the fin height where a larger heat exchange area can be obtained. .5 means that you can keep close to 5.

なお、切りかき形状は、本実施の形態2では略V字形状としたが、略U字形状、または、プレート状フィン4aの上部の切りかき幅が広い略台形形状でも同様の効果が得られる。   In addition, although the notch shape is substantially V-shaped in the second embodiment, the same effect can be obtained even if it is substantially U-shaped or substantially trapezoidal with a wide notch width at the top of the plate-like fin 4a. .

さらに、ここで、実施の形態2の圧力損失低減効果の実測値の一例を図3でしめした実施の形態1の結果に重ねる形で説明する。図7(a)は、本発明の実施の形態1および2における受熱部の一例を用いて、一定流量Qに対する発生圧力損失Pの低減効果を比較したグラフで、図3(a)と同様に流量と圧力損失の関係を各受熱部毎に表したものであり、A線が図10に示した従来の受熱部を、B線が図2に示した実施の形態1の場合を、C線が図5に示した実施の形態2の場合を表している。同図より従来例、本実施の形態1、および2の場合の各受熱部を用い、流量Qa(2.8L/min)を流した時の圧力損失は、それぞれPa(38kpa)、Pb(21kpa)、Pc(14kpa)である。従来例のPaに対して実施の形態1は、フィン上部中央からの流入によって圧力損失Pbが55%(Pb/Pa=0.55)まで減少、また、実施の形態2の場合、中央にV字形状の切りかきを有するため圧力損失が更に低下し33%(Pc/Pa=0.33)まで減少することが確認できた。したがって、これらの受熱部に同一の性能(発生圧力)Paを有するポンプを用いると、理論的には、流量は、A線の従来例に対して、B、Cの各線に交差するポイントまで増加することになる。すなわち、各流量の増加率は、B線の実施の形態1の場合39%増(Qb/Qa=3.9/2.8)、C線の実施の形態2の場合71%増(Qc/Qa=4.8/2.8)となり、かなりの流量増となる。   Further, here, an example of the actual measurement value of the pressure loss reduction effect of the second embodiment will be described in the form of overlapping the result of the first embodiment shown in FIG. FIG. 7 (a) is a graph comparing the reduction effect of the generated pressure loss P with respect to a constant flow rate Q using an example of the heat receiving part in Embodiments 1 and 2 of the present invention, as in FIG. 3 (a). The relationship between the flow rate and the pressure loss is shown for each heat receiving part. The A line represents the conventional heat receiving part shown in FIG. 10, and the B line represents the case of the first embodiment shown in FIG. Represents the case of the second embodiment shown in FIG. From the figure, the pressure loss when the flow rate Qa (2.8 L / min) is flowed using the respective heat receiving portions in the conventional example and the first and second embodiments is Pa (38 kpa) and Pb (21 kpa), respectively. ), Pc (14 kpa). In the first embodiment, the pressure loss Pb is reduced to 55% (Pb / Pa = 0.55) by the inflow from the fin upper center with respect to Pa of the conventional example. It was confirmed that the pressure loss was further reduced to 33% (Pc / Pa = 0.33) due to the letter-shaped notch. Therefore, when pumps having the same performance (generated pressure) Pa are used for these heat receiving parts, theoretically, the flow rate increases up to the point where each of the B and C lines intersects with respect to the conventional example of the A line. Will do. That is, the increase rate of each flow rate is increased by 39% (Qb / Qa = 3.9 / 2.8) in the first embodiment of the B line, and increased by 71% (Qc /) in the second embodiment of the C line. Qa = 4.8 / 2.8), which is a significant increase in flow rate.

しかし、ポンプからの発生圧力は、流量に対して一定ではないため前記した通りには、流量は増加しない。その点を示したのが図7(b)である。   However, since the generated pressure from the pump is not constant with respect to the flow rate, the flow rate does not increase as described above. This point is shown in FIG.

図7(b)は、同一ポンプを用いた場合の受熱部の圧力Pと流量Qの関係を表したグラフであり、図3(b)と同様に図7(a)のグラフにポンプのP−Qカーブ(D線)を付加した物になっている。同図より、ポンプを用いた場合の各受熱部の動作点が、ポンプのP−Qカーブ(D線)と各圧力損失のカーブが交差する点で表されている。つまり、各受熱部の流量の増加率は、B線の場合32%増(Qb´/Qa´=3.7/2.8)、C線の場合53%増(Qc´/Qa´=4.3/2.8)となり、ポンプのP−Qカーブは、一定でないため、図7(a)で求めたほど流量の増加はない。しかし、この53%の流量増は、実施の形態1よりも更に大きな性能増加を実現することができるのである。   FIG. 7B is a graph showing the relationship between the pressure P and the flow rate Q of the heat receiving portion when the same pump is used, and the graph of FIG. -Q curve (D line) is added. From this figure, the operating point of each heat receiving part when a pump is used is represented by the point where the PQ curve (D line) of the pump and the curve of each pressure loss intersect. That is, the rate of increase in the flow rate of each heat receiving section is increased by 32% for the B line (Qb ′ / Qa ′ = 3.7 / 2.8), and increased by 53% for the C line (Qc ′ / Qa ′ = 4). 3 / 2.8), and the PQ curve of the pump is not constant, so there is no increase in the flow rate as determined in FIG. However, this 53% increase in flow rate can achieve a greater performance increase than in the first embodiment.

なお、本実施の形態2で使用したポンプ仕様および受熱部のレート状フィン形状の立設寸法等は、本実施の形態1の場合と同じである。   Note that the pump specifications used in the second embodiment, the standing fin shape of the rate fin shape of the heat receiving portion, and the like are the same as those in the first embodiment.

(実施の形態3)
図8は、本発明の実施の形態3における受熱部内の側面流線図と発熱体幅と受熱板厚さの比と規格化熱抵抗の関係を表したグラフである。図8(a)の本発明の実施の形態3における受熱部内の側面流線図の構成は、図2(a)の場合と基本的には同じであるが、異なる点は前記受熱部の複数の前記プレート状フィン4cを接合し発熱体3に対接する受熱板3と前記発熱体2のサイズが比較的近い場合を表している。また、図8(b)は、発熱体幅と受熱板厚さの比と規格化熱抵抗の関係を表したグラフであり、仮に発熱体2と受熱板3の幅がほぼ同じと仮定した場合、横軸に図8(a)の発熱体長さLと受熱板厚さhの寸法比(T=h/L2)を取り、縦軸にT=0.5の時の熱抵抗R0.5と受熱板厚さhを変化させた場合の熱抵抗Rとの比を表している。この図より、発熱体と受熱板のサイズが比較的近い場合、寸法比TがT=0.5から徐々に下げて行くとT=0.1近傍までは熱抵抗を小さくできる事が分かる。しかし、寸法比Tが、T=0.1以下では事実上受熱板厚さhが余りにも薄くなるため、構造上の強度を確保できなくなるため採用できない。
(Embodiment 3)
FIG. 8 is a graph showing a side stream diagram in the heat receiving portion, a ratio of the heating element width and the thickness of the heat receiving plate, and a normalized thermal resistance in Embodiment 3 of the present invention. The configuration of the side streamline diagram in the heat receiving part in the third embodiment of the present invention in FIG. 8 (a) is basically the same as that in FIG. 2 (a), except that a plurality of the heat receiving parts are different. This represents a case where the heat receiving plate 3 and the heat generating body 2 which are joined to the plate-like fins 4c and are in contact with the heat generating body 3 are relatively close in size. FIG. 8B is a graph showing the relationship between the ratio of the heating element width and the thickness of the heat receiving plate and the normalized thermal resistance, and assuming that the widths of the heating element 2 and the heat receiving plate 3 are substantially the same. The horizontal axis represents the dimensional ratio (T = h / L2) between the heating element length L and the heat receiving plate thickness h in FIG. 8A, and the vertical axis represents the thermal resistance R0.5 when T = 0.5. The ratio with the thermal resistance R when the heat receiving plate thickness h is changed is shown. From this figure, it can be seen that when the size of the heating element and the heat receiving plate is relatively close, the thermal resistance can be reduced to near T = 0.1 when the dimensional ratio T is gradually lowered from T = 0.5. However, when the dimensional ratio T is T = 0.1 or less, the heat receiving plate thickness h is practically too thin, so that the structural strength cannot be ensured and it cannot be adopted.

したがって、前記した通り受熱板サイズと発熱体サイズが比較的近い場合は、寸法比TをT=0.1〜0.5の範囲に保つ事で、低い熱抵抗(高い吸熱性能)を実現する事ができる。   Therefore, as described above, when the heat receiving plate size and the heating element size are relatively close, a low thermal resistance (high heat absorption performance) is realized by keeping the dimensional ratio T in the range of T = 0.1 to 0.5. I can do things.

以上のように本実施の形態の電子部品の冷却装置は、受熱部内部の発熱体に対接する面の反対側に突出する複数のプレート状フィンの中央部近傍に垂直の冷媒流入ノズルを配する事、そして前記プレート状フィンの1部が略V字形状か、または略U字形状にする事で淀み領域を防止しつつ、本流を発熱体直上近傍へ誘導する事ができるようになり、さらに、発熱体と前記受熱板のサイズが近い場合には受熱板厚みhと発熱体長さL2の寸法比(T=h/L2)が、T=0.1〜0.5の範囲を取る事で、発熱体に接触する金属部分の熱抵抗を可能な限り小さくする事ができ、更に高い吸熱特性を有する電子部品の冷却装置を実現する事が可能である。   As described above, in the electronic component cooling device according to the present embodiment, the vertical refrigerant inflow nozzle is disposed in the vicinity of the central portion of the plurality of plate-like fins that protrudes on the opposite side of the surface that contacts the heating element inside the heat receiving portion. In addition, by making one part of the plate-like fin approximately V-shaped or substantially U-shaped, it becomes possible to guide the main stream to the vicinity immediately above the heating element while preventing the stagnation region. When the size of the heat generating plate is close to that of the heat receiving plate, the dimensional ratio (T = h / L2) between the heat receiving plate thickness h and the heat generating length L2 is T = 0.1 to 0.5. In addition, it is possible to reduce the thermal resistance of the metal part in contact with the heating element as much as possible, and to realize an electronic component cooling device having higher heat absorption characteristics.

本発明の電子部品の冷却装置によれば、高い吸熱特性を有するので、特にMPU等の高集積化、高周波数化に伴う高発熱量の電子部品の冷却に好適である。   According to the electronic device cooling apparatus of the present invention, since it has high heat absorption characteristics, it is particularly suitable for cooling an electronic component having a high heat generation amount due to high integration and high frequency of MPU and the like.

(a)本発明の実施の形態1における冷却装置をPC筐体内に配置した場合の斜視図、(b)受熱ユニットの拡大構造図(A) The perspective view at the time of arrange | positioning the cooling device in Embodiment 1 of this invention in PC housing | casing, (b) The enlarged structure figure of a heat receiving unit (a)本発明の実施の形態1における冷却装置の受熱部の斜視図、(b)受熱部の側面流線図(A) The perspective view of the heat receiving part of the cooling device in Embodiment 1 of this invention, (b) The side streamline figure of a heat receiving part (a)従来例の受熱部と本発明の実施の形態1における受熱部を用いて、一定流量Qに対して発生する圧力損失Pの低減効果を比較したグラフ、(b)同一ポンプを用いた場合の受熱部の圧力Pと流量Qの関係を表したグラフ(A) A graph comparing the effect of reducing the pressure loss P generated with respect to a constant flow rate Q using the heat receiving part of the conventional example and the heat receiving part in Embodiment 1 of the present invention, and (b) using the same pump. Graph showing the relationship between pressure P and flow rate Q (a)本発明の実施の形態1における受熱部と流入ノズルの位置関係を表す側面流線図、(b)本発明の実施の形態1における受熱部に対し一定流量Qを流した時の流入ノズル位置による熱抵抗への影響を表すグラフ(A) Side streamline diagram showing the positional relationship between the heat receiving section and the inflow nozzle in Embodiment 1 of the present invention, (b) Inflow when a constant flow rate Q flows through the heat receiving section in Embodiment 1 of the present invention. A graph showing the effect of nozzle position on thermal resistance (a)本発明の実施の形態2における他の受熱部の斜視図、(b)本発明の実施の形態2における他の受熱部の側面流線図(A) The perspective view of the other heat receiving part in Embodiment 2 of this invention, (b) The side stream diagram of the other heat receiving part in Embodiment 2 of this invention (a)本発明の実施の形態1および2における他の受熱部内の側面流線図、(b)本発明の実施の形態1および2における他の受熱板近傍のフィン高さと規格化速度比の関係を示したグラフ(A) Side streamline diagram in other heat receiving parts in Embodiments 1 and 2 of the present invention, (b) Fin height and normalized speed ratio in the vicinity of other heat receiving plates in Embodiments 1 and 2 of the present invention Graph showing relationship (a)本発明の実施の形態1および2における受熱部の一例を用いて、一定流量Qに対する発生圧力損失Pの低減効果を比較したグラフ、(b)同一ポンプを用いた場合の受熱部の圧力Pと流量Qの関係を表すグラフ(A) A graph comparing the reduction effect of the generated pressure loss P with respect to a constant flow rate Q using an example of the heat receiving part in Embodiments 1 and 2 of the present invention, (b) of the heat receiving part when the same pump is used. Graph showing the relationship between pressure P and flow rate Q (a)本発明の実施の形態3における受熱部内の側面流線図、(b)発熱体幅と受熱板厚さの比と規格化熱抵抗の関係を表したグラフ(A) Side streamline diagram in heat receiving part in Embodiment 3 of this invention, (b) Graph showing the relationship between ratio of heating element width and heat receiving plate thickness, and normalized thermal resistance (a)従来の冷却装置の構成図、(b)従来の冷却装置の受熱部構造を示す図(A) The block diagram of the conventional cooling device, (b) The figure which shows the heat-receiving part structure of the conventional cooling device (a)従来の他の冷却装置の受熱部の斜視図、(b)は、従来の他の冷却装置の受熱部の側面流線図(A) The perspective view of the heat receiving part of the other conventional cooling device, (b) is the side streamline diagram of the heat receiving part of the other conventional cooling device. 発熱サイズを変化させた場合の規格化熱抵抗変化を表したグラフA graph showing changes in normalized thermal resistance when the heat generation size is changed

符号の説明Explanation of symbols

1 受熱部
2 発熱体
3 受熱板
4a プレート状フィン
4b 中央部カットのプレート状フィン
5 流入口
6、6a、6b 流出口
7a、7b、7c 流線
8 流路
9 流入ノズル
10 ファン
11 放熱部
12 受熱部カバー
13 ポンプ
14 淀み領域
15 電源ユニット
16 PC筐体
17 発熱体ソケット
18 受熱ユニット
19 ユニットカバー
19a ユニットカバーの上部
19b ユニットカバーの側壁
19c ユニットカバーの底部
20 マザーボード
DESCRIPTION OF SYMBOLS 1 Heat receiving part 2 Heat generating body 3 Heat receiving plate 4a Plate-shaped fin 4b Plate-shaped fin of center part cut 5 Inlet 6, 6a, 6b Outlet 7a, 7b, 7c Stream line 8 Flow path 9 Inflow nozzle 10 Fan 11 Heat radiating part 12 Heat receiving part cover 13 Pump 14 Stagnation area 15 Power supply unit 16 PC housing 17 Heating element socket 18 Heat receiving unit 19 Unit cover 19a Upper part cover 19b Side wall of unit cover 19c Bottom part of unit cover 20 Motherboard

Claims (8)

発熱体から発熱した熱を受熱する受熱部と、前記受熱部から冷媒を流入して前記受熱部の熱を含んだ前記冷媒の熱を外部に放熱する放熱部と、前記受熱部及び前記放熱部の間で前記冷媒をポンプにて循環させる循環路と、を有する冷却装置であって、
前記受熱部の内部に配置され前記発熱体から発熱した熱を受熱する複数のプレート状のフィンと、
前記複数のプレート状のフィンの中央部に冷媒を流入する流入ノズルと、
前記流入した冷媒の流入方向と垂直方向に前記複数のプレート状のフィンの両側に冷媒を流出する流出ノズルと、を具備し、
前記流入ノズルを介して前記複数のプレート状のフィンの中央部に流入した冷媒は、前記プレート状のフィンの間に入込み、前記プレート状のフィンの間の底部に当接して流入方向と垂直方向に向きを変え、前記フィンに受熱された熱を吸収して、前記プレート状のフィンの間を通って、前記複数のプレート状のフィンの両側から前記流出ノズルを介して流出されることを特徴とする電子部品の冷却装置。
A heat receiving portion that receives heat generated from the heat generating body, a heat radiating portion that flows in the refrigerant from the heat receiving portion and radiates the heat of the refrigerant including the heat of the heat receiving portion to the outside, the heat receiving portion and the heat radiating portion And a circulation path for circulating the refrigerant with a pump between,
A plurality of plate-like fins that are disposed inside the heat receiving portion and receive heat generated from the heating element;
An inflow nozzle for injecting a refrigerant into a central portion of the plurality of plate-shaped fins;
An outflow nozzle for flowing out the refrigerant on both sides of the plurality of plate-shaped fins in a direction perpendicular to the inflow direction of the inflowed refrigerant,
The refrigerant that has flowed into the central portion of the plurality of plate-like fins through the inflow nozzle enters between the plate-like fins, contacts the bottom portion between the plate-like fins, and is perpendicular to the inflow direction. And the heat received by the fins is absorbed, passes between the plate-shaped fins, and flows out from both sides of the plurality of plate-shaped fins through the outflow nozzle. A cooling device for electronic components.
前記流入ノズルが、前記複数のプレート状フィンの長手方向の中央近傍に配されている事を特徴とする請求項1に記載の電子部品の冷却装置。 2. The electronic component cooling device according to claim 1, wherein the inflow nozzle is arranged in the vicinity of a center in a longitudinal direction of the plurality of plate-like fins. 前記流入ノズルの幅は、前記複数のプレート状のフィンの配置幅と同じであることを特徴とする請求項1に記載の電子部品の冷却装置。 2. The electronic component cooling device according to claim 1, wherein a width of the inflow nozzle is the same as an arrangement width of the plurality of plate-like fins. 前記流入ノズルは、前記プレート状のフィンの底部に対して略垂直であることを特徴とする請求項2記載の電子部品の冷却装置。 3. The electronic component cooling apparatus according to claim 2, wherein the inflow nozzle is substantially perpendicular to a bottom portion of the plate-like fin. 前記プレート状のフィンの中央部に略V字形状、略U字形状、または略台形形状のうち、一つの形状の切り欠き部が形成されていることを特徴とする請求項1〜4のいずれか1記載の電子部品の冷却装置。 5. The cutout portion having one of a substantially V shape, a substantially U shape, and a substantially trapezoidal shape is formed at the center of the plate-like fin. A cooling apparatus for electronic parts as set forth in claim 1. 前記受熱部の複数の前記プレート状のフィンを有し発熱体に対接する受熱板の厚みhと前記発熱体長さL2の寸法比(T=h/L2)が0.1〜0.5の範囲であることを特徴とする請求項1〜5のいずれか1記載の電子部品の冷却装置。 The dimensional ratio (T = h / L2) of the thickness h of the heat receiving plate that has a plurality of the plate-like fins of the heat receiving portion and contacts the heat generating member and the length L2 of the heat generating member (T = h / L2) is in the range of 0.1 to 0.5. The electronic component cooling device according to claim 1, wherein the electronic component cooling device is a cooling device. 前記カバーの長さは前記プレート状フィンの長さと同等以上であることを特徴とする請求項1記載の電子部品の冷却装置。 2. The cooling device for an electronic component according to claim 1, wherein the length of the cover is equal to or longer than the length of the plate-like fin. 冷媒を循環するための閉循環路に放熱部と受熱部を含む受熱ユニットとポンプが設けられ、前記受熱ユニットが発熱電子部品(以下、発熱体)に対接されて前記受熱ユニット内部の冷媒との熱交換作用で前記発熱体から熱を奪い、前記ポンプにより冷媒は前記閉循環路を循環移送され、前記放熱部から放熱を行う冷却装置であって、前記受熱ユニットは冷媒が流入する流入口と前記発熱体の熱を受熱し冷媒に伝熱する前記受熱部と冷媒の流出口を有し、前記受熱部は前記発熱体の熱を受熱する受熱板と前記受熱板で受熱した熱を冷媒に伝熱する複数のプレート状のフィンと前記フィンを覆うカバーとを有し、前記カバーは前記フィンの両端側が開放され前記複数のフィンと対向する面に前記受熱ユニットの流入口と連接される流入ノズルを有することを特徴とする電子部品の冷却装置。 A heat receiving unit including a heat radiating portion and a heat receiving portion and a pump are provided in a closed circuit for circulating the refrigerant, and the heat receiving unit is in contact with a heat generating electronic component (hereinafter referred to as a heat generating body), and the refrigerant inside the heat receiving unit The heat exchanger removes heat from the heating element, the refrigerant is circulated and transferred through the closed circuit by the pump, and radiates heat from the heat radiating section, and the heat receiving unit is an inlet into which the refrigerant flows. And the heat receiving portion for receiving heat from the heat generating body and transferring the heat to the refrigerant, and a refrigerant outlet, wherein the heat receiving portion receives the heat from the heat generating body and the heat received by the heat receiving plate as the refrigerant. A plurality of plate-like fins for transferring heat to the fin and a cover for covering the fin, the cover being open at both ends of the fin and connected to the inlet of the heat receiving unit on a surface facing the plurality of fins. Has an inflow nozzle Cooling apparatus for electronic components characterized by Rukoto.
JP2006301174A 2005-12-02 2006-11-07 Cooling device for electronic component Pending JP2007180505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301174A JP2007180505A (en) 2005-12-02 2006-11-07 Cooling device for electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005349035 2005-12-02
JP2006301174A JP2007180505A (en) 2005-12-02 2006-11-07 Cooling device for electronic component

Publications (1)

Publication Number Publication Date
JP2007180505A true JP2007180505A (en) 2007-07-12

Family

ID=38305332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301174A Pending JP2007180505A (en) 2005-12-02 2006-11-07 Cooling device for electronic component

Country Status (1)

Country Link
JP (1) JP2007180505A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3179086U (en) * 2011-07-27 2012-10-18 クールイット システムズ インク Fluid heat exchange system
US8746330B2 (en) 2007-08-09 2014-06-10 Coolit Systems Inc. Fluid heat exchanger configured to provide a split flow
US9057567B2 (en) 2007-08-09 2015-06-16 Coolit Systems, Inc. Fluid heat exchange systems
JP2016015381A (en) * 2014-07-01 2016-01-28 株式会社フジクラ Cold plate
US9496200B2 (en) 2011-07-27 2016-11-15 Coolit Systems, Inc. Modular heat-transfer systems
US9943014B2 (en) 2013-03-15 2018-04-10 Coolit Systems, Inc. Manifolded heat exchangers and related systems
US10350692B2 (en) 2012-07-20 2019-07-16 Shinkawa Ltd. Heater for bonding apparatus and method of cooling the same
US10365667B2 (en) 2011-08-11 2019-07-30 Coolit Systems, Inc. Flow-path controllers and related systems
US10364809B2 (en) 2013-03-15 2019-07-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
US10415597B2 (en) 2014-10-27 2019-09-17 Coolit Systems, Inc. Fluid heat exchange systems
US11395443B2 (en) 2020-05-11 2022-07-19 Coolit Systems, Inc. Liquid pumping units, and related systems and methods
US11452243B2 (en) 2017-10-12 2022-09-20 Coolit Systems, Inc. Cooling system, controllers and methods
US11473860B2 (en) 2019-04-25 2022-10-18 Coolit Systems, Inc. Cooling module with leak detector and related systems
US11662037B2 (en) 2019-01-18 2023-05-30 Coolit Systems, Inc. Fluid flow control valve for fluid flow systems, and methods
US11725886B2 (en) 2021-05-20 2023-08-15 Coolit Systems, Inc. Modular fluid heat exchange systems

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10274266B2 (en) 2007-08-09 2019-04-30 CoolIT Systems, Inc Fluid heat exchange sytems
US8746330B2 (en) 2007-08-09 2014-06-10 Coolit Systems Inc. Fluid heat exchanger configured to provide a split flow
US9057567B2 (en) 2007-08-09 2015-06-16 Coolit Systems, Inc. Fluid heat exchange systems
US9453691B2 (en) 2007-08-09 2016-09-27 Coolit Systems, Inc. Fluid heat exchange systems
US9603284B2 (en) 2007-08-09 2017-03-21 Coolit Systems, Inc. Fluid heat exchanger configured to provide a split flow
US10820450B2 (en) 2011-07-27 2020-10-27 Coolit Systems, Inc. Modular heat-transfer systems
US9496200B2 (en) 2011-07-27 2016-11-15 Coolit Systems, Inc. Modular heat-transfer systems
JP3179086U (en) * 2011-07-27 2012-10-18 クールイット システムズ インク Fluid heat exchange system
US10365667B2 (en) 2011-08-11 2019-07-30 Coolit Systems, Inc. Flow-path controllers and related systems
US11714432B2 (en) 2011-08-11 2023-08-01 Coolit Systems, Inc. Flow-path controllers and related systems
US10350692B2 (en) 2012-07-20 2019-07-16 Shinkawa Ltd. Heater for bonding apparatus and method of cooling the same
US11661936B2 (en) 2013-03-15 2023-05-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
US9943014B2 (en) 2013-03-15 2018-04-10 Coolit Systems, Inc. Manifolded heat exchangers and related systems
US10364809B2 (en) 2013-03-15 2019-07-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
JP2016015381A (en) * 2014-07-01 2016-01-28 株式会社フジクラ Cold plate
US10415597B2 (en) 2014-10-27 2019-09-17 Coolit Systems, Inc. Fluid heat exchange systems
US11452243B2 (en) 2017-10-12 2022-09-20 Coolit Systems, Inc. Cooling system, controllers and methods
US11662037B2 (en) 2019-01-18 2023-05-30 Coolit Systems, Inc. Fluid flow control valve for fluid flow systems, and methods
US11473860B2 (en) 2019-04-25 2022-10-18 Coolit Systems, Inc. Cooling module with leak detector and related systems
US11725890B2 (en) 2019-04-25 2023-08-15 Coolit Systems, Inc. Cooling module with leak detector and related systems
US11395443B2 (en) 2020-05-11 2022-07-19 Coolit Systems, Inc. Liquid pumping units, and related systems and methods
US11725886B2 (en) 2021-05-20 2023-08-15 Coolit Systems, Inc. Modular fluid heat exchange systems

Similar Documents

Publication Publication Date Title
JP2007180505A (en) Cooling device for electronic component
US20070125526A1 (en) Cooling device for electronic components
CN105940491B (en) Semiconductor device
JP5900610B2 (en) Semiconductor device and cooler for semiconductor device
JP5002522B2 (en) Cooling device for electronic equipment and electronic equipment provided with the same
TWI238691B (en) Cooling module
EP2665093A1 (en) Cooler
US20080179972A1 (en) Heat generating member cooling structure and drive unit
JP6228730B2 (en) Radiator, electronic device and cooling device
JP2002368468A (en) Heat sink, its manufacturing method and cooler using the same
JP2008218589A (en) Cooling device for electronic apparatus
JP6534873B2 (en) Liquid cooling system
KR20060105637A (en) Cooling jacket
JP2016219572A (en) Liquid cooling cooler
JP2008288330A (en) Semiconductor device
JP5117287B2 (en) Electronic equipment cooling system
US20150250075A1 (en) Cooler and electronic device
JP2003338595A (en) Cooling device for electronic component
US20030168208A1 (en) Electronic component cooling apparatus
TW202334598A (en) Liquid cooling device and liquid cooling system having the liquid cooling device
JP2019054224A (en) Liquid-cooled type cooling device
JP2005011928A (en) Liquid-cooling circulation system
JP4517962B2 (en) Cooling device for electronic equipment
TWM557965U (en) Sandwich liquid-cooling heat dissipation structure with multiple inlets and outlets
JP2008218828A (en) Cooling device and semiconductor device with cooling device