JP2007178166A - Method of detecting heater disconnection - Google Patents

Method of detecting heater disconnection Download PDF

Info

Publication number
JP2007178166A
JP2007178166A JP2005374281A JP2005374281A JP2007178166A JP 2007178166 A JP2007178166 A JP 2007178166A JP 2005374281 A JP2005374281 A JP 2005374281A JP 2005374281 A JP2005374281 A JP 2005374281A JP 2007178166 A JP2007178166 A JP 2007178166A
Authority
JP
Japan
Prior art keywords
point
heater
inflection point
reference characteristic
heaters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005374281A
Other languages
Japanese (ja)
Inventor
Satoru Iino
悟 飯野
Tomoyuki Nakada
智之 中田
Masanori Tsuge
政則 柘植
Fumio Sumiya
史生 角谷
Shuichi Odajima
修一 小田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RKC Instrument Inc
Original Assignee
RKC Instrument Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RKC Instrument Inc filed Critical RKC Instrument Inc
Priority to JP2005374281A priority Critical patent/JP2007178166A/en
Publication of JP2007178166A publication Critical patent/JP2007178166A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To certainly detect disconnection of heaters even when the heaters whose resistances vary in response to temperature variation are interconnected in parallel. <P>SOLUTION: The heaters HI-H3 are heated and controlled in advance from a heating start point of room temperature to a maximum heating point, and current values of the heaters H1-H3 between the points are acquired at a predetermined timing. The maximum deviation point, out of deviations of each current value during previous heating control of a linear reference characteristic connecting the heating start point to the maximum heating point, is determined as an inflection point. A linear characteristic of a dog-legged shape from the heating start point to the maximum heating point via the inflection point is determined to be a detection reference characteristic. When tolerance is set in the detection reference characteristic and the current value in actually heating and controlling the heaters HI-H3 exceeds the tolerance, any of the heaters H1-H3 is detected to be disconnected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はヒータ断線検知方法に係り、特に、温度による抵抗値変化が大きなヒータの断線検出が容易なヒータ断線検知方法の改良に関する。   The present invention relates to a heater disconnection detection method, and more particularly, to an improvement in a heater disconnection detection method in which it is easy to detect a disconnection of a heater having a large resistance change due to temperature.

例えば半導体製造装置等には、並列接続された複数の加熱用ヒータを有する加熱装置とともに、これら複数のヒータの断線を検出するヒータ断線検知装置が搭載される場合が多い。   For example, in many cases, a semiconductor manufacturing apparatus or the like is equipped with a heater disconnection detection device that detects disconnection of a plurality of heaters, in addition to a heating apparatus having a plurality of heaters connected in parallel.

このヒータ断線検知装置では、図8Aに示すように、並列接続された複数のヒータを常温の加熱開始操作量L1から最大加熱操作量L2まで加熱制御し、加熱開始操作量L1および最大加熱操作量L2のヒータ電流値を直線的に結んで仮想特性Cを形成し、この仮想特性Cの上下に許容範囲である不感帯Dを設け、実際のヒータ電流値がその不感帯Dを超えて低下した場合、何れかのヒータが断線していると判断している。   In this heater disconnection detecting device, as shown in FIG. 8A, heating control is performed on a plurality of heaters connected in parallel from the normal heating start operation amount L1 to the maximum heating operation amount L2, and the heating start operation amount L1 and the maximum heating operation amount. When a virtual characteristic C is formed by linearly connecting the heater current values of L2, and a dead zone D that is an allowable range is provided above and below the virtual characteristic C, and the actual heater current value decreases beyond the dead zone D, It is determined that one of the heaters is disconnected.

さらに、図8Bに示すように、並列接続された複数のヒータを常温の加熱開始操作量L1から最大加熱操作量L2まで加熱制御し、常温のヒータ抵抗値又は最小操作量L1のヒータ抵抗値と最大加熱操作量L2のヒータ抵抗値の中間値を仮想特性Cとし、値が一定で直線的な仮想特性Cの上下に許容範囲である不感帯Dを設け、実際のヒータ抵抗値がその不感帯Dを超えて上昇した場合、何れかのヒータが断線していると判断している。   Further, as shown in FIG. 8B, heating control is performed on the plurality of heaters connected in parallel from the normal heating start operation amount L1 to the maximum heating operation amount L2, and the normal temperature heater resistance value or the minimum resistance value L1 heater resistance value is obtained. An intermediate value of the heater resistance value of the maximum heating operation amount L2 is assumed to be a virtual characteristic C, and a dead zone D that is an allowable range is provided above and below the linear virtual characteristic C with a constant value, and the actual heater resistance value represents the dead zone D. When it rises exceeding, it is judged that one of the heaters is disconnected.

しかも、実際のヒータ電流値又はヒータ抵抗値は、図8A、B中の破線のように直線的にはならないので、不感帯Dを例えば仮想特性Cに対して上下20%ずつ計40%といったように広く設定し、誤検知しないようにしている。
なお、ヒータ電流値又はヒータ抵抗値がその不感帯Dを超えて低下した場合、何れかのヒ一夕に短絡状態が生じていると判断される。
Moreover, since the actual heater current value or heater resistance value does not become linear as shown by the broken lines in FIGS. 8A and 8B, the dead zone D is, for example, 40% in total 20% above and below the virtual characteristic C. Widely set to prevent false detection.
When the heater current value or the heater resistance value decreases beyond the dead zone D, it is determined that a short circuit condition has occurred in any one of the evenings.

特開平11−268103号公報(特許文献1)はこの分野のものである。
特開平11−268103号公報
Japanese Patent Laid-Open No. 11-268103 (Patent Document 1) is in this field.
Japanese Patent Laid-Open No. 11-268103

しかしながら、加熱装置を構成するヒータには、貴金属系ヒータやランプヒータなどに代表されるように、温度による抵抗値変化が大きく、常温時(加熱開始操作量L1)と定格電力を印加して十分に温まった時(最大加熱操作量L2)との間で2倍以上抵抗値が違うものが使用される場合がある。   However, as represented by noble metal heaters and lamp heaters, the heater constituting the heating device has a large resistance change due to temperature, and it is sufficient to apply the rated power at normal temperature (heating start operation amount L1). In some cases, a resistor whose resistance value is twice or more different from that when it is warmed up (maximum heating operation amount L2) is used.

このようなヒータでは、図9に示すように、例えば交流電圧を印加して加熱制御する場合、点弧する位相角が大きい状態、すなわち通電位相角P1からL1までの操作量が低い状態から、通電位相角P5やL2からL1までのように操作量が高い状態までを測定すると、図10に示すように、抵抗値が低い状態から高い状態へ曲線状に変化するとともに、温度が低い状態での抵抗値上昇率が大きい。   In such a heater, as shown in FIG. 9, for example, in the case where heating control is performed by applying an AC voltage, from a state where the ignition phase angle is large, that is, from a state where the operation amount from the energization phase angle P1 to L1 is low, As shown in FIG. 10, when the energized phase angle P5 and L2 to L1 are measured up to a high manipulated variable state, the resistance value changes from a low state to a high state in a curved shape, and the temperature is low. The resistance value increase rate is large.

そして、そのような温度による抵抗値変化の大きなヒータが複数個並列接続されている状態において、何れかのヒータが断線したことを検知することは非常に難しい。   And in the state where a plurality of heaters having a large resistance change due to temperature are connected in parallel, it is very difficult to detect that any of the heaters is disconnected.

なぜならば、温度変化に伴ってヒータの抵抗値は、図10に示すように曲線状に変化するので、そのような実際のヒータ電流値又はヒータ抵抗値が図8A、Bの仮想特性Cのように直線的にならないうえ、不感帯Dを広く設定して誤検知を防止する関係から、何れかのヒータに断線が生じて図8A中の一点鎖線のように電流値が低下しても、下側の不感帯Dを超えない可能性又はなかなか超えない可能性があり、断線を検知できない心配がある。   This is because the resistance value of the heater changes in a curve as shown in FIG. 10 as the temperature changes, and such an actual heater current value or heater resistance value is like the virtual characteristic C in FIGS. 8A and 8B. In addition, since the dead zone D is set wide to prevent false detection, even if a break occurs in any of the heaters and the current value decreases as shown by the alternate long and short dash line in FIG. There is a possibility that the dead zone D is not exceeded or may not be easily exceeded, and there is a concern that the disconnection cannot be detected.

ヒータ抵抗値についても、図8B中の一点鎖線のようにその値が上昇しても、上側の不感帯Dを超えない可能性又はなかなか超えない可能性があり、同様に断線を検知できない心配がある。   As for the heater resistance value, even if the value rises like the one-dot chain line in FIG. 8B, there is a possibility that the upper dead zone D may not be exceeded or may not be exceeded easily, and there is a concern that the disconnection cannot be detected similarly. .

特に、並列接続されるヒータの本数が増加すると、これに応じて不惑帯Dを広く設定せざるを得ないから、何れかのヒータに断線が生じても下側の不感帯Dを超えない事態が生じ易く、断線を的確に検知できない場合がある。   In particular, if the number of heaters connected in parallel increases, the dead zone D must be set accordingly, so that even if any heater breaks, the lower dead zone D is not exceeded. It is easy to occur and the disconnection may not be detected accurately.

逆に、不感帯Dを狭く設定すると、並列接続されるヒータに断線が生じていないのに電流値又はヒータの抵抗値が不感帯Dを超え易くなり、断腺したと誤検知が生じ易い。   On the contrary, if the dead zone D is set narrow, the current value or the resistance value of the heater tends to exceed the dead zone D even though the heaters connected in parallel are not disconnected, and erroneous detection is likely to occur when the line is disconnected.

特に、一般のユーザは、点弧する位相角が大きい状態、すなわち操作量をあまり高くしない状態で加熱装置を使用し易いので、その領域で不感帯を広く設定すると確実な断線検知が困難となるから、改善が望まれている。   In particular, since a general user can easily use the heating device in a state where the ignition phase angle is large, that is, in a state where the operation amount is not so high, it is difficult to reliably detect disconnection if a wide dead zone is set in that region. Improvement is desired.

本発明はそのような課題を解決するためになされたもので、温度変化に応じて抵抗値が大きく変化するヒータが並列接続されていても、ヒータの断線を確実に検知可能なヒータ断線検知方法の提供を目的とする。   The present invention has been made to solve such a problem, and a heater disconnection detection method capable of reliably detecting disconnection of a heater even when heaters whose resistance values greatly change according to temperature changes are connected in parallel. The purpose is to provide.

このような課題を解決するために本発明のヒータ断線検知方法は、温度上昇によって抵抗値が大きく変化するヒータを複数並列的に接続した当該ヒータの断線を検知するヒータ断線検知方法おいて、そのヒータを事前加熱制御したときの電流値の変化に基づき少なくとも1個の変曲点を通る検知基準特性を取得し、それらヒータを実際に加熱制御したときの電流値がその検知基準特性に設けた許容範囲を超えるとき、それらヒータの何れかが断線したと検知することを特徴としている。   In order to solve such a problem, the heater disconnection detection method of the present invention is a heater disconnection detection method for detecting disconnection of the heater in which a plurality of heaters whose resistance values greatly change due to temperature rise are connected in parallel. Based on the change in the current value when the heater is preheated, a detection reference characteristic passing through at least one inflection point is acquired, and the current value when the heater is actually heated is provided in the detection reference characteristic. When the allowable range is exceeded, it is detected that any one of the heaters is disconnected.

そして、本発明は、上記検知基準特性として、そのヒー夕の加熱開始点から最大加熱点までを結んだ直線的基準特性に対するその事前加熱制御時の電流値の最大偏差点をその変曲点として求め、それら加熱開始点から変曲点を経て最大加熱点へ至るものを用いることが可能である。   In the present invention, as the detection reference characteristic, the maximum deviation point of the current value at the time of the preliminary heating control with respect to the linear reference characteristic connecting the heating start point to the maximum heating point is used as the inflection point. It is possible to use those obtained from the heating start point to the maximum heating point through the inflection point.

さらに、本発明は、上記検知基準特性として、上記変曲点を第1変曲点とし、加熱開始点から第1変曲点間の直線に対する事前加熱制御時の電流値の最大偏差点を第2変曲点とし、それら第1変曲点と最大加熱点間の直線に対する事前加熱制御時の電流値の最大偏差点を第3変曲点として求め、加熱開始点から第2変曲点、第1変曲点、第3変曲点を経て最大加熱点へ至るものを用いることも可能である。   Further, according to the present invention, as the detection reference characteristic, the inflection point is the first inflection point, and the maximum deviation point of the current value during the preheating control with respect to the straight line between the heating start point and the first inflection point is the first inflection point. As the second inflection point, the maximum deviation point of the current value during the preheating control with respect to the straight line between the first inflection point and the maximum heating point is obtained as the third inflection point, and the second inflection point from the heating start point, It is also possible to use the one that reaches the maximum heating point through the first inflection point and the third inflection point.

また、本発明は、上記検知基準特性として、その事前加熱制御時に得られた電流値の間を順次直線的に補間し、各電流値をそれら変曲点として得た特性を用いることも可能である。   In the present invention, as the detection reference characteristic, it is also possible to use a characteristic obtained by sequentially linearly interpolating between current values obtained at the time of the preheating control and obtaining each current value as an inflection point. is there.

さらに、本発明は、上記検知基準特性として、その事前加熱制御時に得られたそれら電流値を多項式で補間してそれら変曲点を複数有する曲線とすることも可能である。   Further, in the present invention, as the detection reference characteristic, a curve having a plurality of inflection points can be obtained by interpolating the current values obtained during the preheating control with a polynomial expression.

しかも、本発明のヒータ断線検知方法は、温度上昇によって抵抗値が大きく変化するヒータを複数並列的に接続した当該ヒータの断線を検知するヒータ断線検知方法おいて、そのヒータを事前加熱制御したときのヒータの抵抗値変化に基づき少なくとも1個の変曲点を通る検知基準特性を取得し、それらヒータを実際に加熱制御したときのヒータの抵抗値がその検知基準特性に設けた許容範囲を超えるとき、それらヒータの何れかが断線したと検知することを特徴としている。   In addition, the heater disconnection detection method of the present invention is a heater disconnection detection method for detecting disconnection of the heater in which a plurality of heaters whose resistance value changes greatly in response to a temperature rise is connected in parallel. A detection reference characteristic that passes through at least one inflection point is acquired based on a change in the resistance value of the heater, and when the heater is actually heated, the resistance value of the heater exceeds an allowable range provided for the detection reference characteristic. At this time, it is characterized in that any one of the heaters is detected to be disconnected.

そして、本発明は、上記検知基準特性として、そのヒー夕の加熱開始点から最大加熱点までを結んだ直線的基準特性に対するその事前加熱制御時のヒータの抵抗値の最大偏差点をその変曲点として求め、それら加熱開始点から変曲点を経て最大加熱点へ至るものを用いることが可能である。   In the present invention, as the detection reference characteristic, the maximum deviation point of the resistance value of the heater at the time of the preliminary heating control with respect to the linear reference characteristic connecting the heating start point to the maximum heating point is inflectioned. It is possible to use a point obtained from the heating start point through the inflection point to the maximum heating point.

さらに、本発明は、上記検知基準特性として、上記変曲点を第1変曲点とし、加熱開始点から第1変曲点間の直線に対する事前加熱制御時のヒータの抵抗値の最大偏差点を第2変曲点とし、それら第1変曲点と最大加熱点間の直線に対する事前加熱制御時のヒータの抵抗値の最大偏差点を第3変曲点として求め、加熱開始点から第2変曲点、第1変曲点、第3変曲点を経て最大加熱点へ至るものを用いることも可能である。   Further, according to the present invention, as the detection reference characteristic, the inflection point is the first inflection point, and the maximum deviation point of the resistance value of the heater at the time of preheating control with respect to a straight line between the heating start point and the first inflection point. Is determined as the second inflection point, the maximum deviation point of the resistance value of the heater during the preheating control with respect to the straight line between the first inflection point and the maximum heating point is obtained as the third inflection point, and the second inflection point is obtained from the heating start point. It is also possible to use the one that reaches the maximum heating point through the inflection point, the first inflection point, and the third inflection point.

また、本発明は、上記検知基準特性として、その事前加熱制御時に得られたヒータの抵抗値の間を直線的に補間し、各ヒータの抵抗値をそれら変曲点として得たものを用いることも可能である。   Further, the present invention uses, as the detection reference characteristic, a linear interpolation between the resistance values of the heaters obtained during the preheating control, and the resistance values of the heaters obtained as the inflection points. Is also possible.

さらに、本発明は、上記検知基準特性として、その事前加熱制御時に得られたそれらヒータの抵抗値を多項式で補間してそれら変曲点を複数有する曲線とすることも可能である。   Furthermore, in the present invention, as the detection reference characteristic, it is possible to obtain a curve having a plurality of inflection points by interpolating the resistance values of the heaters obtained during the preheating control with a polynomial expression.

そのような手段を備えた本発明では、ヒータを事前加熱制御したときのヒータ電流値又はヒータ抵抗値の変化に基づき少なくとも1個の変曲点を通る検知基準特性を取得し、その検知基準特性に設けた許容範囲をそれらヒータの実加熱制御時の電流値又は抵抗値が超えるときヒータ断線を検知するから、ヒータの抵抗値変化に沿った検知基準特性が得られ易く、温度変化に応じて抵抗値が大きく変化するヒータが並列接続されていても、ヒータの断擦を確実に検知可能となる。   In the present invention having such means, a detection reference characteristic passing through at least one inflection point is acquired based on a change in the heater current value or the heater resistance value when the heater is preheated, and the detection reference characteristic is obtained. Since the heater disconnection is detected when the current value or resistance value during the actual heating control of those heaters exceeds the allowable range provided for the heater, it is easy to obtain the detection reference characteristic along the resistance value change of the heater, and according to the temperature change Even when the heaters whose resistance value changes greatly are connected in parallel, the heater can be reliably detected.

そして、上記検知基準特性として、そのヒータの加熱開始点から最大加熱点までの直線的基準特性に対する実加熱制御時のヒータ電流値又はヒータ抵抗値の最大偏差点をその変曲点として求め、それら加熱開始点から変曲点を経て最大加熱点へ至る特性を用いる構成では、検知基準特性を求める演算が簡単で検知が早い利点がある。   Then, as the detection reference characteristic, the maximum deviation point of the heater current value or the heater resistance value in the actual heating control with respect to the linear reference characteristic from the heating start point to the maximum heating point of the heater is obtained as the inflection point. In the configuration using the characteristic from the heating start point to the maximum heating point through the inflection point, there is an advantage that the calculation for obtaining the detection reference characteristic is simple and the detection is quick.

さらに、上記変曲点を第1変曲点として、加熱開始点から第1変曲点間の直線に対する事前加熱制御時のヒータ電流値又はヒータ抵抗値の最大偏差点を第2変曲点とし、第1変曲点と最大加熱点間の直線に対する事前加熱制御時の電流値又はヒータの抵抗値の最大偏差点を第3変曲点として求め、加熱開始点から第2変曲点、第1変曲点、第3変曲点を経て最大加熱点へ至る特性を上記検知基準特性として用いる構成では、ヒータの抵抗特性に近い特性の検知基準特性を簡単に演算可能で検知が早い利点がある。   Further, the inflection point is the first inflection point, and the maximum deviation point of the heater current value or the heater resistance value during the preheating control with respect to the straight line between the heating start point and the first inflection point is the second inflection point. The maximum deviation point of the current value or the heater resistance value during the preheating control with respect to the straight line between the first inflection point and the maximum heating point is obtained as the third inflection point, and the second inflection point, the second inflection point from the heating start point are obtained. In the configuration in which the characteristic from the first inflection point and the third inflection point to the maximum heating point is used as the detection reference characteristic, the detection reference characteristic close to the resistance characteristic of the heater can be easily calculated and the detection is quick. is there.

また、上記検知基準特性として、その事前加熱制御時に得られた各電流値の間を直線的に補間し、各ヒータ電流値又はヒータ抵抗値をそれら変曲点として得た特性を用いる構成では、ヒータの抵抗特性により近い特性の検知基準特性を簡単に演算可能で検知が早い利点がある。   In addition, in the configuration using the characteristic obtained by linearly interpolating between each current value obtained at the time of the preheating control as the detection reference characteristic and obtaining each heater current value or heater resistance value as the inflection point, There is an advantage that the detection reference characteristic closer to the resistance characteristic of the heater can be easily calculated and detection is quick.

さらに、上記検知基準特性として、その事前加熱制御時に得られた各ヒータ電流値又はヒータ抵抗値を多項式で補間して変曲点が複数ある曲線とする構成では、より一層ヒータの抵抗値特性に近い特性の検知基準特性を演算可能である。   Furthermore, as the detection reference characteristic, in the configuration in which each heater current value or heater resistance value obtained during the preheating control is interpolated with a polynomial to form a curve having a plurality of inflection points, the resistance value characteristic of the heater is further increased. It is possible to calculate a detection reference characteristic having a close characteristic.

以下、本発明の実施の形態を図面を参照して説明する。まず、ヒータを加熱する加熱装置の概略から説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the outline of the heating device for heating the heater will be described.

図1は、本発明に係るヒータ断線検知方法を搭載した加熱装置を示すブロック図である。   FIG. 1 is a block diagram showing a heating apparatus equipped with a heater break detection method according to the present invention.

ヒータH1、H2、H3は各々同じ抵抗体からなり、並列接続されるとともに、交流電源1、電流値検出部3およびスイッチSWを介してループ状に直列接続されており、ヒータH1〜H3の並列回路には更に電圧値検出部5が並列接続されている。   The heaters H1, H2, and H3 are each made of the same resistor and are connected in parallel, and are connected in series in a loop through the AC power source 1, the current value detection unit 3, and the switch SW, and the heaters H1 to H3 are connected in parallel. A voltage value detector 5 is further connected in parallel to the circuit.

各ヒータH1〜H3は、例えば貴金属系ヒータやランプヒータ等のように温度による抵抗値変化が大きく、例えば常温時(加熱開始操作量L1)と定格電力を印加して十分に温まった時(最大加熱操作量L2)と間で2倍以上抵抗値が違う抵抗体である。   Each of the heaters H1 to H3 has a large resistance change due to temperature, such as a noble metal heater or a lamp heater, for example, at normal temperature (heating start operation amount L1) and when it is sufficiently warmed by applying rated power (maximum) It is a resistor having a resistance value that is twice or more different from the heating operation amount L2).

交流電源1は、従来公知の例えば100Vや200Vの商用交流電源であり、通電によって各ヒータH1〜H3を加熱するものである。   The AC power source 1 is a conventionally known commercial AC power source of, for example, 100V or 200V, and heats the heaters H1 to H3 by energization.

電流値検出部3は、交流電源1とヒータH1〜H3間の閉ループ途中に挿入するように接続されており、ヒータH1〜H3に通電される交流電流値を測定する従来公知の電流センサCTであり、後述する制御演算部7に接続されている。   The current value detection unit 3 is connected so as to be inserted in the middle of a closed loop between the AC power source 1 and the heaters H1 to H3, and is a conventionally known current sensor CT that measures the AC current value supplied to the heaters H1 to H3. Yes, and connected to a control calculation unit 7 to be described later.

電圧値検出部5は、並列接続されたヒータH1〜H3両端の交流電圧値を測定する回路であり、制御演算部7に接続されている。   The voltage value detection unit 5 is a circuit that measures the AC voltage value across the heaters H <b> 1 to H <b> 3 connected in parallel, and is connected to the control calculation unit 7.

スイッチSWは、交流電源1とヒータH1〜H3間の途中に直列接続されており、制御演算部7からの操作量MVによってヒータH1〜H3に印加する交流電源をオンオフする半導体無接点スイッチや機械的な有接点スイッチである。   The switch SW is connected in series between the AC power source 1 and the heaters H1 to H3, and is a semiconductor contactless switch or machine that turns on / off the AC power source applied to the heaters H1 to H3 by an operation amount MV from the control calculation unit 7. This is a typical contact switch.

制御演算部7は、ヒータH1〜H3の近傍に配置された温度センサ(図示省略)からの測定値PVと設定値SVとからその偏差が小きくなるような操作量MVを例えばPID演算して出力するものであり、駆動部9に接続されている。   The control calculation unit 7 performs, for example, PID calculation on an operation amount MV such that the deviation is small from the measured value PV and the set value SV from a temperature sensor (not shown) arranged in the vicinity of the heaters H1 to H3. This is output and is connected to the drive unit 9.

制御演算部7は、測定値PVが所定の許容範囲を超えたとき、警報信号を出力するようになっている。   The control calculation unit 7 outputs an alarm signal when the measured value PV exceeds a predetermined allowable range.

さらに、制御演算部7は、電流値検出部3からの交流電流値に基づき、ヒータH1〜H3の断線の有無を検知して断線検知信号を出力するようになっている。なお、電圧値検出部5からの交流電圧値および電流検出部3からの交流電流値から求めたヒータの抵抗値に基づくヒータH1〜H3の断線有無の検知については後述する。   Further, the control calculation unit 7 detects the presence or absence of disconnection of the heaters H1 to H3 based on the alternating current value from the current value detection unit 3, and outputs a disconnection detection signal. The detection of the presence or absence of disconnection of the heaters H1 to H3 based on the resistance value of the heater obtained from the AC voltage value from the voltage value detection unit 5 and the AC current value from the current detection unit 3 will be described later.

これらヒータH1〜H3の断線検知方法が本発明の要部であり、詳細は後述する。   The disconnection detection method of these heaters H1 to H3 is the main part of the present invention, and details will be described later.

駆動部9は、制御演算部7からの操作量MVに応じて交流電源1からの交流電圧をオンオフ駆動するものである。   The drive unit 9 drives the AC voltage from the AC power source 1 on and off according to the operation amount MV from the control calculation unit 7.

すなわち、駆動部9は、上述した図9に示すように、操作量MVが小さい場合、交流電圧の各半周期において位相点L2からP1までスイッチSWをオフ制御するとともに、残りのP1からL1の操作量MV分だけの短い間だけスイッチSWをオン制御して駆動するものであり、操作量MVに応じてスイッチSWのオン開始タイミングがP1〜P5、L2へと早くなる。   That is, as shown in FIG. 9 described above, when the operation amount MV is small, the drive unit 9 controls the switch SW to be turned off from the phase point L2 to P1 in each half cycle of the AC voltage, and the remaining P1 to L1. The switch SW is turned on and driven for a short period of time corresponding to the operation amount MV, and the ON start timing of the switch SW is advanced to P1 to P5 and L2 in accordance with the operation amount MV.

そのため、操作量MVが小さい場合、交流電圧の各半周期において長い位相分でスイッチSWがオフ制御されるとともに残りの短い位相分がオン制御されてヒー夕H1〜H3が加熱制御され、操作量MVが大きい場合、交流電圧の各半周期において短い位相分でスイッチSWがオフ制御されるとともに残りの長い位相分がオン制御されてヒータH1〜H3が加熱制御される。   Therefore, when the manipulated variable MV is small, the switch SW is controlled to be off by a long phase in each half cycle of the AC voltage, and the remaining short phase is controlled to be on to control the heating H1 to H3. When the MV is large, the switch SW is turned off by a short phase in each half cycle of the AC voltage, and the remaining long phase is turned on and the heaters H1 to H3 are heated.

次に、本発明に係るヒータ断線検知方法を説明する。まず、電流値から検知する方法を説明する。   Next, the heater disconnection detection method according to the present invention will be described. First, a method for detecting from a current value will be described.

ヒータH1〜H3が断線していない状況の下において、常温時の加熱開始操作量L1から定格電力を印加して最大加熱操作量L2までの間で、制御演算部7から検査用の事前操作量MVを順次出力し、事前に電流値検出部3にて所定のタイミング、例えば上述した図9中L1、P1〜P5、L2の制御点でヒータ電流値を測定して制御演算部7へ入力する(図2A)。   Under the condition that the heaters H1 to H3 are not disconnected, the control operation unit 7 applies a pre-operation amount for inspection from the heating start operation amount L1 at normal temperature to the maximum heating operation amount L2 after applying the rated power. The MV is sequentially output, the heater current value is measured in advance at a predetermined timing, for example, at the control points L1, P1 to P5, and L2 in FIG. (FIG. 2A).

制御演算部7では、電流値検出部3からの測定電流値に基づき図3Aの点i1、i2、i3、i4、i5、i6で示すような特性を得るとともに、加熱開始操作量L1から最大加熱操作量i6までの間を直線的に結んだ直線的基準特性sを求める(図2B)。   The control calculation unit 7 obtains characteristics as indicated by points i1, i2, i3, i4, i5, and i6 in FIG. 3A based on the measured current value from the current value detection unit 3, and maximum heating from the heating start operation amount L1. A linear reference characteristic s that linearly connects the operation amount i6 is obtained (FIG. 2B).

制御演算部7では、電流値検出部3から各電流値i1〜i6と直線的基準特性sとの偏差を求めるとともに最も大きな最大偏差点i3を求める(図2C)。   The control calculation unit 7 obtains a deviation between each of the current values i1 to i6 and the linear reference characteristic s from the current value detection unit 3 and obtains the largest maximum deviation point i3 (FIG. 2C).

さらに、その加熱開始点L1と最大偏差点i3を直線的に結ぶとともに最大偏差点i3と最大加熱点i6を直線的に結んで「く」字状の検知基準特性Sを求め、図3Bに示すように、その検知基準特性Sの上下に所定の許容範囲を不感帯Dとして設定する(図2D)。   Furthermore, the heating start point L1 and the maximum deviation point i3 are linearly connected, and the maximum deviation point i3 and the maximum heating point i6 are linearly connected to obtain the “<”-shaped detection reference characteristic S, which is shown in FIG. 3B. Thus, a predetermined allowable range is set as a dead zone D above and below the detection reference characteristic S (FIG. 2D).

制御演算部7では、ヒータH1〜H3を実際に加熱制御した際、電流値検出部3からの測定電流値が検知基準特性Sの不感帯Dを超えて低下したとき、ヒータH1〜H3の何れかが断線したと検知して検知信号を出力する(図2E)。   When the control calculation unit 7 actually controls the heating of the heaters H1 to H3, when the measured current value from the current value detection unit 3 falls below the dead zone D of the detection reference characteristic S, any one of the heaters H1 to H3 is used. Is detected to output a detection signal (FIG. 2E).

このように、本発明のヒータ断線検知方法によれば、事前にヒータH1〜H3を加熱制御したときの電流値を所定のタイミングで取得し、加熱開始点L1と最大加熱点i6を直線的に結ぶ直線的基準特性sに対するヒータ電流値の最大偏差点i3を求め、その加熱開始点L1から最大偏差点i3を経て最大加熱点i6へ至る「く」字状の特性を検知基準特性Sとして求め、この検知基準特性Sに設けた不感帯DをヒータH1〜H3の実加熱制御時の電流値が超えるとき、ヒータH1〜H3の断線を検知する。   Thus, according to the heater disconnection detection method of the present invention, the current value when the heaters H1 to H3 are controlled in advance is acquired at a predetermined timing, and the heating start point L1 and the maximum heating point i6 are linearly obtained. The maximum deviation point i3 of the heater current value with respect to the linear reference characteristic s to be connected is obtained, and the “く” -like characteristic from the heating start point L1 through the maximum deviation point i3 to the maximum heating point i6 is obtained as the detection reference characteristic S. When the current value during the actual heating control of the heaters H1 to H3 exceeds the dead zone D provided in the detection reference characteristic S, the disconnection of the heaters H1 to H3 is detected.

そのため、温度による抵抗値変化の大きな複数のヒータが並列接続されていても、最大偏差点i3が変曲点となり、検知基準特性SがヒータH1〜H3の測定電流値の変化に近い「く」字状になるから、断線を確実に検知することが可能となる。   Therefore, even if a plurality of heaters having a large resistance change due to temperature are connected in parallel, the maximum deviation point i3 becomes an inflection point, and the detection reference characteristic S is close to the change in the measured current value of the heaters H1 to H3. Since it becomes a letter shape, it becomes possible to detect a disconnection reliably.

しかも、取得したヒータH1〜H3の電流値と直線的基準特性sとの最大偏差点i3を求め、その加熱開始点L1から最大偏差点P3を経て最大加熱点L2へ至る直線的特性を検知基準特性Sとして求めるから、検知基準特性Sを求める手法が簡単で、演算も速い利点がある。   In addition, the maximum deviation point i3 between the acquired current values of the heaters H1 to H3 and the linear reference characteristic s is obtained, and the linear characteristic from the heating start point L1 to the maximum heating point L2 via the maximum deviation point P3 is detected as a reference. Since the characteristic S is obtained, there is an advantage that the method for obtaining the detection reference characteristic S is simple and the calculation is quick.

さらに、検知基準特性SがヒータH1〜H3の測定電流値の変化に近い「く」字状になっているから、不感帯Dを広げなくても実際のヒータH1〜H3の電流値の変化に近くなって誤動作が少ない一方で、断線の検出が可能である。   Further, since the detection reference characteristic S has a “<” shape close to the change in the measured current value of the heaters H1 to H3, it is close to the actual change in the current value of the heaters H1 to H3 without widening the dead zone D. Thus, disconnection can be detected while there are few malfunctions.

なお、図示はしないが、検知基準特性Sは、最大偏差点i3である変曲点を第1変曲点として、加熱開始点L1からその第1変曲点間の直線に対する事前加熱制御時の電流値の最大偏差点を第2変曲点とし、第1変曲点と最大加熱点L2間の直線に対する事前加熱制御時の電流値の最大偏差点を第3変曲点として求め、加熱開始点L1から第2変曲点、第1変曲点、第3変曲点を経て最大加熱点へ至る特性とすることも可能である。   Although not shown in the drawings, the detection reference characteristic S is the value at the time of preheating control for the straight line between the heating start point L1 and the first inflection point, with the inflection point being the maximum deviation point i3 as the first inflection point. The maximum deviation point of the current value is set as the second inflection point, the maximum deviation point of the current value at the time of preheating control with respect to the straight line between the first inflection point and the maximum heating point L2 is obtained as the third inflection point, and heating is started. It is also possible to have a characteristic from the point L1 to the maximum heating point through the second inflection point, the first inflection point, and the third inflection point.

すなわち、加熱開始点L1から第2変曲点を経た第1変曲点までを「く」字状に、これに続く第1変曲点から第3変曲点を経て最大加熱点L2までを「く」字状にして、複数に折れた折れ線状にすることも可能である。   That is, from the heating start point L1 to the first inflection point via the second inflection point, a "<" shape, and from the first inflection point to the maximum heating point L2 via the third inflection point. It is also possible to use a “<” shape to form a plurality of broken lines.

このように、複数に折れた折れ線状の検知基準特性Sを用いることにより、検知基準特性Sが実際のヒータH1〜H3の電流値の変化により近くなり、断線の検出精度が向上する利点がある。   As described above, by using a plurality of broken line-shaped detection reference characteristics S, the detection reference characteristic S becomes closer to the actual change in the current value of the heaters H1 to H3, and there is an advantage that the detection accuracy of disconnection is improved. .

本発明に係るヒータ断線検知方法は上述した構成に限定されず、検知基準特性Sを求める手法には種々のものが考えられる。   The heater disconnection detection method according to the present invention is not limited to the above-described configuration, and various methods for obtaining the detection reference characteristic S are conceivable.

例えば、図4に示すように、事前に所定のタイミングで電流値検出部3から電流値il〜i6を制御演算部7に入力する(図4A)。電流値i6は最大加熱点L2に対応する。   For example, as shown in FIG. 4, the current values il to i6 are input from the current value detection unit 3 to the control calculation unit 7 at a predetermined timing in advance (FIG. 4A). The current value i6 corresponds to the maximum heating point L2.

制御演算部7では、図4Bに示すように、その事前加熱制御時に得られた隣合う各電流値il〜i6間を順次直線的に補間して得た特性を上記検知基準特性Sとし、この検知基準特性Sに設けた不感帯DをヒータH1〜H3の実際加熱制御時の電流値が超えて低下したとき、ヒータH1〜H3の断線を検知する方法である。この方法における検知基準特性Sでは各電流値i1〜i5が各々変曲点となる。   In the control calculation unit 7, as shown in FIG. 4B, a characteristic obtained by sequentially linearly interpolating between adjacent current values il to i6 obtained at the time of the preheating control is set as the detection reference characteristic S, This is a method for detecting disconnection of the heaters H1 to H3 when the current value during actual heating control of the heaters H1 to H3 falls below the dead zone D provided in the detection reference characteristic S. In the detection reference characteristic S in this method, the current values i1 to i5 are inflection points.

このようなヒータ断線検知方法では、変曲点il〜i5が複数ある曲線近時の特性となり、さらにヒータの抵抗値特性に近い特性の検知基準特性sを演算可能であるから、ヒータH1〜H3の断線を確実に検知することが可能となる。   In such a heater breakage detection method, the characteristics near the curve having a plurality of inflection points il to i5 can be obtained, and the detection reference characteristic s close to the resistance value characteristic of the heater can be calculated. It is possible to reliably detect disconnection.

しかも、取得した個々のヒータH1〜H3の電流値i1〜i6を直線的に結んで検知基準特性として求めるから、検知基準特性Sを求める手法が簡単で、演算も速い利点があるし、不感帯Dを広くする必要もない。   In addition, since the obtained current values i1 to i6 of the individual heaters H1 to H3 are linearly connected to obtain the detection reference characteristic, the method for obtaining the detection reference characteristic S is simple, and there is an advantage that the calculation is fast, and the dead zone D There is no need to widen.

さらに、別の手法として図5に示すような方法もある。   Furthermore, there is a method as shown in FIG. 5 as another method.

すなわち、事前に所定のタイミングで電流値検出蔀3から各電流値i1〜i6を制御演算部7に入力する(図5A)。   That is, the current values i1 to i6 are input to the control calculation unit 7 from the current value detection rod 3 at a predetermined timing in advance (FIG. 5A).

制御演算部7では、図5Bに示すように、その事前加熱制御時に得られた各電流値i1〜i6の間を補間多項式、例えば最小二乗法、ラグランジェの補間多項式、ニュートンの近似式等で補間して得た曲線特性を上記検知基準特性Sとし、この検知基準特性Sに設けた不感帯DをヒータH1〜H3の実際の加熱制御時の電流値が超えて低下したとき、ヒータH1〜H3の断線を検知する方法である。   As shown in FIG. 5B, the control calculation unit 7 uses an interpolation polynomial such as a least square method, a Lagrange interpolation polynomial, a Newton approximation, etc. between the current values i1 to i6 obtained during the preheating control. The curve characteristic obtained by interpolation is defined as the detection reference characteristic S. When the current value during actual heating control of the heaters H1 to H3 falls below the dead zone D provided in the detection reference characteristic S, the heaters H1 to H3 are reduced. This is a method of detecting disconnection of the wire.

この方法における検知基準特性Sは、複数の変曲点を有する比較的滑らかなカーブを描く特性となり、必ずしも各電流値i1〜i6を通るとは限らず、各電流値i1〜i6が変曲点となるものではない。   The detection reference characteristic S in this method is a characteristic that draws a relatively smooth curve having a plurality of inflection points, and does not necessarily pass through the current values i1 to i6, and the current values i1 to i6 are not inflection points. It will not be.

このようなヒータ断線検知方法では、多数の変曲点を有し滑らかなカーブ状の検知基準特性Sを設定するから、ヒータH1〜H3の電流値変化により一層近似した検知基準特性Sを求めることが可能で、より正確にヒータH1〜H3の断線を検知することが可能である。   In such a heater disconnection detection method, a smooth curved detection reference characteristic S having a large number of inflection points is set, so that a detection reference characteristic S that is more approximate to the current value change of the heaters H1 to H3 is obtained. It is possible to detect the disconnection of the heaters H1 to H3 more accurately.

次に、本発明に係るヒータ断線検知方法に関し、ヒータH1〜H3の抵抗値変化から検知する方法を説明する。   Next, regarding the heater disconnection detection method according to the present invention, a method of detecting from resistance value changes of the heaters H1 to H3 will be described.

この方法を実施するために、上述した制御演算部7は、電圧値検出部5からの交流電圧値と電流値検出部3からの交流電流値とからオームの法則によって求めたヒータ抵抗値に基づき、ヒータH1〜H3の断線有無を検知して断線検知信号を出力するようになっている。   In order to implement this method, the control calculation unit 7 described above is based on the heater resistance value obtained by the Ohm's law from the AC voltage value from the voltage value detection unit 5 and the AC current value from the current value detection unit 3. The heaters H1 to H3 detect the presence or absence of disconnection and output a disconnection detection signal.

まず、ヒータH1〜H3が断線していない状況の下において、常温時の加熱開始操作量L1から定格電力を印加して最大加熱操作量L2までの間で、制御演算部7から検査用の事前操作量MVを順次出力し、事前に電流値検出部3にて所定のタイミング、例えば上述した図9中L1、P1〜P5、L2の制御点で電流値i1、i2、i3、i4、i5、i6を測定して制御演算部7に入力し(図3参照)、更に、電圧値検出部5から同様のタイミングの制御点でヒータ電圧値を測定して制御演算部7に入力し、制御演算部7ではそれら電流値および電圧値からオームの法則によって図7Aのようなヒータ抵抗値r1、r2、r3、r4、r5、r6を求める(図6A)。   First, in a situation where the heaters H1 to H3 are not disconnected, the control calculation unit 7 applies a pre-inspection in advance from the heating start operation amount L1 at normal temperature to the maximum heating operation amount L2 by applying the rated power. The operation amount MV is sequentially output, and the current values i1, i2, i3, i4, i5, at the control points of L1, P1 to P5, L2 in FIG. i6 is measured and input to the control calculation unit 7 (see FIG. 3), and further, the heater voltage value is measured from the voltage value detection unit 5 at the control point of the same timing and input to the control calculation unit 7, and control calculation is performed. The unit 7 obtains heater resistance values r1, r2, r3, r4, r5, r6 as shown in FIG. 7A from the current value and voltage value according to Ohm's law (FIG. 6A).

制御演算部7では、ヒータ電流値とヒータ電圧値に基づきヒータ抵抗値を計算し、図7Aの点r1〜r6で示すような特性を得る一方、ヒータ抵抗値rとr6間を直線的に結んだ直線的基準特性sを求める(図6B)。   The control calculation unit 7 calculates the heater resistance value based on the heater current value and the heater voltage value, and obtains characteristics as indicated by points r1 to r6 in FIG. 7A, while linearly connecting the heater resistance values r and r6. A linear reference characteristic s is obtained (FIG. 6B).

制御演算部7では、ヒータ抵抗値r1〜r6と直線的基準特性sとの偏差を求めるとともに最も大きな最大偏差点r3を求める(図6C)。   The control calculation unit 7 obtains the deviation between the heater resistance values r1 to r6 and the linear reference characteristic s and obtains the largest maximum deviation point r3 (FIG. 6C).

さらに、その最小操作量点r1を通り最大偏差点i3に至る直線的基準特性sと、最大偏差点r3と最大加熱点r6を直線的に結んた直線を最大偏差点r3で結んだ「く」字状の検知基準特性Sを求め、図7Bに示すように、その検知基準特性Sの上下に所定の許容範囲を不感帯Dとして設定する(図6D)。   Furthermore, a linear reference characteristic s that passes through the minimum manipulated variable point r1 and reaches the maximum deviation point i3 and a straight line that connects the maximum deviation point r3 and the maximum heating point r6 linearly at the maximum deviation point r3. A character-shaped detection reference characteristic S is obtained, and a predetermined allowable range is set as a dead zone D above and below the detection reference characteristic S as shown in FIG. 7B (FIG. 6D).

制御演算部7では、ヒータH1〜H3を実際に加熱制御した際、電流値検出部3からのヒータ電流値および電圧値検出部5から求められたヒータ抵抗値が検知基準特性Sの不感帯Dを超えて上昇したとき、ヒータH1〜H3の何れかが断線したと検知して検知信号を出力する(図6E)。   In the control calculation unit 7, when the heaters H <b> 1 to H <b> 3 are actually heated and controlled, the heater current value from the current value detection unit 3 and the heater resistance value obtained from the voltage value detection unit 5 change the dead zone D of the detection reference characteristic S. When it rises exceeding, it detects that one of heaters H1-H3 has broken, and outputs a detection signal (Drawing 6E).

このように、本発明のヒータ断線検知方法によれば、事前にヒータH1〜H3を加熱制御したときの電流値i1〜i6および電圧値を所定のタイミングで取得し、これら電流値i1〜i6および電圧値から熱制御したときのヒータ抵抗値r1〜r6をそのタイミングで求め、最小操作量点r1を通り最大加熱点r6に至る直線的基準特性sに対するヒータ抵抗値r1〜r6の最大偏差点r3を求め、その最小操作量点r1から最大偏差点r3を経て最大加熱点r6へ至る「く」字状の特性を検知基準特性Sとして求め、この検知基準特性Sに設けた不感帯DをヒータH1〜H3の実加熱制御時のヒータ抵抗値が超えるときヒータH1〜H3の断線を検知する。   Thus, according to the heater disconnection detection method of the present invention, the current values i1 to i6 and the voltage values when the heaters H1 to H3 are controlled in advance are acquired at predetermined timing, and the current values i1 to i6 and The heater resistance values r1 to r6 when thermal control is performed from the voltage value are obtained at that timing, and the maximum deviation point r3 of the heater resistance values r1 to r6 with respect to the linear reference characteristic s that passes through the minimum manipulated variable point r1 and reaches the maximum heating point r6. Is obtained as the detection reference characteristic S from the minimum manipulated variable point r1 through the maximum deviation point r3 to the maximum heating point r6, and the dead zone D provided in the detection reference characteristic S is defined as the heater H1. When the heater resistance value during the actual heating control of .about.H3 exceeds, the disconnection of the heaters H1 to H3 is detected.

そのため、温度による抵抗値変化が大きな複数のヒータが並列接続されていても、最大偏差点r3が変曲点となり、検知基準特性SがヒータH1〜H3の実加熱制御時の抵抗値の変化に近い「く」字状になるから、断線を確実に検知することが可能となる。   Therefore, even if a plurality of heaters having a large resistance change due to temperature are connected in parallel, the maximum deviation point r3 becomes an inflection point, and the detection reference characteristic S changes to the resistance value change during actual heating control of the heaters H1 to H3. Since it becomes a near “<” shape, it is possible to reliably detect disconnection.

しかも、求めたヒータH1〜H3の抵抗値と直線的基準特性sとの最大偏差点r3を求め、その加熱開始点r1から最大偏差点r3を経て最大加熱点r6へ至る直線的特性を検知基準特性Sとして求めるから、検知基準特性Sを求める手法が簡単で、演算も速い利点がある。   In addition, the maximum deviation point r3 between the obtained resistance values of the heaters H1 to H3 and the linear reference characteristic s is obtained, and the linear characteristic from the heating start point r1 through the maximum deviation point r3 to the maximum heating point r6 is detected as a reference. Since the characteristic S is obtained, there is an advantage that the method for obtaining the detection reference characteristic S is simple and the calculation is quick.

さらに、検知基準特性SがヒータH1〜H3の演算抵抗値の変化に近い「く」字状になっているから、不感帯Dを広げなくても実際のヒータH1〜H3の抵抗値の変化に近くなって誤動作が少ない一方で、断線の検出が可能である。   Furthermore, since the detection reference characteristic S has a “<” shape close to the change in the calculated resistance value of the heaters H1 to H3, it is close to the actual change in the resistance value of the heaters H1 to H3 without widening the dead zone D. Thus, disconnection can be detected while there are few malfunctions.

本発明に係るヒータ断線検知方法、すなわちヒータH1〜H3の演算抵抗値の変化から検知基準特性Sを求める手法においても種々のものが考えられる。   Various methods are also conceivable for the heater disconnection detection method according to the present invention, that is, a method for obtaining the detection reference characteristic S from changes in the calculated resistance values of the heaters H1 to H3.

例えば、図示はしないが、上述したように、最大偏差点r3である変曲点を第1変曲点として、加熱開始点r1からその第1変曲点間の直線に対する事前加熱制御時の抵抗値の最大偏差点を第2変曲点とし、第1変曲点と最大加熱点i6間の直線に対する事前加熱制御時の電流値の最大偏差点を第3変曲点として求め、加熱開始点r1から第2変曲点、第1変曲点、第3変曲点を経て最大加熱点i6へ至るように、複数に折れた折れ線状の検知基準特性Sも可能であり、同様の効果を得ることができる。   For example, although not illustrated, as described above, the inflection point that is the maximum deviation point r3 is set as the first inflection point, and the resistance during the preheating control with respect to the straight line between the heating start point r1 and the first inflection point. The maximum deviation point of the value is set as the second inflection point, the maximum deviation point of the current value during the preheating control with respect to the straight line between the first inflection point and the maximum heating point i6 is obtained as the third inflection point, and the heating start point A plurality of broken line detection reference characteristics S are possible from r1 to the maximum heating point i6 through the second inflection point, the first inflection point, the third inflection point, and the same effect. Obtainable.

さらに、上述した図4に類似した構成、すなわち、事前加熱制御時に得られた各抵抗値rl〜r6の間を順次直線的に補間して得た特性を上記検知基準特性Sとしたり、図5Bに類似した構成、すなわち、その事前加熱制御時に得られた各抵抗値r1〜r6の間を補間多項式、例えば最小二乗法、ラグランジェの補間多項式、ニュートンの近似式等で補間して得た曲線特性を上記検知基準特性Sとする構成である。   Furthermore, a configuration similar to the above-described FIG. 4, that is, a characteristic obtained by sequentially linearly interpolating between the resistance values rl to r6 obtained during the preheating control is set as the detection reference characteristic S, or FIG. That is, a curve obtained by interpolating between the resistance values r1 to r6 obtained at the time of the preheating control with an interpolation polynomial, for example, a least square method, a Lagrange interpolation polynomial, a Newton approximation, etc. The characteristic is the detection reference characteristic S.

このような検知基準特性Sを用いてヒータH1〜H3の断線有無を検知する構成でも、上述したような効果が得られる利点がある。   Even in the configuration in which the presence / absence of disconnection of the heaters H1 to H3 is detected using such a detection reference characteristic S, there is an advantage that the above-described effects can be obtained.

なお、上述した本発明のヒータ断線検知方法では、ヒータH1〜H3の実際の加熱制御時の電流値が検知基準特性Sに設けた不感帯Dを超えて上昇したとき又はヒータ抵抗値が不感帯Dを超えて低下したとき、ヒータH1〜H3の短絡を検知可能である。   In the heater breakage detection method of the present invention described above, when the current value during the actual heating control of the heaters H1 to H3 increases beyond the dead zone D provided in the detection reference characteristic S, or the heater resistance value becomes the dead zone D. When it falls over, it can detect the short circuit of heaters H1-H3.

本発明に係るヒータ断線検知方法を搭載した加熱装置を示すブロック図である。It is a block diagram which shows the heating apparatus carrying the heater disconnection detection method which concerns on this invention. 本発明に係るヒータ断線検知方法のプロセスを説明する図である。It is a figure explaining the process of the heater disconnection detection method which concerns on this invention. 図2のヒータ断線検知方法を実施した場合の動作特性図である。It is an operating characteristic figure at the time of implementing the heater disconnection detection method of FIG. 別のヒータ断線検知方法を実施した場合の動作特性図である。It is an operating characteristic figure at the time of implementing another heater disconnection detection method. 更に別のヒータ断線検知方法を実施した場合の動作特性図である。It is an operation characteristic figure at the time of implementing another heater disconnection detection method. 本発明に係るヒータ断線検知方法の別のプロセスを説明する図である。It is a figure explaining another process of the heater disconnection detection method which concerns on this invention. 図6のヒータ断線検知方法を実施した場合の動作特性図である。It is an operation characteristic figure at the time of implementing the heater disconnection detection method of FIG. 従来の仮想特性に基づく断線検知方法を説明する図である。It is a figure explaining the disconnection detection method based on the conventional virtual characteristic. 交流電圧と操作量の関係を示す図である。It is a figure which shows the relationship between an alternating voltage and the operation amount. 抵抗値変化の大きいヒータの抵抗値特性を示す図である。It is a figure which shows the resistance value characteristic of a heater with a large resistance value change.

符号の説明Explanation of symbols

1 交流電源
3 電流値検出部
5 電圧値検出部
7 制御演算部
9 駆動部
H1、H2、H3 ヒータ
SW スイッチ
DESCRIPTION OF SYMBOLS 1 AC power supply 3 Current value detection part 5 Voltage value detection part 7 Control calculation part 9 Drive part H1, H2, H3 Heater SW switch

Claims (10)

温度上昇によって抵抗値が大きく変化するヒータを複数並列的に接続した当該ヒータの断線を検知するヒータ断線検知方法おいて、
前記ヒータを事前加熱制御したときの電流値の変化に基づき少なくとも1個の変曲点を通る検知基準特性を取得し、
前記ヒータを実際に加熱制御した時の電流値が前記検知基準特性に設けた許容範囲を超えるとき、前記ヒータの断線を検知することを特徴とするヒータ断線検知方法。
In the heater disconnection detection method for detecting disconnection of the heaters connected in parallel with a plurality of heaters whose resistance value greatly changes due to temperature rise,
Obtaining a detection reference characteristic passing through at least one inflection point based on a change in current value when the heater is pre-heat controlled;
A heater disconnection detection method, comprising: detecting a disconnection of the heater when a current value when the heater is actually heated exceeds an allowable range provided in the detection reference characteristic.
前記検知基準特性は、前記ヒータの加熱開始点から最大加熱点までを結んだ直線的基準特性に対する前記事前加熱制御時の電流値の最大偏差点を前記変曲点として求め、前記加熱開始点から前記変曲点を経て前記最大加熱点へ至るものである請求項1記載のヒータ断線検知方法。 The detection reference characteristic is obtained as the inflection point the maximum deviation point of the current value during the preheating control with respect to the linear reference characteristic connecting the heating start point of the heater to the maximum heating point, and the heating start point The heater disconnection detection method according to claim 1, wherein the heater reaches the maximum heating point through the inflection point. 前記検知基準特性は、前記変曲点を第1変曲点として、加熱開始点から前記第1変曲点間の直線に対する事前加熱制御時の電流値の最大偏差点を第2変曲点とし、前記第1変曲点と最大加熱点間の直線に対する事前加熱制御時の電流値の最大偏差点を第3変曲点として求め、加熱開始点から前記第2変曲点、第1変曲点、第3変曲点を経て最大加熱点へ至るものである請求項2記載のヒータ断線検知方法。 The detection reference characteristic has the inflection point as the first inflection point, and the maximum deviation point of the current value during preheating control with respect to the straight line between the first inflection point from the heating start point as the second inflection point. The maximum deviation point of the current value during the preheating control with respect to the straight line between the first inflection point and the maximum heating point is obtained as the third inflection point, and the second inflection point and the first inflection point from the heating start point. The heater break detection method according to claim 2, wherein the heater reaches the maximum heating point through the point and the third inflection point. 前記検知基準特性は、前記事前加熱制御時に得られた電流値の間を順次直線的に補間し、前記各電流値を前記変曲点として得たものである請求項1記載のヒータ断線検知方法。 2. The heater break detection according to claim 1, wherein the detection reference characteristic is obtained by sequentially linearly interpolating between current values obtained during the preheating control, and obtaining the current values as the inflection points. Method. 前記検知基準特性は、前記事前加熱制御時に得られた電流値を多項式で補間して前記変曲点を複数有する曲線である請求項1記載のヒータ断線検知方法。 2. The heater break detection method according to claim 1, wherein the detection reference characteristic is a curve having a plurality of inflection points by interpolating a current value obtained during the preheating control with a polynomial expression. 温度上昇によって抵抗値が大きく変化するヒータを複数並列的に接続した当該ヒータの断線を検知するヒータ断線検知方法おいて、
前記ヒータを事前加熱制御したときのヒータの抵抗値の変化に基づき少なくとも1個の変曲点を通る検知基準特性を取得し、
前記ヒータを実際に加熱制御した時のヒータの抵抗値が前記検知基準特性に設けた許容範囲を超えるとき、前記ヒータの断線を検知することを特徴とするヒータ断線検知方法。
In the heater disconnection detection method for detecting disconnection of the heaters connected in parallel with a plurality of heaters whose resistance value greatly changes due to temperature rise,
Obtaining a detection reference characteristic that passes through at least one inflection point based on a change in the resistance value of the heater when the heater is pre-heat controlled;
A heater break detection method, comprising: detecting a break in the heater when a resistance value of the heater when the heater is actually heated exceeds a tolerance set in the detection reference characteristic.
前記検知基準特性は、前記ヒータの加熱開始点から最大加熱点までを結んだ直線的基準特性に対する前記事前加熱制御時のヒータの抵抗値の最大偏差点を前記変曲点として求め、前記加熱開始点から前記変曲点を経て前記最大加熱点へ至るものである請求項6記載のヒータ断線検知方法。 The detection reference characteristic is obtained by obtaining a maximum deviation point of the resistance value of the heater during the preheating control with respect to a linear reference characteristic connecting from the heating start point of the heater to the maximum heating point as the inflection point. The heater break detection method according to claim 6, wherein the heater breaks from the start point to the maximum heating point through the inflection point. 前記検知基準特性は、前記変曲点を第1変曲点として、加熱開始点から前記第1変曲点間の直線に対する事前加熱制御時のヒータの抵抗値の最大偏差点を第2変曲点とし、前記第1変曲点と最大加熱点間の直線に対する事前加熱制御時のヒータの抵抗値の最大偏差点を第3変曲点として求め、加熱開始点から前記第2変曲点、第1変曲点、第3変曲点を経て最大加熱点へ至るものである請求項7記載のヒータ断線検知方法。 The detection reference characteristic has the inflection point as the first inflection point, and the second inflection point of the heater resistance maximum deviation value during preheating control with respect to a straight line between the first inflection point from the heating start point. A maximum deviation point of the resistance value of the heater during preheating control with respect to a straight line between the first inflection point and the maximum heating point is determined as a third inflection point, and the second inflection point from the heating start point, The heater disconnection detection method according to claim 7, wherein the first inflection point and the third inflection point are used to reach the maximum heating point. 前記検知基準特性は、前記事前加熱制御時に得られたヒータの抵抗値の間を順次直線的に補間し、前記各ヒータの抵抗値を前記変曲点として得たものである請求項6記載のヒータ断線検知方法。 7. The detection reference characteristic is obtained by sequentially linearly interpolating between heater resistance values obtained during the preheating control, and obtaining the resistance values of the heaters as the inflection points. Heater breakage detection method. 前記検知基準特性は、前記事前加熱制御時に得られたヒータの抵抗値を多項式で補間して前記変曲点を複数有する曲線である請求項6記載のヒータ断線検知方法。 The heater disconnection detection method according to claim 6, wherein the detection reference characteristic is a curve having a plurality of inflection points by interpolating a heater resistance value obtained during the preheating control with a polynomial expression.
JP2005374281A 2005-12-27 2005-12-27 Method of detecting heater disconnection Pending JP2007178166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005374281A JP2007178166A (en) 2005-12-27 2005-12-27 Method of detecting heater disconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005374281A JP2007178166A (en) 2005-12-27 2005-12-27 Method of detecting heater disconnection

Publications (1)

Publication Number Publication Date
JP2007178166A true JP2007178166A (en) 2007-07-12

Family

ID=38303519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005374281A Pending JP2007178166A (en) 2005-12-27 2005-12-27 Method of detecting heater disconnection

Country Status (1)

Country Link
JP (1) JP2007178166A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070682A (en) * 2007-09-13 2009-04-02 Omron Corp Heater control device
JP2009127993A (en) * 2007-11-28 2009-06-11 Panasonic Corp Air conditioner for equipment storage case
JP2010066119A (en) * 2008-09-10 2010-03-25 Omron Corp Power regulator
JP2011075446A (en) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp Analog output device
JP2013008494A (en) * 2011-06-23 2013-01-10 Ulvac Japan Ltd Substrate heating apparatus
JP2013054853A (en) * 2011-09-01 2013-03-21 Rkc Instrument Inc Heater disconnection detector, power adjusting device, and heater disconnection detection method
JP2013202955A (en) * 2012-03-28 2013-10-07 Japan Steel Works Ltd:The Heater disconnection detection method for injection molding machine
JP2015141675A (en) * 2014-01-30 2015-08-03 株式会社チノー Power conditioner
WO2017109954A1 (en) * 2015-12-25 2017-06-29 理化工業株式会社 Load control device and current measurement method for load control device
KR20180111551A (en) * 2017-03-31 2018-10-11 아즈빌주식회사 Deterioration diagnosis apparatus
KR20180111566A (en) * 2017-03-31 2018-10-11 아즈빌주식회사 Deterioration diagnostic apparatus and method
CN108693398A (en) * 2017-03-31 2018-10-23 阿自倍尔株式会社 Apparatus for diagnosing deterioration and method
KR20220077162A (en) * 2020-11-12 2022-06-09 주식회사 한화 Disconnection Detection Device of Heat Treatment Furnace

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353483A (en) * 1989-07-20 1991-03-07 Fuoresuto:Kk Heater failure alarm
JPH03123875A (en) * 1989-10-09 1991-05-27 Toshiba Corp Detector for lamp heater disconnection
JPH04579A (en) * 1990-04-17 1992-01-06 Matsushita Electric Ind Co Ltd Method for extracting feature point of graphic
JPH052432A (en) * 1991-06-25 1993-01-08 Rika Kogyo Kk Abnormality detector for controlled subject
JPH07227900A (en) * 1994-02-21 1995-08-29 Tahara:Kk Parison thickness control method in blow molding machine
JPH1048280A (en) * 1996-08-01 1998-02-20 Matsushita Electric Ind Co Ltd Method and device for detecting disconnection of resistance load
WO2001017229A1 (en) * 1999-08-27 2001-03-08 Celartem Technology Inc. Image compressing method
JP2002343537A (en) * 2001-03-15 2002-11-29 Omron Corp Heater disconnection detection method, temperature controller and heat treatment device
JP2003178855A (en) * 2001-12-11 2003-06-27 Rkc Instrument Inc Controller of heater

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353483A (en) * 1989-07-20 1991-03-07 Fuoresuto:Kk Heater failure alarm
JPH03123875A (en) * 1989-10-09 1991-05-27 Toshiba Corp Detector for lamp heater disconnection
JPH04579A (en) * 1990-04-17 1992-01-06 Matsushita Electric Ind Co Ltd Method for extracting feature point of graphic
JPH052432A (en) * 1991-06-25 1993-01-08 Rika Kogyo Kk Abnormality detector for controlled subject
JPH07227900A (en) * 1994-02-21 1995-08-29 Tahara:Kk Parison thickness control method in blow molding machine
JPH1048280A (en) * 1996-08-01 1998-02-20 Matsushita Electric Ind Co Ltd Method and device for detecting disconnection of resistance load
WO2001017229A1 (en) * 1999-08-27 2001-03-08 Celartem Technology Inc. Image compressing method
JP2002343537A (en) * 2001-03-15 2002-11-29 Omron Corp Heater disconnection detection method, temperature controller and heat treatment device
JP2003178855A (en) * 2001-12-11 2003-06-27 Rkc Instrument Inc Controller of heater

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
藤田 宏 外, 図説 数学の事典, vol. 初版第3刷, JPN6009054365, 10 September 1998 (1998-09-10), JP, pages 658 - 661, ISSN: 0001445235 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070682A (en) * 2007-09-13 2009-04-02 Omron Corp Heater control device
JP2009127993A (en) * 2007-11-28 2009-06-11 Panasonic Corp Air conditioner for equipment storage case
JP2010066119A (en) * 2008-09-10 2010-03-25 Omron Corp Power regulator
JP2011075446A (en) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp Analog output device
JP2013008494A (en) * 2011-06-23 2013-01-10 Ulvac Japan Ltd Substrate heating apparatus
JP2013054853A (en) * 2011-09-01 2013-03-21 Rkc Instrument Inc Heater disconnection detector, power adjusting device, and heater disconnection detection method
JP2013202955A (en) * 2012-03-28 2013-10-07 Japan Steel Works Ltd:The Heater disconnection detection method for injection molding machine
JP2015141675A (en) * 2014-01-30 2015-08-03 株式会社チノー Power conditioner
WO2017109954A1 (en) * 2015-12-25 2017-06-29 理化工業株式会社 Load control device and current measurement method for load control device
JPWO2017109954A1 (en) * 2015-12-25 2018-08-16 理化工業株式会社 Load control device and current measurement method of load control device
KR20180111551A (en) * 2017-03-31 2018-10-11 아즈빌주식회사 Deterioration diagnosis apparatus
KR20180111566A (en) * 2017-03-31 2018-10-11 아즈빌주식회사 Deterioration diagnostic apparatus and method
CN108692963A (en) * 2017-03-31 2018-10-23 阿自倍尔株式会社 Apparatus for diagnosing deterioration and method
CN108693864A (en) * 2017-03-31 2018-10-23 阿自倍尔株式会社 Apparatus for diagnosing deterioration
CN108693398A (en) * 2017-03-31 2018-10-23 阿自倍尔株式会社 Apparatus for diagnosing deterioration and method
JP2018174048A (en) * 2017-03-31 2018-11-08 アズビル株式会社 Degradation diagnostic device
JP2018174046A (en) * 2017-03-31 2018-11-08 アズビル株式会社 Device and method for degradation diagnosis
KR102053191B1 (en) * 2017-03-31 2019-12-06 아즈빌주식회사 Deterioration diagnostic apparatus and method
KR102073925B1 (en) * 2017-03-31 2020-02-06 아즈빌주식회사 Deterioration diagnosis apparatus
TWI700569B (en) * 2017-03-31 2020-08-01 日商阿自倍爾股份有限公司 Deterioration diagnosis device and method
CN108693864B (en) * 2017-03-31 2021-06-25 阿自倍尔株式会社 Deterioration diagnosis device
KR20220077162A (en) * 2020-11-12 2022-06-09 주식회사 한화 Disconnection Detection Device of Heat Treatment Furnace
KR102431972B1 (en) * 2020-11-12 2022-08-11 주식회사 한화 Disconnection Detection Device of Heat Treatment Furnace

Similar Documents

Publication Publication Date Title
JP2007178166A (en) Method of detecting heater disconnection
JP7143226B2 (en) Power converter for thermal system
JP6406829B2 (en) Induction heating roller device and induction coil temperature detection mechanism
US9198231B2 (en) Heater control device, method and program
EP2741569B1 (en) Heater control device, control method, and control program
JP2011511919A5 (en)
US11057965B2 (en) Control device of water purifier, water purifier, and control method thereof
JP2007059097A (en) Heater controller system
KR101407203B1 (en) Injection molding machine
JP2007031942A (en) Toilet equipment
JP4426155B2 (en) Heating device
JP6299693B2 (en) Electric heating device (method)
JP2014100808A (en) Disconnection and degradation determination method of heater and injection molding machine
JP5277809B2 (en) Power regulator
JP5249563B2 (en) Toilet seat temperature controller
JP2009125190A (en) Toilet seat device
JP2014046497A (en) Method for estimating deterioration of heater of injection molding machine, and injection molding machine
JP4797736B2 (en) Billet heating apparatus and heating method
KR101997879B1 (en) Control device for hot wire and control method for hor wire using the same
CN106332339A (en) Induction heating device and control method thereof
KR101080516B1 (en) Temperature control circuit and method for controlling temperature using it
JP6719820B2 (en) Estimating apparatus and estimating method
KR101783863B1 (en) Hot wire overheating prevention apparatus and method
JPH0262575A (en) Fixing device
JP2004334623A (en) Temperature controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302