JP2007170474A - High pressure gas supply device and its method - Google Patents

High pressure gas supply device and its method Download PDF

Info

Publication number
JP2007170474A
JP2007170474A JP2005366283A JP2005366283A JP2007170474A JP 2007170474 A JP2007170474 A JP 2007170474A JP 2005366283 A JP2005366283 A JP 2005366283A JP 2005366283 A JP2005366283 A JP 2005366283A JP 2007170474 A JP2007170474 A JP 2007170474A
Authority
JP
Japan
Prior art keywords
gas
tank
pressure
supply
pressurizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005366283A
Other languages
Japanese (ja)
Other versions
JP4964462B2 (en
Inventor
Atsushi Kobayashi
篤 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2005366283A priority Critical patent/JP4964462B2/en
Publication of JP2007170474A publication Critical patent/JP2007170474A/en
Application granted granted Critical
Publication of JP4964462B2 publication Critical patent/JP4964462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high pressure gas supply device for evaporating gas in a liquid condition and inexpensively supplying high pressure gas without using driving powder equipment such as a pump, while refilling supply gas in the liquefied gas container, if not completely consumed, with no need for releasing pressure in a container to the atmosphere and reducing loss, and to provide its method. <P>SOLUTION: A first pressurizing tank 1 is installed in a cooling tank 3, argon gas is supplied through a first integrating flowmeter 4 to the first pressurizing tank 1, and liquid nitrogen is supplied from a flow control valve 20 to the cooling tank 3 to cool and liquefy the argon gas in the first pressurizing tank 1. Then, the fist pressurizing tank 1 is removed from the cooling tank 3 and the liquid argon in the first pressurizing tank 1 is gasified by heat exchange with the atmosphere. After reaching predetermined pressure, the high pressure argon gas is supplied from the first pressurizing tank 1 to a supply destination. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、昇圧ポンプや圧縮機などの駆動動力機器を使用することなく、高圧ガスを供給先に供給することが可能な高圧ガス供給装置および供給方法に関する。   The present invention relates to a high-pressure gas supply apparatus and a supply method capable of supplying high-pressure gas to a supply destination without using a driving power device such as a booster pump or a compressor.

特開2002−295796号公報には、液化ガス貯槽内に貯留されている低温の液化ガスを、昇圧ポンプを使用せずに昇圧してガス容器に充填する方法として、液化ガス貯槽内の液化ガスを加圧槽へ移送し、加圧槽に設けた加圧蒸発器で液化ガスの一部を気化して昇圧し、液化ガス貯槽内の液化ガスよりも高圧のガスを得た後にガス容器に充填する方法が記載されている。   Japanese Patent Application Laid-Open No. 2002-29596 discloses a method for increasing the pressure of a low-temperature liquefied gas stored in a liquefied gas storage tank without using a booster pump and filling the gas container with the liquefied gas in the liquefied gas storage tank. Is transferred to the pressurized tank, and a portion of the liquefied gas is vaporized and pressurized by a pressurized evaporator provided in the pressurized tank, and after obtaining a gas higher in pressure than the liquefied gas in the liquefied gas storage tank, A method of filling is described.

しかしながら、この方法では、液化ガスを加圧槽へ移送する際、加圧槽の冷却を昇圧対象である液化ガスで行なっている。そのため、加圧槽が冷却されるまで、液化ガスはガス化され、気化したガスを放出しなければならないためロスが発生する問題がある。
また、加圧槽の液化ガスを全て消費せず高圧のガスが残っている状態で、新たに昇圧対象の液化ガスを加圧槽に移送する際には、加圧槽内の圧力を液化ガス貯槽内の圧力以下とする必要があり、そのためガスを放出する事が行われ、多量のロスが発生する問題がある。
However, in this method, when the liquefied gas is transferred to the pressurization tank, the pressurization tank is cooled with the liquefied gas to be pressurized. Therefore, the liquefied gas is gasified until the pressurized tank is cooled, and there is a problem that loss occurs because the vaporized gas must be released.
In addition, when the liquefied gas to be pressurized is newly transferred to the pressurized tank while the high pressure gas remains without consuming all the liquefied gas in the pressurized tank, the pressure in the pressurized tank is changed to the liquefied gas. There is a problem in that a large amount of loss is generated because it is necessary to set the pressure in the storage tank to be equal to or lower than the pressure in the storage tank.

特に、供給するガスがアルゴンガスなどの高価なガスである場合には、多量のガス放出などによるロスの発生により、コストアップとなる問題があった。
特開2002−295796号公報
In particular, when the gas to be supplied is an expensive gas such as argon gas, there is a problem that the cost is increased due to generation of a loss due to a large amount of gas discharge.
JP 2002-295996 A

よって、本発明における課題は、ポンプ等の駆動動力機器を用いることなく、液体状態のガスを気化して高圧ガスを供給するにあたり、液化ガス容器内の供給ガスを全て消費していない状態であっても、容器内の圧力を大気放出する必要がなく再充填でき、ロスを低減し、安価に高圧ガスを供給できる高圧ガス供給装置および供給方法を提供することにある。   Therefore, the subject of the present invention is a state in which all the supply gas in the liquefied gas container is not consumed in vaporizing the liquid gas and supplying the high pressure gas without using a driving power device such as a pump. However, an object of the present invention is to provide a high-pressure gas supply device and a supply method that can refill without the need to release the pressure in the container to the atmosphere, reduce loss, and supply high-pressure gas at low cost.

かかる課題を解決するため、
請求項1にかかる発明は、冷却槽および加圧槽を備え、
冷却槽は、その内部に冷媒が満たされるものであり、
加圧槽は、その内部に供給元からのガスがガス状で供給され、上記冷却槽に沈められて冷却され、内部のガスが液化し、上記冷却槽から取り出されて加温され、内部のガスが気化し、この気化したガスを供給先に送出するものであることを特徴とする高圧ガス供給装置である。
To solve this problem,
The invention according to claim 1 includes a cooling tank and a pressure tank,
The cooling tank is filled with a refrigerant inside,
The pressurized tank is supplied with gas from the source in the form of gas, submerged in the cooling tank and cooled, the internal gas is liquefied, taken out of the cooling tank and heated, The high-pressure gas supply apparatus is characterized in that gas is vaporized and the vaporized gas is sent to a supply destination.

請求項2にかかる発明は、1基の冷却槽に対して2基の加圧槽を設けて、ガスを連続的に送出するようにしたことを特徴とする請求項1記載の高圧ガス供給装置である。   The invention according to claim 2 is characterized in that two pressurizing tanks are provided for one cooling tank, and gas is continuously sent out. It is.

請求項3にかかる発明は、請求項1記載の高圧ガス供給装置を用い、供給元からのガスを加圧槽内に送り込むとともにこの加圧槽を冷却槽に沈めてガスを液状で貯留し、ついでこの加圧槽を冷却槽から取り出して加温し、内部のガスを気化させ、このガスを供給先に送給することを特徴とする高圧ガス供給方法である。   The invention according to claim 3 uses the high-pressure gas supply device according to claim 1, and sends the gas from the supply source into the pressurizing tank and sinks the pressurizing tank in the cooling tank, and stores the gas in a liquid state. Next, the high pressure gas supply method is characterized in that the pressure tank is taken out from the cooling tank and heated to vaporize the internal gas, and the gas is supplied to the supply destination.

請求項4にかかる発明は、請求項2記載の高圧ガス供給装置を用い、供給元からのガスを一方の加圧槽内に送り込むとともにこの加圧槽を冷却槽に沈めてガスを液状で貯留し、ついでこの加圧槽を冷却槽から取り出して加温し、内部のガスを気化させ、このガスを供給先に送給する操作と、供給元からのガスを他方の加圧槽内に送り込むとともにこの加圧槽を冷却槽に沈めてガスを液状で貯留し、ついでこの加圧槽を冷却槽から取り出して加温し、内部のガスを気化させ、このガスを供給先に送給する操作を交互に繰り返し、ガスを連続的に供給先に供給することを特徴とする高圧ガス供給方法である。   The invention according to claim 4 uses the high-pressure gas supply device according to claim 2, and sends the gas from the supply source into one of the pressurization tanks and sinks the pressurization tank in the cooling tank to store the gas in a liquid state. Then, the pressure tank is removed from the cooling tank and heated to vaporize the internal gas, and the gas is supplied to the supply destination, and the gas from the supply source is sent into the other pressure tank. In addition, the pressure tank is submerged in the cooling tank to store the gas in a liquid state, and then the pressure tank is removed from the cooling tank and heated to vaporize the internal gas and supply the gas to the supply destination. Is a high-pressure gas supply method characterized in that gas is continuously supplied to a supply destination by repeating the above.

本発明によれば、加圧槽のガスまたは液化ガスを全て消費しなかった場合でも、ガスを放出するなどにより降圧する必要がないので、液化ガスを有効に利用することができる。また高圧ガスをポンプ等を用いることなく供給することができ、さらに加圧槽を冷却する冷媒には、供給するガスと別の液化ガスなどを使用することができるため、冷媒として安価な液体窒素等を用いることができる。
したって、ガスのロスを少なくして高圧ガスを供給することが可能となる。
According to the present invention, even when the gas in the pressurized tank or the liquefied gas is not consumed, the liquefied gas can be used effectively because it is not necessary to reduce the pressure by releasing the gas. In addition, high-pressure gas can be supplied without using a pump, and the liquefied gas other than the supplied gas can be used as the refrigerant for cooling the pressurized tank. Etc. can be used.
Therefore, it is possible to supply high-pressure gas with less gas loss.

図1は、本発明の高圧ガス供給装置の一例を示すものである。
この例の高圧ガス供給装置は、供給元からのアルゴンガスなどのガスを冷却し、液化ガスとして溜めるとともに、供給先への供給の際には液化ガスを気化する第1加圧槽1と、同じく第2加圧槽2と、これら加圧槽1、2を冷却する冷却槽3と、加圧槽1、2に供給元から供給されるガス量を計測する第1積算流量計4と、加圧槽1、2から供給先に供給されるガス量を計測する第2積算流量計5と、これら加圧槽1、2内のガス量または液化ガス量を測定する残量測定手段とから概略構成されている。
FIG. 1 shows an example of a high-pressure gas supply apparatus of the present invention.
The high-pressure gas supply device of this example cools a gas such as argon gas from a supply source and stores it as a liquefied gas, and at the time of supply to a supply destination, a first pressurizing tank 1 that vaporizes the liquefied gas; Similarly, the second pressurizing tank 2, the cooling tank 3 for cooling the pressurizing tanks 1 and 2, the first integrating flow meter 4 for measuring the amount of gas supplied from the supply source to the pressurizing tanks 1 and 2, From the second integrated flow meter 5 that measures the amount of gas supplied from the pressurized tanks 1 and 2 to the supply destination, and the remaining amount measuring means that measures the amount of gas in the pressurized tanks 1 and 2 or the amount of liquefied gas It is roughly structured.

第1加圧槽1は、銅、ステンレス鋼などからなる金属パイプをスパイラル状に巻回して形成されたもので、金属パイプの一端がガス入口となって開閉弁6に接続され、開閉弁6は逆止弁7を介して管8に接続され、管8は、第1積算流量計4を介して図示しないガス供給元に接続されている。   The first pressurizing tank 1 is formed by winding a metal pipe made of copper, stainless steel or the like in a spiral shape, and one end of the metal pipe is connected to the on-off valve 6 as a gas inlet. Is connected to a pipe 8 via a check valve 7, and the pipe 8 is connected to a gas supply source (not shown) via a first integrating flow meter 4.

また、第1加圧槽1をなす金属パイプの他端は、ガス出口となっており、このガス出口は開閉弁9に接続され、この開閉弁9は逆止弁10を介して管11に接続され、この管11は、圧力調整弁12および第2積算流量計5を介して図示しない供給先に接続されている。
また、第1加圧槽1のガス出口には、ここの温度と圧力を測定する温度計13と圧力計14とが設けられている。
Further, the other end of the metal pipe constituting the first pressurizing tank 1 is a gas outlet, and this gas outlet is connected to the on-off valve 9, and the on-off valve 9 is connected to the pipe 11 through the check valve 10. The pipe 11 is connected to a supply destination (not shown) via the pressure regulating valve 12 and the second integrating flow meter 5.
Moreover, the gas outlet of the 1st pressurization tank 1 is provided with the thermometer 13 and the pressure gauge 14 which measure the temperature and pressure here.

また、管8および管11から分岐するようにして第2加圧槽2が設けられている。この第2加圧槽2は、第1加圧槽1と同様の構造のものであって、そのガス入口は開閉弁15に接続され、開閉弁15は逆止弁23、管16を介して管8に接続されている。また、そのガス出口は開閉弁17に接続され、開閉弁17は、逆止弁18を介して管19から管11に接続されている。
また、第2加圧槽2のガス出口には、ここの温度と圧力を測定する温度計24と圧力計25とが設けられている。
Moreover, the 2nd pressurization tank 2 is provided so that it may branch from the pipe | tube 8 and the pipe | tube 11. FIG. The second pressurizing tank 2 has the same structure as the first pressurizing tank 1, and its gas inlet is connected to the on-off valve 15, and the on-off valve 15 is connected via the check valve 23 and the pipe 16. Connected to tube 8. The gas outlet is connected to the on-off valve 17, and the on-off valve 17 is connected to the pipe 11 from the pipe 19 via the check valve 18.
Moreover, the thermometer 24 and the pressure gauge 25 which measure the temperature and pressure here are provided in the gas outlet of the 2nd pressurization tank 2. As shown in FIG.

冷却槽3は、その内部に液化窒素などの冷媒を満たす密閉可能な容器であって、この冷媒中に上記第1加圧槽1または第2加圧槽2を沈めてこれを冷却し、加圧槽1、2内部のガスを冷却し、液化するように構成されている。
冷却槽3には、冷媒をその内部に所定量導入するための流量調整弁20が付設され、この流量調整弁20は図示しない冷媒供給源に接続されている。
The cooling tank 3 is a hermetically sealed container filled with a refrigerant such as liquefied nitrogen, and the first pressure tank 1 or the second pressure tank 2 is submerged in the refrigerant to cool it. The gas inside the pressure vessels 1 and 2 is cooled and liquefied.
The cooling tank 3 is provided with a flow rate adjusting valve 20 for introducing a predetermined amount of refrigerant into the cooling tank 3, and this flow rate adjusting valve 20 is connected to a refrigerant supply source (not shown).

また、冷却槽3には、内部の冷媒の温度を計測する測温計21が設けられ、この測温計21からの温度信号が上記流量調整弁20に送られ、冷媒の冷却槽3への供給量が制御されるようになっている。さらに、冷却槽3には、冷媒排出口22が形成され、加圧槽1、2を冷却して気化した窒素ガスなどのガス状の冷媒が排出されるようになっている。   Further, the cooling tank 3 is provided with a thermometer 21 for measuring the temperature of the internal refrigerant, and a temperature signal from the thermometer 21 is sent to the flow rate adjusting valve 20 to supply the refrigerant to the cooling tank 3. The supply amount is controlled. Further, a coolant discharge port 22 is formed in the cooling tank 3, and gaseous refrigerant such as nitrogen gas which is vaporized by cooling the pressurization tanks 1 and 2 is discharged.

さらに、この例での残量測定手段は、供給元側の第1積算流量計4と供給先側の第2積算流量計5とで構成されており、両方の積算流量計での流量値の差を求めることで、第1加圧槽1または第2加圧槽2内の残留ガス量を知ることができるようになっている。また、加圧槽1、2のガス出口側の圧力計14、25と温度計13、24とで残量測定手段を構成することもできる。この場合には、加圧槽1、2内の温度、圧力を上記温度計13、24と圧力計14、25から計測し、この温度、圧力からガス密度を算出し、このガス密度に加圧槽1、2の有効体積を乗じて残留ガス量を求めることができる。ただし、この場合には加圧槽1、2内のガスがすべて気化していることが前提となる。   Further, the remaining amount measuring means in this example is composed of a first integrated flow meter 4 on the supply side and a second integrated flow meter 5 on the supply destination side, and the flow rate values in both integrated flow meters are By obtaining the difference, the amount of residual gas in the first pressurizing tank 1 or the second pressurizing tank 2 can be known. Further, the pressure gauges 1 and 25 and the thermometers 13 and 24 on the gas outlet side of the pressurizing tanks 1 and 2 can constitute a remaining amount measuring means. In this case, the temperature and pressure in the pressurization tanks 1 and 2 are measured from the thermometers 13 and 24 and the pressure gauges 14 and 25, the gas density is calculated from the temperature and pressure, and the gas density is increased. The residual gas amount can be obtained by multiplying the effective volumes of the tanks 1 and 2. However, in this case, it is assumed that all the gas in the pressurization tanks 1 and 2 is vaporized.

次に、図1に示した高圧ガス供給装置を使用し、高圧ガスを供給する方法について説明する。この説明においては、供給するガスにはアルゴンガス、冷却槽3を供給される冷媒には液体窒素を用いるものを例示して説明する。   Next, a method for supplying high-pressure gas using the high-pressure gas supply apparatus shown in FIG. 1 will be described. In this description, an example in which argon gas is used as the gas to be supplied and liquid nitrogen is used as the refrigerant supplied to the cooling tank 3 will be described.

まず、供給するアルゴンガスを液化する工程について説明する。
初めに冷却槽3内に第1加圧槽1を設置し、開閉弁6を開、開閉弁9を閉とする。次に、第1加圧槽1の圧力を、供給元のアルゴン貯槽の圧力より低くし、アルゴンガスを、第1積算流量計4を通して第1加圧槽1に供給するとともに、冷却槽2に冷媒供給源からの液体窒素を流量調整弁20から供給し、第1加圧槽1内のアルゴンガスを冷却する。
First, the process of liquefying the supplied argon gas will be described.
First, the first pressurizing tank 1 is installed in the cooling tank 3, the on-off valve 6 is opened, and the on-off valve 9 is closed. Next, the pressure of the first pressurizing tank 1 is made lower than the pressure of the argon storage tank of the supply source, and the argon gas is supplied to the first pressurizing tank 1 through the first integrating flow meter 4 and is supplied to the cooling tank 2. Liquid nitrogen from the refrigerant supply source is supplied from the flow rate adjustment valve 20, and the argon gas in the first pressurizing tank 1 is cooled.

液体窒素は、大気圧で−196℃の液体である。一方、アルゴンガスは、ガス状態では大気圧、加圧された状態であっても、−196℃以上のガスであるから、液体窒素はアルゴンガスを冷却し、液化する。アルゴンガスの冷却および液体アルゴンへの相変化に伴い、第1加圧槽1内の圧力は低下するため、アルゴンガスはガス供給元から第1加圧槽1へ継続的に供給される。   Liquid nitrogen is a liquid at −196 ° C. at atmospheric pressure. On the other hand, since argon gas is a gas having a pressure of −196 ° C. or higher even in a gas state at atmospheric pressure and pressure, liquid nitrogen cools and liquefies the argon gas. With the cooling of the argon gas and the phase change to liquid argon, the pressure in the first pressurizing tank 1 decreases, so that the argon gas is continuously supplied from the gas supply source to the first pressurizing tank 1.

第1積算流量計4の積算値により加圧槽1に貯留できた液体アルゴンの量を把握することができ、第1積算流量計4が所定の値になれば開閉弁6を閉とする。開閉弁6は、第1積算流量計4からの指示で自動的に開閉するようにすることが好ましい。   The amount of liquid argon stored in the pressurizing tank 1 can be grasped from the integrated value of the first integrated flow meter 4, and when the first integrated flow meter 4 reaches a predetermined value, the on-off valve 6 is closed. The on-off valve 6 is preferably opened and closed automatically in response to an instruction from the first integrating flow meter 4.

次に、第1加圧槽1において液化した液体アルゴンをガス化し、所望の圧力で供給する工程について説明する。
まず、第1加圧槽1を冷却槽3から取り出す。第1加圧槽1内の液体アルゴンは大気との熱交換により、徐々にガス化され、第1加圧槽1内は昇圧される。所定の圧力になった後、開閉弁9を開とする。これに併せて圧力調整弁12を設定するまたは予め設定しておくことにより、所望の圧力のアルゴンガスを供給することが可能になる。
Next, a process of gasifying the liquid argon liquefied in the first pressurizing tank 1 and supplying it at a desired pressure will be described.
First, the first pressure tank 1 is taken out from the cooling tank 3. The liquid argon in the first pressure tank 1 is gradually gasified by heat exchange with the atmosphere, and the pressure in the first pressure tank 1 is increased. After the predetermined pressure is reached, the on-off valve 9 is opened. In conjunction with this, by setting or presetting the pressure regulating valve 12, it becomes possible to supply argon gas at a desired pressure.

アルゴンガスの供給に伴って、第2積算流量計5にて供給量を把握することができ、第1加圧槽1内にアルゴンガスが残っているかどうかが判る。残っている場合には、次の充填の際にその量が存在することを考慮して充填する。
なお、第1加圧槽1内の液化アルゴンを気化する際、大気との熱交換により加温したが、ヒーターを内蔵した加温槽を別途設けることにより、昇温速度を上げることができることは言うまでもない。
With the supply of the argon gas, the supply amount can be grasped by the second integrating flow meter 5, and it can be determined whether or not the argon gas remains in the first pressurizing tank 1. If it remains, it is filled taking into account that amount is present at the next filling.
In addition, when vaporizing the liquefied argon in the 1st pressurization tank 1, it heated by heat exchange with air | atmosphere, but it is possible to raise a temperature increase rate by providing separately the heating tank which incorporated the heater. Needless to say.

供給先へ連続してアルゴンガスを供給する場合には、第1加圧槽1を冷却槽3から取り出した後、第2加圧槽2を冷却槽3に沈め、第2加圧槽2にアルゴンガスを同様に供給し、液化させておき、第1加圧槽1内のアルゴンガスがなくなる前に、第2加圧槽2を冷却槽3から取り出し、同様の操作をすることで、可能になる。すなわち、一方の加圧槽からアルゴンガスを供給先に供給しながら、他方の加圧槽でアルゴンガスを液化後加圧し、これを交互に切替えることにより連続供給が可能となる。   In the case of continuously supplying argon gas to the supply destination, after the first pressure tank 1 is taken out from the cooling tank 3, the second pressure tank 2 is submerged in the cooling tank 3, and the second pressure tank 2 is set in the second pressure tank 2. It is possible by supplying the argon gas in the same manner, liquefying it, and removing the second pressure tank 2 from the cooling tank 3 and performing the same operation before the argon gas in the first pressure tank 1 runs out. become. That is, while supplying argon gas from one pressurizing tank to the supply destination, the argon gas is liquefied and pressurized in the other pressurizing tank, and continuous supply is possible by alternately switching them.

第1加圧槽1に貯留した液体アルゴンを全て消費せずに残っている場合、またはアルゴンガスが残っている場合、第1加圧槽1を再び冷却槽3に沈め、冷却槽3に対して、その設定温度に応じて液体窒素を供給することにより冷却し、第1加圧槽1内の残アルゴンガスを再び液化することが可能となる。残アルゴンガスが液化された後は、先と同様に操作することで、新たに高圧のアルゴンガスを供給することができる。   When all the liquid argon stored in the first pressurizing tank 1 remains without being consumed, or when argon gas remains, the first pressurizing tank 1 is submerged in the cooling tank 3 again, and the cooling tank 3 Then, it is cooled by supplying liquid nitrogen according to the set temperature, and the remaining argon gas in the first pressurizing tank 1 can be liquefied again. After the residual argon gas is liquefied, high-pressure argon gas can be newly supplied by performing the same operation as before.

このように、加圧槽1、2を冷却してその内部のアルゴンガスを液化する際には、アルゴンガス以外の液体窒素などの冷媒を用いているので、供給すべきアルゴンガスの無駄がなくなる。
また、加圧槽内にアルゴンが残っても、加圧槽を再度冷却槽3に沈めてこの残留ガスを液化できるので、加圧槽1、2内の残留ガスを放出する必要もなく、これによってもアルゴンガスの無駄がなくなる。
Thus, when the pressure tanks 1 and 2 are cooled and the argon gas therein is liquefied, a refrigerant such as liquid nitrogen other than the argon gas is used, so that the argon gas to be supplied is not wasted. .
Further, even if argon remains in the pressurizing tank, the residual pressure in the pressurizing tanks 1 and 2 can be liquefied by submerging the pressurizing tank in the cooling tank 3 again. This eliminates the waste of argon gas.

上記実施例では、加圧槽1、2には、それぞれの入口および出口に、開閉弁をそれぞれ設けたが、加圧槽の出入り口を共通の1個として、1個の開閉弁を設けてもよい。
また、加圧槽1、2にはフィンなどを設けることにより、伝熱面積を大きくすることができ、冷却、加温能力を大きくすることができる。
さらに、加圧槽が1基の場合には、高圧ガスの供給は間欠的に行われる。
In the above embodiment, the pressurizing tanks 1 and 2 are provided with opening / closing valves at the respective inlets and outlets. However, it is also possible to provide one opening / closing valve with the same inlet / outlet of the pressurizing tank. Good.
Further, by providing fins or the like in the pressurizing tanks 1 and 2, the heat transfer area can be increased, and the cooling and heating ability can be increased.
Furthermore, when there is one pressurizing tank, the high-pressure gas is supplied intermittently.

また、上記実施例では、冷却用の媒体として大気圧の液体窒素を用いたが、供給用のガスの状態により、−196℃の冷源が不要な場合には、測温計21の設定値で変更すればよい。この条件は、供給ガスの供給量、ガス圧力などにより決定すればよいが、冷媒を節約するためには温度は高く設定することが望ましい。   Moreover, in the said Example, although liquid nitrogen of atmospheric pressure was used as a cooling medium, when a cold source of -196 degreeC is unnecessary according to the state of the gas for supply, the setting value of the thermometer 21 You can change it. This condition may be determined by the supply amount of the supply gas, the gas pressure, etc., but it is desirable to set the temperature high in order to save the refrigerant.

次に、本発明の高圧ガス供給装置を以下の仕様にて作成し、効果を確認した。 第1加圧槽1には、管サイズ10Aスケジュール80(外径17.3mm、肉厚3.2mm)のステンレス鋼管、長さ11mをスパイラル状とし、内容積を約1.1リットルとして製作した。   Next, the high-pressure gas supply apparatus of the present invention was made with the following specifications, and the effect was confirmed. The first pressurizing tank 1 was manufactured with a stainless steel pipe having a tube size 10A schedule 80 (outer diameter 17.3 mm, wall thickness 3.2 mm), a length of 11 m spirally, and an internal volume of about 1.1 liters. .

この第1加圧槽1を冷却槽3に設置した。冷却槽3には、液体窒素を導入し、温度が−150℃に設定した。液体窒素が満たされ、アルゴンガスボンベからアルゴンガスを3MPa以上の圧力で第1加圧槽1に移送し、液化させ、3MPa未満の液体アルゴンとし、開閉弁6を閉とした。   The first pressure tank 1 was installed in the cooling tank 3. Liquid nitrogen was introduced into the cooling bath 3 and the temperature was set to -150 ° C. Filled with liquid nitrogen, the argon gas was transferred from the argon gas cylinder to the first pressurizing tank 1 at a pressure of 3 MPa or more, and liquefied to obtain liquid argon of less than 3 MPa, and the on-off valve 6 was closed.

次に、第1加圧槽1を冷却槽3から取り出し、液体アルゴンを全て気化させ、第1加圧槽1内圧力が40MPaになった時点で開閉弁9を開(このときの加圧槽1内の温度は280K)とし、あらかじめ20MPaに設定された圧力調整弁12を介して高圧のアルゴンガスを供給先に供給した。   Next, the first pressurization tank 1 is taken out from the cooling tank 3, and all of the liquid argon is vaporized. When the pressure in the first pressurization tank 1 becomes 40 MPa, the on-off valve 9 is opened (the pressurization tank at this time). 1 was 280 K), and high-pressure argon gas was supplied to the supply destination via the pressure regulating valve 12 set to 20 MPa in advance.

このとき、20MPaのアルゴンガスを2.0L/minで1時間連続供給することができた。供給終了後の加圧槽1内の圧力は、25MPa、温度は280Kであり、ガス密度が456.17kg/mであることから、これに第1加圧槽1の有効内容積から第1加圧槽1内の残ガス量は0.5018kgであることが判った。 At this time, argon gas of 20 MPa could be continuously supplied for 1 hour at 2.0 L / min. The pressure in the pressurizing tank 1 after the end of the supply is 25 MPa, the temperature is 280 K, and the gas density is 456.17 kg / m 3 . The amount of residual gas in the pressurized tank 1 was found to be 0.5018 kg.

本発明の高圧ガス供給装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the high pressure gas supply apparatus of this invention.

符号の説明Explanation of symbols

1:第1加圧槽 2:第2加圧槽 3:冷却槽
1: 1st pressurization tank 2: 2nd pressurization tank 3: Cooling tank

Claims (4)

冷却槽および加圧槽を備え、
冷却槽は、その内部に冷媒が満たされるものであり、
加圧槽は、その内部に供給元からのガスがガス状で供給され、上記冷却槽に沈められて冷却され、内部のガスが液化し、上記冷却槽から取り出されて加温され、内部のガスが気化し、この気化したガスを供給先に送出するものであることを特徴とする高圧ガス供給装置。
It has a cooling tank and a pressure tank,
The cooling tank is filled with a refrigerant inside,
The pressurized tank is supplied with gas from the source in the form of gas, submerged in the cooling tank and cooled, the internal gas is liquefied, taken out of the cooling tank and heated, A high-pressure gas supply apparatus characterized in that gas is vaporized and the vaporized gas is sent to a supply destination.
1基の冷却槽に対して2基の加圧槽を設けて、ガスを連続的に送出するようにしたことを特徴とする請求項1記載の高圧ガス供給装置。   2. The high-pressure gas supply apparatus according to claim 1, wherein two pressurizing tanks are provided for one cooling tank, and gas is continuously sent out. 請求項1記載の高圧ガス供給装置を用い、供給元からのガスを加圧槽内に送り込むとともにこの加圧槽を冷却槽に沈めてガスを液状で貯留し、ついでこの加圧槽を冷却槽から取り出して加温し、内部のガスを気化させ、このガスを供給先に送給することを特徴とする高圧ガス供給方法。   The high-pressure gas supply device according to claim 1 is used to feed gas from a supply source into the pressurizing tank and to sink the pressurizing tank in the cooling tank to store the gas in a liquid state. The high-pressure gas supply method is characterized in that the gas is taken out from the tank and heated, the gas inside is vaporized, and the gas is supplied to the supply destination. 請求項2記載の高圧ガス供給装置を用い、供給元からのガスを一方の加圧槽内に送り込むとともにこの加圧槽を冷却槽に沈めてガスを液状で貯留し、ついでこの加圧槽を冷却槽から取り出して加温し、内部のガスを気化させ、このガスを供給先に送給する操作と、供給元からのガスを他方の加圧槽内に送り込むとともにこの加圧槽を冷却槽に沈めてガスを液状で貯留し、ついでこの加圧槽を冷却槽から取り出して加温し、内部のガスを気化させ、このガスを供給先に送給する操作を交互に繰り返し、ガスを連続的に供給先に供給することを特徴とする高圧ガス供給方法。

Using the high-pressure gas supply device according to claim 2, the gas from the supply source is sent into one pressurizing tank and the pressurizing tank is submerged in a cooling tank to store the gas in a liquid state. Taking out from the cooling tank and heating, vaporizing the internal gas, feeding this gas to the supply destination, sending the gas from the supply source into the other pressure tank, and cooling the pressure tank to the cooling tank The gas is stored in a liquid state after being submerged, and then the pressure tank is removed from the cooling tank and heated to vaporize the internal gas, and the operation of supplying this gas to the supply destination is repeated alternately to continue the gas. A high-pressure gas supply method characterized in that the high-pressure gas is supplied to a supply destination.

JP2005366283A 2005-12-20 2005-12-20 High pressure gas supply apparatus and high pressure gas supply method Active JP4964462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005366283A JP4964462B2 (en) 2005-12-20 2005-12-20 High pressure gas supply apparatus and high pressure gas supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005366283A JP4964462B2 (en) 2005-12-20 2005-12-20 High pressure gas supply apparatus and high pressure gas supply method

Publications (2)

Publication Number Publication Date
JP2007170474A true JP2007170474A (en) 2007-07-05
JP4964462B2 JP4964462B2 (en) 2012-06-27

Family

ID=38297299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366283A Active JP4964462B2 (en) 2005-12-20 2005-12-20 High pressure gas supply apparatus and high pressure gas supply method

Country Status (1)

Country Link
JP (1) JP4964462B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104482397A (en) * 2014-11-19 2015-04-01 中国石油天然气集团公司 LNG (Liquefied Natural Gas) storage and supply device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326867A (en) * 1976-08-16 1982-04-27 Stokes Anthony D Gas recovery
US6688115B1 (en) * 2003-01-28 2004-02-10 Air Products And Chemicals, Inc. High-pressure delivery system for ultra high purity liquid carbon dioxide
WO2005043033A1 (en) * 2003-10-17 2005-05-12 L'AIR LIQUIDE Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation Method for filling a pressure vessel with gas
WO2005119149A1 (en) * 2004-06-02 2005-12-15 Golden Triangle Enterprises Pty Ltd Gas recovery of sulphur hexafluoride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326867A (en) * 1976-08-16 1982-04-27 Stokes Anthony D Gas recovery
US6688115B1 (en) * 2003-01-28 2004-02-10 Air Products And Chemicals, Inc. High-pressure delivery system for ultra high purity liquid carbon dioxide
WO2005043033A1 (en) * 2003-10-17 2005-05-12 L'AIR LIQUIDE Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation Method for filling a pressure vessel with gas
WO2005119149A1 (en) * 2004-06-02 2005-12-15 Golden Triangle Enterprises Pty Ltd Gas recovery of sulphur hexafluoride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104482397A (en) * 2014-11-19 2015-04-01 中国石油天然气集团公司 LNG (Liquefied Natural Gas) storage and supply device
CN104482397B (en) * 2014-11-19 2016-08-31 中国石油天然气集团公司 A kind of LNG stores and feeder

Also Published As

Publication number Publication date
JP4964462B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
US8671997B2 (en) Device and method for filling a container with a gas under pressure
EP0038673B1 (en) Apparatus and process for delivering liquid cryogen
US20060086100A1 (en) Gaseous fluid production apparatus and method
KR102614748B1 (en) 3 Fluid cooling by refrigerant at midpoint
JP2014508261A (en) Hydrogen filling method and system
JP3123020B2 (en) Method and apparatus for boosting high purity gas to ultra high pressure
JP2008505297A (en) Method and system for supplying carbon dioxide
CN110792922A (en) Device and method for filling a container with a pressurized gas
KR20100015831A (en) Hydrogen gas-cooling device
KR20200056932A (en) Installation and method for filling tanks with pressurized gas
WO2009038854A1 (en) Cryogenic liquid storage method and system
CN110792924A (en) Device and method for filling a container with a pressurized gas
JP2012246981A (en) Liquefied hydrogen storage and supply facility
JP4964462B2 (en) High pressure gas supply apparatus and high pressure gas supply method
JP2001507435A (en) Method and apparatus for filling containers under pressure
JP2010105837A (en) Apparatus and method for producing dry ice
JP2009127813A (en) Hydrogen gas supply method and hydrogen gas supply installation
JP5715498B2 (en) Liquefied hydrogen storage and supply equipment
JP2011127754A (en) Hydrogen gas cooling device
JP2010121657A (en) Heat exchanger used for high-pressure gas charging device, high-pressure gas charging device using the same, and method for charging high-pressure gas
JP2003214597A (en) Hydrogen supply device using lng
JPH08128596A (en) Gas evaporator and gas supplying method
EP1334306B1 (en) Apparatus and method for transferring a cryogenic fluid
JP2008291872A (en) Low-temperature liquefied gas flow rate measuring system
JP2006200553A (en) Liquefied gas flow measuring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Ref document number: 4964462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250