JP2007170234A - 可変翼式風力変換機構 - Google Patents

可変翼式風力変換機構 Download PDF

Info

Publication number
JP2007170234A
JP2007170234A JP2005366750A JP2005366750A JP2007170234A JP 2007170234 A JP2007170234 A JP 2007170234A JP 2005366750 A JP2005366750 A JP 2005366750A JP 2005366750 A JP2005366750 A JP 2005366750A JP 2007170234 A JP2007170234 A JP 2007170234A
Authority
JP
Japan
Prior art keywords
variable
wind
variable wing
blade
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005366750A
Other languages
English (en)
Inventor
Yuichi Onishi
裕一 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005366750A priority Critical patent/JP2007170234A/ja
Publication of JP2007170234A publication Critical patent/JP2007170234A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

【課題】風車の通常運転時の作動効率を向上させる。
【解決手段】可変翼式風力変換機Aは、垂直方向に支持される回転軸11xの上下に一対の保持板10a、10bを設け、保持板10a、10bの半径方向所定位置に、周方向の所定角度間隔で複数個所保持板に対して回転自在に設けた垂直な支持軸13xにそれぞれ風を受ける可変翼14を取り付け、支持軸の延長軸13xeに対してその半径方向に延びる連結部材のアーム17の端に錘18を取り付け、上記支持軸13x又は連結部材のいずれかに弾性部材13bを取り付けてその弾性力で所定風速までは可変翼14を全開状に保持し、所定以上の風速による回転では錘18の遠心力が弾性部材13bの弾性力に打ち勝って可変翼14をその風速の大きさに応じて閉じるように可変翼14を開閉自在に設けて構成している。
【選択図】図1

Description

この発明は、微風から強風まで全ての方位に吹く風を電力や回転力などのエネルギに変換する可変翼式風力変換機構に関する。
風力を回転力に変換してそのエネルギを電力等のエネルギとして利用する風車の研究が古くから行われている。風力を回転力に変換して電力等のエネルギを取り出す機構としての所謂風車は、大別すると水平軸型及び垂直軸型の2つに分類され、それぞれに長所と短所がある。垂直軸型は、風の吹く方向に対して垂直方向に設置され、水平軸型のように風の吹く方向に平行に風車を回転させる必要がなく、このような回転機構が必要でないという点で全体の機構が簡単となるという利点がある。
垂直軸型の風車は、周速比(ブレードの周速度/風速)の高いダリウス型と、周速比の低いサポニウス型が知られている。ダリウス型等の風車は、周速比が高く変換効率が高い半面、風切り音が高く、ブレードの高い工作精度を必要とされる。サポニウス型は、風切り音は低いが、周速が低いため風速を回転トルクに変換する高い変換効率が得られない。しかし、他の形式の風車に比べると、設置場所が限定されず、小型でどこにでも風力発電装置として容易に設置することが出来るという利点がある。
サポニウス型の風力発電機構の一例として、特許文献1の「サポ二ウス風力発電装置」が知られている。この風力発電装置は、複数のブレードを放射状に固定した鉛直軸に発電機を連接し、複数のブレードは鉛直軸に固定された上下回転板間に固定され、各ブレードに風抜き穴を形成すると共に、上下回転板間の外周に突設羽根を設けたというものである。この発電装置は、サポニウス型の利点に着目し、かつ大きな回転力(回転速度)を得られるように複数のブレード間で圧縮される気流の流れを改善して多くの発電量を得られるようにしたものである。
このため、各ブレードの回転時に互いに対面する複数のブレード間で圧縮される気流を各ブレードに形成した風抜き穴から逃がすことによりブレード面に負荷される空気圧の抵抗を減らして高速に回転を容易とし、かつ上下回転板間の外周に突設羽根を設けることにより、より高速に回転させるようにしている。
他の例として特許文献2の「風力発電用の風車」が公知である。この風車も垂直軸型で、かつ揚力型、抗力型の利点を活かして発生トルクの増強、広範囲の風速域での利用を可能とするため、垂直回転軸の半径方向に延びる翼支持軸の端に設けられたU字型の雨樋状の受風樋と、U字型のほぼ中心付近から風車回転の円周方向に延びた円弧状の主羽根と、U字型の中心線を対称軸に主羽根とほぼ対称に配置した副羽根とを備えたというものである。この装置では、風の流れの中に置かれた回転翼に作用する風力により、受風樋に働く力のうち平行に働く抗力と、主羽根と副羽根に働く力のうち流れに垂直方向に働く揚力とによりトルクが発生する。
ところで、上記一般的な従来のダリウス型、サポニウス型の風車、あるいは特許文献1,2の風車のいずれも、所定の風速状態で風車の回転速度、回転力を大きくし、最も効率の良い状態で運転できることを前提として説明されている。しかし、実際に風が吹く状態は、風の向きが常に変動し、かつ風速も常に変化する。特に、台風や低気圧が近づくと風速は大きく変動し、25〜35m/sのような強い風速で風車の翼(風受け板)を全開状態のままにして置くと、設置されている風車自体が倒壊する危険性がある。しかし、従来の風車では、通常運転時の作動効率を向上させることに重点があり、上記のような強風時に風車の安全をどのように守るかについてまで検討した例はない。
強風時に風車の翼(風受け板)を全開状態に固定して設置すると、強風が増大するその大きさに対応して翼の受ける風速、風力による風車の回転速度はますます大きくなるが、上記強風状態を超えると、風車自体を保持することが困難となり、結局そのような危険状態を予測すると風車を設置することが出来ず、その普及が阻害される要因となる。
この発明は、上記の問題に留意して、風車の通常運転時の作動効率を向上させると共に、強風時に風車の翼(風受け板)を全開状態に固定して設置すると、強風時に風車自体が倒壊する危険性が高くなるため、強風が増大するとその大きさに対応して翼の受ける風速、風力による風車の受風状態を減少させるように変化させ得る風車翼を備えた可変翼式風力変換機構を提供することを課題とする。
この発明は、上記の課題を解決する手段として、垂直方向に支持される回転軸の上下に一対の保持板を設け、保持板の半径方向所定位置に、周方向の所定角度間隔で複数個所保持板に対して回転自在に設けた垂直な支持軸にそれぞれ風を受ける可変翼を取り付け、支持軸の延長軸に対してその半径方向に延びる連結部材の端に錘を取り付け、上記支持軸又は連結部材のいずれかに弾性部材を取り付けてその弾性力で所定風速までは可変翼を全開状に保持し、所定以上の風速による回転では錘の遠心力が弾性部材の弾性力に打ち勝って可変翼をその風速の大きさに応じて閉じるように可変翼を開閉自在に設けた可変翼式風力変換機構の構成としたのである。
上記の構成としたこの発明の可変翼式風力変換機構は、保持板の半径方向所定位置に、周方向の所定角度間隔で複数個所保持板に対して回転自在に設けた垂直な支持軸にそれぞれ風を受ける複数の可変翼を取り付けたから、可変翼を全開状態に設定することにより通常時には高効率で全体が回転する。この場合、通常のサポニウス型の風車の翼は2枚であるが、この発明の可変翼式風力変換機構では通常以上の枚数、例えば3枚とすることにより、より多くの風を受ける状態を発生させ、高効率の受風状態を生じさせる。
この場合、可変翼をその翼先端が略半径方向へ開いた状態で、弾性部材による開放を阻止する回転停止手段を設け、この状態を全開状態として設定する。これは、弾性部材を収縮状又は引張り状態に設定し、これにより蓄積される弾性力が可変翼を開放する方向に付勢して可変翼を全開状に設定するようにした場合、その開放力で可変翼を所定の全開状態に停止させるためである。可変翼は、平面視断面が略円弧状で垂直な支持軸方向に上下の保持板間に対応する長さに設け、その翼外面に作用する抗力と揚力を回転力に変換して高回転数、高回転力の回転を回転軸に伝達する。
上記構成の可変翼式風力変換機構では、所定以上の風速の風が吹き始めると、可変翼は全開状態から閉じる方向に操作される。これは、支持軸の延長軸に対してその半径方向に延びる連結部材の端に錘を取り付け、上記支持軸又は連結部材のいずれかに弾性部材を取り付けてその弾性力で所定風速までは可変翼を全開状に保持し、所定以上の風速による回転では錘の遠心力が弾性部材の弾性力に打ち勝って可変翼をその風速の大きさに応じて閉じるように可変翼を開閉自在に設けたからであり、風速の大きさに応じて可変翼の開き状態が変化する。そして、例えば、風速35m/s以上の風が吹く時には可変翼を全閉状態として可変翼が吹き飛ばされるのを防止し、可変翼式風力変換機構の全体が強風で倒壊する危険性を防止する。
この発明の可変翼式風力変換機構は、垂直方向に支持される回転軸に保持板を設け、保持板の半径方向所定位置に複数個所保持板に対して回転自在に設けた垂直な支持軸に風を受ける可変翼を取り付け、支持軸の延長軸に対して錘を取り付け、上記支持軸に弾性部材を取り付けてその弾性力で所定風速までは可変翼を開放状に保持し、所定以上の風速による回転では錘の遠心力が弾性部材の弾性力に打ち勝って可変翼をその風速の大きさに応じて閉じるように可変翼を開閉自在としたから、20m/s以下の通常の風では可変翼が全開状態で作用し、25m/s以上の強風時には可変翼をその風速に応じて閉じるように錘の遠心力で回転するように操作し、35m/s以上の強風時には可変翼を全閉とすることにより可変翼式風力変換機構の全体が倒壊する危険性を防止することが出来るという利点が得られる。
以下、この発明の実施形態について、図面を参照して説明する。図1は、第1実施形態の可変翼式風力変換機構の外観斜視図である。図示のように、この可変翼式風力変換機Aは、上下に所定間隔に設けた保持板10a、10bの中心を貫通して設けた垂直軸11xの下方に延長した延長軸11xeを支持板12で回転自在に支持し、上記保持板10a、10bの間に垂直軸11xに対して半径方向の所定距離位置で、かつその周方向に所定の角度間隔で複数個所に可変翼14(図示の例では3箇所、14a、14b、14c)を設けている。支持板12は、支持基部のケースCの頂部に回転自在に取り付けられている。12fはフライホイールであり、支持板12とは別途に、かつ一体に連結して設けている(両部材を一体に設けても良い)。
上記可変翼14は、保持板10a、10bの間でその半径方向の所定距離位置に垂直方向に取り付けた支持軸13xに対して固定され、支持軸13xの回転と共に回転する。支持軸13xは、保持板10a、10bに対して軸受け13aにより回転自在に支持され、かつその下方への延長軸を支持板12に対し軸受け13aにより回転自在に取り付けている。可変翼14は、平面視断面が略半円弧状であり、かつ垂直方向に半円筒状に延びる翼部材に対しその長さ方向の複数段(図示の例では3段)にブラケット14sを設けて形成されている。
支持軸13xは、その下方の延長軸部にアーム17が取り付けられ、このアーム17の先端には錘18が取り付けられている。支持軸13xは、この例では中空軸が用いられ、その内部にコイルばねを用いた弾性部材13bが挿入されている。コイルばねの一端は支持板12に固定され、他端は支持軸13xの上端に固定され、この弾性部材13bにより、通常は可変翼14が最も半径方向に開いた状態でアーム17と錘18が保持板10a、10bの接線方向と略平行な方向に向けて設定している。弾性部材13bのコイルばねは、図2に示す可変翼14が最も開放された位置に設定されるに十分な弾性力で自然巻き状態より収縮状に取り付けられ、この収縮状態から開放する反時計方向への回転力により可変翼14を開放する方向の力が作用している。
そして、下方の保持板10b上に設けた凸部材15aに対し、支持軸13xに設けたピン15bが図示の位置で当接して可変翼14が支持軸13xを中心として反時計方向に回転する力を阻止する回転停止手段15を備え、この手段により可変翼14を最も開放した位置に保持している。なお、図示の例では、可変翼14の回転方向は、可変翼式風力変換機Aの全体が反時計方向に回転するように設定されていることが前提である。ただし、支持軸13xを中実軸とし、その外周に弾性部材13bのコイルばねを巻き付けるように設けてもよい。また、弾性部材13bは、そのコイルばねの線径や材質を適切に設定することにより弾性係数kを所定の状態に設定するものとする。
弾性係数kを所定の状態に設定するとは、風速が、例えば25m/sを超えた風速で高速回転するとその風速による回転数の増大する割合に応じて増大する遠心力が弾性部材13bのコイルばねの弾性に打ち勝って錘18とアーム17とが外方向へ振られ、これにより可変翼14が閉じる方向に回転を始め、風速が30m/sで可変翼14は80%閉じ、さらにそれを超えると完全に閉じるのに対応する弾性係数の値に設定することを意味する。このように弾性係数を設定すると共に上記所定以上の風速の風ではその風力で可変翼式風力変換機A自体が倒壊する危険性が生じるため、このような風力で倒壊しない構造を前提としている。
支持板12は、上述したように、支持基部のケースCの頂部に回転自在に取り付けられているが、この場合支持板12は垂直軸11xに対しても軸受け11aにより回転自在に支持され、かつ図示していないが、支持板12とケースCとの間にスラスト軸受けが設けられており、風力で垂直軸11xが倒れる方向の力に対しても保持できるようにしている。また、垂直軸11xの延長軸11xeは、発電機Gの入力軸19に軸継ぎ手16を介して接続されている。Cbは、出力線である。図2に上記可変翼式風力変換機Aの平面図、図3にこの可変翼式風力変換機Aの可変翼14を完全に閉じた状態の外観斜視図を示す。
上記の構成としたこの実施形態の可変翼式風力変換機Aは、所謂サポニウス型の風車であり、通常のサポニウス型の風車が2枚翼であるのに対して3枚翼とし、かつ各翼は可変翼14として通常の状態では最も高効率で、かつ強風時には可変翼14を閉じてその風力で可変翼式風力変換機Aが倒壊する危険性が生じるのを防止している。可変翼式風力変換機Aが作動を開始すると、風速3m/s程度の微風から25m/sの強風の直前までは通常の状態として可変翼14が半径方向に最も開放された開放状態で図1に示す反時計方向に回転し、その回転力は可変翼14から垂直軸11xへと伝達され、その回転が発電機Gに伝達されてそれぞれの風を受ける状態での風速に応じた回転速度で回転する。
この通常状態では、支持軸13x内に設けられた弾性部材13bのコイルばねの弾性力により可変翼14が図4の(a)に示す最も開放された状態に設定されている。そして、図2に示すように、設置された可変翼式風力変換機Aに対して、東西南北いずれの方向から風が吹いても、風車部はその風力、風速に対応して回転する。この場合、例えば図2の右下、即ち略南東から北西の方向に向けて風が吹いたとすると、この方向の風による回転力は、3枚の可変翼14a、14b、14cのうち可変翼14aには翼の表側(円弧表面側)と裏側に沿って流れる風の流速に速度差が生じ、この速度差に基づいて可変翼14aを反時計方向に向かわせる揚力が回転力に変換される。
2つ目の可変翼14bは、その翼内側に直接作用する風力に抗して押される抗力が回転力となり、この回転力により風車部が回転する。3つ目の可変翼14cは、翼表面に風力を受け、反時計方向の回転に対して回転を阻止する方向に作用する。しかし、その風の流れは翼表面に沿って流れて大きな反力とはならず、2つの可変翼14a、14bによる回転力が大きいため結局上記抗力と揚力により風車部が回転する。上記説明では南東から北西の方向への風による作用として説明したが、3つの可変翼14a、14b、14cを設けることにより風が吹く方向は東西南北いずれの方向からであっても同じように作用し、回転する。
以上は、風速が上述した強風25m/sまでの通常の風による作用であり、上記強風域を超えた場合は、次の通りに作用する。25m/s以上の強風域を超えると可変翼14(14a、14b、14c)による回転速度が大きくなり、支持軸13xの下方に延長された延長軸13xe上に連結されているアーム17の先端の錘18の遠心力が大きくなる。従って、弾性部材13bのコイルばねの弾性により可変翼14a、14b、14cを最大の開放状に保持している開放力より遠心力の方が大きくなり、このため図4の(b)図に示すように、錘18が通常状態より外方へ振り出される。錘18が外方へ振り出されることにより可変翼14a、14b、14cは、支持軸13xを中心にしてその翼部分を閉じる方向に回転する。
可変翼14a、14b、14cの開放状態が縮小するとその受風面積が減少するが、風速の増大が受風面積の減少より大きくなるため益々回転速度が増大し、風速35m/sに近くなると可変翼14a、14b、14cはその開放状態が80%閉じた状態となり、さらにこの風速以上になると、図4の(c)図に示すように、完全に閉じるように作動する。このため、従来の風力発電装置では、台風や低気圧の接近により風速が増大してそのままでは倒壊する危険性があるような場合でも、この実施形態の可変翼式風力変換機Aは、可変翼14a、14b、14cを閉じることにより、このような危険な状態から保護することが出来る。
次に、図5、図6に第2実施形態の可変翼式風力変換機A’の側面図、平面図を示す。この実施形態では、可変翼14の構成及び可変翼14の開閉方法が第1実施形態と異なる。以下では主として異なる構成について説明し、同じ構成部材については第1実施形態の符号と同じ符号を付すことにより説明を省略する。可変翼14は、支持軸13xから少し中心側の位置で内端が終わり、固定翼14kがその内端に続くように上下の保持板10a、10bに固定して設けられている。アーム17、錘18も第1実施形態と同様に備えているが、この実施形態では錘18の遠心力による開閉力が不足の場合に、補助的に作用する補助手段として液圧シリンダー21とワイヤー23とから成る第2開閉手段20を備えている。
この第2開閉手段20は、下方の保持板10bに設けられている。但し、上方の保持板10aに同じ手段を一対となるように設けてもよい。この第2開閉手段20の液圧シリンダー21へは、液圧配管22から液圧が送られ、この液圧は垂直軸11xの中心を通りその下部に延びる延長軸上の軸継ぎ手16の上方にケースC内でその頂板に固定して設けた液圧ポンプ24から垂直軸11xの中心を通る液圧配管22が、図示していない回転式の液圧継ぎ手により連結されている。そして、この液圧配管が上方に延びて液圧シリンダー21に配設されている。
ワイヤー23は、先端が弾性部材13bのコイルばねにより通常は全開状態の可変翼14の外端に連結され、途中に滑車を介して反転するように導かれ、移動滑車を経て他端が下方の保持板10bに固定され、移動滑車を液圧シリンダー21のピストンロッドの先端に連結し、移動滑車を液圧シリンダー21により駆動して可変翼14を開閉自在としている。なお、可変翼14を閉じる時は、図6に点線で示すように、その外面が保持板10a、10bの外周に一致する位置に閉じられるものとする。
上記の構成としたこの実施形態の可変翼式風力変換機A’は、その基本的な作用においては第1実施形態の可変翼式風力変換機Aと同じであり、風速25m/sまでは可変翼14が全開状で回転し、それ以上の風速では錘18の遠心力で可変翼14が閉じる方向に回転する。しかし、錘18の遠心力だけでは、実際に強風が吹くときの風速変動に対応できない場合に第2開閉手段20の液圧シリンダー21を作動させて、遠心力により可変翼14を閉鎖する動作を補助する。
風速25m/s以上の強風時には、支持軸13xの回転が所定以上の回転数となり、このような回転が行われると、その回転力により液圧ポンプ24が所定以上の液圧を発生し、その所定以上の液圧により液圧シリンダー21が作動してワイヤー23を引き込み、これにより可変翼14が閉鎖する方向に操作される。そして、風速が35m/sに近づくと80%閉鎖する方向に駆動され、可変翼14を確実に閉鎖できることとなる。
なお、可変翼14の閉鎖状態を図6の点線状態としたのは、強風時には隣接する可変翼14と可変翼14との間に吹き抜けできる空間を設けておくほうが、前閉するより風に対して抵抗が少なくなることを考慮したからである。又、図6の可変翼14(14a、14b、14c)に対して、一点鎖線で示すように、円弧状の翼表面と反対側の面に下面板14sa、14sb、14scを設けて平面視断面が完全に閉じた翼断面として形成することも出来る。閉じた断面の可変翼14は、より揚力が大きくなり、回転力が大きくなるからである。
この発明の可変翼式風力変換機構は、サポニウス型の風車機構の翼を可変翼とし、大き過ぎる風速のため危険な状態のときは、錘の遠心力で全閉状とすることが出来るようにしたものであり、高効率でかつ強風時には可変翼式風力変換機構の全体の倒壊を防止することが出来るから、風力発電装置の風車機構として広く利用できる。
第1実施形態の可変翼式風力変換機の外観斜視図 同上機の平面図 同上機の可変翼を閉じた状態の外観斜視図 同上機の作用の説明図 第2実施形態の可変翼式風力変換機の側面図 同上機の平面図
符号の説明
10a、10b 保持板
11x 垂直軸
11xe 延長軸
12 支持板
13x 支持軸
13a 軸受け
13b 弾性部材
13xe 延長軸
14 可変翼
16 軸継ぎ手
17 アーム
18 錘
19 入力軸
A 可変翼式風力変換機

Claims (5)

  1. 垂直方向に支持される回転軸11xの上下に一対の保持板10a、10bを設け、支持板10a、10bの半径方向所定位置に、周方向の所定角度間隔で複数個所保持板10a、10bに対して回転自在に設けた垂直な支持軸13xにそれぞれ風を受ける可変翼14を取り付け、支持軸13xの延長軸13xeに対してその半径方向に延びる連結部材の端に錘18を取り付け、上記支持軸13x又は連結部材のいずれかに弾性部材13bを取り付けてその弾性力で所定風速までは可変翼14を全開状に保持し、所定以上の風速による回転では錘18の遠心力が弾性部材13bの弾性力に打ち勝って可変翼14をその風速の大きさに応じて閉じるように可変翼14を開閉自在に設けた可変翼式風力変換機構。
  2. 前記可変翼14を平面視断面が略円弧状で垂直な支持軸方向に上下の保持板10a、10b間に対応する長さに設けたことを特徴とする請求項1に記載の可変翼式風力変換機構。
  3. 前記弾性部材13bを収縮状又は引張り状態に設定し、これにより蓄積される弾性力が可変翼14を開放する方向に付勢して可変翼14を全開状に設定するようにしたことを特徴とする請求項1又は2に記載の可変翼式風力変換機構。
  4. 前記可変翼14をその翼先端が略半径方向へ開いた状態で、弾性部材13bによる開放を阻止する回転停止手段15を設け、この状態を全開状態として設定したことを特徴とする請求項1乃至3のいずれかに記載の可変翼式風力変換機構。
  5. 前記可変翼14を錘18の遠心力で全閉状態に閉じたとき、可変翼14の外周が保持板10a,10bの外周と重なり、かつ可変翼14の外周が互いに連続した全閉状となる形状としたことを特徴とする請求項1乃至4のいずれかに記載の可変翼式風力変換機構。
JP2005366750A 2005-12-20 2005-12-20 可変翼式風力変換機構 Pending JP2007170234A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005366750A JP2007170234A (ja) 2005-12-20 2005-12-20 可変翼式風力変換機構

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005366750A JP2007170234A (ja) 2005-12-20 2005-12-20 可変翼式風力変換機構

Publications (1)

Publication Number Publication Date
JP2007170234A true JP2007170234A (ja) 2007-07-05

Family

ID=38297112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366750A Pending JP2007170234A (ja) 2005-12-20 2005-12-20 可変翼式風力変換機構

Country Status (1)

Country Link
JP (1) JP2007170234A (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543982A (ja) * 2006-07-14 2009-12-10 ブツコフ ニコライ 風力発電装置
KR100942513B1 (ko) 2009-06-18 2010-02-16 하모니테크주식회사 수직축 풍력발전기
KR100958670B1 (ko) * 2009-08-12 2010-05-20 풍력가로등(주) 가로등용 풍력 발전시스템
WO2011086606A1 (ja) * 2010-01-18 2011-07-21 株式会社おうめラボ 羽根車
KR101175771B1 (ko) * 2010-05-26 2012-08-21 주식회사 지앤지엠씨 동력 저장장치가 구비된 풍력발전기
KR101177538B1 (ko) 2010-05-26 2012-08-27 주식회사 지앤지엠씨 과부하 방지용 날개장치
KR101191861B1 (ko) * 2012-02-07 2012-10-16 장탁균 풍력장치
KR101192810B1 (ko) 2010-05-26 2012-10-18 주식회사 지앤지엠씨 공기압축기가 구비된 수직축형 풍력발전장치
WO2012144879A1 (ru) * 2011-04-22 2012-10-26 Buktukov Nikolay Ветроэлектростанция
JP2012530202A (ja) * 2009-06-13 2012-11-29 デ ジュウ,ヨン 風力エネルギー変換装置
KR101227888B1 (ko) 2010-10-28 2013-01-30 주식회사 앤에스티 편심된 무게중심에 의해 작동하는 날개구조체를 가진 풍력회전장치
KR101287007B1 (ko) 2011-07-06 2013-07-17 허정 풍차 및 수차 겸용 회전자
JP2014510236A (ja) * 2011-04-28 2014-04-24 ミョンスン ベ 多目的回転装置とこれを備えた発電システム
KR101401685B1 (ko) * 2013-01-29 2014-06-02 김형모 가로등 발전 장치
WO2014083407A1 (en) * 2012-11-27 2014-06-05 Oztren Industries Pty.Ltd Wind turbine
JP2014518358A (ja) * 2011-07-14 2014-07-28 ファーブ,ダニエル 直径と角度が可変性の垂直軸タービン
JP2014145293A (ja) * 2013-01-29 2014-08-14 Akira Yoyogi 風車
CN106401868A (zh) * 2016-10-21 2017-02-15 徐州工程学院 一种支座式垂直轴变角风力发电***及其工作方法
TWI628356B (zh) * 2015-07-27 2018-07-01 聖約翰科技大學 Wind power generation device with self-adjusting mechanism
CN110439745A (zh) * 2019-09-24 2019-11-12 河南理工大学 一种垂直轴风力发电机的风轮
RU2722982C1 (ru) * 2019-07-19 2020-06-05 Евгений Николаевич Рудомин Карусельный ветродвигатель
CN112922780A (zh) * 2021-01-25 2021-06-08 叶兰芳 一种环保型风力发电机用使用保护装置
CN114810477A (zh) * 2022-05-16 2022-07-29 重庆交通大学 一种抗台风抗风沙的防护型风力发电设备
KR102448563B1 (ko) * 2022-03-30 2022-09-29 주식회사 엘씨엠에너지솔루션 소형 풍력발전용 회전체

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543982A (ja) * 2006-07-14 2009-12-10 ブツコフ ニコライ 風力発電装置
JP2012530202A (ja) * 2009-06-13 2012-11-29 デ ジュウ,ヨン 風力エネルギー変換装置
KR100942513B1 (ko) 2009-06-18 2010-02-16 하모니테크주식회사 수직축 풍력발전기
WO2010147301A2 (ko) * 2009-06-18 2010-12-23 하모니테크주식회사 수직축 풍력발전기
WO2010147301A3 (ko) * 2009-06-18 2011-02-17 하모니테크주식회사 수직축 풍력발전기
KR100958670B1 (ko) * 2009-08-12 2010-05-20 풍력가로등(주) 가로등용 풍력 발전시스템
WO2011086606A1 (ja) * 2010-01-18 2011-07-21 株式会社おうめラボ 羽根車
KR101175771B1 (ko) * 2010-05-26 2012-08-21 주식회사 지앤지엠씨 동력 저장장치가 구비된 풍력발전기
KR101192810B1 (ko) 2010-05-26 2012-10-18 주식회사 지앤지엠씨 공기압축기가 구비된 수직축형 풍력발전장치
KR101177538B1 (ko) 2010-05-26 2012-08-27 주식회사 지앤지엠씨 과부하 방지용 날개장치
KR101227888B1 (ko) 2010-10-28 2013-01-30 주식회사 앤에스티 편심된 무게중심에 의해 작동하는 날개구조체를 가진 풍력회전장치
WO2012144879A1 (ru) * 2011-04-22 2012-10-26 Buktukov Nikolay Ветроэлектростанция
JP2014510236A (ja) * 2011-04-28 2014-04-24 ミョンスン ベ 多目的回転装置とこれを備えた発電システム
KR101287007B1 (ko) 2011-07-06 2013-07-17 허정 풍차 및 수차 겸용 회전자
JP2014518358A (ja) * 2011-07-14 2014-07-28 ファーブ,ダニエル 直径と角度が可変性の垂直軸タービン
WO2013119041A1 (ko) * 2012-02-07 2013-08-15 Jang Tak Gyun 풍력장치
KR101191861B1 (ko) * 2012-02-07 2012-10-16 장탁균 풍력장치
WO2014083407A1 (en) * 2012-11-27 2014-06-05 Oztren Industries Pty.Ltd Wind turbine
KR101401685B1 (ko) * 2013-01-29 2014-06-02 김형모 가로등 발전 장치
JP2014145293A (ja) * 2013-01-29 2014-08-14 Akira Yoyogi 風車
TWI628356B (zh) * 2015-07-27 2018-07-01 聖約翰科技大學 Wind power generation device with self-adjusting mechanism
CN106401868A (zh) * 2016-10-21 2017-02-15 徐州工程学院 一种支座式垂直轴变角风力发电***及其工作方法
RU2722982C1 (ru) * 2019-07-19 2020-06-05 Евгений Николаевич Рудомин Карусельный ветродвигатель
CN110439745A (zh) * 2019-09-24 2019-11-12 河南理工大学 一种垂直轴风力发电机的风轮
CN112922780A (zh) * 2021-01-25 2021-06-08 叶兰芳 一种环保型风力发电机用使用保护装置
KR102448563B1 (ko) * 2022-03-30 2022-09-29 주식회사 엘씨엠에너지솔루션 소형 풍력발전용 회전체
CN114810477A (zh) * 2022-05-16 2022-07-29 重庆交通大学 一种抗台风抗风沙的防护型风力发电设备
CN114810477B (zh) * 2022-05-16 2024-05-10 重庆交通大学 一种抗台风抗风沙的防护型风力发电设备

Similar Documents

Publication Publication Date Title
JP2007170234A (ja) 可変翼式風力変換機構
JP2008309132A (ja) 可変翼式風力変換機構
US8232664B2 (en) Vertical axis wind turbine
US5553996A (en) Wind powered turbine
US4142822A (en) Panemone windmill
WO2006119648A1 (en) Helical wind turbine
JP2005516159A5 (ja)
JP2010522847A (ja) ブレード変位が可変の多段式風力タービン
US8480363B2 (en) Self-starting turbine with dual position vanes
US8063502B1 (en) Shrouded wind turbine with dual coaxial airflow passageways
WO2006123951A1 (en) A wind turbine
KR20060088814A (ko) 풍력발전기
JP2013534592A (ja) 垂直軸風車
JP4740382B2 (ja) 風車
US11156204B2 (en) Wind turbine
TW201016960A (en) Wind energy system
JP2007100583A (ja) ハイブリッド風力発電システム
JP5346000B2 (ja) 風車
KR20090080416A (ko) 가변익 수직축 풍차
AU2008235238B2 (en) Wind wheel
JP2008196464A (ja) 風車に対するエアーブレーキ構造
JP2005054641A (ja) 風力発電設備
CN101048591B (zh) 扭转式横流涡轮机
JP4457203B2 (ja) 防風板
JP2015166562A (ja) 強風による過回転を防止できる垂直軸抗力型風車及び風力発電装置