JP2007169600A - Method for producing polyethylene - Google Patents

Method for producing polyethylene Download PDF

Info

Publication number
JP2007169600A
JP2007169600A JP2006271588A JP2006271588A JP2007169600A JP 2007169600 A JP2007169600 A JP 2007169600A JP 2006271588 A JP2006271588 A JP 2006271588A JP 2006271588 A JP2006271588 A JP 2006271588A JP 2007169600 A JP2007169600 A JP 2007169600A
Authority
JP
Japan
Prior art keywords
reaction temperature
polyethylene
temperature
peak
tubular reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006271588A
Other languages
Japanese (ja)
Other versions
JP5034422B2 (en
Inventor
Yoshinori Sada
宜規 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006271588A priority Critical patent/JP5034422B2/en
Publication of JP2007169600A publication Critical patent/JP2007169600A/en
Application granted granted Critical
Publication of JP5034422B2 publication Critical patent/JP5034422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a polyethylene providing a film having excellent stiffness and transparency by which the formation of gel in the inside of a pipe reactor can be suppressed in a polyethylene production process by high-pressure radical polymerization by using the pipe reactor. <P>SOLUTION: The method for producing the polyethylene by the polyethylene production process by the high-pressure radical polymerization by using the pipe reactor involves forming in the flow direction of the pipe reactor, two or more of n reaction temperature peak regions the peak temperature T<SB>n</SB>of each of which satisfies the following expressions: T<SB>1</SB>≤T<SB>2</SB>≤T<SB>3</SB>, ..., ≤T<SB>n</SB>(1); T<SB>n</SB>-T<SB>1</SB>≥10 (2) and T<SB>1</SB>≥230 (3) (in the expressions, T<SB>1</SB>, T<SB>2</SB>, T<SB>3</SB>, ..., T<SB>n</SB>are each peak temperature (°C) at each reaction temperature peak region; and n is a positive integer). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高圧ラジカル重合法によってポリエチレンを製造する方法に関するものである。さらに詳しくは、管型反応器を用いてフィッシュアイ生成を極力少なくすることができ、かつ、フィルムの腰および透明性の優れた特徴を有するポリエチレンの製造方法に関するものである。   The present invention relates to a method for producing polyethylene by a high-pressure radical polymerization method. More specifically, the present invention relates to a method for producing polyethylene that can minimize the generation of fish eyes using a tubular reactor and that has excellent characteristics of film stiffness and transparency.

フィッシュアイとは、ポリマーを製膜したときにフィルム中に異物として残るゲルもしくは異物を核として凝集した粗大ポリマー粒子である。通常のポリエチレンの製造において、種々の原因からフィッシュアイの生成は避けられないが、一般の汎用フィルム用途ではそれほど厳しく要求されず、成型用途においては基本的に問題とされない。しかし、マスキングフィルム(プロテクトフィルム)用途等においては、フィッシュアイ数の低減が特に要求される。   Fish eyes are coarse polymer particles aggregated with a gel or foreign matter remaining as a foreign substance in the film when the polymer is formed into a film, and a foreign substance as a nucleus. In the production of ordinary polyethylene, the formation of fish eyes is unavoidable due to various causes, but it is not so severely required in general general-purpose film applications, and is basically not a problem in molding applications. However, a reduction in the number of fish eyes is particularly required in masking film (protective film) applications and the like.

マスキングフィルムは、各種工業生産品あるいはその部品をその次の段階での使用までの間、その表面を保護するために用いられるポリエチレン等のプラスチックフィルムである。そして、そのフィッシュアイ数が、汎用フィルムに比べて極めて少ないことが要求される。また、その保護する物品により要求されるフィッシュアイのレベルは異なるが、マスキングフィルムにフィッシュアイが存在すると貼合の際に被覆対象物の表面に傷つきや凹みをつくらないことが必要である。例えばフォトレジスト向けマスキングフィルムなどのように、フィッシュアイが致命的な品質問題を引き起こすことが少なくない。このため、マスキングフィルム用のポリエチレンは、ゲルや異物等の管理に特別の注意をはらった専用設備で生産されることが好ましい。しかし、設備上の問題等から、汎用フィルム用又は成型用等のポリエチレンを製造している設備での併産が効率的に生産するためには望ましい。   The masking film is a plastic film such as polyethylene used to protect the surface of various industrial products or parts thereof until the next stage of use. And it is requested | required that the number of the fish eyes should be very few compared with a general purpose film. Further, although the level of fish eye required varies depending on the article to be protected, if fish eye is present in the masking film, it is necessary that the surface of the covering object is not damaged or dented during bonding. Fisheye often causes fatal quality problems, such as masking films for photoresists. For this reason, it is preferable that the polyethylene for a masking film is produced by a dedicated facility with special attention paid to the management of gels and foreign matters. However, due to problems in facilities and the like, it is desirable for efficient production to be performed at facilities that manufacture polyethylene for general-purpose films or moldings.

一方、特にフィルムに腰や、透明性を求め、かつ、インフレーション加工機やT-ダイ加工機による製膜の生産性向上を図るには、ある程度の高密度、低スウェル比(SR)の樹脂であることが好ましい。即ち、密度としては、918kg/m3以上、より好ましくは920kg/m3以上であり、スウェル比(SR)としては、1.55以下、より好ましくは1.50以下である。 On the other hand, in order to improve the productivity of film formation using an inflation processing machine or a T-die processing machine, in particular, the film should have low density and low swell ratio (SR). Preferably there is. That is, as the density, 918 kg / m 3 or more, more preferably 920 kg / m 3 or higher, as the swell ratio (SR), 1.55 or less, more preferably 1.50 or less.

このような状況下において、許容されるフィッシュアイ数が少ないマスキングフィルムを、汎用フィルム用途や成型用途等のポリエチレンを製造している設備で併産するために、種々の方法が試みられている。例えば、ポリエチレンの重合後の造粒工程において、押出し機出口へ微細なスクリーンパックを取り付けるとともに熱交換器の洗浄を行う等の操作により、マスキングフィルム用のポリエチレンを汎用フィルムや成型用等と併産する方法である(例えば、特許文献1参照)。しかし、これらの方法は、重合後のポリマー中に存在するゲル等のフィッシュアイの形成要因を後処理工程において取り除く方法であり、重合段階でゲル生成量が多いとフィルターの詰まりや、微小フィッシュアイの発生原因となる可能性があった。   Under such circumstances, various methods have been tried in order to co-produce a masking film with a small number of allowable fish eyes in facilities for producing polyethylene for general-purpose film use and molding use. For example, in the granulation process after the polymerization of polyethylene, polyethylene for masking film is co-produced with general-purpose film and molding by attaching a fine screen pack to the exit of the extruder and washing the heat exchanger. (For example, refer to Patent Document 1). However, these methods are methods for removing the formation factors of gels and other fish eyes present in the polymer after polymerization in the post-treatment process. There was a possibility of causing the occurrence of.

そこで、従来望まれていた直径約0.3mm以上のフィッシュアイの低減の他、直径約0.3mm以下の微小フィッシュアイについても低減を求められる用途が増加しつつある状況下、前記の密度918kg/m3以上、スウェル比(SR)1.55以下のような物性を有するポリエチレンの製造に適している管型反応器を用いた製造プロセスにおいて、管型反応器内部での樹脂の付着・剥離により生成するゲルの発生の抑制を行い、微細なスクリーンパック等の後処理工程が不要な、又は、より効果的に処理が行えるポリエチレンの重合方法の確立が強く望まれていた。 Therefore, in addition to the reduction of fish eyes having a diameter of about 0.3 mm or more, which has been desired in the past, the density of 918 kg has been increased under the circumstances where there is an increasing demand for the reduction of fish eyes having a diameter of about 0.3 mm or less. / m 3 or more, in swell ratio (SR) 1.55 manufacturing process using a tubular reactor suitable for the production of polyethylene having the physical properties as described below, adhesion and peeling of the tube reactor inside the resin It has been strongly desired to establish a method for polymerizing polyethylene that suppresses the generation of the gel generated by the above-described method and does not require a post-treatment step such as a fine screen pack or can perform treatment more effectively.

特開2004−99875公報(第1頁〜第3頁)JP 2004-99875 A (pages 1 to 3)

かかる状況において、本発明は、管型反応器を用いた高圧ラジカル重合によるポリエチレン製造プロセスにおいて、管型反応器内部におけるゲルの生成を抑制することができ、かつ、フィルムの腰および透明性の優れた特徴を有するポリエチレンの製造方法の提供を目的とする。   In such a situation, the present invention can suppress the formation of gel in the tubular reactor in the polyethylene production process by high-pressure radical polymerization using the tubular reactor, and has excellent film stiffness and transparency. It is an object of the present invention to provide a method for producing polyethylene having the above characteristics.

本発明の第一の発明は、管型反応器を用いた高圧ラジカル重合によるポリエチレン製造プロセスにおいて、該管型反応器の流れ方向に少なくとも2以上n個の反応温度ピーク領域を形成し、各反応温度ピーク領域のピーク温度Tnが下記式(1)および(2)および(3)を満足することを特徴とするポリエチレンの製造方法に係るものである。
1≦T2≦T3・・・・≦Tn (1)
n−T1≧10 (2)
1≧230 (3)
(但し、T1、T2、T3、・・・・Tn は、各反応温度ピーク領域のピーク温度(℃)、nは正の整数を表す。)
本発明の第二の発明は、第一の発明に係る条件の下前記n個の反応温度ピーク領域の平均反応温度Tavが240℃〜300℃になるように制御することを特徴とする第一の発明のポリエチレンの製造方法に係るものである。但し平均反応温度Tavは、下記式(4)に基づいて求めた温度である。
av=ΣTn(Tn−T’n)/Σ(Tn−T’n) (4)
(Tav:平均反応温度(℃)、T' n:第n-1番目ピークと第n番目ピーク間の最低温度(℃)、ただしT' 1は反応器入口のフィードガス温度(℃)、nは正の整数を表す。)
本発明の第三の発明は、第一または第二の発明に係る条件の下、前記管型反応器の外壁冷却用流体の入口温度を160℃以上とすることを特徴とするポリエチレンの製造方法に係るものである。
本発明の第四の発明は、少なくとも、MFRが1.0以上である品種のポリエチレンを、前記n個の反応温度ピーク領域の平均反応温度Tavが270℃〜300℃、T1が260℃以上、反応器外壁冷却用熱媒体の入口温度が170℃以上の条件下に15時間以上重合を行った後に、第一から第三の発明に係る条件の下、異なる品種のポリエチレンの重合へ移行することを特徴とするポリエチレンの製造方法に係るものである。
According to a first aspect of the present invention, in a polyethylene production process by high-pressure radical polymerization using a tubular reactor, at least 2 or more n reaction temperature peak regions are formed in the flow direction of the tubular reactor, The peak temperature T n in the temperature peak region satisfies the following formulas (1), (2) and (3), and relates to a method for producing polyethylene.
T 1 ≦ T 2 ≦ T 3 ... ≦ T n (1)
T n −T 1 ≧ 10 (2)
T 1 ≧ 230 (3)
(However, T 1 , T 2 , T 3 ,..., T n are peak temperatures (° C.) of each reaction temperature peak region, and n is a positive integer.)
The second invention of the present invention is characterized in that the average reaction temperature T av in the n reaction temperature peak regions is controlled to be 240 ° C. to 300 ° C. under the conditions according to the first invention. The present invention relates to a method for producing polyethylene of one invention. However, average reaction temperature Tav is the temperature calculated | required based on following formula (4).
T av = ΣT n (T n −T ′ n ) / Σ (T n −T ′ n ) (4)
(T av : average reaction temperature (° C.), T n : lowest temperature (° C.) between the n−1 th and n th peaks, where T 1 is the feed gas temperature (° C.) at the reactor inlet, n represents a positive integer.)
A third invention of the present invention is a method for producing polyethylene, characterized in that the inlet temperature of the fluid for cooling the outer wall of the tubular reactor is 160 ° C. or higher under the conditions according to the first or second invention. It is related to.
According to a fourth aspect of the present invention, at least a polyethylene of a variety having an MFR of 1.0 or more has an average reaction temperature T av of 270 ° C. to 300 ° C. and T 1 of 260 ° C. in the n reaction temperature peak regions. As described above, after polymerization is performed for 15 hours or more under the condition that the inlet temperature of the heat medium for cooling the reactor outer wall is 170 ° C. or higher, the process proceeds to polymerization of polyethylene of different varieties under the conditions according to the first to third inventions. The present invention relates to a method for producing polyethylene.

本発明により、管型反応器を用いた高圧ラジカル重合によるポリエチレン製造プロセスにおいて、管型反応器内部におけるゲルの生成を抑制することができ、かつ、フィルムの腰および透明性の優れた特徴を有するポリエチレンの製造方法の提供が可能になった。   According to the present invention, in a polyethylene production process by high-pressure radical polymerization using a tubular reactor, the formation of gel in the tubular reactor can be suppressed, and the film has excellent characteristics of waist and transparency. It has become possible to provide a method for producing polyethylene.

本発明は、管型反応器を用いた高圧ラジカル重合法におけるポリエチレンの製造方法であり、管型反応器中において、ターシャリブチルパーオキシイソプロピルカーボネート、ターシャリーブチルパーオキシ2-エチルヘキサノエート、ターシャリーブチルパーオキシピバレート、ターシャリーブチルパーオキシネオデカノエート等の有機過酸化物を重合開始剤として、150〜300MPaの圧力下、230℃以上で、エチレンモノマーを連続的に重合することによりポリエチレンを製造するに際して、ゲル発生量を極力抑制することができる方法である。   The present invention relates to a method for producing polyethylene in a high-pressure radical polymerization method using a tubular reactor, wherein tertiary butyl peroxyisopropyl carbonate, tertiary butyl peroxy 2-ethylhexanoate, Continuous polymerization of ethylene monomer at 230 ° C. or higher under a pressure of 150 to 300 MPa using an organic peroxide such as tertiary butyl peroxypivalate or tertiary butyl peroxyneodecanoate as a polymerization initiator. This is a method capable of suppressing the amount of gel generation as much as possible when producing polyethylene.

管型反応器は、管径が約10〜150mmの50〜3000mの反応管と、複数箇所の重合開始剤注入設備、反応管の外壁冷却熱媒体を流すジャケット等より構成されている。複数箇所に重合開始剤をプランジャーポンプにより注入することにより、注入部分ごとに反応温度ピークを有する反応温度ピーク領域が管型反応器中のエチレンモノマーの流れ方向に形成される。本発明においては、少なくとも2以上n個のかかる反応温度ピーク領域を形成せしめ、かつ、各反応温度ピーク領域のピーク温度Tnが下記式(1)および(2)を満足するように反応温度を制御することによりゲル発生量の少ないポリエチレンを製造することができる。
1≦T2≦T3・・・・≦Tn (1)
n−T1≧10 (2)
1≧230 (3)
(但し、T1、T2、T3、・・・・Tn は、各反応温度ピーク領域のピーク温度(℃)、nは正の整数を表す。)
The tubular reactor includes a 50-3000 m reaction tube having a tube diameter of about 10 to 150 mm, a plurality of polymerization initiator injection facilities, a jacket for flowing a heat medium for cooling the outer wall of the reaction tube, and the like. By injecting the polymerization initiator at a plurality of locations with a plunger pump, a reaction temperature peak region having a reaction temperature peak at each injection portion is formed in the flow direction of the ethylene monomer in the tubular reactor. In the present invention, at least 2 or more n reaction temperature peak regions are formed, and the reaction temperature is set so that the peak temperature T n of each reaction temperature peak region satisfies the following formulas (1) and (2). By controlling, polyethylene with less gel generation can be produced.
T 1 ≦ T 2 ≦ T 3 ... ≦ T n (1)
T n −T 1 ≧ 10 (2)
T 1 ≧ 230 (3)
(However, T 1 , T 2 , T 3 ,..., T n are peak temperatures (° C.) of each reaction temperature peak region, and n is a positive integer.)

反応温度ピーク領域は少なくとも2つ、好ましくは3〜4箇所形成させる。反応温度ピーク領域は、管型反応器中のエチレンモノマーの流れに重合開始剤を注入することにより重合反応が開始し、急速に反応温度が上昇して形成される。第1の反応温度ピーク領域の温度が下降したところで、再び重合開始剤を注入する。このような操作を繰り返し数個所の反応温度ピーク領域を形成する。   At least two, preferably 3 to 4 reaction temperature peak regions are formed. The reaction temperature peak region is formed by initiating the polymerization reaction by injecting a polymerization initiator into the flow of ethylene monomer in the tubular reactor, and rapidly increasing the reaction temperature. When the temperature in the first reaction temperature peak region falls, the polymerization initiator is injected again. Such an operation is repeated to form several reaction temperature peak regions.

各反応ピーク温度領域におけるピーク温度Tnは、注入する重合開始剤量により目的の温度になるように制御され、式(1)を満足するように順次高い温度になるようにする。また、最初のピーク温度T1と最後のピーク温度Tnの差は式(2)に示したように10℃以上に保たれる。さらに、ピーク温度T1は230℃以上であることが好ましい。このように反応温度を制御することにより、管型反応器の内壁への付着および剥離現象を減少することができる The peak temperature T n in each reaction peak temperature region is controlled so as to be the target temperature by the amount of the polymerization initiator to be injected, and is gradually increased so as to satisfy the formula (1). Further, the difference between the first peak temperature T 1 and the last peak temperature T n is kept at 10 ° C. or more as shown in the equation (2). Furthermore, the peak temperature T 1 is preferably 230 ° C. or higher. By controlling the reaction temperature in this way, it is possible to reduce the adhesion and peeling phenomenon to the inner wall of the tubular reactor.

さらに好ましい態様は、前記n個の反応温度ピーク領域の平均反応温度Tav、即ち、n個の各反応温度ピーク領域において生成する樹脂量に対応する平均反応温度を意味しており、下記式(4)により算出される平均反応温度Tavが、
av=ΣTn(Tn−T’n)/Σ(Tn−T’n) (4)
(Tav:平均反応温度(℃)、T' n:第n-1番目ピークと第n番目ピーク間の最低温度(℃)、ただしT' 1は反応器入口のフィードガス温度(℃)、nは正の整数を表す。)
240℃〜300℃になるように制御することである。
Further preferred embodiments mean the average reaction temperature T av of the n reaction temperature peak regions, that is, the average reaction temperature corresponding to the amount of resin produced in each of the n reaction temperature peak regions, The average reaction temperature T av calculated by 4) is
T av = ΣT n (T n −T ′ n ) / Σ (T n −T ′ n ) (4)
(T av : average reaction temperature (° C.), T n : lowest temperature (° C.) between the n−1 th and n th peaks, where T 1 is the feed gas temperature (° C.) at the reactor inlet, n represents a positive integer.)
It is controlling so that it may become 240 to 300 degreeC.

avが240℃より低いと反応器内壁への付着あるいは剥離現象の抑制効果が不充分であり、300℃より高いと密度の低下あるいはスウェル比(SR)の上昇を伴うため、フィルムの腰や透明性が不十分であり、また、インフレーション加工機やT-ダイ加工機における高速製膜による生産性の向上を求める用途には不適当である。 If T av is lower than 240 ° C., the effect of suppressing the adhesion or peeling phenomenon to the inner wall of the reactor is insufficient, and if it is higher than 300 ° C., the density is lowered or the swell ratio (SR) is increased. The transparency is insufficient, and it is unsuitable for applications that require improvement in productivity by high-speed film formation in an inflation processing machine or a T-die processing machine.

平均反応温度Tavを上記の240℃〜300℃の範囲内で変化させることにより、さらに細かく目的の製品に要求される物性を制御することができる。例えば、Tav=240〜260℃に制御すると、0.3mm以上のフィッシュアイが低減され、微小FEも適度に低減され、かつ高密度、低SRのポリエチレンを安定的に得ることができる。一方、Tav=260〜300℃に制御すると、0.3mm以上のフィッシュアイに加えて、さらに微小フィッシュアイが低減され、かつ高密度、低SRのポリエチレンを安定的に得ることができる。 By changing the average reaction temperature T av within the above range of 240 ° C. to 300 ° C., the physical properties required for the target product can be controlled more finely. For example, when T av = 240 to 260 ° C., fish eyes of 0.3 mm or more are reduced, fine FE is also moderately reduced, and high density and low SR polyethylene can be stably obtained. On the other hand, when T av = 260 to 300 ° C., in addition to fish eyes of 0.3 mm or more, fine fish eyes are further reduced, and high-density, low SR polyethylene can be stably obtained.

反応熱は、管型反応器のジャケットに外壁冷却用熱媒体を流して除去するが、この温度は、160℃以上であることが好ましい。熱媒体としては、約2.5MPaの高圧水を用い、160℃以上に保つことにより、超高圧下におけるポリマーの析出を抑制し反応器内部でのゲルの生成を防止することができる。     The reaction heat is removed by flowing an outer wall cooling heat medium through the jacket of the tubular reactor, and this temperature is preferably 160 ° C. or higher. As the heat medium, high pressure water of about 2.5 MPa is used and kept at 160 ° C. or higher, so that precipitation of the polymer under ultra high pressure can be suppressed and formation of gel in the reactor can be prevented.

さらに好ましくは、少なくともMFRが1.0以上である品種のポリエチレンを、前記n個の反応温度ピーク領域の平均反応温度Tavが270℃〜300℃、T1が260℃以上、反応器外壁冷却用熱媒体の入口温度が170℃以上の条件下に15時間以上重合を行った後、目的の品種のポリエチレンの製造を行うことである。目的の品種の前に重合する品種のMFRが1.0より低い、あるいはTavが270℃より低いと反応器内へのポリマーの付着がおきやすく、低FEの品種へ移行する環境として不適当である。 More preferably, a polyethylene having a MFR of 1.0 or more is used, and an average reaction temperature T av of the n reaction temperature peak regions is 270 ° C. to 300 ° C., T 1 is 260 ° C. or more, reactor outer wall cooling The purpose of this is to produce the desired type of polyethylene after polymerizing for 15 hours or more under the condition that the inlet temperature of the heat medium is 170 ° C. or higher. If the MFR of the varieties that polymerize before the target variety is lower than 1.0 or the Tav is lower than 270 ° C., the polymer tends to adhere to the reactor and is not suitable as an environment for shifting to a low FE variety. It is.

反応温度ピーク領域の形成例を図1に示した。図1は、本発明の条件に合致するように重合開始剤の注入場所および注入量の制御を行い、反応温度ピーク領域をn箇所形成させた例を示す模式図である。エチレンモノマーの予熱を行い、フィードガス温度がT' 1℃になった所で、重合開始剤の注入を行うと反応が開始しピーク温度T1まで上昇し徐々に低下しT' 2になった所で第2の重合開始剤を注入する。この操作を繰り返し、第n番目の温度ピークTnを形成し、次工程の生成ポリマーの処理工程へ送る。 An example of formation of the reaction temperature peak region is shown in FIG. FIG. 1 is a schematic view showing an example in which n reaction temperature peak regions are formed by controlling the injection location and injection amount of the polymerization initiator so as to meet the conditions of the present invention. Performs preheating of ethylene monomer feed gas temperature T becomes 'where became 1 ° C., the reaction to perform the injection of the polymerization initiator is gradually decreased T rises to a peak temperature T 1 of starts' 2 The second polymerization initiator is injected at this point. This operation is repeated to form the nth temperature peak Tn, which is sent to the processing step of the produced polymer in the next step.

このような反応条件により製造したポリエチレンは、マスキングフィルムに要求されるフィッシュアイ数に十分耐え得るものである。すなわち、ポリエチレンをインフレーション加工機にて60μm厚のフィルムに製膜後、1m2当りに存在する、ゲル若しくは繊維等の異物を核として凝集した、直径0.3mm以上の異物(フィッシュアイ)が、3個/m2以下であり、好ましくは2個/m2以下の値を示すのである。さらに特殊な用途で、特に超低フィッシュアイレベルを要求される製品では、直径0.3mm以上のフィッシュアイが0.2個/m2以下、より好ましくは0.15個/m2以下の値を示すのである。加えて、直径0.1mm以下のごく微小なフィッシュアイの量をも良好な水準に低減することができる。 The polyethylene produced under such reaction conditions can sufficiently withstand the number of fish eyes required for the masking film. That is, after forming polyethylene into a film having a thickness of 60 μm with an inflation processing machine, foreign matter (fish eye) having a diameter of 0.3 mm or more, which is aggregated with a foreign matter such as gel or fiber existing as a core, is present per 1 m 2 . It is 3 pieces / m 2 or less, preferably 2 pieces / m 2 or less. Furthermore, in products that require special applications, especially those requiring ultra-low fisheye levels, the value of fisheye with a diameter of 0.3 mm or more is 0.2 / m 2 or less, more preferably 0.15 / m 2 or less. Is shown. In addition, the amount of very small fish eyes with a diameter of 0.1 mm or less can be reduced to a good level.

以下、本発明を実施例に基づいて、より具体的に説明するが、もとより本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to these Examples from the first.

実施例および比較例で用いた高圧ラジカル重合法ポリエチレンの物性は以下の方法で測定した。
(1)密度(単位:kg/m3
JIS K7112に従って測定を行った。100℃沸騰水中で1時間アニーリングした後、測定に用いた。
(2)スウェル比(SR)
JIS K7210に規定されたメルトフローレート測定装置を用い、メルトフローレート測定時に押出しされたストランドの直径Dを測定し、オリフィスの直径D0とストランドの直径Dの比(D/D0)をスウェル比(SR)の値とした。測定温度は190℃で行った。
(3)フィッシュアイ(FE)
60μmのインフレーションフィルムへ製膜後、レーザー式フィッシュアイカウンター((株)松島機械研究所製 Laser Eye)を用いて、直径0.3mm以上のフィッシュアイの数を計測して、通常サイズのフィッシュアイとした。
また、微小サイズのフィッシュアイは目視により、上記インフレーションフィルムを観察し、◎ … 非常に少ない、 ○ … 少ない、 × … 多い、と判定した。
The physical properties of the high pressure radical polymerization polyethylene used in Examples and Comparative Examples were measured by the following methods.
(1) Density (Unit: kg / m 3 )
Measurement was performed according to JIS K7112. After annealing in boiling water at 100 ° C. for 1 hour, it was used for measurement.
(2) Swell ratio (SR)
Using a melt flow rate measuring device stipulated in JIS K7210, the diameter D of the extruded strand at the time of measuring the melt flow rate is measured, and the ratio of the diameter D 0 of the orifice to the diameter D of the strand (D / D 0 ) is swelled. The ratio (SR) was used. The measurement temperature was 190 ° C.
(3) Fish Eye (FE)
After film formation on a 60 μm inflation film, the number of fish eyes with a diameter of 0.3 mm or more was measured using a laser fish eye counter (Laser Eye manufactured by Matsushima Machine Research Laboratories). It was.
In addition, the above-mentioned inflation film was visually observed for fine fish eyes, and it was determined that ◎… very little, ○… little, ×… many.

実施例1
内径46mm、長さ1170mの触媒注入点を4箇所に有する管型反応器、および造粒押出し機のスクリーンパックは150メッシュの金網を用いて、フィードエチレンガス流量35T/Hr、T1=230℃、T2=240℃、T3=250℃、T4=255℃、T' 1=150℃、平均反応温度240℃、外壁冷却用熱媒体温度=170℃、反応圧力240MPaの条件でエチレンの高圧ラジカル重合を行った。管型反応器の入り口からの長さと反応温度の関係を図1に、得られたポリエチレンの物性を表1に示す。
Example 1
A tubular reactor having an inner diameter of 46 mm and a length of 1170 m for a catalyst injection point in four places, and a screen pack of a granulation extruder uses a 150-mesh wire mesh, a feed ethylene gas flow rate of 35 T / Hr, T 1 = 230 ° C. T 2 = 240 ° C., T 3 = 250 ° C., T 4 = 255 ° C., T 1 = 150 ° C., average reaction temperature 240 ° C., outer wall cooling heat medium temperature = 170 ° C., and reaction pressure 240 MPa. High pressure radical polymerization was performed. FIG. 1 shows the relationship between the length from the inlet of the tubular reactor and the reaction temperature, and Table 1 shows the physical properties of the obtained polyethylene.

実施例2
1=270℃、T2=285℃、T3=290℃、T4=290℃、T' 1=170℃、Tav=280℃とした以外は、実施例1と同様にしてエチレンを重合した。得られたポリエチレンの物性を表1に示す。
Example 2
Except for T 1 = 270 ° C., T 2 = 285 ° C., T 3 = 290 ° C., T 4 = 290 ° C., T 1 = 170 ° C. and T av = 280 ° C., ethylene was used in the same manner as in Example 1. Polymerized. Table 1 shows the physical properties of the obtained polyethylene.

実施例3
事前にTav=280℃、T1=280℃、外壁冷却用熱媒体温度=170℃の条件でMFR=2のポリエチレンを生産した後に、T1=265℃、T2=275℃、T3=280℃、T4=280℃、T' 1=170℃、Tav=270℃とし、造粒押出し機のスクリーンパックを400メッシュの金網とした以外は、実施例1と同様にしてエチレンを重合した。得られたポリエチレンの物性を表1に示す。
Example 3
After producing polyethylene with MFR = 2 under the conditions of T av = 280 ° C., T 1 = 280 ° C., and heat medium temperature for outer wall cooling = 170 ° C. in advance, T 1 = 265 ° C., T 2 = 275 ° C., T 3 = 280 ° C, T 4 = 280 ° C, T ' 1 = 170 ° C, T av = 270 ° C, and ethylene was used in the same manner as in Example 1 except that the screen pack of the granulation extruder was a 400 mesh wire mesh. Polymerized. Table 1 shows the physical properties of the obtained polyethylene.

比較例1
1=T2=T3=T4=244℃、Tav=244℃とした以外は実施例1と同様にして製造した。得られたポリエチレンの物性を表1に示す。
比較例2
4−T1=4℃、T1=220℃、T2=T3=T4=224℃、Tav=223℃、外壁冷却用熱媒体温度=160℃とした以外は比較例1と同様にした。得られたポリエチレンの物性を表1に示す。
Comparative Example 1
It was manufactured in the same manner as in Example 1 except that T 1 = T 2 = T 3 = T 4 = 244 ° C. and T av = 244 ° C. Table 1 shows the physical properties of the obtained polyethylene.
Comparative Example 2
Comparative Example 1 except that T 4 −T 1 = 4 ° C., T 1 = 220 ° C., T 2 = T 3 = T 4 = 224 ° C., T av = 223 ° C., and heat medium temperature for outer wall cooling = 160 ° C. The same was done. Table 1 shows the physical properties of the obtained polyethylene.

Figure 2007169600
微小FE:◎ 非常に少ない、 ○ 少ない、 × 多い
Figure 2007169600
Micro FE: ◎ Very little, ○ Little, × Many

上記の結果から次のことがわかる。本発明の反応条件で重合した実施例1で得られたポリエチレンのフィルムは、通常サイズフィッシュアイは許容範囲内であり、微小フィッシュアイも少なく良好であった。また、密度、SRの値も良好であった。実施例2、3で得られたポリエチレンのフィルムは、通常サイズフィッシュアイ、微小フィッシュアイ共に非常に少なく、密度、SRの値も良好であった。   The following can be seen from the above results. The polyethylene film obtained in Example 1 polymerized under the reaction conditions of the present invention had a normal size fish eye within an acceptable range and had few fine fish eyes and was good. The density and SR were also good. The polyethylene films obtained in Examples 2 and 3 were very small in both normal size fish eyes and fine fish eyes, and the density and SR were also good.

一方、T4−T1=0℃として本発明の反応条件に合致しない比較例1は、微小フィッシュアイが不良であった。また、比較例2は、通常フィッシュアイ、微小フィッシュアイ共に不良であり、特に微小フィッシュアイは非常に多く不十分な結果であった。 On the other hand, in Comparative Example 1 where T 4 −T 1 = 0 ° C. and does not meet the reaction conditions of the present invention, the fine fisheye was poor. In Comparative Example 2, both the normal fish eye and the micro fish eye were defective, and the micro fish eye was particularly large and insufficient.

本発明における複数の反応温度ピーク領域を有する反応例を示す管型反応器の入り口からの長さと反応温度の関係を示す模式図である。It is a schematic diagram which shows the relationship from the length from the inlet_port | entrance of the tubular reactor which shows the example of reaction which has the several reaction temperature peak area | region in this invention, and reaction temperature. 実施例1の管型反応器の入り口からの長さと反応温度の関係を示す図である。FIG. 3 is a diagram showing the relationship between the length from the inlet of the tubular reactor of Example 1 and the reaction temperature.

符号の説明Explanation of symbols

T:管型反応器内の反応温度(℃)、Tn:各反応温度ピーク領域のピーク温度(℃)、T'1:管型反応器入口のフィードガス温度(℃)、T'n:第n−1番目ピークと第n番目ピーク間の最低温度(℃)、L:管型反応器の入り口からの長さ(m)

T: reaction temperature (° C.) in the tubular reactor, T n : peak temperature (° C.) of each reaction temperature peak region, T ′ 1 : feed gas temperature (° C.) at the tube reactor inlet, T ′ n : Minimum temperature (° C) between the (n-1) -th peak and the n-th peak, L: length from the inlet of the tubular reactor (m)

Claims (4)

管型反応器を用いた高圧ラジカル重合によるポリエチレン製造プロセスにおいて、該管型反応器の流れ方向に少なくとも2以上n個の反応温度ピーク領域を形成し、各反応温度ピーク領域のピーク温度Tnが下記式(1)および(2)および(3)を満足することを特徴とするポリエチレンの製造方法。
1≦T2≦T3・・・・≦Tn (1)
n−T1≧10 (2)
1≧230 (3)
(但し、T1、T2、T3、・・・・Tn は、各反応温度ピーク領域のピーク温度(℃)、nは正の整数を表す。)
In a polyethylene production process by high-pressure radical polymerization using a tubular reactor, at least 2 or more n reaction temperature peak regions are formed in the flow direction of the tubular reactor, and the peak temperature T n of each reaction temperature peak region is The manufacturing method of the polyethylene characterized by satisfying following formula (1) and (2) and (3).
T 1 ≦ T 2 ≦ T 3 ... ≦ T n (1)
T n −T 1 ≧ 10 (2)
T 1 ≧ 230 (3)
(However, T 1 , T 2 , T 3 ,..., T n are peak temperatures (° C.) of each reaction temperature peak region, and n is a positive integer.)
前記n個の反応温度ピーク領域の平均反応温度Tavが240℃〜300℃になるように制御することを特徴とする請求項1記載のポリエチレンの製造方法。
但し平均反応温度Tavは、下記式(4)に基づいて求めた温度である。
av=ΣTn(Tn−T’n)/Σ(Tn−T’n) (4)
(Tav:平均反応温度(℃)、T' n:第n-1番目ピークと第n番目ピーク間の最低温度(℃)、ただしT' 1は反応器入口のフィードガス温度(℃)、nは正の整数を表す。)
2. The method for producing polyethylene according to claim 1, wherein an average reaction temperature T av in the n reaction temperature peak regions is controlled to be 240 ° C. to 300 ° C. 3.
However, average reaction temperature Tav is the temperature calculated | required based on following formula (4).
T av = ΣT n (T n −T ′ n ) / Σ (T n −T ′ n ) (4)
(T av : average reaction temperature (° C.), T n : lowest temperature (° C.) between the n−1 th and n th peaks, where T 1 is the feed gas temperature (° C.) at the reactor inlet, n represents a positive integer.)
前記管型反応器の外壁冷却用熱媒体の入口温度を160℃以上とすることを特徴とする請求項1または2記載のポリエチレンの製造方法。 The method for producing polyethylene according to claim 1 or 2, wherein the inlet temperature of the heat medium for cooling the outer wall of the tubular reactor is 160 ° C or higher. 少なくとも、MFRが1.0以上である品種のポリエチレンを、前記n個の反応温度ピーク領域の平均反応温度Tavが270℃〜300℃、T1が260℃以上、反応器外壁冷却用熱媒体の入口温度が170℃以上の条件下に15時間以上重合を行った後、異なる品種のポリエチレンの重合へ移行することを特徴とする請求項1〜3のいずれかに記載のポリエチレンの製造方法。
At least, a polyethylene having a MFR of 1.0 or more, an average reaction temperature T av in the n reaction temperature peak regions is 270 ° C. to 300 ° C., T 1 is 260 ° C. or more, and a heat medium for cooling the reactor outer wall The method for producing polyethylene according to any one of claims 1 to 3, wherein the polymerization is carried out for 15 hours or more under the condition of the inlet temperature of 170 ° C or higher, and then the polymerization is shifted to polymerization of different types of polyethylene.
JP2006271588A 2005-11-28 2006-10-03 Method for producing polyethylene Active JP5034422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006271588A JP5034422B2 (en) 2005-11-28 2006-10-03 Method for producing polyethylene

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005341609 2005-11-28
JP2005341609 2005-11-28
JP2006271588A JP5034422B2 (en) 2005-11-28 2006-10-03 Method for producing polyethylene

Publications (2)

Publication Number Publication Date
JP2007169600A true JP2007169600A (en) 2007-07-05
JP5034422B2 JP5034422B2 (en) 2012-09-26

Family

ID=38296579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271588A Active JP5034422B2 (en) 2005-11-28 2006-10-03 Method for producing polyethylene

Country Status (1)

Country Link
JP (1) JP5034422B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10400046B2 (en) 2015-06-25 2019-09-03 Joseph J. Matsko Portable powered paint system
EP3168237A1 (en) 2015-11-10 2017-05-17 Dow Global Technologies LLC High pressure, free radical polymerizations to produce ethylene-based polymers
EP3168239A1 (en) 2015-11-10 2017-05-17 Dow Global Technologies LLC High pressure free radical polymerizations
EP3168238A1 (en) 2015-11-10 2017-05-17 Dow Global Technologies LLC Ethylene-based polymers formed by high pressure free radical polymerizations
EP3260473A1 (en) 2016-06-24 2017-12-27 Dow Global Technologies LLC High pressure, free radical polymerizations to produce ethylene-based polymers
EP3260472A1 (en) 2016-06-24 2017-12-27 Dow Global Technologies LLC Ethylene-based polymers formed by high pressure free radical polymerizations
EP3475315B1 (en) 2016-06-24 2020-05-20 Dow Global Technologies LLC High pressure, free radical polymerizations to produce ethylene-based polymers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879004A (en) * 1981-10-20 1983-05-12 バスフ アクチェン ゲゼルシャフト Manufacture of ethylene polymer
JPH02215812A (en) * 1988-12-28 1990-08-28 Basf Ag Copolymer of ethylene with alkenecarboxylic acid or its derivative or mixture thereof
JPH09216916A (en) * 1996-02-13 1997-08-19 Tosoh Corp Production of ethylene/alpha-olefin copolymer
JP2004099875A (en) * 2002-07-18 2004-04-02 Sumitomo Chem Co Ltd Method for producing ultra-low fish-eye polyethylene
JP2005501143A (en) * 2001-08-20 2005-01-13 バーゼル、ポリオレフィン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング High pressure polymerization of ethylene
JP2006519900A (en) * 2003-03-06 2006-08-31 バーゼル・ポリオレフィン・ゲーエムベーハー Control of a continuous ethylene polymerization process in a high pressure reactor.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879004A (en) * 1981-10-20 1983-05-12 バスフ アクチェン ゲゼルシャフト Manufacture of ethylene polymer
JPH02215812A (en) * 1988-12-28 1990-08-28 Basf Ag Copolymer of ethylene with alkenecarboxylic acid or its derivative or mixture thereof
JPH09216916A (en) * 1996-02-13 1997-08-19 Tosoh Corp Production of ethylene/alpha-olefin copolymer
JP2005501143A (en) * 2001-08-20 2005-01-13 バーゼル、ポリオレフィン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング High pressure polymerization of ethylene
JP2004099875A (en) * 2002-07-18 2004-04-02 Sumitomo Chem Co Ltd Method for producing ultra-low fish-eye polyethylene
JP2006519900A (en) * 2003-03-06 2006-08-31 バーゼル・ポリオレフィン・ゲーエムベーハー Control of a continuous ethylene polymerization process in a high pressure reactor.

Also Published As

Publication number Publication date
JP5034422B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5034422B2 (en) Method for producing polyethylene
JP6283714B2 (en) Method for producing polyethylene or polyethylene vinyl acetate copolymer
EP2681250B1 (en) Process for preparing ethylene homopolymers or copolymers in a tubular reactor with at least two reaction zones having different concentrations of chain transfer agent
EP2655444B1 (en) Process for the preparation of ethylene copolymers in the presence of free-radical polymerization initiator by copolymerizing ethylene, a bi- or multifunctional comonomer and optionally further comonomers
KR950001283B1 (en) Process for the preparation of vinylidene fluoride polymer
CN107207815B (en) Heterophasic bicontinuous copolymers of vinylidene fluoride
US9758603B2 (en) High-pressure polymerization process of ethylenically unsaturated monomers in a tubular reactor
EA013421B1 (en) An extrusion coating composition
JP6787335B2 (en) Resin film and its manufacturing method
JPWO2017209133A1 (en) Method for producing fluororesin
CN109983066B (en) Method for producing polyethylene materials with reduced gel content and use
US3415796A (en) Extruded matte finish acrylic film
EP3313899B1 (en) Use of a free radical initiator composition for the reduction of gels in polyethylene materials
CN110121512B (en) Process for preparing polyethylene resin
JP2005292180A (en) Plastic optical fiber and its manufacturing method
JP3906848B2 (en) Method for producing methacrylic resin
JP2012518055A (en) Polyethylene film with improved vapor permeation prevention
JP2023078101A (en) Polyolefin, resin composition, and molded body
JP3565229B2 (en) Method for producing methacrylic resin
JP4426221B2 (en) Method for producing ultra-low fisheye polyethylene
JP3910528B2 (en) Plastic optical product and plastic optical fiber manufacturing method
JP2006058774A (en) Optical fiber cable and its manufacturing method
DE2513851A1 (en) PROCESS FOR PRODUCING POLYAETHYLENE IN A PIPE REACTOR
JP3319484B2 (en) Method for producing methacrylic resin having thermal decomposition resistance
JPH0873689A (en) Production of perfluorocopolymer composition

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080201

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5034422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350