JP2007162185A - Method for evaluating shape-retaining property of base material and method for producing frp - Google Patents

Method for evaluating shape-retaining property of base material and method for producing frp Download PDF

Info

Publication number
JP2007162185A
JP2007162185A JP2005362935A JP2005362935A JP2007162185A JP 2007162185 A JP2007162185 A JP 2007162185A JP 2005362935 A JP2005362935 A JP 2005362935A JP 2005362935 A JP2005362935 A JP 2005362935A JP 2007162185 A JP2007162185 A JP 2007162185A
Authority
JP
Japan
Prior art keywords
base material
shear deformation
deformation angle
reinforcing fibers
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005362935A
Other languages
Japanese (ja)
Other versions
JP4992236B2 (en
Inventor
Ichiro Takeda
一朗 武田
Eisuke Wadahara
英輔 和田原
Hiroki Kihara
弘樹 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005362935A priority Critical patent/JP4992236B2/en
Publication of JP2007162185A publication Critical patent/JP2007162185A/en
Application granted granted Critical
Publication of JP4992236B2 publication Critical patent/JP4992236B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for quantifying the parameter of shape-retaining property of fabric base material not impregnated with a resin. <P>SOLUTION: The method for evaluating the shape-retaining property of a base material in which reinforcing fibers are arranged in two directions and which is not substantially impregnated with a resin comprises applying a shear load to the plane of the base material until wrinkles occur, releasing the shear load, obtaining a residual shear deformation angle as the shear deformation angle of shaping limit and evaluating shape-retaining property on the basis of the shear deformation angle of shaping limit. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、樹脂未含浸である布帛基材について、賦形性のパラメータである賦形限界せん断変形角を測定する方法に関するものである。   The present invention relates to a method for measuring a forming limit shear deformation angle, which is a parameter of forming property, for a fabric base material not impregnated with resin.

FRPはその比強度、比弾性率の高さから、航空機用途、一般産業用途、スポーツ用途等の様々な分野で多く利用されている。   FRP is widely used in various fields such as aircraft use, general industrial use, and sports use because of its high specific strength and high specific modulus.

連続繊維を用いたFRPの代表的な製造方法としては、布帛基材に予めマトリックス樹脂を含浸させたプリプレグ基材を用い、このプリプレグ基材を積層毎に強化繊維の配列方向がずれるように積層(例えば疑似等方積層)し、マトリックス樹脂を硬化させるオートクレーブ成形法がある。しかしながら、オートクレーブを用いたFRPの製造は成形コストが高く、またプリプレグ基材は複雑形状へ沿いにくい、などの問題があることから、近年樹脂注入成形法が注目されるようになってきた。この方法は、織物基材や、強化繊維を並行に配列したシートを交差積層してステッチ糸にて一体化したいわゆる多軸ステッチ基材など、樹脂未含浸の布帛基材を任意の形状に賦形しながら積層し、その積層体にマトリックス樹脂を注入し、硬化させる成形法である。オートクレーブ成形法に比べ成形コストが低減出来る他、一般的に樹脂未含浸の布帛基材はプリプレグ基材など樹脂含浸基材に比べ賦形性が高く、より複雑な形状のFRPを製造することが出来る。   As a typical manufacturing method of FRP using continuous fibers, a prepreg base material in which a fabric base material is impregnated with a matrix resin in advance is used, and this prepreg base material is laminated so that the arrangement direction of the reinforcing fibers is shifted every lamination. There is an autoclave molding method in which a matrix resin is cured (for example, pseudo isotropic lamination). However, since the production of FRP using an autoclave has a problem that the molding cost is high and the prepreg base material is difficult to follow a complicated shape, the resin injection molding method has recently attracted attention. This method applies a non-resin-impregnated fabric substrate to an arbitrary shape, such as a fabric substrate or a so-called multiaxial stitch substrate in which sheets of reinforcing fibers arranged in parallel are cross-laminated and integrated with stitch yarns. It is a molding method in which the layers are laminated while being shaped, and a matrix resin is injected into the laminate and cured. In addition to reducing the molding cost compared to the autoclave molding method, in general, fabric bases not impregnated with resin have higher formability than resin-impregnated base materials such as prepreg base materials, and it is possible to produce FRP with more complicated shapes. I can do it.

このように、樹脂注入成形法においては、樹脂未含浸の布帛基材を賦形・積層することによりFRP成形前駆体であるプリフォームを作成するが、布帛基材の種類ごとに複雑形状に賦形した時の型への沿いやすさが異なる。いわば、布帛基材ごとに特有の賦形性を有すると言える。したがって従来、複雑形状に布帛基材が賦形可能であるか、プリフォーム作成が可能であるかは、型に実際に使用する布帛基材を賦形して確認していた。またカットパターンや賦形の手順などを決定する、プリフォームの設計にあたっては、実際に基材に切れ込みなどを入れながら試作を行い設計していた。しかしながら、トライアンドエラー方式のプリフォーム設計には大変な労力がかかり、かつ人手による設計は精度を欠き、安定生産を困難にしていた。   As described above, in the resin injection molding method, a preform which is an FRP molding precursor is formed by shaping and laminating a fabric base not impregnated with resin, but it is imparted to a complicated shape for each type of fabric base. Ease of conforming to the mold when shaped is different. In other words, it can be said that each fabric substrate has a unique formability. Therefore, conventionally, whether a fabric base material can be shaped into a complicated shape or whether a preform can be created has been confirmed by shaping a fabric base material actually used in a mold. Moreover, when designing a preform for determining a cutting pattern and a shaping procedure, a prototype was designed by actually making a cut in the base material. However, trial-and-error preform design takes a great deal of labor, and manual design lacks accuracy, making stable production difficult.

一方、近年のCAE技術の発達により、布帛基材特有の賦形性を定量化することで、実際に賦形を行わなくてもシミュレーションによりプリフォーム設計が可能となってきた。精度の良いシミュレーションが実施可能となれば、人手による恣意性の入る余地がないことから安定生産性に優れた精度の良いプリフォーム設計が可能となる。従って、いかに布帛基材特有の賦形性を精度良く定量化するかが精度の良いプリフォーム設計の鍵となっている。   On the other hand, with the recent development of CAE technology, it has become possible to design a preform by simulation without actually shaping by quantifying the formability peculiar to a fabric base material. If a highly accurate simulation can be carried out, there is no room for manual arbitrariness, and therefore an accurate preform design with excellent stable productivity can be achieved. Therefore, how to accurately quantify the formability specific to the fabric base material is the key to accurate preform design.

かかる布帛基材の賦型性のパラメータについては、従来よりピクチャーフレーム法やバイアスエクステンション法などの手法により定量化することが提案されてきた(例えば、非特許文献1)。ピクチャーフレーム法とは、正方形に切り出した0°/90°基材(正方形の辺を0°および90°とした際、強化繊維が0°および90°方向に配向している布帛基材)の4辺を写真盾のように矩形フレームで固定し、対角線上に引張ることで布帛基材にせん断変形を起こし、その際の荷重をフレーム同士のなす角度に相当するせん断変形角で除したせん断剛性を賦形性のパラメータとする試験法である。また、バイアスエクステンション法とは、長方形に切り出した+45°/−45°基材(長方形の長辺を0°、短辺を90°とした際、強化繊維が45°およびー45°方向に配向している布帛基材)の短辺を把持して引張り、その際の荷重を引張ひずみで除した引張剛性を賦形性のパラメータとする試験法である。   Conventionally, it has been proposed to quantify the formability parameter of the fabric base material by a technique such as a picture frame method or a bias extension method (for example, Non-Patent Document 1). The picture frame method is a 0 ° / 90 ° substrate cut into a square (a fabric substrate in which reinforcing fibers are oriented in 0 ° and 90 ° directions when the sides of the square are 0 ° and 90 °). Shear rigidity obtained by fixing the four sides with a rectangular frame like a photographic shield and pulling it diagonally, causing shear deformation of the fabric base material, and dividing the load at that angle by the shear deformation angle corresponding to the angle between the frames Is a test method in which is a parameter of formability. Also, the bias extension method is a + 45 ° / −45 ° base material cut into a rectangle (when the long side of the rectangle is 0 ° and the short side is 90 °, the reinforcing fibers are in 45 ° and −45 ° directions. This is a test method in which a tensile rigidity obtained by holding and pulling a short side of an oriented fabric base material) and dividing a load at that time by a tensile strain is a parameter of formability.

しかしながら、これら試験法は標準化されておらず寸法に依存するため、同じ条件下で行った試験片同士で結果を比較するだけの相対評価であるという問題点がある。また、上記試験法において測定しているパラメータは、いずれも布帛基材がせん断変形を起こす際の抵抗、すなわち、布帛基材のせん断剛性を代表する指標値である。賦形への抵抗を示しているため、布帛基材を成形型の上にふわっと置いただけで型に沿うかどうかなど、小さな力で賦形を実施する際の指標とはなるものの、一般的な賦形工程では手で押したりプレス機などで大きな力を加えながら行われるため、実用的な賦型性の指標とはなり得ないという問題点もある。
"Liquid moulding technologies", C D Rudd, A C Long, K N Kendall and C G E Mangin, Woodhead publishing limited, PP220-228
However, since these test methods are not standardized and depend on dimensions, there is a problem in that the evaluation is a relative evaluation only by comparing the results between test pieces performed under the same conditions. The parameters measured in the above test methods are all index values representing the resistance when the fabric base material undergoes shear deformation, that is, the shear rigidity of the fabric base material. Since it shows resistance to shaping, it can be used as an index when shaping with a small force, such as whether the fabric substrate is placed softly on the mold, or not. Since the shaping process is carried out while pushing by hand or applying a large force with a press machine, there is also a problem that it cannot be a practical index of moldability.
"Liquid molding technologies", CD Rudd, AC Long, KN Kendall and CGE Mangin, Woodhead publishing limited, PP220-228

上記のとおり布帛基材の賦型性を評価するパラメータの適当な定量化手法がないばかりでなく、妥当なパラメータすら見いだされていないという問題があった。従って、本発明は、布帛基材の妥当な賦型性のパラメータを見いだし、かかるパラメータの定量化手法を提供することを目的とする。   As described above, there is a problem that not only an appropriate quantification method for parameters for evaluating the formability of the fabric substrate is found, but also no valid parameters have been found. Accordingly, an object of the present invention is to find a parameter of appropriate formability of a fabric base material and provide a method for quantifying the parameter.

かかる課題を解決するための本発明は、次の構成を特徴とするものである。
(1)強化繊維が2方向に配された実質的に樹脂未含浸である基材の賦型性を評価する方法であって、該基材の面内にせん断荷重をシワが発生するまで加えた後、該せん断荷重を解放し、残留したせん断変形角を賦形限界せん断変形角として得て、その賦形限界せん断変形角に基づいて賦型性を評価することを特徴とする基材の賦型性の評価方法。
(2)強化繊維が2方向に配された実質的に樹脂未含浸である基材の賦型性を評価する方法であって、強化繊維が長辺方向に関してα°方向と−α°方向とに配され、かつ、短辺長さWと長辺長さLとの比L/Wが2/tanα以上である長方形の前記基材を用意し、該基材の短辺を固定して長辺方向に該基材の引張最大荷重の20%にあたる引張荷重を負荷した後、該荷重を解放し、対向する2つの長辺の中間点を結んだ線の長さW’を測定し、次式に従って得られるせん断変形角φを賦形限界せん断変形角として得て、その賦形限界せん断変形角に基づいて賦型性を評価することを特徴とする基材の賦型性の評価方法。
The present invention for solving this problem is characterized by the following configuration.
(1) A method for evaluating the formability of a base material in which reinforcing fibers are arranged in two directions and substantially not impregnated with resin, wherein a shear load is applied to the surface of the base material until wrinkles are generated. Then, the shear load is released, the remaining shear deformation angle is obtained as the shaping limit shear deformation angle, and the moldability is evaluated based on the shaping limit shear deformation angle. Evaluation method of formability.
(2) A method for evaluating the formability of a substrate which is substantially impregnated with resin in which reinforcing fibers are arranged in two directions, wherein the reinforcing fibers are in the α ° direction and the −α ° direction with respect to the long side direction. And a rectangular base material in which the ratio L / W of the short side length W to the long side length L is 2 / tan α or more is prepared, and the short side of the base material is fixed and long. After applying a tensile load corresponding to 20% of the maximum tensile load of the substrate in the side direction, the load is released, and the length W ′ of the line connecting the midpoints of the two opposing long sides is measured. A method for evaluating formability of a substrate, wherein the shear deformation angle φ obtained according to the equation is obtained as a shaping limit shear deformation angle, and the formability is evaluated based on the shaping limit shear deformation angle.

(3)前記基材は、強化繊維が実質的に直交する2方向に配されたものであり、かつ、前記αが45である、上記(2)に記載の基材の賦型性の評価方法。
(4)前記基材が平織物基材である、上記(2)または(3)に記載の基材の賦型性の評価方法。
(5)上記(1)〜(4)のいずれかに記載の方法を用いて基材の賦型性を評価し、得られた賦形限界せん断変形角をプリフォーム全域で超えないようにプリフォーム設計を行い、FRPを製造する、FRPの製造方法
(3) Evaluation of the formability of the substrate according to (2), wherein the substrate is one in which reinforcing fibers are arranged in two directions substantially perpendicular to each other, and the α is 45. Method.
(4) The method for evaluating formability of a substrate according to (2) or (3), wherein the substrate is a plain woven fabric substrate.
(5) The formability of the substrate is evaluated using the method described in any one of (1) to (4) above, and the obtained shaping limit shear deformation angle is not exceeded over the entire preform. FRP manufacturing method that performs renovation design and manufactures FRP

本発明によれば、強化繊維が2方向に配された樹脂未含浸である布帛基材の賦形性を精度良く定量化できる。かかる賦形性の定量化により、シミュレーションと連動してプリフォーム設計を精度良く実施できる。精度の良いプリフォーム設計によりプリフォーム製造にあたって精度の良いカットパターンや正確な賦形の手順を適用でき、プリフォームを再現性よく製造可能となることで、FRPの安定生産性が向上する。   ADVANTAGE OF THE INVENTION According to this invention, the shaping property of the fabric base material which is the resin non-impregnation with which the reinforcement fiber was distribute | arranged to 2 directions can be quantified accurately. By quantifying the formability, the preform design can be performed with high accuracy in conjunction with the simulation. Precise preform design makes it possible to apply accurate cut patterns and precise shaping procedures in preform manufacturing, and the preform can be manufactured with good reproducibility, thereby improving the stable productivity of FRP.

本発明は、FRP製造のためのプリフォーム設計にあたって好適に用いられる、強化繊維が2方向に配された実質的に樹脂未含浸である基材の賦型性を評価する方法であって、基材の面内にせん断荷重をシワが発生するまで加えた後、該せん断荷重を解放し、残留したせん断変形角を賦形限界せん断変形角として得て、その賦形限界せん断変形角に基づいて賦型性を評価するものである。   The present invention is a method for evaluating the formability of a substrate that is preferably used in designing a preform for FRP production and that is substantially resin-impregnated with reinforcing fibers arranged in two directions. After applying a shear load in the plane of the material until wrinkles are generated, release the shear load and obtain the residual shear deformation angle as the shaping limit shear deformation angle. Based on the shaping limit shear deformation angle The moldability is evaluated.

なお、実質的に樹脂未含浸であるとは、布帛基材における強化繊維以外の樹脂介在物が基材全体の20%未満であることを指す。樹脂含浸した布帛基材、例えばプリプレグ基材などは、本発明の測定法に従いシワが発生するまでせん断荷重を加えると、樹脂が粘着性を有するためシワが固定されてしまい、せん断荷重を解放してもシワがなくなることがないため、無緊張状態でシワが発生しない最大のせん断変形角である賦形限界せん断変形角を正確に測定できない。同様に、布帛基材の固着剤として樹脂が大量に用いられているなどの理由で、一旦シワが固定されてしまうと、無緊張状態でもシワが解放されないような布帛基材は正確に測定できない。したがって、本発明は、実質的に樹脂未含浸である基材に適用する。
また、本発明は強化繊維が2方向に配された布帛基材に適用するものである。すなわち、連続する強化繊維が実質的に2方向に配されていればよく、局所的にクリンプやうねりが生じていてもよい。布帛基材を複雑形状に賦形する際には、シワが発生しないよう基材面内で変形を吸収する必要がある。通常、FRP製造に用いられる布帛基材は強化繊維が拘束されて布帛状となっているので、実質的に強化繊維が引き抜けることはない。そのため、図1のb)のように、強化繊維が3方向以上に配されている場合、強化繊維同士の交錯点の拘束を守ったまま、基材面内で変形するためには、強化繊維を伸ばして変形するしかない。しかしながら、強化繊維を伸ばすことは困難であるため、一般的に強化繊維が3方向以上に配されている布帛基材においては、基材面内で変形できず、賦形性が極端に悪い。
In addition, being substantially non-impregnated with resin means that the resin inclusions other than the reinforcing fibers in the fabric substrate are less than 20% of the entire substrate. Resin-impregnated fabric base materials, such as prepreg base materials, are subjected to shear load until wrinkles are generated according to the measurement method of the present invention. However, since wrinkles are not eliminated, the shaping limit shear deformation angle, which is the maximum shear deformation angle at which no wrinkle is generated in a non-tensioned state, cannot be measured accurately. Similarly, once the wrinkles are fixed due to the fact that a large amount of resin is used as a fixing agent for the fabric base, it is impossible to accurately measure the fabric base that does not release the wrinkles even in a no-tension state. . Therefore, the present invention is applied to a substrate that is substantially impregnated with no resin.
Further, the present invention is applied to a fabric base material in which reinforcing fibers are arranged in two directions. That is, it is only necessary that continuous reinforcing fibers are arranged substantially in two directions, and crimping and undulation may be locally generated. When forming a fabric base material into a complex shape, it is necessary to absorb deformation within the base material surface so that wrinkles do not occur. Usually, the fabric base material used for FRP production is in the form of a fabric in which the reinforcing fibers are constrained, so that the reinforcing fibers are not substantially pulled out. Therefore, as shown in FIG. 1 b), when the reinforcing fibers are arranged in three or more directions, the reinforcing fibers are used in order to be deformed within the surface of the base material while keeping the constraints of the intersections of the reinforcing fibers. There is no choice but to stretch and deform. However, since it is difficult to stretch the reinforcing fibers, in general, a fabric base material in which the reinforcing fibers are arranged in three or more directions cannot be deformed within the surface of the base material, and the formability is extremely poor.

また、図1のc)に示すような、強化繊維が1方向のみに配され、樹脂などの固着材料で拘束されている布帛基材(例えば一方向配向のプリプレグ基材)は、せん断変形を起こすよりも強化繊維同士を引き離す方が簡単であり、複雑な形状に賦形した場合、強化繊維が存在しない部分ができてしまい品位が悪くなることがある。すなわち、賦形性をせん断変形性により評価できない。   Further, as shown in FIG. 1c), a fabric substrate (for example, a unidirectionally oriented prepreg substrate) in which reinforcing fibers are arranged in only one direction and is restrained by a fixing material such as a resin is subjected to shear deformation. It is easier to separate the reinforcing fibers than to wake them up. If the reinforcing fibers are shaped into a complicated shape, a portion where the reinforcing fibers are not present may be formed, resulting in poor quality. That is, the formability cannot be evaluated by the shear deformability.

一方、図1のa)のように強化繊維が2方向に配されている布帛基材では強化繊維同士の交錯点の拘束を守ったまま、強化繊維の存在しない方向へ変形、すなわちせん断変形を起こすことができ、基材面内で容易に変形可能である。すなわち、布帛基材はせん断変形を起こすことで面内の変形を吸収しており、特に強化繊維が2方向に配された布帛基材のせん断変形性に注目することで賦形性を評価できる。   On the other hand, as shown in FIG. 1 a), the fabric base material in which the reinforcing fibers are arranged in two directions is deformed in the direction in which the reinforcing fibers do not exist, that is, shear deformation, while keeping the constraint of the intersection of the reinforcing fibers. It can be raised and can be easily deformed within the substrate surface. That is, the fabric base material absorbs in-plane deformation by causing shear deformation, and the formability can be evaluated by paying attention to the shear deformation property of the fabric base material in which the reinforcing fibers are arranged in two directions. .

なお、強化繊維が3方向以上に配されている場合でも若干の賦形性を有する布帛基材があるが、局所的な強化繊維の引き抜けなどによるものである。   In addition, even when the reinforcing fibers are arranged in three or more directions, there is a fabric base material having a slight formability, which is due to local pulling out of the reinforcing fibers.

ここで、本発明における強化繊維とは、FRP用の強化材となるものであれば特に制限はなく、例えば、炭素繊維、黒鉛繊維、ガラス繊維、および、アラミド、パラフェニレンベンゾビスオキサゾール、ポリビニルアルコール、ポリエチレン、ポリアリレート等の有機繊維等が挙げられ、これらの1種または2種類以上を併用したものを使用することができる。そして、強化繊維が2方向に配されるとは、局所的にクリンプやうねりを有している強化繊維であっても、連続する強化繊維が実質的に2方向の直線状に配向している状態をいう。例えば2軸ステッチ基材などの強化繊維がこれに相当し、それを編んで一体化しているステッチ糸のようなループ状の繊維はこれには相当しない。   Here, the reinforcing fiber in the present invention is not particularly limited as long as it becomes a reinforcing material for FRP. For example, carbon fiber, graphite fiber, glass fiber, aramid, paraphenylene benzobisoxazole, polyvinyl alcohol , Organic fibers such as polyethylene and polyarylate, and the like, and one or a combination of two or more of these can be used. And that the reinforcing fibers are arranged in two directions means that even if the reinforcing fibers have crimps and undulations locally, the continuous reinforcing fibers are substantially oriented linearly in two directions. State. For example, a reinforcing fiber such as a biaxial stitch base material corresponds to this, and a loop-like fiber such as a stitch yarn obtained by knitting and integrating the same does not correspond to this.

そして、本発明においては、前述のように、布帛基材のせん断剛性は賦形への抵抗を示し、賦形性のひとつの指標となり得るが、一般的には布帛基材の賦形抵抗に比べ大きな力を加えて賦形実施するため、これ以上複雑な形状には賦形できない、という賦形の限界点の方が賦形性の実用的な指標となり得ることを見出したことが特徴のひとつである。   In the present invention, as described above, the shear stiffness of the fabric base material indicates resistance to shaping, and can be an index of shaping property. It is characterized by the fact that the limit point of shaping that it is impossible to shape to more complicated shapes can be a more practical indicator of shaping because shaping is performed with a greater force than that. One.

かかる賦形の限界点は、布帛基材が無緊張状態でシワが発生しない最大のせん断変形角を用いて定量化することが出来る。したがって、本発明はかかる最大のせん断変形角、すなわち賦形限界せん断変形角に注目して賦形性の定量化を行い、その基材の賦型性を評価する。   The limit point of such shaping can be quantified using the maximum shear deformation angle at which the fabric substrate is in a non-tensioned state and does not wrinkle. Therefore, the present invention quantifies the formability by paying attention to the maximum shear deformation angle, that is, the shaping limit shear deformation angle, and evaluates the formability of the base material.

図2はせん断変形角θを説明する模式図である。図2のa)において、正方形状の布帛基材4は、面内にせん断荷重を加えるとひし形状に変形する。この際、角部の変形角度量6がひし形状となった布帛基材5のせん断変形角θを示している。図2のb)では、直接強化繊維に注目してせん断変形角を説明している。せん断変形前の強化繊維の配向方向7のなす角度9(2α)とせん断変形後の強化繊維の配向方向8のなす角度10(2β)の差、2α−2βがせん断変形角θに相当する。   FIG. 2 is a schematic diagram for explaining the shear deformation angle θ. In a) of FIG. 2, the square-shaped fabric base 4 is deformed into a diamond shape when a shear load is applied in the plane. At this time, the deformation angle amount 6 of the corner portion indicates the shear deformation angle θ of the fabric base material 5 having a rhombus shape. In FIG. 2 b), the shear deformation angle is explained by paying attention to the reinforcing fiber directly. The difference 2α-2β between the angle 9 (2α) formed by the orientation direction 7 of the reinforcing fiber before shear deformation and the angle 10 (2β) formed by the orientation direction 8 of the reinforcing fiber after shear deformation corresponds to the shear deformation angle θ.

シワとは、布帛基材面内でせん断変形を飲み込むことが出来ず、厚みの薄い布帛基材が座屈して面外に変形した現象を表す。そして、布帛基材を面外に変形しないように無理に拘束した状態でせん断荷重を加えた場合には、賦形限界せん断変形角を越えてもシワが発生しないこともあるが、無緊張状態に戻した瞬間にシワが発生、もしくはせん断変形量が小さくなってしまうため、FRPの製造上問題が生じる。例えば樹脂注入成形において布帛基材成形前駆体であるプリフォーム作成時、プレスなどにより一旦は布帛基材を複雑な形状に賦形することが出来たとしても、プレス圧から解放された瞬間、シワが発生したり、せっかく賦形された形状が変わってしまう可能性がある。そこで、本発明では、無緊張状態で保持可能な最大のせん断変形角を賦形限界せん断変形角とすることで、実用的な賦形性の指標とする。   The wrinkle represents a phenomenon in which the shear deformation cannot be swallowed within the surface of the fabric base, and the thin fabric base is buckled and deformed out of plane. And when a shear load is applied in a state where the fabric base material is forcibly restrained so as not to be deformed out of the plane, wrinkles may not occur even if the shaping limit shear deformation angle is exceeded, but there is no tension. Since wrinkles are generated or the amount of shear deformation becomes small at the moment of returning to, a problem in manufacturing FRP occurs. For example, when forming a preform that is a fabric base molding precursor in resin injection molding, even if the fabric base can be once shaped into a complicated shape by a press or the like, May occur or the shape of the shape may change. Therefore, in the present invention, the maximum shear deformation angle that can be maintained in a non-tensioned state is set as the shaping limit shear deformation angle, thereby providing a practical formability index.

なお、樹脂による層間固着が施された布帛基材などは加熱により樹脂が軟化し、強化繊維同士の拘束が緩くなる。そのため、室温における賦形限界せん断変形角と高温における賦形限界せん断変形角は自ずと異なる。したがって、せん断変形負荷と賦形限界せん断変形角の測定は同一雰囲気下で行われなければならない。2軸ステッチ基材のステッチ糸として熱可塑性樹脂を適用している場合にも、加熱によりステッチ糸の変形抵抗が小さくなり、強化繊維の拘束が緩くなり、結果限界せん断変形角が向上することがある。したがって、同一の温度条件下で取得した限界せん断変形角を比較することで、かかる温度における賦形性の定量的な比較が可能となる。   In addition, the fabric base material etc. to which the interlayer adhesion by the resin has been performed soften the resin by heating, and the restraint between the reinforcing fibers becomes loose. Therefore, the shaping limit shear deformation angle at room temperature is different from the shaping limit shear deformation angle at high temperature. Therefore, the shear deformation load and the shaping limit shear deformation angle must be measured in the same atmosphere. Even when a thermoplastic resin is applied as the stitch yarn of the biaxial stitch base material, the deformation resistance of the stitch yarn is reduced by heating, the restraint of the reinforcing fiber is loosened, and as a result, the limit shear deformation angle is improved. is there. Therefore, by comparing the limit shear deformation angles acquired under the same temperature condition, it becomes possible to quantitatively compare the shapeability at such temperatures.

図3、4に、布帛基材の面内にせん断荷重を加える装置の一例を示す。   3 and 4 show an example of an apparatus for applying a shear load in the plane of the fabric substrate.

図3では、2方向に配された強化繊維のうち一方がフレーム11に対して垂直方向に配されるよう長方形状に布帛基材を切り出した試験片をフレーム11とそれに平行なフレーム12にクランプしてセットする。フレーム12には錘13がつるされており端部には紐14が結ばれている。錘13はセット時に強化繊維がぴんと張るレベルの重量であり、強化繊維が破断するような大きな重量は加えない。紐14を左右どちらかに引張ることで、布帛基材にせん断荷重を加えることが出来る。強化繊維の配向方向や補助糸などの存在により、左に引張るか右に引張るかでせん断変形性が異なり、その結果、方向により賦形限界せん断変形角が異なることもある。   In FIG. 3, a test piece obtained by cutting out a fabric base material in a rectangular shape so that one of the reinforcing fibers arranged in two directions is arranged in a direction perpendicular to the frame 11 is clamped to the frame 11 and the frame 12 parallel thereto. And set. A weight 13 is suspended from the frame 12 and a string 14 is tied to the end. The weight 13 is a weight at which the reinforcing fiber is tight when set, and does not add such a large weight that the reinforcing fiber breaks. A tensile load can be applied to the fabric substrate by pulling the string 14 to the left or right. Depending on the orientation direction of the reinforcing fibers and the presence of the auxiliary yarn, the shear deformation property differs depending on whether it is pulled leftward or rightward. As a result, the shaping limit shear deformation angle may differ depending on the direction.

図4では、フレーム17、18がひし形を形成するように配され各頂点がピン19で固定された、対角線方向に可動な冶具に、2方向に配列した強化繊維がそれぞれ2辺に並行となるように切り出した平行四辺形状(強化繊維が直交している場合には長方形状)の布帛基材の試験片を、2方向に配向した強化繊維がそれぞれフレーム17、フレーム18に平行となるようセットされている。フレーム18は布帛基材をピン19とピン19を結ぶラインをクランプの境界線として試験片を挟み込めるようになっている。方向15に引張荷重を加えることで、せん断荷重を布帛基材に伝達することが出来る。   In FIG. 4, reinforcing fibers arranged in two directions are parallel to two sides in a diagonally movable jig in which the frames 17 and 18 are arranged so as to form a rhombus and each vertex is fixed by a pin 19. A test piece of a fabric base having a parallelogram shape cut out in this manner (or a rectangular shape when the reinforcing fibers are orthogonal) is set so that the reinforcing fibers oriented in two directions are parallel to the frame 17 and the frame 18, respectively. Has been. The frame 18 is configured so that a test piece can be sandwiched between a cloth base material and a line connecting the pin 19 and the pin 19 as a boundary line of the clamp. By applying a tensile load in direction 15, a shear load can be transmitted to the fabric substrate.

図3、4に挙げたような装置を用いて、強化繊維が2方向に配された樹脂未含浸である布帛基材の面内に、クランプ部や自由端部から少なくとも1cm以上離れた中央部にシワが発生するまでせん断荷重を加えた後、クランプを解除してせん断荷重を解放し、布帛基材を無緊張状態とする。その後、クランプ部や自由端などの周辺の影響を受けにくい試験体のかかる中央部を観察して、残留したせん断変形角を測定する。測定方法は図2のb)に示したように、試験前に測定した2方向の強化繊維がなす角度9(2α)から、試験後に測定した2方向の強化繊維がなす角度10(2β)を差し引いた、2β−2αが測定時のせん断変形角θとなる。こうして得たせん断変形角θを賦形限界せん断変形角φとして得る。   3 and 4, using a device as shown in FIGS. 3 and 4, a central part at least 1 cm away from the clamp part and the free end part in the plane of the resin base impregnated with reinforcing fibers in two directions and not impregnated with resin. After applying a shearing load until wrinkles are generated, the clamp is released to release the shearing load, and the fabric substrate is brought into a non-tensioned state. Thereafter, the central part of the specimen that is not easily influenced by the surroundings such as the clamp part and the free end is observed, and the remaining shear deformation angle is measured. As shown in FIG. 2 b), the measurement method is performed by changing the angle 10 (2β) formed by the two-direction reinforcing fibers after the test from the angle 9 (2α) formed by the two-direction reinforcing fibers measured before the test. The subtracted 2β-2α is the shear deformation angle θ at the time of measurement. The shear deformation angle θ thus obtained is obtained as the shaping limit shear deformation angle φ.

せん断変形角測定時には試験片に反りやシワがなく、平滑な状態でなければならない。図3、4などの方法によりシワが発生するまでせん断荷重を加えた後、素速く解放し試験体を平滑な面に置き、上からガラス板など透明で平滑な板を置く。上から置く板は置くだけで試験体の形状が変わってしまうほど極端に重くない方が好ましい。上から平滑な板を置くことにより、試験体の端部の反りや残留したシワを平滑にすることができる。シワがない状態で残留したせん断変形角θを測定し、賦形限界せん断変形角φとして得る。   When measuring the shear deformation angle, the specimen must be smooth and free of warping and wrinkles. After applying a shear load until wrinkles are generated by the method shown in FIGS. 3 and 4, the specimen is quickly released and placed on a smooth surface, and a transparent and smooth plate such as a glass plate is placed on the top. It is preferable that the plate placed from above is not extremely heavy so as to change the shape of the specimen simply by placing it. By placing a smooth plate from above, it is possible to smooth the warpage of the end of the specimen and the remaining wrinkles. The residual shear deformation angle θ in the absence of wrinkles is measured and obtained as the shaping limit shear deformation angle φ.

さらに好ましくは、強化繊維が長辺方向に関してα°方向と−α°方向とに配され、かつ、短辺長さWと長辺長さLとの比L/Wが2/tanα以上である長方形の前記基材を用意し、該基材の短辺を固定して長辺方向に該基材の引張最大荷重の20%にあたる引張荷重を負荷した後、該荷重を解放し、対向する2つの長辺の中間点を結んだ線の長さW’を測定し、次式に従って得られるせん断変形角φを賦形限界せん断変形角として得る(以下、かかる一連の測定手順を測定法Aとする)のがよい。   More preferably, the reinforcing fibers are arranged in the α ° direction and the −α ° direction with respect to the long side direction, and the ratio L / W of the short side length W to the long side length L is 2 / tan α or more. The rectangular base material is prepared, the short side of the base material is fixed, and a tensile load corresponding to 20% of the maximum tensile load of the base material is applied in the long side direction. The length W ′ of the line connecting the midpoints of the two long sides is measured, and the shear deformation angle φ obtained according to the following equation is obtained as the shaping limit shear deformation angle (hereinafter, this series of measurement procedures is referred to as measurement method A and To do).

具体的には、まず、強化繊維が2方向に配された樹脂未含浸である布帛基材を長方形に切り出し、試験片を用意する。図5の拡大図のように、2方向の強化繊維のなす角度34が2α°である時、長辺方向31を0°とした時に強化繊維がα°方向33と−α°方向32に配されるよう、調整して切り出す。長辺長さLと短片長さWの比は少なくとも2/tanα以上でなくてはならない。また、測定精度を保証するため、少なくともWは25mm以上でなくてはならず、好ましくは50mm以上1000mm以下であるのがよい。さらに好ましくは100mm以上300mm以下がよい。   Specifically, first, a non-resin impregnated fabric base material in which reinforcing fibers are arranged in two directions is cut into a rectangular shape to prepare a test piece. As shown in the enlarged view of FIG. 5, when the angle 34 formed by the reinforcing fibers in two directions is 2α °, the reinforcing fibers are arranged in the α ° direction 33 and the −α ° direction 32 when the long side direction 31 is 0 °. Adjust and cut out. The ratio of the long side length L to the short piece length W must be at least 2 / tan α or more. In order to guarantee the measurement accuracy, at least W must be 25 mm or more, and preferably 50 mm or more and 1000 mm or less. More preferably, it is 100 mm or more and 300 mm or less.

測定法Aを用いて測定できる条件は、強化繊維の弾性率に比べ、せん断剛性が無視できるほど小さいことである。金属や紙のように面内等方性である基材はせん断剛性が無視できないが、FRPに用いられる一般的な2軸の基材は、強化繊維の配向されている方向は剛性が高い一方、簡単にせん断変形出来ることから、本発明の手法で評価するのに適している。   The condition that can be measured using the measuring method A is that the shear rigidity is negligible compared to the elastic modulus of the reinforcing fiber. In-plane isotropic substrates such as metal and paper cannot have negligible shear rigidity, but general biaxial substrates used for FRP have high rigidity in the direction in which the reinforcing fibers are oriented. Since it can be easily sheared, it is suitable for evaluation by the method of the present invention.

また、測定法Aにおいて試験片を引張った場合、図5のような幾何学的な関係性が現れる。領域24においては強化繊維が突っ張り、強化繊維同士の関係が崩れず変形しない。従って、角度36は2α°で保存される。領域25においては強化繊維交錯点の拘束が外れ端部から解れが起こる。領域26ではせん断変形が起こる。L/Wが2/tanα未満の場合、図6のa)のように領域26が両長辺の端部にまで広がらず、対向する2つの長辺の中間点を結んだ線の長さW’からはせん断変形角が求まらない。L/Wが2/tanαの場合に初めて、図6のb)のようにちょうど領域26が両長辺の端部にまで届く。好ましくは図6のc)のようにL/Wが2/tanαより大きく、L/Wが2/tanα+0.5以上、2/tanα+3以下であれば十分なW’の測定領域が得られてよい。さらに好ましくは2/tanα+1以上、2/tanα+2以下がよい。なお、長辺長さLにはつかみ部長さは含まれておらず、引張荷重を加えるためのつかみ部35はクランプ部の大きさに応じて、適宜長さを付け足さなければならない。   Further, when the test piece is pulled in the measuring method A, a geometrical relationship as shown in FIG. 5 appears. In the region 24, the reinforcing fibers are stretched and the relationship between the reinforcing fibers is not broken and is not deformed. Thus, angle 36 is stored at 2α °. In the region 25, the reinforcing fiber crossing point is unconstrained and unraveled from the end. In region 26, shear deformation occurs. When L / W is less than 2 / tan α, the region 26 does not extend to the ends of both long sides as shown in FIG. 6A, and the length W of the line connecting the midpoints of the two long sides facing each other. The shear deformation angle cannot be obtained from '. Only when L / W is 2 / tan α, the region 26 reaches the end of both long sides as shown in FIG. Preferably, if L / W is larger than 2 / tan α and L / W is not less than 2 / tan α + 0.5 and not more than 2 / tan α + 3 as shown in FIG. 6 c), a sufficient W ′ measurement region may be obtained. . More preferably, it is 2 / tan α + 1 or more and 2 / tan α + 2 or less. The long side length L does not include the length of the grip portion, and the grip portion 35 for applying a tensile load must be appropriately added according to the size of the clamp portion.

なお、2方向の強化繊維が完全に直交していない限り、強化繊維同士のなす角度には2種類の取り方が可能となる。したがって、同一基材であっても、強化繊維の配行方向が異なる2種類の試験体が必要となる。一般的にはこのような基材は2方向のせん断変形性を持ち、同一基材に2つの賦形限界せん断変形角が規定される。   In addition, as long as the reinforcing fibers in the two directions are not completely orthogonal, two kinds of methods are possible for the angle formed by the reinforcing fibers. Therefore, even if it is the same base material, two types of test bodies in which the distribution directions of the reinforcing fibers are different are required. In general, such a base material has shear deformation in two directions, and two shaping limit shear deformation angles are defined for the same base material.

条件を満たした試験片が用意できたら、次に引張最大荷重を計測する。両短辺を完全固定した状態で引張荷重を加える。例えば万能試験機に試験片のつかみ部をクランプした冶具を取り付け、試験片に引張荷重を加える。引張速度は静的な試験となるよう一定速度で低速に、L/1000mm/分以上、Lmm/分以下で行う。さらに好ましくはL/100mm/min以上、L/10mm/min以下がよい。引張荷重を加えると、図5のように、試験片形状が変形する。   When a specimen that satisfies the conditions is prepared, the maximum tensile load is measured. A tensile load is applied with both short sides completely fixed. For example, a jig that clamps a grip portion of a test piece is attached to a universal testing machine, and a tensile load is applied to the test piece. The tensile speed is a constant speed and a low speed, L / 1000 mm / min or more and Lmm / min or less so as to be a static test. More preferably, L / 100 mm / min or more and L / 10 mm / min or less are good. When a tensile load is applied, the shape of the test piece is deformed as shown in FIG.

図10に一般的な炭素繊維平織物の引張試験の荷重−変位曲線の一例を示した。最初、緩やかに荷重が上昇する段階49では、領域26がせん断変形を起こしており、主に試験機より与えられた変位により発生する繊維同士の摩擦力が荷重として現れているといえる。測定は一定速度で行わなければならない。指数関数的に荷重が上昇する段階50では織物であれば強化繊維同士によって、2軸ステッチ基材であればステッチ糸によって強化繊維がきつく拘束されており、強化繊維が容易に移動できなくなっている。強化繊維糸条が締め付けられ変形することによる荷重上昇が起き、さらには面内で変形しきれずに面外に変形して反りやシワが発生し始める。さらに荷重上昇の傾きがピークを越え、最終的に荷重が頭打ちになる段階51では試験片の端部の解れ、特に領域25で強化繊維が拘束を外れて布帛組織が壊れ始め、ついには引張荷重が最大値47を迎える。このような最大引張荷重測定試験を少なくともN数=3以上で実施し、その平均をその水準の最大引張荷重とする。好ましくはN数=5以上がよい。   FIG. 10 shows an example of a load-displacement curve of a general carbon fiber plain fabric tensile test. Initially, at the stage 49 where the load gradually increases, it can be said that the region 26 undergoes shear deformation, and the frictional force between the fibers generated mainly by the displacement given from the testing machine appears as the load. Measurements must be made at a constant rate. In the stage 50 where the load increases exponentially, the reinforcing fibers are tightly constrained by the reinforcing fibers if they are woven fabrics, and the reinforcing fibers are not easily moved by the stitch yarn if they are biaxial stitch base materials. . When the reinforcing fiber yarns are tightened and deformed, the load increases. Further, the reinforcing fiber yarns are deformed out of the plane without being completely deformed within the surface, and warping and wrinkling start to occur. Further, the slope of the load increase exceeds the peak, and finally the load reaches a peak, and at the end 51, the end of the specimen is unwound, particularly in the region 25, the reinforcing fibers are unconstrained and the fabric structure starts to break. Reaches a maximum value of 47. Such a maximum tensile load measurement test is performed with at least N number = 3 or more, and the average is defined as the maximum tensile load at that level. Preferably, N number = 5 or more.

こうして取得した引張最大荷重47の20%の引張荷重48を別に用意した同水準の試験片に対して加える。強化繊維が2方向に配向した樹脂未含浸の試験基材について検討したところ、引張最大荷重の20%を加えた際、いずれの基材も領域50の範囲内であることが分かった。領域51に到達するまで引張荷重を加えてしまうと、布帛組織が破壊されてしまうため、正確な賦形限界せん断変形角の測定が出来ない。試験条件は引張最大荷重47を取得した時と同等であり、20%まで引張荷重が達したところで、試験片のクランプを解き、無緊張状態とする。例えば、強化繊維がスポット的に樹脂などで固着されている基材の場合、初期に荷重が大きく上がった後、固着が解かれ荷重が低下する布帛基材もあるが、最初に引張最大荷重20%を超過した点で負荷を停止する。無緊張状態とすることで、反りやシワなど面外の変形や、無緊張下では保持できない強化繊維糸条の変形などを解放することが出来、純粋にせん断変形角の限界が測定可能となる。なお、引張荷重の除荷には圧縮荷重を加えないよう注意して行わなければならない。   A tensile load 48 which is 20% of the maximum tensile load 47 thus obtained is added to a test piece of the same level prepared separately. Examination of the resin-impregnated test base material in which the reinforcing fibers are oriented in two directions revealed that all the base materials were within the range 50 when 20% of the maximum tensile load was applied. If a tensile load is applied until the region 51 is reached, the fabric structure is destroyed, so that the accurate shaping limit shear deformation angle cannot be measured. The test conditions are the same as when the maximum tensile load 47 is acquired. When the tensile load reaches 20%, the test piece is unclamped to be in a no-tension state. For example, in the case of a base material to which reinforcing fibers are fixed in a spot manner with a resin or the like, there is a fabric base material in which the fixing is released and the load is reduced after the load is greatly increased in the initial stage. The load is stopped when the percentage is exceeded. By setting the tension-free state, it is possible to release out-of-plane deformation such as warping and wrinkles, and deformation of the reinforcing fiber yarn that cannot be held under tension, and the limit of the shear deformation angle can be measured purely. . Care must be taken not to apply a compressive load when unloading the tensile load.

除荷後、領域26に注目して、図2のb)で示したように強化繊維の配向方向を直接分度器などで測定することにより、せん断変形角を求めることも可能であるが、本発明においては幾何学的に試験片の幅からせん断変形角を計算できることを利用し、対向する2つの長辺の中間点を結んだ線の長さである試験片中央幅W’を測定する。図8のように、強化繊維が糸条単位で移動して、試験片端部がギザギザになっている場合もある。それぞれの強化繊維糸条端部はもともと同一線上に乗っていたので、その移動平均をとり、強化繊維糸条の最も出っ張った部分43とへっこんだ部分44の中間線45を試験片長辺端部と認識し、両長辺の中間点を結んだ線の長さW’を測定する。測定する際には、測定部に反りやシワがないことが条件になるため、図7のように平坦な台38の上に最大引張荷重の20%が負荷された試験片40を載せ、その上からガラス板など透明で平滑な板39をおいてW’を測定する。引張試験後長時間が経過すると強化繊維糸条の変形が回復し幅W’が大きくなる傾向がある布帛基材もある。好ましくは引張最大荷重の20%の引張荷重を負荷してから1分以内にW’の測定を行うのがよい。さらに好ましくは30秒以内がよい。少なくとも最大引張荷重の20%を負荷した試験片をN数=3以上で測定し、それらの平均値を賦形限界せん断変形角として得る。好ましくはN数=5以上で測定するのがよい。   After unloading, it is possible to obtain the shear deformation angle by directly measuring the orientation direction of the reinforcing fiber with a protractor as shown in FIG. In FIG. 2, the fact that the shear deformation angle can be calculated geometrically from the width of the test piece is used to measure the test piece center width W ′, which is the length of the line connecting the midpoints of the two opposing long sides. As shown in FIG. 8, the reinforcing fiber may move in units of yarn and the end of the test piece may be jagged. Since each reinforcing fiber yarn end was originally on the same line, the moving average was taken, and the middle line 45 of the most protruding portion 43 and the recessed portion 44 of the reinforcing fiber yarn was taken as the long edge of the test piece. The length W ′ of the line connecting the midpoints of both long sides is measured. When measuring, since it is a condition that there is no warping or wrinkles in the measurement part, a test piece 40 loaded with 20% of the maximum tensile load is placed on a flat table 38 as shown in FIG. From above, a transparent and smooth plate 39 such as a glass plate is placed, and W ′ is measured. Some fabric base materials tend to recover the deformation of the reinforcing fiber yarn and increase the width W ′ after a long time has passed after the tensile test. Preferably, W ′ is measured within 1 minute after applying a tensile load of 20% of the maximum tensile load. More preferably within 30 seconds. Test specimens loaded with at least 20% of the maximum tensile load are measured at N number = 3 or more, and an average value thereof is obtained as a shaping limit shear deformation angle. It is preferable to measure with N number = 5 or more.

本発明は、αが45である場合、すなわち強化繊維が2方向に直交する樹脂未含浸の布帛基材の賦型性を評価する方法として特に適している。この場合、強化繊維が長辺方向に関して45°方向と−45°方向とに配される。強化繊維が直交しているため、強化繊維が存在しない2つの方向領域が、−45°〜45°および45°〜135°と共に90°となる。補助糸やステッチ糸など点対称性を崩す介在物が存在しない場合には、両方向とも同等のせん断変形性を有するため、片方の方向のみ試験すればよい。かかる布帛基材としては、平織、綾織などの2軸織物基材、ステッチ糸によって強化繊維を拘束した2軸のステッチ基材などがある。特に、平織物基材の場合、樹脂注入成形などに最も汎用的に適用され、賦型性の定量化が求められているので、特に好ましい。   The present invention is particularly suitable when α is 45, that is, as a method for evaluating the formability of a non-resin impregnated fabric base material in which reinforcing fibers are orthogonal to two directions. In this case, the reinforcing fibers are arranged in the 45 ° direction and the −45 ° direction with respect to the long side direction. Since the reinforcing fibers are orthogonal, the two directional regions where the reinforcing fibers are not present are 90 ° together with −45 ° to 45 ° and 45 ° to 135 °. When there is no inclusion that breaks point symmetry such as auxiliary yarn or stitch yarn, both directions have the same shear deformability, so only one direction needs to be tested. Such fabric base materials include biaxial woven base materials such as plain weave and twill weave, and biaxial stitch base materials in which reinforcing fibers are constrained by stitch yarns. In particular, a plain woven fabric substrate is particularly preferred because it is most commonly applied to resin injection molding and the like, and quantification of moldability is required.

上記のような手法で布帛基材特有の賦形限界せん断変形角を測定し、かかる布帛基材を賦形してプリフォームを作成するには、プリフォーム全域でかかる賦形限界せん断変形角を越えないようにプリフォーム設計を行い、かかるプリフォームを用いてFRPを製造するのが好ましい。それによりプリフォームにシワが発生しないことが保証されるので、欠陥のない品位の良いFRPを作成することが可能となる。具体的には、例えば賦形シミュレーションソフトを活用してプリフォーム設計を行う。プリフォーム上の繊維配向をシミュレーションし、せん断変形角が賦形限界せん断変形角を越える部位を計測する。かかる賦形限界せん断変形角を越える部位が存在しなくなるまで、賦形方向の変更や布帛基材への切れ込みを工夫することで、プリフォーム全域で賦形限界せん断変形角を超えないプリフォームを設計できる。   To measure the shaping limit shear deformation angle peculiar to a fabric base by the above-described method, and to create a preform by shaping the fabric base, the shaping limit shear deformation angle over the entire preform is set. It is preferable that the preform is designed so as not to exceed and FRP is produced using such a preform. As a result, it is guaranteed that the preform will not be wrinkled, so that a high-quality FRP having no defect can be produced. Specifically, for example, preform design is performed using shaping simulation software. The fiber orientation on the preform is simulated and the part where the shear deformation angle exceeds the shaping limit shear deformation angle is measured. Preforms that do not exceed the shaping limit shear deformation angle in the entire preform area by devising changes in the shaping direction and cutting into the fabric base until there are no more sites that exceed the shaping limit shear deformation angle. Can design.

(使用した基材)
賦型限界せん断変形角を測定する、強化繊維が2方向に配列している基材として、以下の5種類のものを用意した。
・平織物基材CO6343B(東レ社製):炭素繊維フィラメントが3000本束ねられ2軸に直交して平織組織した織物
・平織物基材BT70−30(東レ社製):炭素繊維フィラメントが12000本束ねられ2軸に直交して平織組織した織物
・UD織物基材UT70−30(東レ社製):炭素繊維フィラメントが12000本束ねられ補助糸であるガラス繊維により直交して強化繊維が一方向(UD)に組織した織物
・2軸ステッチ基材A:+45°/−45°ステッチ基材であり、0°方向の鎖編で一体化されているもの
・2軸ステッチ基材B:+22.5°/−22.5°ステッチ基材であり、変則1/1トリコット編で一体化されているもの
(実施例1)
上記5種類の布帛基材に対して、測定法Aを適用して賦形限界せん断変形角を測定した。すべての試験手順は室温(25℃)中で実施した。
(Substrate used)
The following five types of base materials on which the reinforcing fiber is arranged in two directions for measuring the forming limit shear deformation angle were prepared.
Plain fabric base material CO6343B (manufactured by Toray Industries, Inc.): A fabric in which 3000 carbon fiber filaments are bundled and plain weave structure perpendicular to the two axes. Plain fabric base material BT70-30 (manufactured by Toray Industries, Inc.): 12000 carbon fiber filaments Woven fabric / UD woven fabric base material UT70-30 (manufactured by Toray Industries, Inc.) woven in a plane and perpendicular to the two axes: 12,000 carbon fiber filaments are bundled and orthogonally reinforced with glass fibers as auxiliary yarns in one direction ( UD) woven fabric ・ Biaxial stitch base material A: + 45 ° / −45 ° stitch base material, integrated by chain stitch in 0 ° direction ・ Biaxial stitch base material B: +22.5 ° / -22.5 ° stitch base material, integrated with irregular 1/1 tricot knitting (Example 1)
Measurement method A was applied to the above five types of fabric base materials to measure the forming limit shear deformation angle. All test procedures were performed at room temperature (25 ° C.).

上記5種類の布帛基材から、それぞれ、100mm×340mm(内、両端のつかみ部がそれぞれ100mm×20mm)の長方形状に試験片を切り出すにあたり、強化繊維方向をγ°と−γ°として、0°方向に長辺、90°方向に短辺を取った0°方向試験片、90方向に長辺、0°方向に短辺を取った90°方向試験片の2種類の試験片を6枚ずつ切り出した。例えば2軸ステッチ基材Bに関しては、0°方向試験片に関してはα=22.5°、90°方向試験片に関してはα=67.5°となる。   When cutting out the test pieces from the above five types of fabric bases into a rectangular shape of 100 mm × 340 mm (with each gripping part being 100 mm × 20 mm), the reinforcing fiber directions are γ ° and −γ °, 0 6 pieces of 2 kinds of test pieces: 0 ° direction test piece with long side in ° direction, short side in 90 ° direction, 90 ° direction test piece with long side in 90 direction and short side in 0 ° direction Cut out one by one. For example, for the biaxial stitch base B, α = 22.5 ° for the 0 ° direction test piece and α = 67.5 ° for the 90 ° direction test piece.

引張最大荷重を測定するため、試験片を万能試験機INSTRON5566にセットする。長方形試験片の短辺を両方、長手方向につかみ部20mmでチャックに完全固定し、図5のように長辺長さL、すなわちチャック間28が300mm、短辺長さW、すなわち試験片幅27が100mmとした。引張速度が10mm/minとなるように試験片を一定速度で引張った。万能試験機から出力された、変位と荷重の関係とを見比べながら、引張最大荷重を測定した。続けて同様の試験を行い、各基材の0°方向試験片および90°方向試験片に対してそれぞれN数=3で測定を行い、それらの平均から各試験片の引張最大荷重を測定した。図10は平織物基材CO6343Bの0°方向試験片の荷重−変位曲線、図11のa)、b)は2軸ステッチ基材Aの0°方向試験片、90°方向試験片それぞれの荷重−変位曲線を示す。   In order to measure the maximum tensile load, the test piece is set in the universal testing machine INSTRON 5566. Both of the short sides of the rectangular test piece are completely fixed to the chuck with a grip portion of 20 mm in the longitudinal direction, and as shown in FIG. 5, the long side length L, that is, the interval between the chucks is 300 mm, and the short side length W is the test piece width 27 was 100 mm. The test piece was pulled at a constant speed so that the tensile speed was 10 mm / min. The tensile maximum load was measured while comparing the relationship between the displacement and the load output from the universal testing machine. Subsequently, the same test was performed, and the 0 ° direction test piece and the 90 ° direction test piece of each base material were measured at N number = 3, and the tensile maximum load of each test piece was measured from the average. . FIG. 10 is a load-displacement curve of a 0 ° direction test piece of the plain fabric base material CO6343B, and FIGS. 11A and 11B are loads of the 0 ° direction test piece and the 90 ° direction test piece of the biaxial stitch base material A, respectively. -Shows the displacement curve.

次に、各水準残りの3本の試験片に対し、引張最大荷重の20%を同様の試験により負荷した。荷重が20%に達したところで下部チャック、上部チャックの順に試験片のつかみ部を解放し、1分後に、図7のような平滑な台38の上に試験片40を置いてガラス板39で試験片を平滑にならし、対向する2つの長辺の中間点を結んだ線の長さW’を測定した。その際、長辺端部のギザギザは図8の基準に従い、強化繊維糸条端部の最も出っ張った部分43と引っ込んだ部分44の中間線45を長辺端部と認識し、W’の測定を行った。   Next, 20% of the maximum tensile load was applied to the remaining three test pieces at each level by the same test. When the load reaches 20%, the gripping part of the test piece is released in the order of the lower chuck and the upper chuck, and after 1 minute, the test piece 40 is placed on a smooth table 38 as shown in FIG. The test piece was smoothed and the length W ′ of the line connecting the midpoints of the two opposing long sides was measured. At that time, the jaggedness of the long side end portion is recognized as the long side end portion by recognizing the intermediate line 45 of the most protruding portion 43 and the retracted portion 44 of the reinforcing fiber yarn end portion according to the standard of FIG. Went.

こうして測定された賦形限界せん断変形角を表1にまとめた。   The shaping limit shear deformation angles thus measured are summarized in Table 1.

一般的に賦形性が高いとされる平織物基材CO6343Bおよび平織物基材BT70−30は0°方向試験片、90°方向試験片何れも30°以上の限界せん断変形角を有していた。一方、2軸ステッチ基材Aは、0°方向試験片と90°方向試験片で限界せん断変形角が異なるという結果が得られた。0°方向試験片の場合には、図9のa)が示すように、引張方向に鎖編が施されており、ステッチ糸自体が突っ張って抵抗となり変形を妨げていたため、低い限界せん断変形角となった。一方、90°方向試験片の場合には、図9のb)が示すように引張方向と垂直に鎖編が施されており、変形を阻害するものが存在しないため、だらだらと変形した。2軸ステッチ基材Bは本実施例の中で唯一強化繊維が直交しておらず、0°方向試験片と90°方向試験片とで賦形限界せん断変形角が異なった。0°方向試験片では−22.5°〜22.5°の45°、90°方向試験片では22.5°〜157.5°の135°と理屈上、せん断変形可能な領域が試験方向によって異なるため、表1のように賦形性に異方性が発現したものと考えられる。このように、基材によっては2種類の賦形限界せん断変形角を持つことが分かった。
(実施例2)
賦形限界せん断変形角の妥当性を検証するために、実際の賦形実験と賦形限界せん断変形角を用いた賦形シミュレーションを比較した。
The plain woven fabric base material CO6343B and the plain woven fabric base material BT70-30, which are generally considered to have high formability, have a limit shear deformation angle of 30 ° or more in both the 0 ° direction test piece and the 90 ° direction test piece. It was. On the other hand, as for biaxial stitch base material A, the result that a limit shear deformation angle differs with a 0 degree direction test piece and a 90 degree direction test piece was obtained. In the case of the 0 ° direction test piece, as shown in FIG. 9 a), a chain stitch is applied in the tensile direction, and the stitch yarn itself was stretched to resist and prevent deformation, so that the low limit shear deformation angle It became. On the other hand, in the case of the 90 ° direction test piece, as shown in FIG. 9 b), the chain knitting was performed perpendicularly to the tensile direction, and there was nothing that hindered the deformation, so that it was deformed gently. In the biaxial stitch base material B, the only reinforcing fibers are not orthogonal in this example, and the shaping limit shear deformation angle was different between the 0 ° direction test piece and the 90 ° direction test piece. For the 0 ° direction test piece, 45 ° from −22.5 ° to 22.5 °, and for the 90 ° direction test piece, 135 ° from 22.5 ° to 157.5 °, theoretically, the region where shear deformation is possible is the test direction. Therefore, it is considered that anisotropy appears in the formability as shown in Table 1. Thus, it turned out that it has two types of shaping limit shear deformation angles depending on a base material.
(Example 2)
In order to verify the validity of the shaping limit shear deformation angle, we compared the actual shaping experiment and the shaping simulation using the shaping limit shear deformation angle.

図12に賦形実験の様子を示す。500×500mmに切り出した布帛基材57を210mm直径の穴が空いたプレート58と59とで挟み込み、直径200mmの半球状の型60に押しつけた。布帛基材57はプレート58と59の間で滑りながら、半球状の賦形型60に賦形された。平織物基材CO6343BとUD織物基材UT70−30について、該賦形実験を実施したところ、CO6343Bは一部にシワが発生したものの、ほぼ全面できれいな表面品位となった一方、UT70−30はほぼ全面でシワが発生し、きれいに賦形出来なかった。   FIG. 12 shows the state of the shaping experiment. The fabric base material 57 cut out to 500 × 500 mm was sandwiched between plates 58 and 59 with holes having a diameter of 210 mm, and pressed against a hemispherical mold 60 having a diameter of 200 mm. The fabric substrate 57 was shaped into a hemispherical shaping mold 60 while sliding between the plates 58 and 59. When the shaping experiment was carried out for the plain woven fabric base material CO6343B and the UD woven fabric base material UT70-30, although the wrinkles occurred in part of CO6343B, the surface quality was almost clean on the entire surface, while UT70-30 was Wrinkles occurred on almost the entire surface, and it was not possible to shape it cleanly.

一方、図13には汎用シミュレーションソフトFiberSIM(Vistagy社)を用いた半球状賦形型へのシミュレーション結果を示す。図中の網目が基材の強化繊維の配向を示しており、せん断変形角の段階に応じて3段階のトーンに色分けされている。実施例1によると賦形限界せん断変形角は、平織物基材CO6343Bが両方向とも44°、UD織物基材UT70−30が両方向とも20°という結果であった。これら賦形限界せん断変形角を賦形の限界値としてシミュレーションに代入した。賦形限界せん断変形角を越えた部位52を丸枠で囲んだ。   On the other hand, FIG. 13 shows a simulation result to a hemispherical shaping mold using general-purpose simulation software FiberSIM (Vistagy). The mesh in the figure indicates the orientation of the reinforcing fibers of the base material, and is color-coded into three levels of tone according to the level of shear deformation angle. According to Example 1, the shaping limit shear deformation angle was a result that the plain woven fabric base material CO6343B was 44 ° in both directions and the UD woven fabric base material UT70-30 was 20 ° in both directions. These shaping limit shear deformation angles were substituted into the simulation as shaping limit values. A part 52 exceeding the shaping limit shear deformation angle was surrounded by a round frame.

図13のa)は賦形限界せん断変形角44°のシミュレーション例である。半球状では側面部の一部にせん断変形角が44°を越える部位があるものの、ほぼ全面で下回っており、平織物基材CO6343Bは半球上にある程度きれいに賦形出来ることを示している。一方、図13のb)は賦形限界せん断変形角20°のシミュレーション例である。半球状の大部分で20°を越えており、UD織物基材UT70−30は半球状に賦形出来ないことを示している。   FIG. 13 a) is a simulation example with a shaping limit shear deformation angle of 44 °. In the hemisphere, although there is a part where the shear deformation angle exceeds 44 ° in a part of the side surface portion, it is below almost the entire surface, indicating that the plain woven fabric base material CO6343B can be shaped to a certain degree on the hemisphere. On the other hand, FIG. 13 b) is a simulation example of a shaping limit shear deformation angle of 20 °. Most of the hemisphere exceeds 20 °, indicating that the UD woven substrate UT70-30 cannot be shaped into a hemisphere.

このように、実験結果とシミュレーション結果に整合性が取れており、賦形限界せん断変形角の測定値が妥当なものであることが分かった。   Thus, it was found that the experimental results and the simulation results are consistent, and the measured value of the shaping limit shear deformation angle is reasonable.

本発明の評価方法を用いれば、強化繊維が2方向に配された実質的に樹脂未含浸の布帛基材の賦形性を精度良く定量化することができ、かかる布帛基材を用いたプリフォームを精度良く設計でき、望ましいFRPを安定生産可能となる。   By using the evaluation method of the present invention, it is possible to accurately quantify the formability of a substantially non-impregnated fabric base material in which reinforcing fibers are arranged in two directions. Reform can be designed with high accuracy, and desirable FRP can be stably produced.

かかるFRPは、FRP型、輸送機器(自動車、船舶、航空機、自転車など)、スポーツ用品および構造物の補修・補強をはじめ、その他の一般産業に用いられるFRPの強化材として好適に用いられる。   Such FRP is suitably used as a reinforcing material for FRP used in other general industries including repair and reinforcement of FRP type, transportation equipment (automobiles, ships, aircraft, bicycles, etc.), sporting goods and structures.

布帛基材の種類による変形性の違いを示した模式図である。a)強化繊維が2方向に配向した布帛基材の模式図b)強化繊維が4方向に配向した布帛基材の模式図c)強化繊維が1方向に配向した布帛基材の模式図It is the schematic diagram which showed the difference in the deformability by the kind of fabric base material. a) Schematic diagram of a fabric base material with reinforcing fibers oriented in two directions b) Schematic diagram of a fabric base material with reinforcing fibers oriented in four directions c) Schematic diagram of a fabric base material with reinforcing fibers oriented in one direction せん断変形角θの計測方法の模式図である。a)せん断変形角θのマクロな計測方法の模式図b)せん断変形角θのミクロな計測方法の模式図It is a schematic diagram of the measuring method of the shear deformation angle θ. a) Schematic diagram of macro measurement method of shear deformation angle θ b) Schematic diagram of micro measurement method of shear deformation angle θ 布帛基材にせん断荷重を加える試験装置の一例である。It is an example of the test apparatus which applies a shear load to a fabric base material. 布帛基材にせん断荷重を加える試験装置の一例である。It is an example of the test apparatus which applies a shear load to a fabric base material. 布帛基材にせん断荷重を加える試験装置の一例である(測定法Aに適用される)。It is an example of the test apparatus which applies a shear load to a fabric base material (it applies to the measuring method A). 測定法Aにおける試験片寸法の重要性を示す模式図である。a)試験片寸法L/Wが2/tanαより小さい例b)試験片寸法L/Wが2/tanαの例c)試験片寸法L/Wが2/tanαより大きい例It is a schematic diagram which shows the importance of the test piece dimension in the measuring method A. a) Example of specimen size L / W smaller than 2 / tan α b) Example of specimen size L / W of 2 / tan α c) Example of specimen size L / W larger than 2 / tan α 賦形限界せん断変形角測定法を示す模式図である。It is a schematic diagram which shows the shaping limit shear deformation angle measuring method. 測定法Aにおける試験片端部の認識方法を示す模式図である。It is a schematic diagram which shows the recognition method of the test piece end part in the measuring method A. 鎖編により一体化された2軸ステッチ基材のせん断変形性の差を示す模式図である。a)せん断変形方向にステッチ糸が配列している2軸ステッチ基材の模式図b)せん断変形方向と垂直にステッチ糸が配列している2軸ステッチ基材の模式図It is a schematic diagram which shows the difference in the shear deformability of the biaxial stitch base material integrated by chain knitting. a) Schematic diagram of a biaxial stitch base material in which stitch yarns are arranged in the shear deformation direction b) Schematic diagram of a biaxial stitch base material in which stitch yarns are arranged perpendicular to the shear deformation direction 測定法Aの最大引張荷重を測定する試験における荷重−変位曲線の一例を示す図である。(CO6343B)It is a figure which shows an example of the load-displacement curve in the test which measures the maximum tensile load of the measuring method A. (CO6343B) 測定法Aの最大引張荷重を測定する試験における荷重−変位曲線の一例を示す図である。(鎖編を用いた2軸ステッチ基材)a)せん断変形方向にステッチ糸が配列している2軸ステッチ基材の荷重−変位曲線の一例b)せん断変形方向と垂直にステッチ糸が配列している2軸ステッチ基材の荷重−変位曲線の一例It is a figure which shows an example of the load-displacement curve in the test which measures the maximum tensile load of the measuring method A. (Biaxial stitch base material using chain knitting) a) Example of load-displacement curve of biaxial stitch base material in which stitch yarns are arranged in the shear deformation direction b) Stitch yarns are arranged perpendicular to the shear deformation direction Of a load-displacement curve of a biaxial stitch substrate 半球状賦形型への賦形試験の様子Shape test on hemispherical mold 半球状賦形のシミュレーション結果の一例を示す図である。a)UD織物UT70−30のシミュレーション結果b)平織物CO6343Bのシミュレーション結果It is a figure which shows an example of the simulation result of hemispherical shaping. a) Simulation result of UD fabric UT70-30 b) Simulation result of plain fabric CO6343B

符号の説明Explanation of symbols

1 強化繊維糸条
2 せん断変形の方向
3 目隙
4 せん断変形前の布帛基材
5 せん断変形中の布帛基材
6 せん断変形角θ
7 せん断変形前の強化繊維の方向
8 せん断変形中の強化繊維の方向
9 せん断変形前の2方向の強化繊維のなす角2α
10 せん断変形中の2方向の強化繊維のなす角2β
11 基材をクランプしたフレーム(上)
12 基材をクランプしたフレーム(下)
13 錘
14 紐
15 引張荷重を加える方向
16 せん断変形前のフレーム位置
17 せん断変形中のフレーム位置(基材のクランプ無し)
18 せん断変形中のフレーム位置(基材のクランプ有り)
19 フレーム同士をリンク結合するピン
20 測定法Aの引張試験前の布帛基材
21 測定法Aの引張試験中の布帛基材
22 測定法Aの引張試験前の強化繊維方向
23 測定法Aの引張試験中の強化繊維方向
24 強化繊維が突っ張り変形しない領域
25 強化繊維同士の拘束が端部から解ける領域
26 せん断変形領域(網掛部)
27 測定法Aの試験片短辺長さW
28 測定法Aの試験片長辺長さL
29 測定法Aの試験中の対向する2つの長辺の中間点を結んだ線の長さ
30 測定法Aの引張変位量
31 測定法Aの試験片長辺方向(0°方向)
32 測定法Aの試験前試験片の強化繊維方向(θ°方向)
33 測定法Aの試験前試験片の強化繊維方向(−θ°方向)
34 測定法Aの試験前試験片の2方向の強化繊維のなす角
35 測定法Aの試験片つかみ部
36 試験前の2方向の強化繊維がなす角2αと等価
37 試験中の2方向の強化繊維がなす角2βと等価
38 平坦な台
39 透明で平滑な板
40 測定法Aで最大引張荷重の20%を負荷された後の試験片
41 測定法Aにおいて試験片の対向する2辺の長辺の中間点を結んだ線
42 測定法Aにおいて試験片の対向する2辺の長辺の中間点を結んだ線の試験後の幅W’
43 強化繊維糸条の最も出っ張った線
44 強化繊維糸条の最もへっこんだ線
45 43と44の中間線
46 鎖編のステッチ糸
47 測定法Aで測定した最大引張荷重
48 測定法Aで測定した最大引張荷重の20%
49 領域26においてせん断変形が起こる段階
50 シワや反りが発生する段階
51 試験片の強化繊維同士の拘束が破壊される段階
52 限界せん断変形角を超過した部位
56 半球賦形試験押しつけ圧
57 布帛基材
58 押さえ治具上プレート
59 押さえ治具下プレート
60 半球状の賦形型
DESCRIPTION OF SYMBOLS 1 Reinforcing fiber yarn 2 Direction of shear deformation 3 Stitch gap 4 Fabric base material before shear deformation 5 Fabric base material during shear deformation 6 Shear deformation angle θ
7 Direction of reinforcing fiber before shear deformation 8 Direction of reinforcing fiber during shear deformation 9 Angle 2α formed by reinforcing fibers in two directions before shear deformation
10 Angle 2β formed by reinforcing fibers in two directions during shear deformation
11 Frame with the substrate clamped (top)
12 Frame with base clamped (bottom)
13 Weight 14 String 15 Direction in which tensile load is applied 16 Frame position before shear deformation 17 Frame position during shear deformation (without clamping of base material)
18 Frame position during shear deformation (with substrate clamp)
19 Pin 20 for linking frames together Fabric base material 21 before tensile test of measurement method A Fabric base material 22 during tensile test of measurement method A Reinforcement fiber direction 23 before tensile test of measurement method A Tensile strength of measurement method A Reinforcing fiber direction under test 24 Region 25 where reinforcing fibers are not stretched and deformed 25 Region where reinforcing fibers can be unconstrained from their ends 26 Shear deformation region (shaded area)
27 Specimen short side length W of measuring method A
28 Test piece A side length L
29 Length of the line connecting the midpoints of the two opposing long sides during the test of measurement method A 30 Tensile displacement amount of measurement method A Test piece long side direction of measurement method A (0 ° direction)
32 Reinforcing fiber direction (θ ° direction) of test specimen before measurement method A
33 Reinforcing fiber direction (−θ ° direction) of test specimen before measurement method A
34 Angle 35 formed by the two-direction reinforcing fibers of the test specimen before the measurement method A 35 Equivalent to the angle 2α formed by the two-direction reinforcing fibers before the test 37 of the measurement method A 37 Strengthening in the two directions during the test Equivalent to the angle 2β formed by the fiber 38 Flat base 39 Transparent and smooth plate 40 Test piece 41 after 20% of the maximum tensile load is applied in measurement method A The length of two opposite sides of the test piece in measurement method A Line 42 connecting the middle points of the sides In test method A, the width W ′ after the test of the line connecting the middle points of the two long sides of the test piece facing each other
43 The most protruding line of the reinforcing fiber yarn 44 The most indented line 45 of the reinforcing fiber yarn 46 The intermediate line between 43 and 44 46 The stitch yarn 47 of the chain stitch The maximum tensile load 48 measured by the measuring method A In the measuring method A 20% of the measured maximum tensile load
49 Stage 26 in which shear deformation occurs in region 26 Stage 51 in which wrinkles or warpage occurs 51 Stage in which the constraint between the reinforcing fibers of the test piece is broken 52 Area where the limit shear deformation angle is exceeded 56 Hemispherical test pressing pressure 57 Fabric base Material 58 Holding jig upper plate 59 Holding jig lower plate 60 Hemispherical shaping mold

Claims (5)

強化繊維が2方向に配された実質的に樹脂未含浸である基材の賦型性を評価する方法であって、該基材の面内にせん断荷重をシワが発生するまで加えた後、該せん断荷重を解放し、残留したせん断変形角を賦形限界せん断変形角として得て、その賦形限界せん断変形角に基づいて賦型性を評価することを特徴とする基材の賦型性の評価方法。   A method for evaluating the formability of a substrate substantially impregnated with resin in which reinforcing fibers are arranged in two directions, and after applying a shear load in the surface of the substrate until wrinkles are generated, Release of the shear load, obtaining the residual shear deformation angle as the shaping limit shear deformation angle, and evaluating the moldability based on the shaping limit shear deformation angle Evaluation method. 強化繊維が2方向に配された実質的に樹脂未含浸である基材の賦型性を評価する方法であって、強化繊維が長辺方向に関してα°方向と−α°方向とに配され、かつ、短辺長さWと長辺長さLとの比L/Wが2/tanα以上である長方形の前記基材を用意し、該基材の短辺を固定して長辺方向に該基材の引張最大荷重の20%にあたる引張荷重を負荷した後、該荷重を解放し、対向する2つの長辺の中間点を結んだ線の長さW’を測定し、次式に従って得られるせん断変形角φを賦形限界せん断変形角として得て、その賦形限界せん断変形角に基づいて賦型性を評価することを特徴とする基材の賦型性の評価方法。
A method for evaluating the formability of a substrate that is substantially impregnated with resin in which two reinforcing fibers are arranged, wherein the reinforcing fibers are arranged in the α ° direction and the −α ° direction with respect to the long side direction. In addition, a rectangular base material in which the ratio L / W of the short side length W to the long side length L is 2 / tan α or more is prepared, and the short side of the base material is fixed in the long side direction. After applying a tensile load corresponding to 20% of the maximum tensile load of the substrate, the load was released and the length W ′ of the line connecting the midpoints of the two opposing long sides was measured. A method for evaluating the formability of a substrate, wherein the obtained shear deformation angle φ is obtained as a shaping limit shear deformation angle, and the formability is evaluated based on the shaping limit shear deformation angle.
前記基材は、強化繊維が実質的に直交する2方向に配されたものであり、かつ、前記αが45である、請求項2に記載の基材の賦型性の評価方法。   The said base material is a evaluation method of the moldability of the base material of Claim 2 whose reinforcement fiber is distribute | arranged to 2 directions substantially orthogonal, and said (alpha) is 45. 前記基材が平織物基材である、請求項2または3に記載の基材の賦型性の評価方法。   The method for evaluating formability of a substrate according to claim 2 or 3, wherein the substrate is a plain woven fabric substrate. 請求項1〜4のいずれかに記載の方法を用いて基材の賦型性を評価し、得られた賦形限界せん断変形角をプリフォーム全域で超えないようにプリフォーム設計を行い、FRPを製造する、FRPの製造方法。   The formability of the base material is evaluated using the method according to any one of claims 1 to 4, and the preform design is performed so that the obtained shaping limit shear deformation angle does not exceed the entire preform area. The manufacturing method of FRP which manufactures.
JP2005362935A 2005-12-16 2005-12-16 Method for evaluating substrate formability and method for producing FRP Expired - Fee Related JP4992236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005362935A JP4992236B2 (en) 2005-12-16 2005-12-16 Method for evaluating substrate formability and method for producing FRP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005362935A JP4992236B2 (en) 2005-12-16 2005-12-16 Method for evaluating substrate formability and method for producing FRP

Publications (2)

Publication Number Publication Date
JP2007162185A true JP2007162185A (en) 2007-06-28
JP4992236B2 JP4992236B2 (en) 2012-08-08

Family

ID=38245418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005362935A Expired - Fee Related JP4992236B2 (en) 2005-12-16 2005-12-16 Method for evaluating substrate formability and method for producing FRP

Country Status (1)

Country Link
JP (1) JP4992236B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530014A (en) * 2008-07-31 2011-12-15 ゼネラル・エレクトリック・カンパニイ Method for enhancing conformability of non-crimp fabric and contoured composite material produced using the method
JP2011530015A (en) * 2008-07-31 2011-12-15 ゼネラル・エレクトリック・カンパニイ Self-adapting non-crimp fabric and contoured composite member comprising the fabric
WO2012086682A1 (en) 2010-12-24 2012-06-28 東レ株式会社 Method for producing carbon fiber aggregate, and method for producing carbon fiber-reinforced plastic
WO2014157013A1 (en) * 2013-03-27 2014-10-02 東レ株式会社 Simulation method, preform substrate manufacturing method, preform manufacturing method, simulation device, preform substrate, preform, fiber-reinforced plastic molding, and simulation program
JP2016043507A (en) * 2014-08-20 2016-04-04 三菱レイヨン株式会社 Manufacturing method for preform and manufacturing method for fiber-reinforced composite material molded product
RU2650612C1 (en) * 2017-02-27 2018-04-16 Валерия Юрьевна Туханова Method of the garment unit stability determining
CN114324741A (en) * 2020-09-30 2022-04-12 宝山钢铁股份有限公司 Roller punching forming rib groove characteristic forming limit evaluation die and evaluation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241846A (en) * 1994-03-07 1995-09-19 Toray Ind Inc Preform and production of the same
JPH08337666A (en) * 1995-06-13 1996-12-24 Toray Ind Inc Preform and its production
JP2001074625A (en) * 1999-09-07 2001-03-23 Showa Electric Wire & Cable Co Ltd Device for measuring amount of shear deformation
JP2002321215A (en) * 2001-04-25 2002-11-05 Toray Ind Inc Preform and molding thereof
WO2003027417A1 (en) * 2001-09-25 2003-04-03 Structural Quality Assurance, Inc. Reinforcement material and reinforcement structure of structure and method of designing reinforcement material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241846A (en) * 1994-03-07 1995-09-19 Toray Ind Inc Preform and production of the same
JPH08337666A (en) * 1995-06-13 1996-12-24 Toray Ind Inc Preform and its production
JP2001074625A (en) * 1999-09-07 2001-03-23 Showa Electric Wire & Cable Co Ltd Device for measuring amount of shear deformation
JP2002321215A (en) * 2001-04-25 2002-11-05 Toray Ind Inc Preform and molding thereof
WO2003027417A1 (en) * 2001-09-25 2003-04-03 Structural Quality Assurance, Inc. Reinforcement material and reinforcement structure of structure and method of designing reinforcement material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530014A (en) * 2008-07-31 2011-12-15 ゼネラル・エレクトリック・カンパニイ Method for enhancing conformability of non-crimp fabric and contoured composite material produced using the method
JP2011530015A (en) * 2008-07-31 2011-12-15 ゼネラル・エレクトリック・カンパニイ Self-adapting non-crimp fabric and contoured composite member comprising the fabric
WO2012086682A1 (en) 2010-12-24 2012-06-28 東レ株式会社 Method for producing carbon fiber aggregate, and method for producing carbon fiber-reinforced plastic
US20130192434A1 (en) * 2010-12-24 2013-08-01 Toray Industries, Inc Method for producing carbon fiber aggregate, and method for producing carbon fiber-reinforced plastic
WO2014157013A1 (en) * 2013-03-27 2014-10-02 東レ株式会社 Simulation method, preform substrate manufacturing method, preform manufacturing method, simulation device, preform substrate, preform, fiber-reinforced plastic molding, and simulation program
JP2016043507A (en) * 2014-08-20 2016-04-04 三菱レイヨン株式会社 Manufacturing method for preform and manufacturing method for fiber-reinforced composite material molded product
RU2650612C1 (en) * 2017-02-27 2018-04-16 Валерия Юрьевна Туханова Method of the garment unit stability determining
CN114324741A (en) * 2020-09-30 2022-04-12 宝山钢铁股份有限公司 Roller punching forming rib groove characteristic forming limit evaluation die and evaluation method
CN114324741B (en) * 2020-09-30 2024-02-13 宝山钢铁股份有限公司 Evaluation die and evaluation method for characteristic forming limit of roll-punched forming rib groove

Also Published As

Publication number Publication date
JP4992236B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4992236B2 (en) Method for evaluating substrate formability and method for producing FRP
Mehdikhani et al. Multi-scale digital image correlation for detection and quantification of matrix cracks in carbon fiber composite laminates in the absence and presence of voids controlled by the cure cycle
Mohammed et al. Shear deformation and micromechanics of woven fabrics
Bel et al. Analyses of the deformation mechanisms of non-crimp fabric composite reinforcements during preforming
Lomov et al. Carbon composites based on multiaxial multiply stitched preforms. Part 3: Biaxial tension, picture frame and compression tests of the preforms
Kinvi-Dossou et al. A numerical homogenization of E-glass/acrylic woven composite laminates: Application to low velocity impact
Wang et al. Experimental and numerical analyses of manufacturing process of a composite square box part: Comparison between textile reinforcement forming and surface 3D weaving
Omrani et al. Analysis of the deformability of flax-fibre nonwoven fabrics during manufacturing
Azzouz et al. Composite preforming defects: a review and a classification
Molnar et al. Influence of drapability by using stitching technology to reduce fabric deformation and shear during thermoforming
Krieger et al. Shear and drape behavior of non-crimp fabrics based on stitching geometry
Zhang et al. Simulation and experimental study on thermal deep drawing of carbon fiber woven composites
JP2017082210A (en) Cross ply laminate and manufacturing method of fiber-reinforced plastic
Krieger et al. Design of tailored non-crimp fabrics based on stitching geometry
JP2007162151A (en) Biaxial stitch base material and preform
Chen et al. Mechanical properties of a woven ramie fabric under multidimensional loadings
Yin et al. Meso-scale Finite Element (FE) modelling of biaxial carbon fibre non-crimp-fabric (NCF) based composites under uniaxial tension and in-plane shear
Cruanes et al. Effect of mesoscopic out-of-plane defect on the fatigue behavior of a GFRP
Matveev et al. A novel criterion for the prediction of meso-scale defects in textile preforming
Tanaka et al. Formability evaluation of carbon fiber NCF by a non-contact 3D strain measurement system and the effects of blank folder force on its formability
Li et al. Draping behavior of carbon non-crimp fabrics and its effects on mechanical performance of the hemispherical composites
Rozant et al. Warp-knit laminates for stampable sandwich preforms
Lomov Deformability of textile performs in the manufacture of non-crimp fabric composites
Rashidi Mehrabadi Towards mitigation of wrinkles during forming of woven fabric composites: an experimental characterization
Tercan et al. Comparison of tensile properties of weft-knit 1× 1 rib glass/epoxy composites with a different location of layers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees