JP2007162119A - Low carbon resulfurized free-cutting steel excellent in machinability - Google Patents

Low carbon resulfurized free-cutting steel excellent in machinability Download PDF

Info

Publication number
JP2007162119A
JP2007162119A JP2005363816A JP2005363816A JP2007162119A JP 2007162119 A JP2007162119 A JP 2007162119A JP 2005363816 A JP2005363816 A JP 2005363816A JP 2005363816 A JP2005363816 A JP 2005363816A JP 2007162119 A JP2007162119 A JP 2007162119A
Authority
JP
Japan
Prior art keywords
steel
cutting
free
machinability
cutting steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005363816A
Other languages
Japanese (ja)
Other versions
JP4203068B2 (en
Inventor
Koichi Sakamoto
浩一 坂本
Atsuhiko Yoshida
敦彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005363816A priority Critical patent/JP4203068B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to EP06811670.6A priority patent/EP1964939B1/en
Priority to PCT/JP2006/320373 priority patent/WO2007069386A1/en
Priority to CNA2006800469677A priority patent/CN101331242A/en
Priority to KR1020087014465A priority patent/KR101033073B1/en
Priority to US12/095,040 priority patent/US20090169414A1/en
Priority to TW095145464A priority patent/TWI326714B/en
Publication of JP2007162119A publication Critical patent/JP2007162119A/en
Application granted granted Critical
Publication of JP4203068B2 publication Critical patent/JP4203068B2/en
Priority to US13/293,588 priority patent/US20120121454A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)
  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low carbon resulfurized free-cutting steel which, exhibits good machinability (especially finished surface roughness) in spite of being Pb-free steel and can be produced at good productivity by a continuous casting method. <P>SOLUTION: The low carbon resulfurized free-cutting steel of the present invention comprises 0.02 to 0.15% C, 0.004% or lower (excluding 0%) Si, 0.6 to 3% Mn, 0.02 to 0.2% P, 0.35 to 1% S, 0.005% or lower (excluding 0%) Al, and 0.008 to 0.03% O, and 0.007 to 0.03% N, with the balance being Fe and unavoidable impurities, has a ratio [Mn]/[S] of 3 to 4 (wherein [Mn] is the Mn content and [S] is the S content), and satisfies the relationship (1): 10×[C]×[Mn]<SP>-0.94</SP>+1,226[N]<SP>2</SP>≤1.2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、人体に有害であるPbを使用することなく、良好な切削仕上げ面粗さを発揮する低炭素硫黄快削鋼に関するものである。   The present invention relates to a low-carbon sulfur free-cutting steel that exhibits good cutting finish surface roughness without using Pb, which is harmful to the human body.

低炭素硫黄快削鋼は、自動車のトランスミッションの油圧部品の他、特に強度をそれほど必要としないネジやプリンターシャフト等の小物部品用鋼として、汎用されている。また、更なる切削仕上げ面粗さ、切屑処理性が要求される場合には、上記低炭素硫黄快削鋼に鉛(Pb)を添加した鉛−硫黄快削鋼が用いられている。   Low-carbon sulfur free-cutting steel is widely used as a steel for small parts such as screws and printer shafts that do not require so much strength, in addition to hydraulic parts for automobile transmissions. Further, when further cutting finish surface roughness and chip disposal are required, lead-sulfur free-cutting steel obtained by adding lead (Pb) to the low-carbon sulfur free-cutting steel is used.

快削鋼に含まれるPbは、被削性改善に極めて有効な元素であるが、人体への有害性が指摘され、また溶製時の鉛のヒュームや切削屑等の処理の点で問題も多く、Pbを添加することなく(Pbフリー)、良好な被削性を発揮することが求められている。   Pb contained in free-cutting steel is an extremely effective element for improving machinability, but it has been pointed out to be harmful to the human body, and there are also problems in the treatment of lead fumes and cutting scraps during melting. In many cases, it is required to exhibit good machinability without adding Pb (Pb-free).

低炭素硫黄快削鋼において、Pbフリーで被削性を改善するために、これまでにも様々な技術が提案されている。例えば特許文献1では、硫化物系介在物の大きさを制御することによって被削性(仕上げ面粗さおよび切屑処理性)を改善した技術が提案されている。また特許文献2には、硫化物系介在物のサイズを制御するには、鋼中酸素を適切に制御することが重要であることが示されている。更に、鋼中の酸化物系介在物を規定することによって、被削性を改善した技術も提案されている(例えば、特許文献3)。また、特許文献4では、MnS比を規定し、鋳造直前のフリー酸素濃度を制御して被削性を改善した技術が提案されている。   Various techniques have been proposed so far in order to improve machinability with Pb-free in low-carbon sulfur free-cutting steel. For example, Patent Document 1 proposes a technique that improves machinability (finished surface roughness and chip disposal) by controlling the size of sulfide inclusions. Patent Document 2 shows that it is important to appropriately control oxygen in steel in order to control the size of sulfide inclusions. Furthermore, a technique for improving machinability by defining oxide inclusions in steel has also been proposed (for example, Patent Document 3). Patent Document 4 proposes a technique that improves the machinability by defining the MnS ratio and controlling the free oxygen concentration immediately before casting.

一方、鋼材の化学成分組成を適切に規定することによって、被削性を改善した技術も提案されている(例えば、特許文献5〜7)。   On the other hand, techniques that improve machinability by appropriately defining the chemical composition of steel materials have also been proposed (for example, Patent Documents 5 to 7).

これまで提案されている技術は、いずれも快削鋼の被削性の向上という観点では有用なものといえるが、特にフォーミング加工における仕上げ面粗さの点で、Pb含有鋼並みの良好な被削性が得られていないのが実情である。   All of the technologies proposed so far are useful from the viewpoint of improving the machinability of free-cutting steel, but in particular in terms of finished surface roughness in forming, the workability is as good as that of Pb-containing steel. The reality is that machinability has not been achieved.

また、Pbフリー鋼に望まれる特性としては、上記のような被削性に加えて、生産性が良好なことも重要である。こうした観点からすれば、連続鋳造方法によって製造が可能であり、表面疵などが発生せず、しかも圧延が容易に実施できることも必要な要件となる。しかしながら、連続鋳造プロセスは鋼材の被削性を良好にする上で不利であるといわれており、連続鋳造プロセスで被削性に優れた快削鋼を生産性良く製造できることも重要な課題である。   In addition to the machinability as described above, it is also important that the productivity is good as a characteristic desired for Pb-free steel. From this point of view, it is also a necessary requirement that it can be manufactured by a continuous casting method, no surface flaws are generated, and that rolling can be easily performed. However, the continuous casting process is said to be disadvantageous for improving the machinability of steel materials, and it is also an important issue to be able to produce free-cutting steel excellent in machinability with a continuous casting process with high productivity. .

表面性状および内部品質が良好で且つ歩留まりの良い連続鋳造法で被削性(仕上げ面粗さ)に優れた快削鋼として、例えば特許文献8のような技術も提案されている。この技術では、鋼中の酸素含有量を100〜300ppmと比較的多く含有させること、およびNを従来よりも多く含有させることによって切削中に工具面に生成する構成刃先を抑制することが可能となり、歩留まりの良い連続鋳造法で被削性の優れる快削鋼が得られることが示されている。   As a free-cutting steel excellent in machinability (finished surface roughness) by a continuous casting method with good surface properties and internal quality and good yield, for example, a technique such as Patent Document 8 has also been proposed. With this technology, it is possible to suppress the constituent cutting edges generated on the tool surface during cutting by containing a relatively large oxygen content in steel, such as 100 to 300 ppm, and by incorporating N more than before. It has been shown that free-cutting steel with excellent machinability can be obtained by a continuous casting method with a high yield.

しかしながら、酸素とNを同時に高めると、(COガス+Nガス)に起因するブローホールが発生し易くなり、鋼材の仕上げ面粗さを却って劣化させることがある。
特開2003−253390号公報 特許請求の範囲等 特開平9−31522号公報 特許請求の範囲等 特開平10−158781号公報 特許請求の範囲等 特開2005−23342号公報 特許請求の範囲等 特開2001−152281号公報 特許請求の範囲等 特開2001−152282号公報 特許請求の範囲等 特開2001−152283号公報 特許請求の範囲等 特開平5−345951号公報 特許請求の範囲等
However, if oxygen and N are increased at the same time, blow holes due to (CO gas + N 2 gas) are likely to be generated, and the finished surface roughness of the steel material may be deteriorated.
JP, 2003-253390, A Claims etc. JP, 9-31522, A Claims etc. JP, 10-158781, A Claims etc. JP, 2005-23342, A Claims etc. JP, 2001-152281, A Claims etc. JP, 2001-152282, A Claims etc. JP, 2001-152283, A Claims etc. JP, 5-345951, A Claim etc.

本発明は上記の様な事情に着目してなされたものであって、その目的は、ブローホールの生成を抑制しながら、Pbフリーであっても良好な被削性(特に仕上げ面粗さ)を発揮すると共に、連続鋳造法によって生産性良く製造することのできる低炭素硫黄快削鋼を提供することにある。   The present invention has been made by paying attention to the above-mentioned circumstances, and its purpose is to suppress the generation of blowholes and to provide good machinability (especially finished surface roughness) even if Pb-free. And providing a low-carbon sulfur free-cutting steel that can be produced with high productivity by a continuous casting method.

上記目的を達成することのできた本発明の低炭素硫黄快削鋼とは、
C :0.02〜0.15%(質量%の意味、以下同じ)、
Si:0.004%以下(0%を含まない)、
Mn:0.6〜3%、
P :0.02〜0.2%、
S :0.35〜1%、
Al:0.005%以下(0%を含まない)、
O :0.008〜0.03%
N :0.007〜0.03%を夫々含有し、残部がFeおよび不可避的不純物であり、且つMn含有量[Mn]とS含有量[S]の比[Mn]/[S]が3〜4の範囲にあると共に、下記(1)式を満足するものである点に要旨を有するものである。
10・[C]×[Mn]−0.94+1226・[N]≦1.2…(1)
但し、[C],[Mn]および[N]は、夫々C,MnおよびNの含有量(質量%)を示す。
The low-carbon sulfur free-cutting steel of the present invention that has achieved the above-mentioned object
C: 0.02 to 0.15% (meaning mass%, the same applies hereinafter),
Si: 0.004% or less (excluding 0%),
Mn: 0.6-3%,
P: 0.02 to 0.2%,
S: 0.35 to 1%,
Al: 0.005% or less (excluding 0%),
O: 0.008 to 0.03%
N: 0.007 to 0.03% each contained, the balance being Fe and inevitable impurities, and the ratio [Mn] / [S] of the Mn content [Mn] to the S content [S] is 3 It is in the range of ˜4 and has a gist in that it satisfies the following formula (1).
10 · [C] × [Mn] −0.94 + 1226 · [N] 2 ≦ 1.2 (1)
However, [C], [Mn] and [N] indicate the contents (mass%) of C, Mn and N, respectively.

本発明の低炭素硫黄快削鋼においては、化学成分組成として、(1)固溶N量を0.002〜0.02%とすることや、(2)Ti,Cr,Nb,V,ZrおよびBよりなる群から選ばれる1種以上を、合計で0.02%以下(0%を含まない)に抑制することも有用であり、これらの要件を満足することによって、本発明の低炭素硫黄快削鋼の特性を更に改善することができる。また鋳造時に100〜500Gaussの磁場を付与する電磁攪拌によって製造されたものであることが好ましく、こうしたものでは表面性状が更に良好なものとなる。   In the low carbon sulfur free-cutting steel of the present invention, the chemical component composition is (1) the amount of solute N is 0.002 to 0.02%, or (2) Ti, Cr, Nb, V, Zr. It is also useful to suppress one or more selected from the group consisting of B and B to a total of 0.02% or less (not including 0%), and by satisfying these requirements, the low carbon of the present invention The characteristics of sulfur free cutting steel can be further improved. Moreover, it is preferable that it is what was manufactured by the electromagnetic stirring which provides a 100-500 Gauss magnetic field at the time of casting, and in such a thing, a surface property will become still better.

本発明によれば、鋼材中におけるC,MnおよびNの含有量を所定の関係式を満足するように制御することによって、ブローホールの生成を抑制しながら、仕上げ面粗さが良好な低炭素硫黄快削鋼が、連続鋳造法を適用しても生産性良く製造できる。   According to the present invention, by controlling the contents of C, Mn and N in the steel material so as to satisfy a predetermined relational expression, low carbon with a good finished surface roughness while suppressing the formation of blowholes. Sulfur free-cutting steel can be produced with high productivity even when the continuous casting method is applied.

快削鋼の仕上げ面粗さは、構成刃先の生成、大きさ、形状および均一性に大きく依存する。構成刃先とは、工具の刃先に被削材の一部が堆積し、それが事実上工具の一部(切れ刃)として振舞う現象であり、この生成挙動によっては仕上げ面粗さを低下させる。この構成刃先は、或る一定の条件の下でのみ生成するものであるが、通常実施されている切削条件は構成刃先が生成しやすい条件となっている。   The finished surface roughness of free-cutting steel is highly dependent on the generation, size, shape and uniformity of the constituent cutting edges. The component cutting edge is a phenomenon in which a part of the work material is deposited on the cutting edge of the tool, and in effect acts as a part of the tool (cutting edge). Depending on this generation behavior, the finished surface roughness is reduced. This constituent cutting edge is generated only under a certain condition, but the cutting conditions that are usually implemented are conditions that the constituent cutting edge can easily generate.

こうした構成刃先は、この大きさの変動が致命的な欠陥を与えるものとされているのであるが、その一方で工具刃先を保護して工具寿命を向上させる効果もある。従って、構成刃先を完全になくすことは得策とはいえず、構成刃先を安定的に生成させ、その大きさや形状を均一化させることが必要になる。   Such a component cutting edge is supposed to cause a fatal defect due to the change in size, but it also has an effect of protecting the tool cutting edge and improving the tool life. Therefore, it is not a good idea to eliminate the constituent cutting edges completely, and it is necessary to stably generate the constituent cutting edges and make the size and shape uniform.

構成刃先を安定的に生成させ、その大きさや形状を均一化させるためには、切削される部分における一次せん断域・二次せん断域において、微小クラックを多数生成させることが重要となる。こうした微小クラックを多数生成させるためには、クラック生成サイトを多数導入する必要がある。そして、微小クラックの生成サイトとなり得るものとして、MnS系介在物が有用であることは知られている。但し、全てのMnS系介在物が微小クラック生成サイトとして作用するものではなく、大型で球状の(即ち、幅の大きい)MnSが有効に働くことになる。前記の一次せん断域・二次せん断域でMnSが延伸することになるのであるが、延伸されて細くなり過ぎると、その殆どがマトリクスと同様になり、微小クラックの導入サイトとならないことになる。こうしたことから、被削材のMnS系介在物を予め大型・球状に制御しておく必要がある。   In order to stably generate the constituent cutting edges and make the size and shape uniform, it is important to generate a large number of microcracks in the primary shear region and the secondary shear region in the portion to be cut. In order to generate a large number of such microcracks, it is necessary to introduce a large number of crack generation sites. And it is known that a MnS inclusion is useful as a micro crack generation site. However, not all MnS-based inclusions act as microcrack generation sites, and large, spherical (that is, wide) MnS works effectively. MnS is stretched in the primary shear region and the secondary shear region, but when it is stretched and becomes too thin, most of it becomes the same as the matrix and does not become a site for introducing microcracks. For these reasons, it is necessary to control the MnS-based inclusions of the work material to be large and spherical in advance.

ところで、MnS系介在物を大型・球状化するには、一般に鋼中の酸素〈全酸素〉が影響を及ぼすことが知られており(例えば前記特許文献2)、鋼中の酸素が多くなるほど、硫化物径が大きくなるとされている。従って、MnS系介在物を大型・球状化するには、鋼中の酸素濃度をある程度増加させる必要がある。また、同時に微小クラック生成サイトとなるMnS系介在物を増加させるためには、従来の快削鋼(例えば、JIS SUM23,SUM24L)よりもMn濃度、S濃度を高める必要がある。   By the way, in order to make MnS inclusions large and spheroidized, it is generally known that oxygen <total oxygen> in steel has an effect (for example, Patent Document 2), and as oxygen in steel increases, It is said that the sulfide diameter will increase. Therefore, in order to increase the size and spheroidization of MnS inclusions, it is necessary to increase the oxygen concentration in the steel to some extent. At the same time, in order to increase MnS inclusions that become microcrack generation sites, it is necessary to increase the Mn concentration and the S concentration as compared with conventional free-cutting steel (for example, JIS SUM23, SUM24L).

本発明者らの検討したところによれば、鋼中の固溶Nも微小クラックの生成に大きく関与することも判明しており、その量を適切に調整することによって、被削性の良好な快削鋼を実現できるのである。前述の一次せん断域・二次せん断域では、少し場所が異なると、非常に温度が異なる。そして、固溶Nが一定量存在すると、各位置での温度によって変形抵抗が異なるものとなる。この差異が、微小クラックの生成サイトとなるので、固溶Nを固定する成分、即ち窒化物を生成しやすい成分であるTi,Cr,Nb,V,Zr,Bを所定量以下に制御することは、固溶Nを確保する上で有効である。   According to the study by the present inventors, it has been found that solute N in steel is also greatly involved in the generation of microcracks, and by appropriately adjusting the amount thereof, machinability is good. Free-cutting steel can be realized. In the primary shear region and the secondary shear region described above, the temperature is very different if the location is slightly different. When a certain amount of solute N exists, the deformation resistance varies depending on the temperature at each position. Since this difference becomes a microcrack generation site, Ti, Cr, Nb, V, Zr, and B, which are components that fix solute N, that is, components that easily generate nitride, are controlled to a predetermined amount or less. Is effective in securing solid solution N.

上記のような2つの現象、即ち(1)MnS系介在物の大型・球状化、(2)固溶Nの増大、等によって構成刃先を安定的に生成させることが可能となり、その大きさや形状を均一化させることを見出し、その結果として鋼材のフォーミング加工における仕上げ面粗さが画期的に向上するものとなり、Pb快削鋼並の特性を発揮できたのである。   It is possible to stably generate the cutting edge by the two phenomena as described above, that is, (1) increase in size and spheroidization of MnS inclusions, (2) increase in solute N, etc. As a result, the finished surface roughness in the forming process of the steel material was dramatically improved, and the characteristics similar to Pb free-cutting steel could be exhibited.

本発明の快削鋼では、その化学成分組成も適切に規定する必要があるが、その基本成分であるC,Si,Mn,P,S,Al,OおよびNにおける範囲限定理由は以下の通りである。   In the free-cutting steel of the present invention, it is necessary to appropriately define its chemical composition, but the reasons for limiting the ranges of its basic components C, Si, Mn, P, S, Al, O and N are as follows. It is.

C:0.02〜0.15%
Cは、鋼の強度を確保する上で不可欠な元素であり、また所定量以上添加することによって仕上げ面粗さを改善する作用も有する。こうした効果を発揮させるためには0.02%以上含有させる必要がある。しかしながら、過剰に含有させると切削加工時の工具寿命が低下して被削性が悪くなり、また鋳造時のCOガス発生に起因する疵発生を誘発することになる。こうした観点から、C含有量は0.15%以下とするのが良い。尚、C含有量の好ましい下限は、0.05%であり、好ましい上限は0.12%である。
C: 0.02-0.15%
C is an element indispensable for ensuring the strength of the steel, and also has an effect of improving the finished surface roughness by adding a predetermined amount or more. In order to exhibit such an effect, it is necessary to contain 0.02% or more. However, if it is contained excessively, the tool life at the time of cutting is reduced, the machinability is deteriorated, and the generation of wrinkles due to the generation of CO gas at the time of casting is induced. From such a viewpoint, the C content is preferably 0.15% or less. In addition, the minimum with preferable C content is 0.05%, and a preferable upper limit is 0.12%.

Si:0.004%以下(0%を含まない)
Siは、固溶強化による強度確保に有効な元素であるが、基本的には脱酸剤として作用してSiOを生成する。そしてこのSiOによって、介在物組成がMnO−SiO−MnS系になるのであるが、Siが0.004%を超えると、この介在物中のSiO濃度が高くなって、MnS中のO濃度を確保できなくなり、仕上げ面粗さが劣化することになる。こうした観点から、Si含有量は0.004%以下にする必要があり、好ましくは0.003%以下にするのが良い。
Si: 0.004% or less (excluding 0%)
Si is an element effective for securing strength by solid solution strengthening, but basically acts as a deoxidizer to generate SiO 2 . The inclusion composition becomes MnO—SiO 2 —MnS based on this SiO 2 , but when Si exceeds 0.004%, the concentration of SiO 2 in this inclusion increases, and O in MnS increases. The density cannot be secured, and the finished surface roughness is deteriorated. From such a viewpoint, the Si content needs to be 0.004% or less, preferably 0.003% or less.

Mn:0.6〜3%
Mnは、焼入れ性を向上させて、ベイナイト組織の生成を促進し、被削性を向上させる作用がある。また強度確保の面でも有効な元素である。更に、Sと結合してMnSを形成し、或いはOと結合してMnOを形成し、MnO−MnS複合介在物を生成し、これによって被削性を向上させる作用がある。これらの作用を発揮させるためには、Mn含有量が0.6%以上とする必要があるが、3%を超えると、強度が上昇し過ぎて被削性が低下することになる。尚、Mn含有量の好ましい下限は1%であり、好ましい上限は2%である。
Mn: 0.6 to 3%
Mn has the effect of improving hardenability, promoting the formation of a bainite structure, and improving machinability. It is also an effective element in terms of securing strength. Furthermore, it combines with S to form MnS, or it combines with O to form MnO to produce MnO—MnS composite inclusions, thereby improving the machinability. In order to exert these effects, the Mn content needs to be 0.6% or more. However, if it exceeds 3%, the strength increases excessively and the machinability decreases. In addition, the minimum with preferable Mn content is 1%, and a preferable upper limit is 2%.

P:0.02〜0.2%
Pは、仕上げ面粗さを向上させる作用を発揮する。また切り屑中のクラック伝播を容易にすることによって、切り屑処理性を顕著に向上させる作用がある。こうした効果を発揮させるためには、P含有量は少なくも0.02%以上とする必要がある。しかしながら、P含有量が過剰になると、熱間加工性を劣化させるので、0.2%以下とする必要がある。尚、P含有量の好ましい下限は0.05%であり、好ましい上限は0.15%である。
P: 0.02-0.2%
P exhibits the effect of improving the finished surface roughness. In addition, by facilitating the propagation of cracks in the chips, there is an effect of remarkably improving the chip disposal. In order to exhibit such effects, the P content needs to be at least 0.02%. However, if the P content is excessive, the hot workability is deteriorated, so it is necessary to make it 0.2% or less. In addition, the minimum with preferable P content is 0.05%, and a preferable upper limit is 0.15%.

S:0.35〜1%
Sは、鋼中でMnと結合し、MnSとなって切削加工時の応力集中源となり、切り屑の分断を容易にして被削性を高めるために有用な元素である。こうした効果を発揮させるためには、S含有量は0.35%以上とする必要がある。しかしながら、S含有量が過剰になって1%を超えると、熱間加工性の低下を招くことになり、好ましい上限は0.8%である。
S: 0.35 to 1%
S binds to Mn in steel and becomes MnS to become a stress concentration source at the time of cutting, and is a useful element for facilitating cutting of chips and enhancing machinability. In order to exert such effects, the S content needs to be 0.35% or more. However, when the S content is excessive and exceeds 1%, the hot workability is lowered, and the preferable upper limit is 0.8%.

Total.Al:0.005%以下(0%を含まない)
Alは固溶強化による強度の確保および脱酸に有用な元素であるが、強力な脱酸剤として働いて酸化物(Al)を形成することになる。このAlによって、介在物がMnO−Al−MnS系になるのであるが、Al含有量が0.005%を超えると、この介在物中のAl濃度が高くなり、MnS中の酸素濃度が確保できなくなり、仕上げ面粗さが悪化することになる。尚、好ましい上限は0.003%であり、より好ましくは0.001%以下とするのが良い。
Total. Al: 0.005% or less (excluding 0%)
Al is an element useful for securing the strength by solid solution strengthening and deoxidation, but acts as a strong deoxidizer to form an oxide (Al 2 O 3 ). With this Al 2 O 3 , inclusions become MnO—Al 2 O 3 —MnS, but when the Al content exceeds 0.005%, the concentration of Al 2 O 3 in these inclusions increases. , The oxygen concentration in MnS cannot be secured, and the finished surface roughness is deteriorated. The preferable upper limit is 0.003%, and more preferably 0.001% or less.

O:0.008〜0.03%
Oは、Mnと結合してMnOを生成する。またMnOはSを多く含有し、MnO−MnS複合介在物が形成されることになる。そして、このMnO−MnS複合介在物は、圧延で伸延しにくく、比較的球状に近い状態で存在するので、切削加工時に応力集中源として作用する。このため、Oは積極的に添加するが、0.008%未満ではその効果が小さく、一方0.03%を超えて含有させると、鋼塊にCOガス起因の内部欠陥が発生するようになる。こうしたことから、O含有量(全酸素量)は0.008〜0.03%の範囲とする必要がある。
O: 0.008 to 0.03%
O combines with Mn to generate MnO. Moreover, MnO contains much S, and a MnO-MnS composite inclusion is formed. And since this MnO-MnS composite inclusion is hard to be stretched by rolling and exists in a relatively spherical state, it acts as a stress concentration source during cutting. For this reason, although O is added positively, the effect is small if it is less than 0.008%, while if it exceeds 0.03%, an internal defect due to CO gas occurs in the steel ingot. . For these reasons, the O content (total oxygen content) needs to be in the range of 0.008 to 0.03%.

溶鋼中で、O(Total.Oxygen)は、MnOを生成し、またMnOはSを多く含有し、MnO−MnS複合介在物が形成されることになる。その後凝固過程で、これらMnO−MnS複合介在物を核にMnSが析出し、鋳片(連続鋳造で出来た鋳片)中に、MnSを主体とするMnO−MnS複合介在物が生成する。この鋳片が、その後、加熱後、分塊圧延、線材圧延(或は棒鋼圧延)されていくが、MnSを主体とするMnO−MnS複合介在物は、Oを多く含むほど、分塊圧延、線材圧延(或は棒鋼圧延)で、延伸しにくく、最終製品(線材や棒鋼)で、大型で球状のMnSとなる。   In the molten steel, O (Total. Oxygen) generates MnO, and MnO contains a large amount of S, so that a MnO-MnS composite inclusion is formed. Thereafter, in the solidification process, MnS precipitates with these MnO—MnS composite inclusions as nuclei, and MnO—MnS composite inclusions mainly composed of MnS are produced in the cast slab (slab formed by continuous casting). This slab is then heated, and then is subjected to split rolling and wire rod rolling (or bar rolling), but the MnO-MnS composite inclusion mainly composed of MnS contains more O, It is difficult to stretch by wire rod rolling (or bar rolling), and it becomes large and spherical MnS in the final product (wire rod or bar).

こうした機構を考慮した場合に、O(Total.Oxygen)は高いほど良いため、下限値は存在するが、実際には上限値も存在する。その理由を説明する。O(Total.Oxygen)は、酸化物として存在する酸素と、溶鉄中に溶解している溶存酸素(フリー酸素)から構成されている。酸化物として存在する酸素、即ちMnO中のOは非常に有用な酸素であるが、フリー酸素(O)は、凝固過程で、溶鉄中の炭素(C)と反応し、COガスになり[C+O=CO(gas)]、これがうまく抜けないとブローホールとなる。また本発明ではNも高めるため、凝固過程で、温度低下と共に、溶鋼の窒素溶解度が減少して、N+N=N(gas)となる反応が起き、ブローホールとなる。即ち、ブローホールの主成分はCO(gas)+N(gas)となる。 When such a mechanism is taken into consideration, since O (Total. Oxygen) is better as it is higher, there is a lower limit value, but there is actually an upper limit value. The reason will be explained. O (Total. Oxygen) is composed of oxygen present as an oxide and dissolved oxygen (free oxygen) dissolved in molten iron. Oxygen present as an oxide, that is, O in MnO is a very useful oxygen, but free oxygen (O) reacts with carbon (C) in molten iron in the solidification process to become CO gas [C + O = CO (gas)], if this does not come out well, it becomes a blow hole. Further, in the present invention, N is also increased, so that in the solidification process, as the temperature decreases, the nitrogen solubility of the molten steel decreases and a reaction of N + N = N 2 (gas) occurs, resulting in a blowhole. That is, the main component of the blow hole is CO (gas) + N 2 (gas).

そこで、このCO(gas)+N(gas)の生成量を、ブローホールが発生しない範囲で、フリー酸素(O)と窒素(N)を最大とすることが本発明の主旨である。また、ブローホールが発生しても、連続鋳造の鋳型内で行なわれる電磁攪拌によって、ブローホールを外に排出できるので、成分以外にも電磁攪拌で改善の余地がある。 Therefore, it is the gist of the present invention to maximize the amount of CO (gas) + N 2 (gas) generated within the range in which blowholes are not generated, with free oxygen (O) and nitrogen (N) being maximized. Even if blowholes are generated, the blowholes can be discharged to the outside by electromagnetic stirring performed in a continuous casting mold, so there is room for improvement by electromagnetic stirring in addition to the components.

このような着想の下で、フリー酸素(O)が何によって決定されるかを調査した結果、主としてMn含有量[Mn]とS含有楊[S]で決定されることが判明した。従って、[C],[Mn]および[S]によってCO(gas)発生量が制御でき、これに[N]を加えた前記(1)式によって、CO(gas)+N(gas)の発生量を明確化でき、ブローホールを制御できるのである(その詳細は後述する)。 As a result of investigating what determines free oxygen (O) under such an idea, it has been found that it is mainly determined by Mn content [Mn] and S-containing soot [S]. Therefore, the generation amount of CO (gas) can be controlled by [C], [Mn] and [S], and the generation of CO (gas) + N 2 (gas) by the above equation (1) with [N] added thereto. The amount can be clarified and the blowhole can be controlled (details will be described later).

尚、溶鋼中のフリー酸素(O)は、COガス起因の内部欠陥を防止するという観点から、[C]や[N]或は電磁攪拌条件によっても異なるのであるが、およそ0.0050%以下程度となるように制御することが好ましい。尚、鋼中のO含有量(全酸素量)の好ましい下限は0.01%であり、好ましい上限は0.03%である。   The free oxygen (O) in the molten steel is approximately 0.0050% or less, although it varies depending on [C], [N] or electromagnetic stirring conditions from the viewpoint of preventing internal defects caused by CO gas. It is preferable to control so that it becomes a grade. In addition, the preferable minimum of O content (total oxygen amount) in steel is 0.01%, and a preferable upper limit is 0.03%.

N:0.007〜0.03%
Nは構成刃先の生成量に影響を与える元素であり、その含有量が仕上げ面粗さに影響を及ぼすことになる。N含有量が、0.007%未満では構成刃先の生成量が多くなり過ぎて仕上げ面粗さが劣化することになる。またNは、組織鋼中の転位上に偏析し易い性質があり、切削時に転位上へ偏析して母材を脆化させ、生成したクラックの伝播を容易にすることで切り屑破断性(切り屑処理性)も向上することになる。しかしながら、N含有量が過剰になって0.03%を超えると鋳造時に気泡(ブローホール)を発生し、鋳塊の内部欠陥や表面疵となり易いので、0.03%以下に抑える必要がある。尚、N含有量の好ましい下限は0.005%であり、好ましい上限は0.025%である。
N: 0.007 to 0.03%
N is an element that affects the generation amount of the constituent cutting edge, and its content affects the finished surface roughness. If the N content is less than 0.007%, the generation amount of the constituent cutting edge becomes too large and the finished surface roughness is deteriorated. N has a property of being easily segregated on dislocations in the structural steel, and segregates on the dislocations at the time of cutting, embrittles the base metal, and facilitates the propagation of the generated cracks. The waste disposal property) is also improved. However, if the N content becomes excessive and exceeds 0.03%, bubbles (blowholes) are generated during casting, which tends to cause internal defects and surface defects in the ingot, so it is necessary to suppress it to 0.03% or less. . In addition, the minimum with preferable N content is 0.005%, and a preferable upper limit is 0.025%.

本発明の低炭硫黄快削鋼においては、化学成分組成を上記のように規定するだけでは、本発明の目的を達成することができず、Mn含有量[Mn]とS含有量の比[Mn]/[S]を適切な範囲内に制御すると共に、前記(1)式の関係を満足させる必要がある。これらの範囲限定理由は下記の通りである。   In the low-carbon sulfur free-cutting steel of the present invention, the purpose of the present invention cannot be achieved only by specifying the chemical composition as described above, and the ratio of the Mn content [Mn] to the S content [ In addition to controlling Mn] / [S] within an appropriate range, it is necessary to satisfy the relationship of the formula (1). The reasons for limiting these ranges are as follows.

[Mn]/[S]:3〜4
[Mn]/[S]は、熱間加工時の割れ等に影響を及ぼす重要な因子であり、S含有量に対してMnが欠乏すると([Mn]/[S]<3)、FeSが生成し易くなって、これが熱間割れの原因となる。この比[Mn]/[S]の値が3〜4の範囲内では、Sに対してMnが必要十分量確保されるため、FeSは生成せず、熱間割れが防止できるという効果が発揮されることになるが、[Mn]/[S]>4となるとその効果は飽和し、且つ[Mn]と[S]で決まるフリー酸素(O)が低下するため、仕上げ面粗さが劣化する。
[Mn] / [S]: 3-4
[Mn] / [S] is an important factor affecting cracks during hot working. When Mn is deficient with respect to the S content ([Mn] / [S] <3), FeS is reduced. It becomes easy to produce | generate and this causes a hot crack. When the ratio [Mn] / [S] is in the range of 3 to 4, the necessary and sufficient amount of Mn is secured with respect to S. Therefore, FeS is not generated and the effect of preventing hot cracking is exhibited. However, when [Mn] / [S]> 4, the effect is saturated, and the free oxygen (O) determined by [Mn] and [S] is lowered, so that the finished surface roughness is deteriorated. To do.

10・[C]×[Mn] −0.94 +1226[N] ≦1.2
ブローホール生成防止と被削性確保の両立のためには、上記の関係を満足する必要がある。この左辺の値(10・[C]×[Mn]−0.94+1226[N])が1.2を超えて大きくなると、ブローホールが生成することになる。この左辺の好ましい値は1.1以下であり、より好ましくは0.9以下とするのが良い。
10 [C] × [Mn] −0.94 + 1226 [N] 2 ≦ 1.2
In order to achieve both prevention of blowhole generation and securing of machinability, it is necessary to satisfy the above relationship. When the value on the left side (10 · [C] × [Mn] −0.94 + 1226 [N] 2 ) is larger than 1.2, blowholes are generated. A preferable value on the left side is 1.1 or less, and more preferably 0.9 or less.

上記(1)式の関係は、様々な実験を行なうことによって求められたものであるが、その経緯について説明する。溶鋼中に溶存している炭素(C)、酸素[≒フリー酸素(O):正確にはフリー酸素とは酸素活量]、および窒素(N)は、凝固時に、まず固液分配によってミクロ偏析し、液体側に濃化する。また、液体中の(C)、(O)、(N)の溶解度は、温度低下によって減少する。即ち、ミクロ偏析で濃化する(C)、(O)および(N)が、温度低下によって溶解度が減少することによって、C+O=CO(gas)、N=1/2N(gas)の反応を起こし、その部位圧力に打ち勝つと溶鋼中の液体側に気泡が発生する。その部位の圧力とは、主として、大気圧+溶鋼静圧+液体と気体の界面エネルギー/気泡径であり、溶鋼静圧の小さい、メニスカス近傍で発生しやすいものとなる。このガス(気泡)の成分はCO(gas)とN(gas)である。このガス(気泡)が、密度差により浮上し、溶鋼から大気中へ離脱できれば、鋳片にブローホールとして残存することは無いが、これが凝固した結晶等に捕捉されると、ブローホールとして鋳片の欠陥になる。 The relationship of the above formula (1) has been obtained by conducting various experiments, and the background will be described. Carbon (C), oxygen [≈free oxygen (O): to be exact, oxygen activity] and nitrogen (N) dissolved in the molten steel are first micro-segregated by solid-liquid distribution during solidification. And concentrate on the liquid side. Further, the solubility of (C), (O), and (N) in the liquid decreases as the temperature decreases. That is, (C), (O), and (N) that are concentrated by microsegregation reduce the solubility due to a decrease in temperature, thereby causing a reaction of C + O = CO (gas) and N = 1 / 2N 2 (gas). When this occurs and overcomes the pressure at the site, bubbles are generated on the liquid side in the molten steel. The pressure at that part is mainly atmospheric pressure + molten steel static pressure + liquid / gas interface energy / bubble diameter, and is likely to occur near the meniscus where the molten steel static pressure is small. The components of this gas (bubbles) are CO (gas) and N 2 (gas). If this gas (bubbles) rises due to the density difference and can be released from the molten steel into the atmosphere, it will not remain as blowholes in the slab, but if this is trapped by solidified crystals etc., the slab will become blowholes. Become a defect.

上記の機構が推定されるので、ブローホールの生成は、炭素濃度[C]、フリー酸素濃度[O]および窒素濃度[N]に依存すると考えられる。従って、熱力学的には、下記(2)〜(7)式のように表すことができると考えられる。
CO(gas)=[C]+[O] …(2)
CO=(a・a)/Pco=fc[C]・fo[O])/Pco …(3)
logKCO=−1160/T−2.003 …(4)
=C /{1−(1−Kc)f} …(5)
=C /{1−(1−Ko)f} …(6)
Pco=(fc・fo・C ・C )/
[{1−(1−Kc)f}{1−(1−Ko)f}KCO] …(7)
Since the above mechanism is estimated, it is considered that the generation of blowholes depends on the carbon concentration [C], the free oxygen concentration [O], and the nitrogen concentration [N]. Therefore, it is considered that the following dynamic expressions (2) to (7) can be expressed thermodynamically.
CO (gas) = [C] + [O] (2)
K CO = ( ac · a o ) / Pco = fc [C] · fo [O]) / Pco (3)
logK CO = −1160 / T−2.003 (4)
C c L = C c 0 / {1- (1-Kc) f} ... (5)
C o L = C o 0 / {1- (1-Ko) f} (6)
Pco = (fc · fo · C c 0 · C o 0 ) /
[{1- (1-Kc) f} {1- (1-Ko) f} KCO ] (7)

まず上記(2)式(右から左に進行する場合)を考える。(2)式の反応係数KCOは、(3)式に示すように、Cの活量係数(fc)、C含有量[C]、Oの活量係数(fo)、O含有量[O]、CO分圧(Pco)によって与えられる。その数値は、(4)式で与えられる。ここでTは絶対温度である。またC含有量[C]、O濃度[O]は、ミクロ偏析した濃度となるので、(5)式および(6)式のようにSheilの式を用いて求められる。これを上記(3)式に代入すると、CO分圧(Pco)が(7)式で表されることになる。尚、fは、固相率であり、kc、koは、夫々CおよびOの平衡分配係数を示す。 First, consider the above equation (2) (when traveling from right to left). The reaction coefficient KCO in the formula (2) is calculated by the following equation: (3) The C activity coefficient (fc), C content [C], O activity coefficient (fo), O content [O ], Given by the CO partial pressure (Pco). The numerical value is given by equation (4). Here, T is an absolute temperature. Further, since the C content [C] and the O concentration [O] are microsegregated concentrations, the C content [C] and the O concentration [O] can be obtained by using the Sheil equation like the equations (5) and (6). When this is substituted into the above equation (3), the CO partial pressure (Pco) is expressed by equation (7). Note that f is a solid phase ratio, and kc and ko are equilibrium distribution coefficients of C and O, respectively.

一方、Nについては、同様に、下記(8)式〜(12)式のように表される。
1/2N(gas)=[N] …(8)
N2=(a)/√PN2=f[N]/√PN2 …(9)
logKN2=−518/T−1.063 …(10)
N =CN /{1−(1−K)f} …(11)
√PN2=(f・C )/{1−(1−K)f}KN2 …(12)
即ち、上記(8)式の反応係数KN2は、(9)式で表現でき、熱力学数値は(10)式で表される。またミクロ偏析した場合の溶鋼側のN濃度[N]は、(11)式で表すことができ、これを(9)式に代入すると、N分圧(PN2)は、(12)式で表される。
On the other hand, N is similarly expressed as the following formulas (8) to (12).
1 / 2N 2 (gas) = [N] (8)
K N2 = (a N ) / √P N2 = f N [N] / √P N2 (9)
logK N2 = −518 / T−1.063 (10)
C N L = C N 0 / {1- (1-K N ) f} (11)
√P N2 = (f N · C N 0 ) / {1- (1-K N ) f} K N2 (12)
That is, the reaction coefficient K N2 in the above equation (8) can be expressed by the equation (9), and the thermodynamic numerical value is expressed by the equation (10). Further, the N concentration [N] on the molten steel side when microsegregation can be expressed by the equation (11), and when this is substituted into the equation (9), the N 2 partial pressure (P N2 ) is expressed by the equation (12). It is represented by

このようにして推定される(7)式と(12)式の分圧の和(PCO+PN2)が、下記(13)式に示すように、外圧(大気圧)と+溶鋼静圧+液体と気体の界面エネルギー/気泡径を超えた場合に、ブローホールとなる。
≧P+ρLgh+2σ/r …(13)
但し、P:融液内のガス分圧の総和
:外圧
ρLgh:液体静圧
σ:液体と気体の界面エネルギー
r:気泡径
The sum of partial pressures (P CO + P N2 ) of the equations (7) and (12) estimated in this way is expressed by the external pressure (atmospheric pressure) and the molten steel static pressure + A blowhole occurs when the liquid / gas interface energy / bubble diameter is exceeded.
P g ≧ P a + ρLgh + 2σ / r (13)
Where P g : total gas partial pressure in the melt P a : external pressure ρLgh: liquid static pressure σ: interface energy between liquid and gas r: bubble diameter

このような物理的意味を持つ計算方法によって、計算した(PCO+PN2)に対し、ブローホールの発生頻度を検証した結果、(PCO+PN2)が1.2atmを超えるとブローホールが発生することが明らかとなった。 As a result of verifying the frequency of occurrence of blow holes against the calculated (P CO + P N2 ) by the calculation method having such a physical meaning, blow holes are generated when (P CO + P N2 ) exceeds 1.2 atm. It became clear to do.

本発明者らは、(PCO+PN2)を指数化することを検討した。[C]および[N]はオンライン分析で簡単に測定できるが、[O]はフリー酸素計を用いて測定する必要がある。また測定によって、誤差が大きく出ることもある。そこで、フリー酸素濃度[O]が何によって決定されるかを検討したところ、Mn濃度[Mn]とS濃度(S含有量)[S]によって決定されることが明らかとなった。これは、溶鋼中で、OはMnO−MnSの酸化物−硫化物となっていることからも明らかである。このことから、ブローホールの発生の有無は[C]、[Mn]、[S]、および[N]の関係式で表せることが明確となった。その一方で、[Mn]と[S]は、[Mn]/[S]=3〜4の関係があることから、この関係をも考慮すると、ブローホールの発生の有無は、概略[C]、[Mn]および[N]の関係式で表せることが明確となったのである。 The present inventors have considered indexing (P CO + P N2 ). Although [C] and [N] can be easily measured by online analysis, [O] needs to be measured using a free oxygen meter. Depending on the measurement, a large error may occur. Thus, when the free oxygen concentration [O] is determined by what was determined, it became clear that it was determined by the Mn concentration [Mn] and the S concentration (S content) [S]. This is also clear from the fact that O is an oxide-sulfide of MnO—MnS in the molten steel. From this, it became clear that the presence or absence of blowholes can be expressed by the relational expressions [C], [Mn], [S], and [N]. On the other hand, since [Mn] and [S] have a relationship of [Mn] / [S] = 3 to 4, in consideration of this relationship, the presence or absence of blowholes is roughly [C]. , [Mn] and [N] can be expressed by the relational expression.

こうした着想の下で、PCOは前記(7)式より、[C]と[O]に比例するが、ここで[O]は[Mn]と関係があることから、(7)式の右辺と[Mn]等のデータから実験的に、PCO=10[C]・[Mn]−0.94が求められた。一方、PN2は、前記(12)式より、[N]に比例することから、(12)式の右辺の2乗と[N]等のデータから実験的に、PN2=1226・[N]が求められたのである。 Under such an idea, PCO is proportional to [C] and [O] from the above equation (7). However, since [O] is related to [Mn], the right side of equation (7) Experimentally, P CO = 10 [C] · [Mn] −0.94 was obtained from the data of [Mn] and the like. On the other hand, since P N2 is proportional to [N] 2 from the above equation (12), P N2 = 1226 · [[ N] 2 was determined.

そして、PCO+PN2(=10・[C]×[Mn]−0.94+1226[N])が大きくなると、ブローホールが発生し、表面疵が生じるのであるが、ブローホールの発生は当然ながら、仕上げ面粗さにも影響を及ぼすことになる。PCO+PN2と仕上げ面粗さの関係については、後記図1に示すようになり、表面疵の有無だけでなく、仕上げ面粗さにおいても、その閾値は1.2程度であることが明らかである。 When P CO + P N2 (= 10 · [C] × [Mn] −0.94 +1226 [N] 2 ) is increased, blow holes are generated and surface defects are generated. Naturally, this also affects the finished surface roughness. The relationship between P CO + P N2 and the finished surface roughness is as shown in FIG. 1 to be described later, and it is clear that the threshold is about 1.2 not only in the presence or absence of surface defects but also in the finished surface roughness. It is.

本発明の低炭硫黄快削鋼においては、上記成分の他(残部)は基本的に鉄からなるものであるが、これら以外にも微量成分を含み得るものであり、こうした成分を含むものも本発明の技術的範囲に含まれる。また、本発明の低炭硫黄快削鋼には、不可避的に不純物(例えば、Cu,Sn,Ni等)が含まれることになるが、それらは本発明の効果を損なわない程度で許容される。   In the low-carbon sulfur free-cutting steel of the present invention, other than the above components (remainder) is basically composed of iron, but in addition to these, trace components can be included, and those including these components are also included. It is included in the technical scope of the present invention. Further, the low-carbon sulfur free-cutting steel of the present invention inevitably contains impurities (for example, Cu, Sn, Ni, etc.), but these are allowed to the extent that the effects of the present invention are not impaired. .

本発明の低炭硫黄快削鋼においては、必要によって、(1)固溶N量を0.002〜0.02%とすることや、(2)Ti,Cr,Nb,V,ZrおよびBよりなる群から選ばれる1種以上を、合計で0.02%以下(0%を含まない)に抑制することも有用であるが、この範囲限定理由は下記の通りである。   In the low-carbon sulfur free-cutting steel of the present invention, (1) the amount of dissolved N is 0.002 to 0.02%, or (2) Ti, Cr, Nb, V, Zr, and B, if necessary. It is also useful to suppress one or more selected from the group consisting of 0.02% or less (not including 0%) in total, but the reasons for limiting this range are as follows.

固溶N量:0.002〜0.02%
上述の如く、鋼中の固溶Nは微小クラックの生成に関与するものであり、その量を適切に制御することによって、被削性の良好な快削鋼を実現できる。こうした効果を発揮させるためには、鋼中の固溶N量を0.002%以上確保するのが良いが、0.02%を超えると表面疵が増加することになる。
Solid solution N amount: 0.002 to 0.02%
As described above, solid solution N in steel is involved in the generation of microcracks, and by controlling the amount thereof appropriately, free-cutting steel with good machinability can be realized. In order to exert such an effect, it is preferable to secure 0.002% or more of the solid solution N amount in the steel, but when it exceeds 0.02%, surface defects increase.

Ti,Cr,Nb,V,ZrおよびBよりなる群から選ばれる1種以上:合計で0.02%以下(0%を含まない)
これらの元素は、Nと結合して窒化物を生成する成分であり、その量が多くなると固溶N量が減してその必要量が確保できなくなる。こうしたことから、これらの成分は合計で0.02%以下に抑制するのが良い。
One or more selected from the group consisting of Ti, Cr, Nb, V, Zr and B: 0.02% or less in total (excluding 0%)
These elements are components that combine with N to form nitrides. When the amount of these elements increases, the amount of dissolved N decreases and the required amount cannot be secured. For these reasons, these components are preferably suppressed to 0.02% or less in total.

発明の低炭素硫黄快削鋼を製造するに当っては、基本的には連続鋳造法によって製造することになるが、その具体的な製造手順は、例えば次のようにすれば良い。まず、転炉でCを吹き下げ、C濃度を0.04%以下として溶鋼中のフリー酸素(溶存酸素)の高い状況を作り出す。このときのフリー酸素は500ppm以上であることが好ましい。次いで、この溶鋼を出鋼する際に、Fe−Mn合金やFe−S合金等の合金を添加する。これらの合金は、不純物としてSiやAlを含有するが、転炉出鋼時の高酸素溶鋼にこれらを添加することによって、SiやAlが酸化され、SiOやAlとなり、またその後の溶鋼処理時にこれらが浮上分離し、スラグ中に入ることで、鋼中に残留するSiやAlは低減して目標とする濃度となる。この処理においては、成分調整のために添加するFe−Mn合金やFe−S合金等の70%以上を転炉出鋼時に添加して、Al,Siを低減し、溶鋼処理時に残りの30%以下を添加することが重要である。こうした、手順を踏むことによって、Si:0.004%以下が可能となる。 In producing the low-carbon sulfur free-cutting steel of the invention, it is basically produced by a continuous casting method, and the specific production procedure may be as follows, for example. First, C is blown down in the converter, and the C concentration is set to 0.04% or less to create a situation in which free oxygen (dissolved oxygen) in the molten steel is high. The free oxygen at this time is preferably 500 ppm or more. Next, an alloy such as an Fe—Mn alloy or an Fe—S alloy is added when the molten steel is produced. These alloys contain Si and Al as impurities, but by adding these to the high oxygen molten steel at the time of the steel leaving the converter, Si and Al are oxidized to SiO 2 and Al 2 O 3 , and thereafter When these are levitated and separated during the molten steel treatment and enter the slag, Si and Al remaining in the steel are reduced to a target concentration. In this treatment, 70% or more of Fe—Mn alloy, Fe—S alloy, etc. added for component adjustment is added at the time of steel leaving the converter to reduce Al and Si, and the remaining 30% at the time of molten steel treatment It is important to add: By following such a procedure, Si: 0.004% or less becomes possible.

その鋳造時に所定の磁場を付与する電磁攪拌によって製造することが好ましい。上記のような電磁攪拌は、凝固時に生成するブローホールを低減して疵を防止し、表面性状を良好にするという観点から、行なわれているものであるが、こうした電磁攪拌を併用することはMnSの大型、球状化とブローホールの生成抑制を両立する上で極めて有用である。こうした電磁攪拌をするに際しては、付与する磁場は100〜500Gauss程度とするのが良い。磁場の強さは100Gauss未満では、電磁攪拌する効果が発揮できず、500Gaussを超えると連続鋳造鋳型内での溶鋼流速が激しくなり、モールドハウダーを巻き込む等、鋳造自体が困難となる。   It is preferable to manufacture by electromagnetic stirring which provides a predetermined magnetic field during the casting. The electromagnetic stirring as described above is carried out from the viewpoint of reducing blowholes generated during solidification to prevent wrinkles and improving the surface properties. This is extremely useful for achieving both large size and spheroidization of MnS and suppression of blowhole formation. In such electromagnetic stirring, the applied magnetic field is preferably about 100 to 500 Gauss. If the strength of the magnetic field is less than 100 Gauss, the effect of electromagnetic stirring cannot be exhibited.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, but is implemented with modifications within a range that can meet the purpose described above and below. Of course, it is also possible and they are all included in the technical scope of the present invention.

3t規模の誘導炉、100tの転炉および取鍋等による溶鋼処理設備を使用して、Si,Mn,S,Al,N等の含有量を変化させて各種溶鋼を溶製した。このとき、SiおよびAlについては、添加するFe−Mn合金およびFe−S合金中のSi濃度およびAl濃度を変化させることによって調整した。このようにして得られた溶鋼を所定の鋳型に鋳造する直前に、フリー酸素プローブ(商品名「HYOP10A−C150」ヘレウスエレクトロナイト社製)を用いて測定し、フリー酸素濃度とした。   Using molten steel processing equipment such as a 3t-scale induction furnace, a 100t converter, and a ladle, various molten steels were melted by changing the contents of Si, Mn, S, Al, N, and the like. At this time, Si and Al were adjusted by changing the Si concentration and the Al concentration in the Fe—Mn alloy and the Fe—S alloy to be added. Immediately before the molten steel thus obtained was cast into a predetermined mold, it was measured using a free oxygen probe (trade name “HYOP10A-C150” manufactured by Heraeus Electronite Co., Ltd.) to obtain a free oxygen concentration.

また溶鋼は、断面が300mm×430mmのブルーム連続鋳造か、或いは3t規模誘導炉の場合には、ブルーム鋳片と同様の冷却速度となるように設計した、鋳鉄製の鋳型(断面サイズ:300mm×430mm)を用いて鋳造した。このとき、必要によって鋳型に磁場を付与して電磁攪拌を行なった。   The molten steel is either a continuous casting of a 300 mm x 430 mm bloom or, in the case of a 3 t induction furnace, a cast iron mold designed to have a cooling rate similar to that of a bloom slab (cross section size: 300 mm x 430 mm). At this time, magnetic stirring was performed by applying a magnetic field to the mold as necessary.

得られた鋳片(若しくは鋳塊)の表面近傍の急冷部からサンプリングし、化学分析を実施し、成分組成を測定した。その結果を、下記表1に示す。   Sampling was performed from a quenching portion near the surface of the obtained slab (or ingot), chemical analysis was performed, and the component composition was measured. The results are shown in Table 1 below.

Figure 2007162119
Figure 2007162119

得られた鋳片について、1250℃で1時間加熱後分塊圧延(断面サイズ:155mm×155mm)し、その後25mmφまで圧延、酸洗して、22mmφの磨棒とし、切削試験に供した。このとき、圧延は1000℃で実施し、強制冷却により800℃から500℃までの平均冷却速度を約1.5℃/秒とした。また鋼材温度の測定は放射温度計により行った。   The obtained slab was heated at 1250 ° C. for 1 hour and then subjected to block rolling (cross-sectional size: 155 mm × 155 mm), then rolled to 25 mmφ and pickled to obtain a 22 mmφ polishing rod, which was subjected to a cutting test. At this time, the rolling was performed at 1000 ° C., and the average cooling rate from 800 ° C. to 500 ° C. was set to about 1.5 ° C./second by forced cooling. The steel material temperature was measured with a radiation thermometer.

各鋼材について下記の方法によって固溶N量を測定すると共に、下記の条件によって切削試験をおこなった。また、切削試験後の仕上げ面の評価および鋼片の表面疵の評価基準は下記の通りである。   For each steel material, the solid solution N amount was measured by the following method, and a cutting test was performed under the following conditions. The evaluation criteria for the finished surface after the cutting test and the evaluation criteria for the surface flaw of the steel slab are as follows.

[固溶N量の測定]
固溶N量は、トータルN(不活性ガス融解熱伝導度法)と化合物中N(10%アセチルアセトン+1%テトラメチルアンモニウムクロリド+メタノール溶液にて溶解抽出、1μmフィルターで採取→インドフェノール吸光光度計にて測定)の差によって求めた。
[Measurement of solute N content]
The amount of solid solution N is the total N (inert gas melting thermal conductivity method) and N in the compound (dissolved extraction with 10% acetylacetone + 1% tetramethylammonium chloride + methanol solution, collected with 1 μm filter → indophenol spectrophotometer (Measured by).

[切削試験条件]
工具 :高速度工具鋼SKH4A
切削速度:100m/分
送り :0.01mm/rev
切込み :0.5mm
切削油 :塩素系の不水溶性切削油剤
切削長さ:500m:
[Cutting test conditions]
Tool: High-speed tool steel SKH4A
Cutting speed: 100 m / min Feed: 0.01 mm / rev
Cutting depth: 0.5mm
Cutting oil: Chlorine-based water-insoluble cutting fluid Cutting length: 500 m:

[評価基準]
仕上げ面評価:JIS B 0601(2001)に基づく、最大高さRzによ
って、表面粗さを評価した。
表面疵評価:分塊圧延した鋼片(断面サイズ:155mm×155mm)につい
て、表面疵を調査し、自動疵見装置で探傷し、疵が無い場合を「○」、
疵が認められても手入れで除去できるものを「△」、手入れでも除去
できないものを「×」と評価した。
[Evaluation criteria]
Finished surface evaluation: According to the maximum height Rz based on JIS B 0601 (2001)
Thus, the surface roughness was evaluated.
Surface flaw evaluation: For steel pieces (section size: 155 mm x 155 mm) that have been rolled in pieces
Investigate surface flaws, detect flaws with an automatic inspection device,
“△” indicates that it can be removed by cleaning even if wrinkles are observed.
Those that could not be evaluated were evaluated as “x”.

切削試験結果を、(1)式の左辺の値、磁場の強さ、等と共に、下記表2に示す。   The cutting test results are shown in Table 2 below together with the value on the left side of equation (1), the strength of the magnetic field, and the like.

Figure 2007162119
Figure 2007162119

これらの結果から、明らかなように、本発明で規定する要件を満足するもの(試験No.7〜21)では、切削仕上げ面粗さ(最大高さRz)が微細になっており、良好な被削性が発揮できていることが分かる。特に、電磁攪拌を施したもの(試験No.10〜21)では、ブローホールに基づく表面疵も低減されていることが分かる。   As is clear from these results, in those satisfying the requirements defined in the present invention (test Nos. 7 to 21), the finished surface roughness (maximum height Rz) is fine and good. It can be seen that the machinability can be demonstrated. In particular, it can be seen that surface flaws based on blowholes are also reduced in those subjected to electromagnetic stirring (Test Nos. 10 to 21).

これに対して、本発明で規定する要件のいずれかを欠くもの(試験No.1〜5では、いずれかの特性が劣化していることが分かる。   On the other hand, one lacking any of the requirements defined in the present invention (in Test Nos. 1 to 5, it can be seen that any of the characteristics is deteriorated.

また、上記結果に基づき、(1)式の左辺の値と切削仕上げ面粗さ(最大高さRz)の関係を磁場の有無と共に図1に示す。   Based on the above results, the relationship between the value of the left side of equation (1) and the finished surface roughness (maximum height Rz) is shown in FIG.

(1)式の左辺の値と切削仕上げ面粗さ(最大高さRz)の関係を磁場の有無と共に示したグラフである。It is the graph which showed the relationship between the value of the left side of (1) Formula, and the cutting finish surface roughness (maximum height Rz) with the presence or absence of a magnetic field.

Claims (4)

C :0.02〜0.15%(質量%の意味、以下同じ)、
Si:0.004%以下(0%を含まない)、
Mn:0.6〜3%、
P :0.02〜0.2%、
S :0.35〜1%、
Al:0.005%以下(0%を含まない)、
O :0.008〜0.03%、
N :0.007〜0.03%を夫々含有し、残部がFeおよび不可避的不純物であり、且つMn含有量[Mn]とS含有量[S]の比[Mn]/[S]が3〜4の範囲にあると共に、下記(1)式を満足するものであることを特徴とする被削性に優れた低炭素硫黄快削鋼。
10・[C]×[Mn]−0.94+1226・[N]≦1.2…(1)
但し、[C],[Mn]および[N]は、夫々C,MnおよびNの含有量(質量%)を示す。
C: 0.02 to 0.15% (meaning mass%, the same applies hereinafter),
Si: 0.004% or less (excluding 0%),
Mn: 0.6-3%,
P: 0.02 to 0.2%,
S: 0.35 to 1%,
Al: 0.005% or less (excluding 0%),
O: 0.008 to 0.03%,
N: 0.007 to 0.03% each contained, the balance being Fe and inevitable impurities, and the ratio [Mn] / [S] of the Mn content [Mn] to the S content [S] is 3 A low-carbon sulfur free-cutting steel excellent in machinability, characterized by being in the range of -4 and satisfying the following formula (1).
10 · [C] × [Mn] −0.94 + 1226 · [N] 2 ≦ 1.2 (1)
However, [C], [Mn] and [N] indicate the contents (mass%) of C, Mn and N, respectively.
固溶N量が0.002〜0.02%である請求項1に記載の低炭素硫黄快削鋼。   The low-carbon sulfur free-cutting steel according to claim 1, wherein the amount of solute N is 0.002 to 0.02%. Ti,Cr,Nb,V,ZrおよびBよりなる群から選ばれる1種以上を、合計で0.02%以下に抑制したものである請求項2に記載の低炭素硫黄快削鋼。   The low-carbon sulfur free-cutting steel according to claim 2, wherein one or more selected from the group consisting of Ti, Cr, Nb, V, Zr and B is suppressed to 0.02% or less in total. 鋳造時に100〜500Gaussの磁場を付与する電磁攪拌によって製造されたものである請求項1〜3のいずれかに記載の低炭素硫黄快削鋼。   The low-carbon sulfur free-cutting steel according to any one of claims 1 to 3, wherein the low-carbon sulfur free-cutting steel is manufactured by electromagnetic stirring that applies a magnetic field of 100 to 500 Gauss during casting.
JP2005363816A 2005-12-16 2005-12-16 Low-carbon sulfur free-cutting steel with excellent machinability Expired - Fee Related JP4203068B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2005363816A JP4203068B2 (en) 2005-12-16 2005-12-16 Low-carbon sulfur free-cutting steel with excellent machinability
PCT/JP2006/320373 WO2007069386A1 (en) 2005-12-16 2006-10-12 Low-carbon sulfur-containing free-cutting steel with excellent cuttability
CNA2006800469677A CN101331242A (en) 2005-12-16 2006-10-12 Low-carbon sulfur-automatic steel with good cutability
KR1020087014465A KR101033073B1 (en) 2005-12-16 2006-10-12 Low-carbon sulfur-containing free-cutting steel with excellent cuttability
EP06811670.6A EP1964939B1 (en) 2005-12-16 2006-10-12 Low-carbon resulfurized free-machining steel excellent in machinability
US12/095,040 US20090169414A1 (en) 2005-12-16 2006-10-12 Low-carbon sulfur-containing free-cutting steel with excellent cuttability
TW095145464A TWI326714B (en) 2005-12-16 2006-12-06 Low-carbon resulfurized free-machining steel excellent in machinability
US13/293,588 US20120121454A1 (en) 2005-12-16 2011-11-10 Low-carbon resulfurized free-machining steel excellent in machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005363816A JP4203068B2 (en) 2005-12-16 2005-12-16 Low-carbon sulfur free-cutting steel with excellent machinability

Publications (2)

Publication Number Publication Date
JP2007162119A true JP2007162119A (en) 2007-06-28
JP4203068B2 JP4203068B2 (en) 2008-12-24

Family

ID=38162701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005363816A Expired - Fee Related JP4203068B2 (en) 2005-12-16 2005-12-16 Low-carbon sulfur free-cutting steel with excellent machinability

Country Status (7)

Country Link
US (2) US20090169414A1 (en)
EP (1) EP1964939B1 (en)
JP (1) JP4203068B2 (en)
KR (1) KR101033073B1 (en)
CN (1) CN101331242A (en)
TW (1) TWI326714B (en)
WO (1) WO2007069386A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106967A (en) * 2007-10-30 2009-05-21 Sumitomo Metal Ind Ltd Continuous casting method for steel
CN115386800A (en) * 2022-08-30 2022-11-25 鞍钢股份有限公司 Low-carbon high-manganese sulfur environment-friendly free-cutting steel and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101253806B1 (en) * 2009-07-01 2013-04-12 주식회사 포스코 High sulfur free cutting steel having excellent machinability and method for manufacturing the same
HUP1300336A2 (en) * 2013-05-27 2014-11-28 Astra Mining Hungary Kft Method for production of steel microalloyed with super clean sulfur and controlled sulfur addition affecting metalurgical characteristics
CN104451458B (en) * 2014-12-01 2016-09-28 杭州钢铁集团公司 A kind of automatic steel and production method thereof and the application in manufacturing key

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2922105B2 (en) * 1993-12-21 1999-07-19 新日本製鐵株式会社 Low-carbon sulfur-based free-cutting steel with excellent machinability
JPH10158781A (en) * 1996-12-02 1998-06-16 Kobe Steel Ltd Free cutting steel excellent in cemented carbide tool life
JP3687370B2 (en) * 1998-11-25 2005-08-24 住友金属工業株式会社 Free-cutting steel
TWI249579B (en) * 2002-11-15 2006-02-21 Nippon Steel Corp A steel having an excellent cuttability and a method for producing the same
JP4034700B2 (en) * 2003-06-30 2008-01-16 株式会社神戸製鋼所 Manufacturing method of high S free cutting steel with excellent machinability and high S free cutting steel
JP4441360B2 (en) * 2003-12-01 2010-03-31 株式会社神戸製鋼所 Low carbon composite free-cutting steel with excellent finish surface roughness

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106967A (en) * 2007-10-30 2009-05-21 Sumitomo Metal Ind Ltd Continuous casting method for steel
CN115386800A (en) * 2022-08-30 2022-11-25 鞍钢股份有限公司 Low-carbon high-manganese sulfur environment-friendly free-cutting steel and manufacturing method thereof
CN115386800B (en) * 2022-08-30 2023-10-20 鞍钢股份有限公司 Low-carbon high-manganese-sulfur environment-friendly free-cutting steel and manufacturing method thereof

Also Published As

Publication number Publication date
EP1964939B1 (en) 2018-05-16
KR101033073B1 (en) 2011-05-06
EP1964939A1 (en) 2008-09-03
US20090169414A1 (en) 2009-07-02
JP4203068B2 (en) 2008-12-24
WO2007069386A1 (en) 2007-06-21
TWI326714B (en) 2010-07-01
TW200738892A (en) 2007-10-16
US20120121454A1 (en) 2012-05-17
KR20080068750A (en) 2008-07-23
EP1964939A4 (en) 2009-11-18
CN101331242A (en) 2008-12-24

Similar Documents

Publication Publication Date Title
JP4725437B2 (en) Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate
JP2006206967A (en) Method for continuously casting free-cutting steel for machine structure
JP4363403B2 (en) Steel for line pipe excellent in HIC resistance and line pipe manufactured using the steel
JP2006063351A (en) High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
JP6951060B2 (en) Manufacturing method of slabs
JP4041511B2 (en) Low-carbon sulfur free-cutting steel with excellent machinability
JP4203068B2 (en) Low-carbon sulfur free-cutting steel with excellent machinability
JP2011063840A (en) Steel sheet having excellent hic resistance and uoe steel pipe
JP2005298909A (en) Cast slab having reduced surface crack
JP6359783B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP4325497B2 (en) Continuous casting method of low carbon sulfur free cutting steel
JP5212581B1 (en) Method for producing high Si austenitic stainless steel
JP4656007B2 (en) Method of processing molten iron by adding Nd and Ca
JP6114118B2 (en) Method for producing S-containing steel
JPH0790471A (en) High mn and high n austenitic stainless steel cast slab and its production
JP3537685B2 (en) Slab for thin steel sheet with less inclusion defect and method for producing the same
JP2003147492A (en) Ti-CONTAINING Fe-Cr-Ni STEEL HAVING EXCELLENT SURFACE PROPERTY, AND CASTING METHOD THEREFOR
JP2007262435A (en) Method for manufacturing low carbon sulfur free cutting steel
JP2006200032A (en) Low-carbon sulfur free-cutting steel
JPS5887221A (en) Production of high tensile steel having excellent resistance to sulfide corrosion cracking
TWI764512B (en) Fertilizer iron series stainless steel
JP3535026B2 (en) Slab for thin steel sheet with less inclusion defect and method for producing the same
JP2962963B2 (en) Method for producing low-temperature steel material with excellent weld heat affected zone CTOD characteristics
JP2017193756A (en) Thick steel sheet
JP2023141895A (en) CONTINUOUS CASTING METHOD OF Cu-CONTAINING STEEL

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Ref document number: 4203068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees