JP2007160912A - Manufacturing method of resin tube - Google Patents

Manufacturing method of resin tube Download PDF

Info

Publication number
JP2007160912A
JP2007160912A JP2006035351A JP2006035351A JP2007160912A JP 2007160912 A JP2007160912 A JP 2007160912A JP 2006035351 A JP2006035351 A JP 2006035351A JP 2006035351 A JP2006035351 A JP 2006035351A JP 2007160912 A JP2007160912 A JP 2007160912A
Authority
JP
Japan
Prior art keywords
resin
resin tube
tube
manufacturing
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006035351A
Other languages
Japanese (ja)
Other versions
JP5019758B2 (en
Inventor
Fumimasa Matsuyama
史昌 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006035351A priority Critical patent/JP5019758B2/en
Publication of JP2007160912A publication Critical patent/JP2007160912A/en
Application granted granted Critical
Publication of JP5019758B2 publication Critical patent/JP5019758B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method capable of giving a resin tube showing improved fatigue resistance by removing a residual stress in the tube. <P>SOLUTION: A resin material is shaped into the resin tube 1, and the obtained resin tube 1 is heat-treated to remove the residual stress. The heat treatment is preferably conducted by keeping the resin tube at a temperature not higher than the melting point of the resin material of the resin tube for a predetermined time and then slowly cooling the resin tube to an ambient temperature. The resin material of the resin tube is preferably an engineering plastic-based highly crystalline resin such as polyacetal or polyether ether ketone. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、樹脂チューブの製造方法に関し、詳しくは耐疲労性を向上させた樹脂チューブ、特には超高圧ホースの製造方法に関する。   The present invention relates to a method of manufacturing a resin tube, and more particularly to a method of manufacturing a resin tube having improved fatigue resistance, particularly an ultrahigh pressure hose.

従来、樹脂チューブは、図1に示すように、補強材を一切使用せずにそのまま使用する場合と、補強材を備え、より圧力伝達性能を強化した複合樹脂ホースとが知られている。複合樹脂ホースは、例えば、図2に示すように、内側から、内面樹脂層1、第1補強層2a、第2補強層2bおよび外皮ゴム層または外面樹脂層3が順次積層されてなる構造を有する複合樹脂ホースなどが一般に知られている。   Conventionally, as shown in FIG. 1, there are known a resin tube that is used as it is without using any reinforcing material, and a composite resin hose that is provided with a reinforcing material and further enhances pressure transmission performance. For example, as shown in FIG. 2, the composite resin hose has a structure in which an inner surface resin layer 1, a first reinforcing layer 2a, a second reinforcing layer 2b and an outer rubber layer or an outer surface resin layer 3 are sequentially laminated from the inside. A composite resin hose or the like is generally known.

また、かかる樹脂チューブの成型方法としては、例えば、溶融状態の熱可塑性樹脂を円筒ダイよりチューブ状に押し出した後、室温まで冷却して固化し、引き取る方法が一般に知られている。   As a method for molding such a resin tube, for example, a method is generally known in which a molten thermoplastic resin is extruded from a cylindrical die into a tube shape, cooled to room temperature, solidified, and taken up.

従来の樹脂チューブを用いた複合樹脂ホースとして、例えば、特許文献1に、内面樹脂層(樹脂チューブ)、内管ゴム層、補強層及び外皮ゴム層を順次積層して構成され、補強層の材質がポリエチレンナフタレート繊維である冷媒輸送用複合ホースが記載されている。また、特許文献2には、内層の樹脂層(樹脂チューブ)と外層のゴム層とで構成される内管層を備え、樹脂層がナイロン6、ナイロン12及びポリオレフィンを特定比率で含み、海層がナイロン6、島層がナイロン12であり、ポリオレフィンのうち90%以上が島相中に散点状に分散されて構成されている冷媒輸送用ホースが記載されている。   As a composite resin hose using a conventional resin tube, for example, in Patent Document 1, an inner surface resin layer (resin tube), an inner tube rubber layer, a reinforcing layer, and an outer rubber layer are sequentially laminated. Describes a composite hose for transporting refrigerant, wherein is a polyethylene naphthalate fiber. Patent Document 2 includes an inner tube layer composed of an inner resin layer (resin tube) and an outer rubber layer, and the resin layer includes nylon 6, nylon 12 and polyolefin in a specific ratio, and a sea layer. Describes a refrigerant transport hose in which Nylon 6 is used and Nylon 12 is used for the island layer, and 90% or more of the polyolefin is dispersed in the form of dots in the island phase.

また、特許文献3には、樹脂製のチューブと、同チューブの外周面に設けたポリエステル繊維の補強層と、同チューブ及び補強層を被覆する樹脂製のカバーとからなる樹脂ホースにおいて、前記チューブを、ナイロン樹脂とウレタン樹脂とのアロイとした樹脂ホースが開示されている。
特開平11−336956号公報(特許請求の範囲等) 特許第2870160号公報(特許請求の範囲等) 特開平9−193258号公報(特許請求の範囲等)
Patent Document 3 discloses a resin hose comprising a resin tube, a polyester fiber reinforcing layer provided on the outer peripheral surface of the tube, and a resin cover covering the tube and the reinforcing layer. Discloses a resin hose made of an alloy of nylon resin and urethane resin.
Japanese Patent Laid-Open No. 11-336956 (claims, etc.) Japanese Patent No. 2870160 (Claims) JP-A-9-193258 (claims, etc.)

しかしながら、従来の補強材を使用せずにそのまま使用する樹脂チューブや、補強材を備えた上記複合樹脂ホースの樹脂チューブは、いずれも使用時において樹脂チューブが成型されたときの状態のままであるために、成型した際の残留応力が樹脂チューブ内に残存している状態となっている。   However, the resin tube that is used as it is without using the conventional reinforcing material, and the resin tube of the composite resin hose provided with the reinforcing material remain in the state when the resin tube is molded in use. Therefore, the residual stress at the time of molding remains in the resin tube.

このため、残留応力がある状態の樹脂チューブを圧力伝達等で使用した際には、残留応力があるが故にその箇所が起点となり早期に樹脂チューブが破損に至るおそれがある。特に、内圧が大きければ大きいほど、その樹脂チューブの破損の危険性が増大し、破損に至る時間が短くなる傾向にある。破損状態に至った場合には、当然のことながら輸送するという樹脂チューブ本来の機能は損なわれ、目的とする流体輸送を達成することができなくなる。   For this reason, when a resin tube having a residual stress is used for pressure transmission or the like, there is a risk that the resin tube may be damaged at an early stage due to the presence of the residual stress. In particular, the greater the internal pressure, the greater the risk of breakage of the resin tube and the shorter the time to break. When a broken state is reached, it is natural that the original function of the resin tube for transportation is impaired, and the intended fluid transportation cannot be achieved.

そこで本発明の目的は、樹脂チューブ内の残留応力を解消して耐疲労性を向上させた樹脂チューブを得ることのできる樹脂チューブの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a resin tube manufacturing method capable of obtaining a resin tube having improved fatigue resistance by eliminating residual stress in the resin tube.

本発明者は、上記課題を解決するために鋭意検討した結果、常法により成型された樹脂チューブに、所定の熱処理を施すことにより、樹脂チューブ内の残留応力が解消され、耐疲労性が向上することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor performs a predetermined heat treatment on a resin tube molded by a conventional method, thereby eliminating residual stress in the resin tube and improving fatigue resistance. As a result, the present invention has been completed.

即ち、本発明の樹脂チューブの製造方法は、樹脂材料を成型して樹脂チューブとし、得られた樹脂チューブに、その残留応力を除去するための熱処理を施すことを特徴とするものである。   That is, the resin tube manufacturing method of the present invention is characterized in that a resin material is molded into a resin tube, and the obtained resin tube is subjected to heat treatment for removing the residual stress.

本発明の製造方法においては、前記熱処理を、前記樹脂チューブの樹脂材料の融点以下の温度で一定時間保持した後、常温まで徐冷する処理とすることが好適であり、また、前記樹脂チューブの樹脂材料は、好ましくはエンジニアリングプラスチック系の高結晶性樹脂、より好ましくはポリアセタールまたはポリエーテルエーテルケトンである。   In the production method of the present invention, it is preferable that the heat treatment is a process of holding the resin tube at a temperature equal to or lower than the melting point of the resin material for a certain time and then gradually cooling to room temperature. The resin material is preferably an engineering plastic high crystalline resin, more preferably polyacetal or polyether ether ketone.

また、前記熱処理の温度は、好ましくは100〜150℃の範囲内であり、また、前記熱処理の時間は、好ましくは0.5〜4.0時間である。より好ましくは前記樹脂チューブの樹脂材料がポリアセタールであり、前記熱処理の温度が120〜140℃で、かつ、その時間が1.0〜2.0時間である。   The temperature of the heat treatment is preferably in the range of 100 to 150 ° C., and the time of the heat treatment is preferably 0.5 to 4.0 hours. More preferably, the resin material of the resin tube is polyacetal, the temperature of the heat treatment is 120 to 140 ° C., and the time is 1.0 to 2.0 hours.

さらに、前記樹脂チューブは、単一材料で構成された単層樹脂チューブ、複数の樹脂材料を組み合わせて複層化した樹脂チューブ、あるいは補強材で補強されて複合樹脂ホースを構成するものとすることができる。さらにまた、前記樹脂チューブの表面に補強材として2層以上の補強層が積層されて超高圧ホースを構成するものとすることができる。   Furthermore, the resin tube shall be composed of a single layer resin tube made of a single material, a resin tube formed by combining a plurality of resin materials, or reinforced with a reinforcing material to constitute a composite resin hose. Can do. Furthermore, an ultra-high pressure hose can be configured by laminating two or more reinforcing layers as reinforcing materials on the surface of the resin tube.

本発明によれば、樹脂チューブ内の残留応力が解消され、耐疲労性が向上した樹脂チューブを製造することができる。また、かかる樹脂チューブは寸法安定性にも優れている。よって、本発明によれば、優れた超高圧ホースを製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the residual stress in a resin tube is eliminated, and the resin tube which improved fatigue resistance can be manufactured. Such a resin tube is also excellent in dimensional stability. Therefore, according to the present invention, an excellent ultra-high pressure hose can be manufactured.

以下、本発明の実施の形態につき具体的に説明する。
本発明は、樹脂材料を成型して樹脂チューブとし、得られた樹脂チューブに、その残留応力を除去するための熱処理を施すものである。樹脂材料を成形して樹脂チューブとする工程は、特に制限されるべきものではなく、例えば、溶融状態の樹脂材料を円筒ダイよりチューブ状に押し出した後、室温まで冷却して固化し、引き取る方法や、シートをマンドレルの表面に巻きつけて、シートの側縁同士を重ね合わせ、熱溶着し、次いで冷却固化する方法などとすることができる。
Hereinafter, embodiments of the present invention will be specifically described.
In the present invention, a resin material is molded into a resin tube, and the obtained resin tube is subjected to heat treatment for removing the residual stress. The process of molding the resin material into the resin tube is not particularly limited. For example, a method of extruding the molten resin material into a tube shape from a cylindrical die, cooling to room temperature, solidifying, and taking it out Alternatively, the sheet may be wound around the surface of a mandrel, the side edges of the sheet overlap each other, thermally welded, and then cooled and solidified.

本発明において熱処理の実効が十分に発揮され得る樹脂チューブの樹脂材料は、好ましくはエンジニアリングプラスチック(エンプラ)系の高結晶性樹脂であり、例えば、ポリアミド(PA)、ポリアセタール(POM)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、シンジオタクチック・ポリスチレン(SPS)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、フッ素樹脂、ポリエーテルニトリル(PEN)等が挙げられる。特に好ましくは、POMまたはPEEKである。   In the present invention, the resin material of the resin tube that can sufficiently exhibit the effect of the heat treatment is preferably an engineering plastic (engineering plastic) -based highly crystalline resin, such as polyamide (PA), polyacetal (POM), polybutylene terephthalate. (PBT), polyethylene terephthalate (PET), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), fluororesin, polyether nitrile (PEN) and the like. Particularly preferred is POM or PEEK.

本発明における熱処理は、成型された樹脂チューブの残留応力を除去することを目的に行うものであるため、好適には、成型された樹脂チューブの樹脂材料融点以下の温度で一定時間保持した後、常温まで徐冷する処理とする。   Since the heat treatment in the present invention is performed for the purpose of removing the residual stress of the molded resin tube, preferably, after holding for a certain time at a temperature below the melting point of the resin material of the molded resin tube, It is set as the process which cools slowly to normal temperature.

本発明における熱処理を施した樹脂チューブは、成型に伴う残留応力が除去されているため、樹脂チューブ内部での疲労起点が存在しない。このため、流体輸送時に内圧を受けた場合の初期には樹脂チューブ内側の表面に極々微小な亀裂が発生するにとどまり、早期に局部的に大きな亀裂に発展することはなくなる。また、本発明における熱処理は、樹脂チューブ内の残留応力が除去される以外に、成型後の樹脂チューブの寸法安定性向上にも寄与し、実際に、成型後の樹脂チューブの寸法安定性向上にもつながる。   In the resin tube subjected to the heat treatment in the present invention, since the residual stress accompanying the molding is removed, there is no fatigue starting point inside the resin tube. For this reason, in the initial stage when an internal pressure is applied during fluid transportation, only extremely small cracks are generated on the inner surface of the resin tube, and there is no early development of large cracks. In addition to removing residual stress in the resin tube, the heat treatment in the present invention contributes to improving the dimensional stability of the resin tube after molding, and actually improves the dimensional stability of the resin tube after molding. Is also connected.

樹脂チューブの具体的熱処理条件としては、使用する樹脂材料、成型方法および樹脂チューブの寸法等にもよるが、樹脂材料融点迄の範囲内で、100〜150℃の熱処理温度範囲が好ましい。この温度が100℃未満であると樹脂チューブ内の残留応力除去が十分に行われ難く、また、150℃を超えると、樹脂チューブの樹脂材料そのものの劣化が熱により促進されるおそれがある。また、熱処理時間も、使用する樹脂材料、成型方法および樹脂チューブの寸法等によるが、熱伝達(伝導)及び残留応力除去、熱による材料劣化を考慮し、0.5〜4.0時間の範囲内が好ましい。この熱処理時間が4.0時間を超えると、熱処理温度によって樹脂チューブの樹脂材料の劣化に発展する可能性がある。   As specific heat treatment conditions for the resin tube, although it depends on the resin material used, the molding method, the dimensions of the resin tube, and the like, a heat treatment temperature range of 100 to 150 ° C. is preferable within the range up to the melting point of the resin material. If this temperature is less than 100 ° C., the residual stress in the resin tube cannot be sufficiently removed, and if it exceeds 150 ° C., deterioration of the resin material itself of the resin tube may be accelerated by heat. The heat treatment time also depends on the resin material used, the molding method, the dimensions of the resin tube, etc., but takes into account heat transfer (conduction) and residual stress removal, and material deterioration due to heat, and is in the range of 0.5 to 4.0 hours. The inside is preferable. If this heat treatment time exceeds 4.0 hours, the resin material of the resin tube may be deteriorated depending on the heat treatment temperature.

本発明の効果が顕著に奏せられることから特に好ましい樹脂材料とされるポリアセタール(POM)では、前記熱処理の温度が120〜140℃で、かつ、その時間が1.0〜2.0時間の場合に最も熱処理による効果が発揮される。   In polyacetal (POM) which is a particularly preferable resin material because the effects of the present invention are remarkably exhibited, the temperature of the heat treatment is 120 to 140 ° C., and the time is 1.0 to 2.0 hours. In some cases, the effect of heat treatment is exhibited most.

なお、本発明において、熱処理を行う設備は温度保持が可能で、かつ、樹脂チューブ全体を一定の温度に保つことができるものであれば、特に定めはなく、例えば、所定の温度に設定された熱処理室内を、樹脂チューブを所定の速度で走行させることのできる設備などとすることができる。   In the present invention, the equipment for performing the heat treatment is not particularly limited as long as the temperature can be maintained and the entire resin tube can be maintained at a constant temperature. For example, the temperature is set to a predetermined temperature. The heat treatment chamber can be a facility that can run the resin tube at a predetermined speed.

本発明により製造された樹脂チューブは、単一材料で構成された単層樹脂チューブであっても、あるいは複数の樹脂材料を組み合わせて複層化した樹脂チューブであってもよい。また、かかる樹脂チューブを補強材で補強して複合樹脂ホースとしてもよい。複合樹脂ホースの例としては、図2に示すような、内側から、内面樹脂層(樹脂チューブ)1、第1補強層2a、第2補強層2bおよび外皮ゴム層3が順次積層されてなる構造を有する複合樹脂ホースを挙げることができる。   The resin tube manufactured according to the present invention may be a single-layer resin tube made of a single material, or may be a resin tube formed by combining a plurality of resin materials. Further, the resin tube may be reinforced with a reinforcing material to form a composite resin hose. As an example of the composite resin hose, as shown in FIG. 2, a structure in which an inner surface resin layer (resin tube) 1, a first reinforcing layer 2a, a second reinforcing layer 2b, and an outer rubber layer 3 are sequentially laminated from the inside. The composite resin hose which has can be mentioned.

ここで、第1補強層2aおよび第2補強層2bは、ビニロン、ポリエステル(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等)、ポリアミド(ナイロン)、アラミド等の有機繊維またはスチールワイヤからなる補強糸を、スパイラル構造またはブレード構造にて内面樹脂層(樹脂チューブ)1の外面に編み上げ被覆することにより形成される。また、図示するように、補強層を2層以上にて形成する場合には、必要に応じて各層間に中間ゴム層または接着層(接着材)(図示せず)を設けてもよく、さらに、第1補強層2aと内面樹脂層(樹脂チューブ)1との間に内管ゴム層または接着層(接着材)を設けてもよい。   Here, the first reinforcing layer 2a and the second reinforcing layer 2b are made of vinylon, polyester (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.), polyamide (nylon), organic fibers such as aramid, or a steel wire. The reinforcing yarn is formed by braiding and coating the outer surface of the inner surface resin layer (resin tube) 1 with a spiral structure or a blade structure. As shown in the figure, when the reinforcing layer is formed of two or more layers, an intermediate rubber layer or an adhesive layer (adhesive) (not shown) may be provided between the respective layers as necessary. An inner tube rubber layer or an adhesive layer (adhesive) may be provided between the first reinforcing layer 2a and the inner surface resin layer (resin tube) 1.

特に本発明においては、樹脂チューブの耐疲労性が大幅に向上することから、かかる樹脂チューブを用いて超高圧ホースを好適に製造することができる。超高圧ホースの好適例としては、図3に示すような、内側から、内面樹脂層(樹脂チューブ)1の表面にスチールワイヤによる4層のスパイラル層2a、2b、2cおよび2dを巻き付け、その外側に外皮ゴム層3が積層されたものを挙げることができる。超高圧ホースのその他の好適例としては、図示はしないが、補強層として2層のスパイラル層と1層のブレード層、4層のスパイラル層と1層のブレード層、6層のスパイラル層、および8層のスパイラル層を有するものを挙げることができる。尚、超高圧用として成立すれば上記好適例以外の補強層の組み合わせでもよく、必要となる伝達圧力、流体の流量に応じて様々な補強層の組み合わせが考えられ、適宜、最適な構造を選定すればよい。因に、高圧ホースは、1気圧以上の加圧に耐え得るものをいい、超高圧ホースは700気圧以上、実用上3000気圧までの加圧に耐え得るものをいう。かかる超高圧ホースの用途としては、物の切断(媒体は水)や、橋脚、新空港などの超重量物のジャッキアップ(媒体は油)等が挙げられる。   In particular, in the present invention, since the fatigue resistance of the resin tube is greatly improved, an ultrahigh pressure hose can be suitably manufactured using such a resin tube. As a preferred example of the ultra high pressure hose, as shown in FIG. 3, four layers of spiral layers 2a, 2b, 2c and 2d of steel wire are wound around the surface of the inner surface resin layer (resin tube) 1 from the inside, and the outside thereof And the outer rubber layer 3 may be laminated. As other suitable examples of the ultrahigh pressure hose, although not shown, as a reinforcing layer, two spiral layers and one blade layer, four spiral layers and one blade layer, six spiral layers, and An example having eight spiral layers can be given. In addition, if it is established for ultra-high pressure, a combination of reinforcing layers other than the above preferred examples may be used, and various combinations of reinforcing layers can be considered according to the required transmission pressure and fluid flow rate, and an optimal structure is selected as appropriate. do it. Incidentally, the high-pressure hose refers to one that can withstand pressurization of 1 atm or higher, and the ultra-high pressure hose refers to one that can withstand pressurization of 700 atm or higher and practically up to 3000 atm. Applications of such an ultra-high pressure hose include cutting of objects (medium is water), jacking up super heavy objects such as piers and new airports (medium is oil), and the like.

以下、本発明を実施例に基づき説明する。
溶融状態のPOM樹脂を円筒ダイよりチューブ状に押し出した後、室温まで冷却して固化し、引き取ることにより成型したPOM樹脂チューブに、温度130℃、時間1.5時間の熱処理を施したPOM樹脂チューブ(実施例)と、かかる熱処理を施さなかった以外は同様にして製造したPOM樹脂チューブ(比較例)との耐疲労性を、同一条件下で両者に流体輸送により内圧245MPaをかけることにより比較した(245MPaの連続封入加圧)。その結果、実施例では500時間でもPOM樹脂チューブの内表面での極々微小な亀裂の発生にとどまったのに対し、比較例では、100時間以内でもPOM樹脂チューブ内側において局部的に大きな亀裂の発展が見られた。
Hereinafter, the present invention will be described based on examples.
After the molten POM resin is extruded from a cylindrical die into a tube shape, it is cooled to room temperature, solidified, and pulled to form a POM resin tube that is heat-treated at a temperature of 130 ° C. for 1.5 hours. Comparison of fatigue resistance between a tube (Example) and a POM resin tube (Comparative Example) manufactured in the same manner except that the heat treatment was not performed by applying an internal pressure of 245 MPa to the both by fluid transportation under the same conditions. (Continuous enclosure pressure of 245 MPa). As a result, in the example, only a very small crack was generated on the inner surface of the POM resin tube even in 500 hours, whereas in the comparative example, a large crack was locally developed inside the POM resin tube even within 100 hours. It was observed.

樹脂チューブの一部切欠斜視図である。It is a partially cutaway perspective view of a resin tube. 複合樹脂ホースの一部切欠斜視図である。It is a partially cutaway perspective view of a composite resin hose. 超高圧ホースの一部切欠斜視図である。It is a partially cutaway perspective view of an ultrahigh pressure hose.

符号の説明Explanation of symbols

1 内面樹脂層(樹脂チューブ)
2a 第1補強層
2b 第2補強層
2c,2d 補強層(スパイラル層)
3 外皮ゴム層(外面樹脂層)
1 Internal resin layer (resin tube)
2a 1st reinforcement layer 2b 2nd reinforcement layer 2c, 2d Reinforcement layer (spiral layer)
3 Outer rubber layer (outer surface resin layer)

Claims (11)

樹脂材料を成型して樹脂チューブとし、得られた樹脂チューブに、その残留応力を除去するための熱処理を施すことを特徴とする樹脂チューブの製造方法。   A method for producing a resin tube, comprising: molding a resin material into a resin tube; and subjecting the obtained resin tube to heat treatment for removing the residual stress. 前記熱処理を、前記樹脂チューブの樹脂材料の融点以下の温度で一定時間保持した後、常温まで徐冷する処理とする請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the heat treatment is a treatment in which the heat treatment is performed for a predetermined time at a temperature equal to or lower than a melting point of the resin material of the resin tube and then gradually cooled to room temperature. 前記樹脂チューブの樹脂材料がエンジニアリングプラスチック系の高結晶性樹脂である請求項1または2記載の製造方法。   The manufacturing method according to claim 1 or 2, wherein the resin material of the resin tube is an engineering plastic type highly crystalline resin. 前記樹脂チューブの樹脂材料がポリアセタールまたはポリエーテルエーテルケトンである請求項3記載の製造方法。   The production method according to claim 3, wherein the resin material of the resin tube is polyacetal or polyether ether ketone. 前記熱処理の温度が100〜150℃の範囲内である請求項1〜4のうちいずれか一項記載の製造方法。   The temperature of the said heat processing exists in the range of 100-150 degreeC, The manufacturing method as described in any one of Claims 1-4. 前記熱処理の時間が0.5〜4.0時間である請求項1〜5のうちいずれか一項記載の製造方法。   The manufacturing method according to claim 1, wherein the heat treatment time is 0.5 to 4.0 hours. 前記樹脂チューブの樹脂材料がポリアセタールであり、前記熱処理温度が120〜140℃で、かつ、熱処理時間が1.0〜2.0時間である請求項4〜6のうちいずれか一項記載の製造方法。   The resin material of the said resin tube is a polyacetal, the said heat processing temperature is 120-140 degreeC, and the heat processing time is 1.0-2.0 hours, The manufacture as described in any one of Claims 4-6 Method. 前記樹脂チューブが単一材料で構成された単層樹脂チューブである請求項1〜7のうちいずれか一項記載の製造方法。   The manufacturing method according to claim 1, wherein the resin tube is a single-layer resin tube made of a single material. 前記樹脂チューブが複数の樹脂材料を組み合わせて複層化した樹脂チューブである請求項1〜7のうちいずれか一項記載の製造方法。   The manufacturing method according to claim 1, wherein the resin tube is a resin tube formed by combining a plurality of resin materials. 前記樹脂チューブが補強材で補強されて複合樹脂ホースを構成する請求項1〜7のうちいずれか一項記載の製造方法。   The manufacturing method according to claim 1, wherein the resin tube is reinforced with a reinforcing material to form a composite resin hose. 前記樹脂チューブの表面に補強材として2層以上の補強層が積層されて超高圧ホースを構成する請求項10記載の製造方法。   The manufacturing method according to claim 10, wherein two or more reinforcing layers are laminated as a reinforcing material on the surface of the resin tube to constitute an ultrahigh pressure hose.
JP2006035351A 2005-11-18 2006-02-13 Hose manufacturing method Expired - Fee Related JP5019758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035351A JP5019758B2 (en) 2005-11-18 2006-02-13 Hose manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005333794 2005-11-18
JP2005333794 2005-11-18
JP2006035351A JP5019758B2 (en) 2005-11-18 2006-02-13 Hose manufacturing method

Publications (2)

Publication Number Publication Date
JP2007160912A true JP2007160912A (en) 2007-06-28
JP5019758B2 JP5019758B2 (en) 2012-09-05

Family

ID=38244336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035351A Expired - Fee Related JP5019758B2 (en) 2005-11-18 2006-02-13 Hose manufacturing method

Country Status (1)

Country Link
JP (1) JP5019758B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112829345A (en) * 2020-12-24 2021-05-25 宁波哲能精密塑料有限公司 Stress relieving process for thermoplastic plate bar

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252945A (en) * 1999-12-27 2001-09-18 Bridgestone Corp Resin pipe manufacturing method
JP2004301247A (en) * 2003-03-31 2004-10-28 Asahi Glass Co Ltd Laminated hose

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252945A (en) * 1999-12-27 2001-09-18 Bridgestone Corp Resin pipe manufacturing method
JP2004301247A (en) * 2003-03-31 2004-10-28 Asahi Glass Co Ltd Laminated hose

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112829345A (en) * 2020-12-24 2021-05-25 宁波哲能精密塑料有限公司 Stress relieving process for thermoplastic plate bar

Also Published As

Publication number Publication date
JP5019758B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4284705B2 (en) Method for manufacturing molded body, molded body, and tank
US8944113B2 (en) Composite pipe and method of manufacture
US9429272B1 (en) Basalt-based pressure vessel for gas storage and method for its production
JP6457330B2 (en) Fiber reinforced resin composite tubular structure and method for producing the same
JP5400125B2 (en) Internal pressure vessel
CN205716065U (en) For interspersed continuous reinforced plastic composite pipe
DK201670453A1 (en) Highly resistant flexible tubular pipe and production method
JP2008286297A (en) High-pressure tank manufacturing method
JP5019758B2 (en) Hose manufacturing method
JPWO2018207771A1 (en) Pressure vessel
JP5107140B2 (en) Fluid transfer hose
CN102979966A (en) Reinforced plastic tube and manufacturing method thereof
JP4871805B2 (en) Bending hose mold and method of manufacturing bent hose using the same
JP4280280B2 (en) Mandrel for bending hose molding
JP2008272974A (en) Reinforced laminated hose
JP2008238491A (en) Frp molded body, its manufacturing method, and gas tank
CN103753819A (en) Method for continuously manufacturing composite winding plastic tube
JP2010190343A (en) Multi-layer pressure-resistant hose and method of manufacturing the same
JP2000025121A (en) Manufacture of flexible hose
JP2008062471A (en) Manufacturing method of cylindrical molded product made of fiber-reinforced resin
JP6320176B2 (en) Manufacturing method of rubber bellows hose for intake system
CN220930418U (en) Polyethylene-clamped grid fiber integrally-wound solid wall pipe
JP2008006614A (en) Method for producing bent resin-rubber composite hose
JP5088066B2 (en) Resin mandrels for hoses
JP6880591B2 (en) hose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5019758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees