JP2007160772A - Manufacturing method of transfer pipe made of composite material - Google Patents

Manufacturing method of transfer pipe made of composite material Download PDF

Info

Publication number
JP2007160772A
JP2007160772A JP2005361659A JP2005361659A JP2007160772A JP 2007160772 A JP2007160772 A JP 2007160772A JP 2005361659 A JP2005361659 A JP 2005361659A JP 2005361659 A JP2005361659 A JP 2005361659A JP 2007160772 A JP2007160772 A JP 2007160772A
Authority
JP
Japan
Prior art keywords
resin composition
carbon fiber
heat
phenol resin
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005361659A
Other languages
Japanese (ja)
Other versions
JP4730899B6 (en
JP4730899B2 (en
Inventor
Noriyoshi Terasawa
知徳 寺澤
Fukuju Kimura
福寿 木村
Takao Morimoto
考夫 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2005361659A priority Critical patent/JP4730899B6/en
Priority claimed from JP2005361659A external-priority patent/JP4730899B6/en
Publication of JP2007160772A publication Critical patent/JP2007160772A/en
Application granted granted Critical
Publication of JP4730899B2 publication Critical patent/JP4730899B2/en
Publication of JP4730899B6 publication Critical patent/JP4730899B6/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a transfer pipe which is made of a composite material and has sufficient resistance to the pressure rising by a fluid in the pipe, sufficient durability to corrosion due to e.g. high temperatures and/or high concentrations and sufficient heat-transferring performance. <P>SOLUTION: The manufacturing method comprises superimposing a film-formed solvent-free phenol resin composition on a carbon fiber woven fabric formed by weaving carbon fiber tow of a number of filaments of 3,000 or smaller with a count of 10-20 per inch for both the warp and weft, heating and pressurizing the superimposed product to obtain a prepreg in which the carbon fiber woven fabric is impregnated with the phenol resin composition, winding the prepreg onto a core bar to laminate, winding, onto the outer periphery of the laminated prepreg, a heat-shrinkable tape which shrinks in the longitudinal direction due to the heat generated in hardening the phenol resin composition, hardening the phenol resin composition thermally, followed by extracting the core bar and peeling off the heat-shrinked tape. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、重油焚きや石炭焚きボイラーのエアヒータ、排煙脱硫装置のガスヒータ、硫酸プラントなどの各種化学プラントなど、耐腐食性の要求される環境で使用される熱交換器のチューブに代表される移送管の製造方法に関する。   The present invention is represented by heat exchanger tubes used in environments where corrosion resistance is required, such as air heaters for heavy oil-fired and coal-fired boilers, gas heaters for flue gas desulfurization equipment, and various chemical plants such as sulfuric acid plants. The present invention relates to a method for manufacturing a transfer pipe.

重油焚きや石炭焚きボイラーのエアヒータ、排煙脱硫装置のガスヒータ、硫酸プラントなどで使用される熱交換器は、そのチューブが高温で高濃度の硫酸と接触する(特にC重油では厳しい)ため、高耐腐食性が要求されている。このため、従来では、特殊な成分を含有するNi系合金、フッ素系樹脂、黒鉛化させたカーボン成形物などのような材料が用いられ、炭素繊維強化フェノールを用いた移送管は、特に有望なものと考えられている。
炭素繊維強化フェノールを用いた移送管の製造方法としては、炭素繊維織布や炭素繊維ロービングに樹脂を含浸したものを引き抜き成形により成形する製造方法(特許文献1)、炭素繊維織布や炭素繊維ロービングに樹脂を含浸したものをフィラメントワインディング法やクロスワィンディング、テープワインディング法により成形する製造方法(特許文献2)が開示されている。
Heat exchangers used in heavy oil-fired and coal-fired boiler air heaters, gas heaters in flue gas desulfurization equipment, sulfuric acid plants, etc. have high temperatures because their tubes come in contact with high-concentration sulfuric acid at high temperatures (especially in C heavy oil). Corrosion resistance is required. For this reason, conventionally, materials such as Ni-based alloys, fluorine-based resins, graphitized carbon moldings and the like containing special components are used, and transfer tubes using carbon fiber-reinforced phenol are particularly promising. It is considered a thing.
As a manufacturing method of a transfer pipe using carbon fiber reinforced phenol, a manufacturing method (Patent Document 1) in which a carbon fiber woven fabric or a carbon fiber roving impregnated with a resin is formed by pultrusion molding, carbon fiber woven fabric or carbon fiber. A manufacturing method (Patent Document 2) is disclosed in which a roving impregnated with a resin is molded by a filament winding method, a cross winding method, or a tape winding method.

特開平10−132492号公報JP-A-10-132492 特開平7−12494号公報JP 7-12494 A

しかし、引き抜き成形では、
1)成形中に十分な圧力が炭素繊維と樹脂に加わらないため、樹脂と繊維の接着が不十分になるおそれがある、
2)加熱硬化時にフェノール樹脂から発生する縮合水が移送管中に残りやすく欠陥の要因になりやすい、
という欠点がある。特許文献1の試験例1に見られる剥離現象は、上記1)によると考えられる。
But in pultrusion,
1) Since sufficient pressure is not applied to the carbon fiber and the resin during molding, the adhesion between the resin and the fiber may be insufficient.
2) Condensed water generated from the phenolic resin during heat curing tends to remain in the transfer pipe and cause defects.
There is a drawback. The peeling phenomenon seen in Test Example 1 of Patent Document 1 is considered to be due to the above 1).

一方、フィラメントワインディング法等では、
1)フィラメントワインディング法で用いるフェノール樹脂は、粘度調節のため溶剤を多く含み溶剤が移送管中に残りやすい、
2)過熱硬化時にフェノール樹脂から発生する縮合水が移送管中に残りやすく欠陥の要因になりやすい、
3)フェノール樹脂が低粘度であることから、成形時に十分な圧力を加えようとするとカーボン繊維と結着に用いる合成樹脂の比率の制御が困難になるため十分な圧力が加えられないので、樹脂と繊維の接着が不十分となる、
という欠点がある。特許文献2の製造例では弗素樹脂を合成樹脂質結着剤とした外径6.3mm、厚さ0.4mmの移送管を製造しているが、プラントなどの工業用途に適用する為には流体容量、閉塞に対する安全性を考慮すれば大径化が必要となるが、大径化すると前記肉厚では耐圧、強度、剛性の面で厚肉化(熱交換用途の場合は熱交換効率が低下)が必要となり、弗素樹脂では加工が難しくなり、大幅にコストが上がる問題が生じる。
On the other hand, in the filament winding method etc.
1) The phenolic resin used in the filament winding method contains a lot of solvent for viscosity adjustment, and the solvent tends to remain in the transfer pipe.
2) Condensed water generated from the phenolic resin during overheat curing tends to remain in the transfer pipe and cause defects.
3) Since the phenol resin has a low viscosity, it is difficult to control the ratio between the carbon fiber and the synthetic resin used for binding when trying to apply a sufficient pressure during molding. And the fiber adhesion is insufficient,
There is a drawback. In the production example of Patent Document 2, a transfer pipe having an outer diameter of 6.3 mm and a thickness of 0.4 mm using a fluororesin as a synthetic resinous binder is manufactured. Considering the fluid capacity and safety against clogging, it is necessary to increase the diameter. However, if the diameter is increased, the wall thickness is increased in terms of pressure resistance, strength, and rigidity. Fluorine resin becomes difficult to process, resulting in a problem of a significant increase in cost.

そこで、本発明の目的は、腐食環境で使用される移送管において管内水圧が上昇してもウィーピングなどの漏れを生じず、高温・高濃度硫酸環境において長期耐久性を示し、熱交換性能を維持する複合材料製移送管の製造方法を提供することにある。   Therefore, an object of the present invention is to prevent leakage such as weeping even if the water pressure in the transfer pipe used in a corrosive environment rises, and to show long-term durability in a high-temperature, high-concentration sulfuric acid environment, and to achieve heat exchange performance. An object of the present invention is to provide a method for manufacturing a composite material transfer pipe to be maintained.

本発明の要旨は、
フィルム状の、溶剤成分を含まないフェノール樹脂組成物と、フィラメント数3000本以下の炭素繊維トウをたて糸、よこ糸ともに1インチ当り10〜20本の打ち込み本数で製織してなる炭素繊維織布とを重ね合わせて加熱加圧して、前記フェノール樹脂組成物が前記炭素繊維織布に含浸したプリプレグを得、前記プリプレグを芯金上に巻回して積層し、さらにその外周に前記フェノール樹脂組成物を硬化する際の熱により長手方向に収縮する熱収縮テープを巻回したのち、加熱硬化して前記フェノール樹脂組成物を硬化し、その後芯金を抜くと共に前記熱収縮テープを剥がし取る、複合材料製移送管の製造方法である。
The gist of the present invention is as follows.
A film-like phenolic resin composition not containing a solvent component, and a carbon fiber woven fabric obtained by weaving carbon fiber tows having a filament number of 3000 or less in a warp yarn and a weft yarn with an implantation number of 10 to 20 per inch. Overlaying and heating and pressing to obtain a prepreg impregnated with the carbon fiber woven fabric with the phenol resin composition, the prepreg is wound on a metal core and laminated, and the phenol resin composition is cured on the outer periphery thereof. After the heat-shrinkable tape that is shrunk in the longitudinal direction due to the heat at the time of winding, the phenol resin composition is cured by heating and then the core metal is pulled out and the heat-shrinkable tape is peeled off. It is a manufacturing method of a pipe.

本発明の複合材料製移送管の製造方法により得られた複合材料製移送管は、以下の効果を奏する。
1)送管内流体の圧力上昇に対し十分な耐性を示す。
2)高温高濃度の硫酸などの腐食に対し十分な耐久性を示す。
3)十分な伝熱性能が得られる。
The composite material transfer pipe obtained by the method for manufacturing a composite material transfer pipe of the present invention has the following effects.
1) Shows sufficient resistance against the pressure rise of the fluid in the pipe.
2) Sufficient durability against corrosion such as high temperature and high concentration sulfuric acid.
3) Sufficient heat transfer performance can be obtained.

以下、本発明を詳しく説明する。
『フェノール樹脂組成物』
本発明では、マトリックス樹脂としてフェノール樹脂組成物を用いる。これは、高温高濃度の硫酸が存在する環境では、エポキシ樹脂やビニルエステル樹脂は容易に腐食劣化し易いが、フェノール樹脂は硫酸に対して高い耐性を示すためである。
本発明で使用するフェノール樹脂組成物は、溶剤を用いずにフィルム化可能で、さらに加熱加圧のみで炭素繊維織布に含浸できることが必要である。このようなフェノール樹脂組成物は、ホットメルトタイプという表示され市販されている。好適なものとして、昭和高分子株式会社製変性フェノール樹脂BRM−797Hが挙げられる。本発明の製造方法では、上述したフェノール樹脂組成物を使用し、プリプレグ化時の加圧、後述する熱収縮性テープの収縮力による加圧することにより、樹脂と繊維の接着が十分なものとなる。
Hereinafter, the present invention will be described in detail.
"Phenolic resin composition"
In the present invention, a phenol resin composition is used as the matrix resin. This is because, in an environment where high-temperature and high-concentration sulfuric acid exists, epoxy resins and vinyl ester resins are easily corroded and deteriorated, but phenol resins are highly resistant to sulfuric acid.
The phenol resin composition used in the present invention needs to be capable of being formed into a film without using a solvent and to be able to impregnate a carbon fiber woven fabric only by heating and pressing. Such a phenol resin composition is displayed as a hot melt type and is commercially available. Suitable examples include modified phenolic resin BRM-797H manufactured by Showa Polymer Co., Ltd. In the production method of the present invention, the above-described phenol resin composition is used, and the pressure between the prepreg and the pressure due to the shrinkage force of the heat-shrinkable tape described later is sufficient to bond the resin and the fiber. .

『炭素繊維織布』
本発明では、炭素繊維織布として、フィラメント数3000本以下の炭素繊維トウをたて糸、よこ糸ともに1インチ当り10〜20本の打ち込み本数で製織してなる炭素繊維織布を使用することが必要である。フィラメント数を3000本以下とすることにより、クリンプの厚みが小さくなり、織布層間のフェノール樹脂単独層の厚み分布が小さくなるためクレーズがより発生しにくくなる。
また、たて糸、よこ糸ともに打ち込み本数を1インチ当り10〜20本とすることにより織り目に隙間が生じて炭素繊維の分布が不均一になったり、逆にたて糸、よこ糸が密になり過ぎてクリンプの厚みが大きくなったりすることを回避することとなる。
本発明で用いる炭素繊維織布には、高強度グレードや高弾性グレード等のいわゆるポリアクリロニトリル系炭素繊維の他にピッチ系炭素繊維、あるいはそれら両者を用いて製織される炭素繊維織布を使用することができる。
"Carbon fiber woven fabric"
In the present invention, as the carbon fiber woven fabric, it is necessary to use a carbon fiber woven fabric obtained by weaving a carbon fiber tow having a filament number of 3000 or less in a warp yarn and a weft yarn with 10 to 20 driven per inch. is there. By setting the number of filaments to 3000 or less, the thickness of the crimp is reduced, and the thickness distribution of the phenol resin single layer between the woven fabric layers is reduced, so that crazes are less likely to occur.
Also, by setting the number of warp yarns and weft yarns to 10 to 20 per inch, gaps are created in the weave, resulting in uneven carbon fiber distribution, and conversely warp yarns and weft yarns are too dense. It will avoid that thickness becomes large.
As the carbon fiber woven fabric used in the present invention, pitch-based carbon fibers in addition to so-called polyacrylonitrile-based carbon fibers such as high-strength grades and high-elastic grades, or carbon fiber woven fabrics woven using both are used. be able to.

『プリプレグ』
本発明では、上述のフェノール樹脂組成物のフィルムと炭素繊維織布とを重ね合わせて加熱加圧して、前記フェノール樹脂組成物が前記炭素繊維織布に含浸したプリプレグを得る。
プリプレグ中の炭素繊維の体積含有率は60%以下であることが好ましい。体積含有率を60%以下とすることによりフェノール樹脂組成物を加熱硬化した移送管内部でのボイドの発生や、各層間の強度を十分なものとすることができる。逆に、炭素繊維の体積含有率が少な過ぎると電熱性能の低下や、劣化時にクレーズが発生するとその進展が拡大する現象を引き起こす。
"Prepreg"
In the present invention, the film of the above-described phenol resin composition and the carbon fiber woven fabric are overlapped and heated and pressed to obtain a prepreg in which the carbon fiber woven fabric is impregnated with the phenol resin composition.
The volume content of carbon fibers in the prepreg is preferably 60% or less. By setting the volume content to 60% or less, generation of voids inside the transfer tube obtained by heat-curing the phenol resin composition and the strength between the layers can be made sufficient. On the contrary, if the volume content of the carbon fiber is too small, the electrothermal performance is lowered, and if the craze is generated at the time of deterioration, a phenomenon that the progress is expanded is caused.

『芯金』
本発明で用いる芯金は、材質・表面粗度に限定はなく、一般的にシートラップ成形で使用されるもので良い。
"Core"
The core metal used in the present invention is not limited in material and surface roughness, and may be generally used in sheet wrap molding.

『プリプレグの巻回、炭素繊維の配向』
本発明では上述のプリプレグを前記芯金に巻回して所定の材料を管状に成形する。その際、芯金と平行に配置されたプレスロールで押力を加えながら巻回すると層間に空気をかみこむことなくプリプレグを巻き回すことができる。
巻回する際のプレスロールの圧力は0.05〜0.4MPaであることが好ましい。0.05MPaより低い圧力では十分なプリプレグの密着が得られず、0.4MPaより圧力が高いとプレス圧によりプリプレグ中の樹脂が移動し、所望の炭素繊維の体積含有率が得られないなどの現象が生じる。また、プリプレグが硬質であったりべた付きが少ない場合は芯金を加熱したりプレスロールを加温するなどによりプリプレグを軟化あるいはプリプレグにべた付きを付与して巻回することが好ましい。
移送管中の炭素繊維の配向方向は、芯金に対する炭素繊維織布の巻き回し角度によって決まる。
移送管の長手方向に対して炭素繊維が0度/90度に配向していることが移送管の剛性、潰し強力を高めるために好ましい。芯金が容易に曲げることができる材質である場合、後述の熱収縮テープを巻き回した後芯金ごと曲げることにより曲がった移送管を製造することができる。その場合は移送管の長手方向に対して炭素繊維が+45度/−45度に配向していることが好ましい。
"Winding of prepreg, orientation of carbon fiber"
In the present invention, the above-described prepreg is wound around the core bar to form a predetermined material into a tubular shape. In that case, when it winds by applying a pressing force with the press roll arrange | positioned in parallel with a metal core, a prepreg can be wound without entrapment of air between layers.
The pressure of the press roll at the time of winding is preferably 0.05 to 0.4 MPa. When the pressure is lower than 0.05 MPa, sufficient adhesion of the prepreg cannot be obtained. When the pressure is higher than 0.4 MPa, the resin in the prepreg moves due to the press pressure, and the volume content of the desired carbon fiber cannot be obtained. A phenomenon occurs. When the prepreg is hard or less sticky, it is preferable to soften the prepreg by heating the core metal or warm the press roll or to give the prepreg sticky and wind it.
The orientation direction of the carbon fibers in the transfer tube is determined by the winding angle of the carbon fiber woven fabric around the core metal.
In order to increase the rigidity and crushing strength of the transfer pipe, it is preferable that the carbon fibers are oriented at 0/90 degrees with respect to the longitudinal direction of the transfer pipe. When the metal core is a material that can be easily bent, a bent transfer pipe can be manufactured by winding the heat shrinkable tape described later and then bending the metal core together. In that case, the carbon fibers are preferably oriented at + 45 ° / −45 ° with respect to the longitudinal direction of the transfer tube.

『積層数』
前記プリプレグを前記芯金に巻回する積層数は、使用するプリプレグの厚みや所望の移送管肉厚により特に限定されるものではないが、フィラメント数3000本の炭素繊維トウをたて糸、よこ糸ともに1インチ当り10〜20本の打ち込み製織してなる織布を用いる場合、積層数は18層以下であることが好ましい。
"Number of layers"
The number of layers for winding the prepreg around the core metal is not particularly limited depending on the thickness of the prepreg to be used and the desired thickness of the transfer tube, but a carbon fiber tow having a filament number of 3000 is 1 for both warp and weft. In the case of using a woven fabric formed by driving and weaving 10 to 20 per inch, the number of laminated layers is preferably 18 layers or less.

『熱収縮テープ』
本発明では、フェノール樹脂組成物を硬化する際に、プリプレグを巻き回した層に圧力をかけるため、熱により長手方向に収縮する熱収縮テープを巻回すことが必要である。120℃で2時間加熱したとき、長手方向に0.8%収縮するテープが好ましい。テープの幅には特に限定は無いが、10〜30mmのものが使用でき、製造する移送管の外径に応じて選択する。また、熱収縮テープの厚みは特に限定しないが、20〜30μmのものが使用できる。
"Heat Shrink Tape"
In the present invention, when the phenol resin composition is cured, it is necessary to wind a heat-shrinkable tape that shrinks in the longitudinal direction by heat in order to apply pressure to the layer around which the prepreg is wound. A tape that shrinks 0.8% in the longitudinal direction when heated at 120 ° C. for 2 hours is preferred. The width of the tape is not particularly limited, but a tape of 10 to 30 mm can be used, and is selected according to the outer diameter of the transfer pipe to be manufactured. Moreover, although the thickness of a heat shrink tape is not specifically limited, a 20-30 micrometers thing can be used.

『熱収縮テープの巻回』
熱収縮テープは、一定ピッチで螺旋状に巻回する。螺旋状に巻回する際の熱収縮テープの巻付けピッチには特に限定はないが、熱収縮テープ幅の10〜20%とすることが好ましい。巻き回す際、熱収縮テープに適切な張力を与えることにより材料に圧力が加わり良好な移送管が得られる。張力が低すぎると材料に加わる圧力が低くなり、材料内部にボイドが多く残存するなどして密な材料が得られない。また、張力が高すぎると材料の加熱時に一時樹脂粘度が低下する際樹脂の流れ出しがあり、移送管に対する所望の樹脂量が得にくくなる。本発明における好ましい張力は40〜97Nである。
"Winding of heat shrink tape"
The heat-shrink tape is wound spirally at a constant pitch. There is no particular limitation on the winding pitch of the heat-shrinkable tape when spirally wound, but it is preferably 10 to 20% of the width of the heat-shrinkable tape. When winding, an appropriate tension is applied to the heat-shrink tape to apply pressure to the material and to obtain a good transfer tube. If the tension is too low, the pressure applied to the material becomes low, and a dense material cannot be obtained because many voids remain inside the material. On the other hand, if the tension is too high, the resin flows out when the viscosity of the temporary resin decreases during heating of the material, making it difficult to obtain the desired amount of resin for the transfer tube. The preferred tension in the present invention is 40 to 97N.

『加熱硬化』
フェノール樹脂組成物を加熱硬化する装置としては、使用する樹脂組成物に適した加熱温度条件を制御できる加熱炉、オーブンであればその種類に限定はない。加熱温度条件は使用するフェノール樹脂組成物により異なるが、昇温速度、降温速度は遅い方が好ましい。生産性を考慮した上で2℃/分以下が好ましい。加熱温度が最高点に達する途中の温度領域で加熱温度を一旦保持するステップ上の温度勾配を設けることが好ましい。また、一通り加熱硬化を終了させた移送管について、その後使用される環境温度を考慮し、加熱硬化時の最高温度より更に高い温度で再度熱処理することも移送管の材料状態をより安定化させる上で好ましい。
"Heat curing"
The apparatus for heat-curing the phenol resin composition is not limited to any kind as long as it is a heating furnace or oven capable of controlling the heating temperature conditions suitable for the resin composition to be used. Although the heating temperature condition varies depending on the phenol resin composition to be used, it is preferable that the heating rate and cooling rate are slow. In consideration of productivity, 2 ° C./min or less is preferable. It is preferable to provide a temperature gradient on the step of temporarily holding the heating temperature in the temperature region in the middle of reaching the highest point. In addition, considering the environmental temperature to be used afterwards for the transfer tube that has been completely heat-cured, heat treatment at a temperature higher than the maximum temperature during heat-curing also stabilizes the material state of the transfer tube. Preferred above.

『移送管の用途』
本発明で製造される移送管は、移送管の内側を流れる流体/移送管の外側を流れる流体が、液体/液体、気体/液体、液体/気体、気体/気体などあらゆる条件で使用することができるが、特に液体/気体の場合に適している。
"Use of transfer pipe"
The transfer pipe manufactured by the present invention can be used under any conditions such as fluid flowing inside the transfer pipe / fluid flowing outside the transfer pipe, such as liquid / liquid, gas / liquid, liquid / gas, and gas / gas. Although it is possible, it is particularly suitable for liquid / gas.

以下に実施例を示し、本発明をさらに具体的に説明する。
『耐圧試験』
得られた移送管10の両端にシーラントテープ11(リッチモンド社製RS200)を密着させた後、一端をブチルゴムシート12(5mm厚)、鋼材板13(10mm厚)をあて、もう一方の移送管端部に開口したブチルゴムシート12、開口部にネジを切った鋼材板13を当ててから両端の鋼材板13の4角に全ネジ丸棒13を通し、ナット16で十分に締付けて移送管を固定した(図1)。
次に鋼材板13の開口部へ鋼材板にチューブを取付けるアダプター21をねじ込みセットした後、アダプター開口部から移送管内に水を注入し、水面がアダプター開口部に達するまで水を充填した。その後工程エアーライン25から増圧器24を通じて圧力空気を送り込む耐圧チューブ22をアダプター21に接続し、増圧器と試験装置の間に設置した圧力ゲージ23の表示を読みながら前記チューブに加圧空気を供給して移送管と装置の接続部、アダプター部からの漏れ、移送管壁の状態を確認した。
The following examples illustrate the present invention more specifically.
"Pressure resistance test"
After the sealant tape 11 (RS200 manufactured by Richmond) was adhered to both ends of the obtained transfer pipe 10, one end was applied with a butyl rubber sheet 12 (5 mm thickness) and a steel plate 13 (10 mm thickness), and the other transfer pipe end. After applying the butyl rubber sheet 12 opened to the opening and the steel plate 13 with the screw cut to the opening, the full screw round bar 13 is passed through the four corners of the steel plate 13 at both ends, and the transfer pipe is fixed by sufficiently tightening with the nut 16 (FIG. 1).
Next, the adapter 21 for attaching the tube to the steel plate was screwed into the opening of the steel plate 13 and set, and then water was injected from the adapter opening into the transfer tube, and water was filled until the water surface reached the adapter opening. After that, the pressure tube 22 for sending the pressure air from the process air line 25 through the pressure intensifier 24 is connected to the adapter 21, and the compressed air is supplied to the tube while reading the display of the pressure gauge 23 installed between the pressure intensifier and the test device. Then, leakage from the connection part of the transfer pipe and the device, the adapter part, and the state of the transfer pipe wall were confirmed.

『実用試験』
得られた移送管530〜761mm長を合計56本用意し、これらを上下両端にダクト接続用フランジを有する枠型シェル(奥行き400mm、幅232mm、高さ540mm、いずれも内寸)に接合固定し移送管内を流れる水が垂直方向に並ぶ移送管を連続して通過するように、上下に隣接する移送管をリターン機構で接続して多管式熱交換器を製作した。
この実験機に、C重油を燃料とするボイラーから排出される燃焼排ガスを流し(排ガス量:1200Nm/h、入口温度:160℃、出口温度:120℃)、移送管内には水を流した(給水量600L/h、入口温度:約5〜25℃、出口温度:約20〜45℃)。
11ヶ月間の連続運転後、多管式熱交換器から移送管を取外し、『耐圧試験』を実施した。
"Practical test"
A total of 56 obtained transfer pipes 530 to 761 mm in length are prepared, and these are joined and fixed to a frame-type shell (depth 400 mm, width 232 mm, height 540 mm, all inside dimensions) having duct connecting flanges at both upper and lower ends. A multi-tube heat exchanger was manufactured by connecting the transfer pipes adjacent to each other with a return mechanism so that the water flowing in the transfer pipes continuously passed through the transfer pipes arranged in the vertical direction.
A flue gas discharged from a boiler using C heavy oil as fuel was flowed into this experimental machine (exhaust gas amount: 1200 Nm 3 / h, inlet temperature: 160 ° C., outlet temperature: 120 ° C.), and water was allowed to flow through the transfer pipe. (Water supply amount 600 L / h, inlet temperature: about 5 to 25 ° C., outlet temperature: about 20 to 45 ° C.).
After 11 months of continuous operation, the transfer tube was removed from the multi-tube heat exchanger and a “pressure test” was performed.

『伝熱性能評価』
上記実用試験期間中の総括伝熱係数を算出、記録した。
"Heat transfer performance evaluation"
The overall heat transfer coefficient during the practical test period was calculated and recorded.

『移送管の断面観察』
移送管の断面を光学顕微鏡(株式会社キーエンス製VHVデジタルマイクロスコープ)にて100〜450倍の範囲で観察した。
"Section observation of transfer pipe"
The cross section of the transfer tube was observed in the range of 100 to 450 times with an optical microscope (VHV digital microscope manufactured by Keyence Corporation).

(実施例1)
「炭素繊維織布」
フィラメント数3000本のストランド弾性率235GPa、ストランド引張強度4410MPaの炭素繊維をたて糸、よこ糸ともに1インチ当り12.5本の打ち込み本数で平織り製織した、三菱レイヨン株式会社製炭素繊維織布TR3110を用意した。
Example 1
"Carbon fiber woven fabric"
A carbon fiber woven fabric TR3110 made by Mitsubishi Rayon Co., Ltd. was prepared by weaving carbon fibers having a strand elastic modulus of 235 GPa with a filament number of 3000 and a strand tensile strength of 4410 MPa in a plain weave with a warp and weft of 12.5 per inch. .

「フェノール樹脂組成物」
フェノール樹脂組成物として、昭和高分子株式会社製変性フェノール樹脂(BRM−797H)を目付108g/mになるように離型紙上に塗りつけて、フェノール樹脂組成物フィルムを用意した。
"Phenolic resin composition"
As a phenol resin composition, a modified phenol resin (BRM-797H) manufactured by Showa Polymer Co., Ltd. was applied onto release paper so as to have a basis weight of 108 g / m 2 to prepare a phenol resin composition film.

「プリプレグ化」
フェノール樹脂組成物フィルムと炭素繊維織布を重ね、炭素繊維織布側にさらに離型紙を重ねて、ニップロール温度80℃、圧力0.4MPaのニップロールに通して、炭素繊維織布にフェノール樹脂組成物を含浸した。プリプレグの樹脂含有量は35質量%であった。
"Prepreg"
The phenolic resin composition film and the carbon fiber woven fabric are stacked, a release paper is further stacked on the carbon fiber woven fabric side, passed through a nip roll having a nip roll temperature of 80 ° C. and a pressure of 0.4 MPa, and the phenolic resin composition is applied to the carbon fiber woven fabric. Impregnated. The resin content of the prepreg was 35% by mass.

「移送管の成形」
外径17mmのスチール製芯金に、プリプレグをたて糸が芯金の長手方向となるように8層巻き回した。そのときプレスロール圧力0.4MPaのプレスロールを使用した。巻き回されたプリプレグの上に厚み25μm、幅20mmの熱収縮性を有するポリエチレンテレフタレートテープ(信越フィルム株式会社製PET−25K)を2mmピッチで巻回した。
これを加熱炉中に移し、0.5℃/分の昇温速度で90℃とし、その状態で5時間放置した後、0.5℃/分の昇温速度で100℃とし、その状態で4時間放置した後、さらに0.5℃/分の昇温速度で130℃とし、2時間放置しフェノール樹脂組成物を硬化した。室温に戻したのち芯金を抜き、熱収縮テープを剥ぎ取って、外径20mmのパイプを得た。得られたパイプはさらに150℃に5時間曝してポストキュアして移送管を得た。評価結果を表2に示した。
この移送管では、成形直後、実用試験後ともにクレーズ、クラックは観察されなかった。本発明で製造した移送管では使用環境においてクレーズ、クラックが発生しないため、内部流体の漏れ、ウィーピングが生じないことが確認された。
"Molding of transfer pipe"
A prepreg was wound around a steel cored bar having an outer diameter of 17 mm and wound in eight layers so that the warp yarn was in the longitudinal direction of the cored bar. At that time, a press roll having a press roll pressure of 0.4 MPa was used. A polyethylene terephthalate tape (PET-25K, manufactured by Shin-Etsu Film Co., Ltd.) having a thickness of 25 μm and a width of 20 mm was wound on the wound prepreg at a pitch of 2 mm.
This was transferred into a heating furnace, set at 90 ° C. at a rate of 0.5 ° C./min, left in that state for 5 hours, then set at 100 ° C. at a rate of 0.5 ° C./min. After standing for 4 hours, the temperature was further increased to 130 ° C. at a rate of 0.5 ° C./min, and the phenol resin composition was cured by standing for 2 hours. After returning to room temperature, the mandrel was removed and the heat-shrinkable tape was peeled off to obtain a pipe having an outer diameter of 20 mm. The obtained pipe was further exposed to 150 ° C. for 5 hours and post-cured to obtain a transfer pipe. The evaluation results are shown in Table 2.
In this transfer pipe, no crazes and cracks were observed immediately after molding and after the practical test. It was confirmed that the transfer pipe manufactured according to the present invention does not cause crazing and cracking in the environment of use, so that internal fluid leakage and weeping do not occur.

(比較例1、2)
「炭素繊維」
東レ株式会社製炭素繊維T700(引張弾性率230GPa、引張強度4900MPa、フィラメント数12000)を用意した。
(Comparative Examples 1 and 2)
"Carbon fiber"
Toray Industries, Inc. carbon fiber T700 (tensile elastic modulus 230 GPa, tensile strength 4900 MPa, filament number 12000) was prepared.

「フェノール樹脂」
フェノール樹脂組成物として、住友ベークライト株式会社製ヴァンテック専用グレードを用意した。
"Phenolic resin"
As a phenolic resin composition, a grade dedicated to VANTEC manufactured by Sumitomo Bakelite Co., Ltd. was prepared.

「引き抜き成形型」
特開平10−196857号公報の図3に記載の引き抜き成形装置(ただし、(ガラス)クロス層を挿入する機構なし、炭素繊維をフープ巻きした後に0°に炭素繊維を配置する機構を有する)を用いて、それぞれの層の炭素繊維量を変えて表1に示した引抜移送管A、Bを得た。評価結果を表2に示した。
引抜移送管A、Bの断面観察により、いずれの移送管でも炭素繊維と炭素繊維の間を通り厚み方向に伝播するクレーズ、クラックが存在することが観察された。
"Pulling mold"
The pultrusion apparatus shown in FIG. 3 of JP-A-10-196857 (however, there is no mechanism for inserting a (glass) cloth layer, and a mechanism for arranging carbon fibers at 0 ° after hoop winding of carbon fibers). Using, the amount of carbon fiber of each layer was changed and the drawing transfer pipes A and B shown in Table 1 were obtained. The evaluation results are shown in Table 2.
By observing the cross sections of the drawing transfer pipes A and B, it was observed that any of the transfer pipes had crazes and cracks that passed between the carbon fibers and propagated in the thickness direction.

Figure 2007160772
Figure 2007160772

Figure 2007160772
Figure 2007160772

以下の効果を奏する複合材料製移送管を提供することができる。
1)送管内流体の圧力上昇に対し十分な耐性を示す。
2)高温高濃度の硫酸などの腐食に対し十分な耐久性を示す。
3)十分な伝熱性能が得られる。
A composite material transfer pipe having the following effects can be provided.
1) Shows sufficient resistance against the pressure rise of the fluid in the pipe.
2) Sufficient durability against corrosion such as high temperature and high concentration sulfuric acid.
3) Sufficient heat transfer performance can be obtained.

耐(水)圧試験装置の概念図である。 (a)上面図、(b)側面図、いずれも測定器具取り付け前 (c)は、測定器具取り付け後の側面図である。It is a conceptual diagram of a (water) pressure test apparatus. (A) Top view, (b) Side view, both before attaching the measuring instrument (c) is a side view after attaching the measuring instrument.

符号の説明Explanation of symbols

10 移送管
11 シーラント
12 ゴムシート
13 鋼材板
14 開口部
15 全ネジ棒
16 ナット
21 アダプター
22 耐圧チューブ
23 圧力ゲージ
24 増圧器
25 工程エアーライン
DESCRIPTION OF SYMBOLS 10 Transfer pipe 11 Sealant 12 Rubber sheet 13 Steel plate 14 Opening part 15 Full thread rod 16 Nut 21 Adapter 22 Pressure-resistant tube 23 Pressure gauge 24 Intensifier 25 Process air line

Claims (1)

フィルム状の、溶剤成分を含まないフェノール樹脂組成物と、フィラメント数3000本以下の炭素繊維トウをたて糸、よこ糸ともに1インチ当り10〜20本の打ち込み本数で製織してなる炭素繊維織布とを重ね合わせて加熱加圧して、前記フェノール樹脂組成物が前記炭素繊維織布に含浸したプリプレグを得、前記プリプレグを芯金上に巻回して積層し、さらにその外周に前記フェノール樹脂組成物を硬化する際の熱により長手方向に収縮する熱収縮テープを巻回したのち、加熱硬化して前記フェノール樹脂組成物を硬化し、その後芯金を抜くと共に前記熱収縮テープを剥がし取る、複合材料製移送管の製造方法。   A film-like phenolic resin composition not containing a solvent component, and a carbon fiber woven fabric obtained by weaving carbon fiber tows having a filament number of 3000 or less in a warp yarn and a weft yarn with 10 to 20 yarns per inch. Overlaying and heating and pressing to obtain a prepreg impregnated with the carbon fiber woven fabric with the phenol resin composition, the prepreg is wound on a metal core and laminated, and the phenol resin composition is cured on the outer periphery thereof. After the heat shrinkable tape that shrinks in the longitudinal direction due to heat at the time of winding is wound, the phenol resin composition is cured by heat curing, and then the core metal is pulled out and the heat shrinkable tape is peeled off. A method of manufacturing a tube.
JP2005361659A 2005-12-15 Manufacturing method of composite material transfer pipe Active JP4730899B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005361659A JP4730899B6 (en) 2005-12-15 Manufacturing method of composite material transfer pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005361659A JP4730899B6 (en) 2005-12-15 Manufacturing method of composite material transfer pipe

Publications (3)

Publication Number Publication Date
JP2007160772A true JP2007160772A (en) 2007-06-28
JP4730899B2 JP4730899B2 (en) 2011-07-20
JP4730899B6 JP4730899B6 (en) 2011-09-28

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014100543A1 (en) * 2012-12-21 2014-06-26 Cytec Engineered Materials Inc. Curable prepregs with surface openings
CN108752566A (en) * 2018-05-02 2018-11-06 苏州博瑞达高分子材料有限公司 A kind of production technology of flame-retarded resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131575A (en) * 1975-05-12 1976-11-16 Mitsubishi Rayon Co Method of molding of pipe reinforced with fiber
JPH08176322A (en) * 1994-12-27 1996-07-09 Toray Ind Inc Prepreg and its production
JP2004263086A (en) * 2003-03-03 2004-09-24 Mitsubishi Rayon Co Ltd Prepreg and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131575A (en) * 1975-05-12 1976-11-16 Mitsubishi Rayon Co Method of molding of pipe reinforced with fiber
JPH08176322A (en) * 1994-12-27 1996-07-09 Toray Ind Inc Prepreg and its production
JP2004263086A (en) * 2003-03-03 2004-09-24 Mitsubishi Rayon Co Ltd Prepreg and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014100543A1 (en) * 2012-12-21 2014-06-26 Cytec Engineered Materials Inc. Curable prepregs with surface openings
RU2618068C2 (en) * 2012-12-21 2017-05-02 Сайтек Энджиниэрд Матириалз Инк. Cured prepregs with surface holes
US9802358B2 (en) 2012-12-21 2017-10-31 Cytec Industries Inc. Curable prepregs with surface openings
CN108752566A (en) * 2018-05-02 2018-11-06 苏州博瑞达高分子材料有限公司 A kind of production technology of flame-retarded resin
CN108752566B (en) * 2018-05-02 2020-11-17 苏州博瑞达高分子材料有限公司 Production process of flame-retardant resin

Also Published As

Publication number Publication date
JP4730899B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
AU667610B2 (en) Pipe construction
JP2002037902A (en) Windable structural part and method for producing the same
WO2019192624A1 (en) Nonmetallic flexible pipe and manufacturing method thereof
JP6457330B2 (en) Fiber reinforced resin composite tubular structure and method for producing the same
CN104918772A (en) System and method for forming fiber reinforced polymer tape
WO1998045635A1 (en) Composite structures having high containment strength
WO1998045635A9 (en) Composite structures having high containment strength
WO2000070256A1 (en) A flexible lightweight composite pipe for high pressure oil and gas applications
US6325108B1 (en) Prestressed composite cryogenic piping
JP4730899B6 (en) Manufacturing method of composite material transfer pipe
JP4730899B2 (en) Manufacturing method of composite material transfer pipe
CN104943245A (en) Carbon fiber wound graphite cylinder and machining process thereof
JP2007203468A (en) Molding method of square pipe made of frp
JP2008296494A (en) Fiber-reinforced composite material molding system and method, and fiber-reinforced composite material
CN109334040B (en) Method for manufacturing fiber tube
JPH09207235A (en) High weaving strength polymer glass fiber composite laminate for storing fluid
JP2007276249A (en) Glass scrim cloth prepreg material and its manufacturing method
JP5075442B2 (en) Protective member and manufacturing method thereof
EP3701180B1 (en) Method for manufacturing a tube clad with an inner liner
JPH10132492A (en) Tube for heat exchanger
JP4206810B2 (en) Hollow fiber separation membrane module
JP2021046339A (en) Carbon composite
JPS59156718A (en) Preparation of frp nut
JP5582777B2 (en) Tubular fiber reinforced composite material with corrosion resistant layer
JP7360689B2 (en) Joining method and joint structure of thermoplastic resin members

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4730899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250