JP2007157827A - Method for removing liquid and method for evaluating resist pattern using same - Google Patents

Method for removing liquid and method for evaluating resist pattern using same Download PDF

Info

Publication number
JP2007157827A
JP2007157827A JP2005347959A JP2005347959A JP2007157827A JP 2007157827 A JP2007157827 A JP 2007157827A JP 2005347959 A JP2005347959 A JP 2005347959A JP 2005347959 A JP2005347959 A JP 2005347959A JP 2007157827 A JP2007157827 A JP 2007157827A
Authority
JP
Japan
Prior art keywords
liquid
film
exposed
rpm
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005347959A
Other languages
Japanese (ja)
Inventor
Hiromitsu Tsuji
裕光 辻
Yoshiyuki Uchiumi
義之 内海
Ryusuke Uchida
竜介 内田
Satoshi Yamada
聡 山田
Takayuki Hosono
隆之 細野
Tomohiko Hayashi
智彦 林
Takehito Seo
健仁 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2005347959A priority Critical patent/JP2007157827A/en
Publication of JP2007157827A publication Critical patent/JP2007157827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for sufficiently and quickly removing the liquid from a film surface after the exposure liquid and cleaning liquid are placed in contact with the film to be exposed such as a resist film or a protective film formed thereon. <P>SOLUTION: In the method, a substrate on which the liquid is adhered is rotated in the maximum number of revolutions at the starting point of the removing step or reduced in its number of revolutions, or is rotated in the maximum number of revolutions at the ending point while it is rotated under the increasing number of revolutions less than the acceleration of 1,000 rpm or less. The maximum number of revolutions is maintained at the constant value at least for the predetermined period and it is preferably maintained at 2,500 to 5,000 rpm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、基板上に形成されたホトレジスト膜またはその上に形成される保護膜などの被露光膜上に液体が接触した後に、前記液体を効率的に除去するための液体の除去方法に関するものである。さらに本発明は、前記液体の除去方法を用いて液浸露光プロセスにおけるレジストパターン形成の評価試験を行い、レジストパターンの形状評価を行う、レジストパターンの評価方法に関するものである。   The present invention relates to a liquid removing method for efficiently removing a liquid after the liquid contacts an exposed film such as a photoresist film formed on a substrate or a protective film formed thereon. It is. Furthermore, the present invention relates to a resist pattern evaluation method in which a resist pattern formation evaluation test in an immersion exposure process is performed using the liquid removal method, and a resist pattern shape is evaluated.

半導体デバイス、液晶デバイス等の各種電子デバイスにおける微細構造の製造には、リソグラフィー法が多用されているが、デバイス構造の微細化に伴って、リソグラフィー工程におけるレジストパターンの微細化が要求されている。   Lithography is frequently used to manufacture fine structures in various electronic devices such as semiconductor devices and liquid crystal devices. However, with the miniaturization of device structures, it is required to make resist patterns finer in the lithography process.

現在では、リソグラフィー法により、例えば、最先端の領域では、線幅が90nm程度の微細なレジストパターンを形成することが可能となっているが、今後はさらに微細なパターン形成が要求される。   At present, it is possible to form a fine resist pattern having a line width of about 90 nm by the lithography method, for example, in the most advanced region. However, further fine pattern formation is required in the future.

このような90nmより微細なパターン形成を達成させるためには、露光装置とそれに対応するレジストの開発が第1のポイントとなる。露光装置においては、F2エキシマレーザー、EUV(極端紫外光)、電子線、X線、軟X線等の光源波長の短波長化やレンズの開口数(NA)の増大等が開発ポイントとしては一般的である。 In order to achieve such fine pattern formation of less than 90 nm, the development of an exposure apparatus and a corresponding resist is the first point. Development points for exposure equipment include shortening the wavelength of light sources such as F 2 excimer laser, EUV (extreme ultraviolet light), electron beam, X-ray, soft X-ray, and increasing the numerical aperture (NA) of the lens. It is common.

しかしながら、光源波長の短波長化は高額な新たな露光装置が必要となるし、また、高NA化では、解像度と焦点深度幅がトレードオフの関係にあるため、解像度を上げても焦点深度幅が低下するという問題がある。   However, shortening the wavelength of the light source requires a new expensive exposure apparatus, and in increasing the NA, there is a trade-off between the resolution and the depth of focus. There is a problem that decreases.

最近、このような問題を解決可能とするリソグラフィー技術として、液浸露光(リキッドイマージョンリソグラフィー)法という方法が報告されている(例えば、非特許文献1、非特許文献2、非特許文献3)。この方法は、露光時に、レンズと基板上の被露光膜との間の少なくとも前記被露光膜上に所定厚さの純水またはフッ素系不活性液体等の液状屈折率媒体(以下、液浸媒体と記す)を介在させるというものである。この方法では、従来は空気や窒素等の不活性ガスであった露光光路空間を屈折率(n)のより大きい液体、例えば純水等で置換することにより、同じ露光波長の光源を用いてもより短波長の光源を用いた場合や高NAレンズを用いた場合と同様に、高解像性が達成されると同時に焦点深度幅の低下もない。   Recently, as a lithography technique capable of solving such a problem, a method called an immersion exposure (liquid immersion lithography) method has been reported (for example, Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3). In this method, during exposure, a liquid refractive index medium (hereinafter referred to as an immersion medium) such as pure water or a fluorine-based inert liquid having a predetermined thickness is formed on at least the film to be exposed between the lens and the film to be exposed on the substrate. And the like). In this method, a light source having the same exposure wavelength can be used by replacing the exposure optical path space, which has conventionally been an inert gas such as air or nitrogen, with a liquid having a higher refractive index (n), such as pure water. Similar to the case of using a light source having a shorter wavelength or the case of using a high NA lens, high resolution is achieved and at the same time, there is no reduction in the depth of focus.

このような液浸露光を用いれば、現存の装置に実装されているレンズを用いて、低コストで、より高解像性に優れ、かつ焦点深度にも優れるレジストパターンの形成を実現できるため、大変注目されている。   By using such immersion exposure, it is possible to realize the formation of a resist pattern that is low in cost, excellent in high resolution, and excellent in depth of focus, using a lens mounted on an existing apparatus. It is attracting a lot of attention.

また、このような液浸露光法を用いた場合、目的とするレジストパターン形状を評価するための評価手法が開示されている(例えば、特許文献1)。   Moreover, when such an immersion exposure method is used, an evaluation method for evaluating a target resist pattern shape is disclosed (for example, Patent Document 1).

Journal of Vacuum Science & Technology B(ジャーナルオブバキュームサイエンステクノロジー)(J.Vac.Sci.Technol.B)((発行国)アメリカ)、1999年、第17巻、6号、3306−3309頁Journal of Vacuum Science & Technology B (Journal of Vacuum Science Technology) (J.Vac.Sci.Technol.B) ((Issuing Country) USA), 1999, Vol. 17, No. 6, 3306-3309 Journal of Vacuum Science & Technology B(ジャーナルオブバキュームサイエンステクノロジー)(J.Vac.Sci.Technol.B)((発行国)アメリカ)、2001年、第19巻、6号、2353−2356頁Journal of Vacuum Science & Technology B (Journal of Vacuum Science Technology) (J.Vac.Sci.Technol.B) ((Publishing Country) USA), 2001, Vol. 19, No. 6, pp. 2353-2356 Proceedings of SPIE Vol.4691(プロシーディングスオブエスピーアイイ((発行国)アメリカ)2002年、第4691巻、459−465頁Proceedings of SPIE Vol.4691 (Proceedings of SPAI ((Issuing country) USA) 2002, 4691, 459-465 特開2005−309457号公報JP 2005-309457 A

しかしながら、上述のような液浸露光プロセスにおけるレジストパターン形成性能の評価においては、被露光膜を直接液浸媒体に接触させる必要があるので、当然ながら被露光膜は液浸媒体による侵襲を受けることになる。したがって、従来使用されてきたレジスト組成物や保護膜材料をそのまま適用可能か否か、さらに実際の液浸露光プロセスにおいて液浸媒体と接触したことによるレジストパターン形成性能への影響を評価するためには、評価実験における結果と実際の液浸露光プロセスにおける結果との誤差をなくす必要がある。   However, in the evaluation of the resist pattern formation performance in the immersion exposure process as described above, since the exposed film needs to be in direct contact with the immersion medium, the exposed film is naturally subject to invasion by the immersion medium. become. Therefore, in order to evaluate whether or not the resist composition and the protective film material that have been conventionally used can be applied as they are, and further the influence on the resist pattern formation performance due to contact with the immersion medium in the actual immersion exposure process. Therefore, it is necessary to eliminate an error between the result in the evaluation experiment and the result in the actual immersion exposure process.

現在では、前述のレジスト膜や保護膜などの被露光膜の液浸露光適性は、主に次のような二通りの評価方法により判断している。   At present, the suitability of immersion exposure for exposed films such as the resist film and the protective film is mainly determined by the following two evaluation methods.

第1の方法は、「露光後に液浸媒体のシャワーをレジスト膜にかける処理を行い、その後、現像し、得られたレジストパターンの解像性を検査する」という評価試験により確認する方法である。   The first method is a method of confirming by an evaluation test that “a process of applying a shower of an immersion medium to the resist film after exposure and then developing and inspecting the resolution of the obtained resist pattern”. .

第2の方法は、露光のパターン光をプリズムによる干渉光をもって代用させて、試料を液浸状態に置き、露光させる構成の「2光束干渉露光法」を用いて、実際の製造工程をシミュレートした評価を行う方法である。   The second method simulates the actual manufacturing process using the “two-beam interference exposure method” in which the exposure pattern light is substituted with interference light from the prism, and the sample is placed in an immersion state and exposed. This is a method for performing the evaluation.

これらのどちらの評価方法においても、被露光膜に液体が接触している時間を正確に制御しなければ、評価に誤差が生じてしまう。この液体接触時間の制御は、被露光膜への液体シャワーを中止、もしくは被露光膜上の液体をスピンナーで迅速に振り落とすことにより行っている。   In any of these evaluation methods, an error occurs in the evaluation unless the time during which the liquid is in contact with the film to be exposed is accurately controlled. The control of the liquid contact time is performed by stopping the liquid shower on the film to be exposed or by quickly shaking off the liquid on the film to be exposed with a spinner.

このスピンナーでの振り落としによって短時間の内に接触液体が完全に被露光膜表面から除去されれば、評価に誤差は生じない。しかし、液体が完全に除去できずに、例えば、微小水滴状態で残留していると、レジスト膜に欠陥が発見された場合、余分な時間残留していた微小水滴の影響によるものか否かの判定が難しく、評価の信頼性が揺らぐことになる。   If the contact liquid is completely removed from the surface of the film to be exposed within a short time by shaking off with the spinner, no error occurs in the evaluation. However, if the liquid cannot be completely removed and remains in a minute water droplet state, for example, if a defect is found in the resist film, whether or not it is due to the influence of the minute water droplet remaining for an extra time. Judgment is difficult and the reliability of the evaluation will be shaken.

現在の液体の除去方法における条件は、加速度を10000rpm/秒として回転数4000rpmまで上昇させ、4000rpmにて15秒間保持するという条件で行われている。この条件にて液体の除去を行った場合のレジスト膜に発生する欠陥集合体(デフェクトクラスター)の数がウェーハ当たり3000〜4000個発生していることが判明した。このデフェクトクラスター数は、評価時間内の液体接触によるレジスト膜への影響とは異なるもので、評価の誤差に当たると考えられるため、さらなる液体除去率の向上が求められる。   The current liquid removal method is performed under the condition that the acceleration is 10,000 rpm / second, the rotational speed is increased to 4000 rpm, and the pressure is maintained at 4000 rpm for 15 seconds. It was found that 3000 to 4000 defect aggregates (defect clusters) were generated in the resist film when the liquid was removed under these conditions. The number of defect clusters is different from the influence on the resist film due to the liquid contact within the evaluation time, and is considered to be an evaluation error. Therefore, further improvement of the liquid removal rate is required.

かかる経緯は、被露光膜がレジスト膜の上に形成される保護膜であった場合も同様である。   This process is the same when the film to be exposed is a protective film formed on the resist film.

また、前記被露光膜は必要に応じて露光前に液浸媒体により洗浄を行う(プリウェット)場合がある。この場合も被露光膜に影響を与えないように洗浄後は可能な限り迅速に被露光膜から液浸媒体を除去する必要がある。   The exposed film may be washed with an immersion medium (pre-wet) before exposure as necessary. Also in this case, it is necessary to remove the immersion medium from the exposed film as quickly as possible after cleaning so as not to affect the exposed film.

本発明は、かかる従来技術の問題点に鑑みてなされたものであり、その課題は、レジスト膜やその上に形成される保護膜などの被露光膜に液浸媒体や洗浄用液体を接触させた後の液体の膜表面からの除去を十全かつ迅速に行うことのできる液体の除去方法を提供することにあり、さらには、前記液体の除去方法を用いて液浸露光プロセスにおけるレジストパターン形成の評価試験を行い、レジストパターンの形状評価を行う、レジストパターンの評価方法に関するものである。   The present invention has been made in view of the problems of the prior art, and the problem is that an immersion medium or a cleaning liquid is brought into contact with a film to be exposed such as a resist film or a protective film formed thereon. It is another object of the present invention to provide a method for removing a liquid that can be completely and rapidly removed from the surface of the film, and to form a resist pattern in an immersion exposure process using the method for removing a liquid. It is related with the evaluation method of a resist pattern which performs the evaluation test of and performs shape evaluation of a resist pattern.

前記課題を解決するために、本発明に係る液体の除去方法は、被露光膜上から液体を除去するための方法であって、前記液体が付着した基板を、前記液体が付着した基板を、除去工程の始点で回転数を最大となるようにし続いて回転数を減衰させるか、もしくは加速度1000rpm以下で回転数を増大させながら終点で回転数を最大とすることを特徴とする。   In order to solve the above problems, a method for removing a liquid according to the present invention is a method for removing a liquid from a film to be exposed, wherein the substrate to which the liquid is attached is changed to a substrate to which the liquid is attached. The rotational speed is maximized at the starting point of the removal step, and then the rotational speed is attenuated, or the rotational speed is increased at an acceleration of 1000 rpm or less and the rotational speed is maximized at the end point.

前記最大回転数を少なくとも所定時間一定に維持することが好ましい。また、前記最大回転数は、2500〜5000rpmとすることが望ましい。   It is preferable to maintain the maximum rotational speed constant for at least a predetermined time. The maximum rotation speed is preferably 2500 to 5000 rpm.

さらに、前記回転数を減衰させる場合は段階的に行っても良い。前記段階的な回転数の減衰としては、始点で最大回転数を2500〜5000rpmとして15秒以上保持した後、回転数を500〜2000rpmとして15秒以上保持し、続いて回転数100〜300rpmとして15秒以上保持するというプロセスを経ることが望ましい。   Further, when the rotational speed is attenuated, it may be performed stepwise. As the stepwise rotation speed reduction, the maximum rotation speed is maintained at 2500 to 5000 rpm for 15 seconds or more at the starting point, then the rotation speed is maintained at 500 to 2000 rpm for 15 seconds or more, and then the rotation speed is 100 to 300 rpm. It is desirable to go through a process of holding for more than a second.

また、前記加速度1000rpm以下で回転数を増大させながら終点で回転数を最大とする手法としては、加速度を50〜1000rpmとして回転数を徐々に増大させ、終点の最大回転数のまま15秒以上保持するというプロセスを経ることが望ましい。   As a method of maximizing the rotational speed at the end point while increasing the rotational speed at an acceleration of 1000 rpm or less, the rotational speed is gradually increased at an acceleration of 50 to 1000 rpm, and the maximum rotational speed at the end point is maintained for 15 seconds or more. It is desirable to go through the process of doing.

本発明における前記液体とは、液浸露光プロセスにおいて、露光中に被露光膜とレンズとの間に配置される液体である場合と、被露光膜を露光処理に供する前の表面処理に用いられるプリウェット液である場合と、液浸露光プロセス用被露光膜材料の評価試験に用いられる液体である場合が考えられる。   In the liquid immersion exposure process, the liquid in the present invention is a liquid disposed between an exposed film and a lens during exposure, and used for surface treatment before subjecting the exposed film to exposure processing. A case where it is a pre-wet liquid and a case where it is a liquid used for an evaluation test of an exposed film material for an immersion exposure process are conceivable.

前記液浸露光プロセス用被露光膜の評価試験とは、露光前及び/又は露光後の被露光膜上に液浸露光用液体を接触させることにより、液浸プロセス材料の評価を行う評価試験である場合と、プリズムと被露光膜との間に液浸露光用液体を設けることにより、液浸露光プロセス材料の評価を行う二光束干渉法による評価試験である場合が考えられる。   The evaluation test of the exposed film for the immersion exposure process is an evaluation test for evaluating the immersion process material by bringing the immersion exposure liquid into contact with the exposed film before and / or after the exposure. In some cases, there may be an evaluation test by the two-beam interference method in which an immersion exposure process material is evaluated by providing an immersion exposure liquid between the prism and the film to be exposed.

前記被露光膜とは、ホトレジスト膜、あるいはその上層に保護膜が設けられた積層膜である。   The film to be exposed is a photoresist film or a laminated film provided with a protective film thereon.

本発明にかかる液体の除去方法は、レジスト膜やその上の保護膜などの被露光膜に接触し、付着した液体を迅速かつ十全に除去可能で、液体の影響を最小限に抑えることができ、そのために被露光膜の液体接触による特性変化の評価を正確に行うことが可能となる。よって、液体が被露光膜に接触するプロセスを有するフォトリソグラフィー技術の高精度化に効果的な寄与を行うことができる。   The method for removing a liquid according to the present invention is capable of quickly and fully removing the adhered liquid in contact with a film to be exposed such as a resist film or a protective film thereon, and minimizing the influence of the liquid. Therefore, it is possible to accurately evaluate the change in characteristics of the film to be exposed due to liquid contact. Therefore, it is possible to make an effective contribution to increasing the accuracy of the photolithography technique that includes a process in which the liquid contacts the film to be exposed.

以下に、本発明にかかる液体の除去方法の実施例を詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Below, the Example of the removal method of the liquid concerning this invention is described in detail. Note that the present invention is not limited to the embodiments.

有機系反射防止膜組成物「ARC−29A」(商品名、BrewerScience社製)を、スピナーを用いてシリコンウェーハ上に塗布し、ホットプレート上で225℃、60秒間焼成して乾燥させることにより、膜厚77nmの有機系反射防止膜を形成した。そして、この反射防止膜上に、ポジ型レジストである「TArF−P6a193(東京応化工業社製)」をスピナーを用いて塗布し、ホットプレート上で125℃、60秒間プレベークして、乾燥させることにより、前記反射防止膜上に膜厚225nmのレジスト膜を形成した。   An organic antireflection film composition “ARC-29A” (trade name, manufactured by Brewer Science) was applied on a silicon wafer using a spinner, and baked on a hot plate at 225 ° C. for 60 seconds to dry. An organic antireflection film having a thickness of 77 nm was formed. Then, on this antireflection film, “TArF-P6a193 (manufactured by Tokyo Ohka Kogyo Co., Ltd.)” which is a positive resist is applied using a spinner, prebaked on a hot plate at 125 ° C. for 60 seconds, and dried. Thus, a resist film having a film thickness of 225 nm was formed on the antireflection film.

次に、露光装置NSR−S306(ニコン社製)により、ArFエキシマレーザー(波長193nm)を用いて、パターン露光した。露光処理後、基板を回転させながら、保護膜上に23℃にて純水を2分間滴下し続け、擬似液浸環境下においた。   Next, pattern exposure was performed using an ArF excimer laser (wavelength: 193 nm) with an exposure apparatus NSR-S306 (manufactured by Nikon Corporation). After the exposure treatment, pure water was continuously dropped on the protective film at 23 ° C. for 2 minutes while rotating the substrate, and the substrate was placed in a simulated liquid immersion environment.

前記基板をスピンナーにて、以下の実施例1、2および比較例の液体除去条件にて、レジスト膜上の純水を振り落とした。   Using the spinner, the pure water on the resist film was shaken off under the liquid removal conditions of Examples 1 and 2 and Comparative Examples below.

前記純水の滴下工程および除去工程の後、130℃、90秒間の条件でPEB処理した後、各レジスト膜を23℃にてアルカリ現像液で60秒間現像した。アルカリ現像液としては、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液(TMAH)を用いた。   After the pure water dropping step and removing step, PEB treatment was performed at 130 ° C. for 90 seconds, and then each resist film was developed with an alkaline developer at 23 ° C. for 60 seconds. As the alkaline developer, a 2.38 mass% tetramethylammonium hydroxide aqueous solution (TMAH) was used.

このようにして得たライン部が120nmでスペース部が120nmのライン・アンド・スペースのレジストパターンをKLA2351(KLAテンコール社製装置)により欠陥クラスター数を測定した。   The number of defect clusters of the line-and-space resist pattern having a line portion of 120 nm and a space portion of 120 nm thus obtained was measured using KLA2351 (KLA Tencor Co., Ltd. apparatus).

(実施例1)
最大回転数を4000rpmとして15秒間保持した後、回転数を500rpmとして15秒間保持し、続いて回転数100rpmとして15秒間保持した。この場合の欠陥クラスター数の平均値は451個であった。
Example 1
After maintaining the maximum number of rotations at 4000 rpm for 15 seconds, the number of rotations was maintained at 500 rpm for 15 seconds, and then the number of rotations was maintained at 100 rpm for 15 seconds. In this case, the average number of defect clusters was 451.

(実施例2)
回転加速度100rpm/秒で連続的に増大させ、回転数を4000rpmとして15秒間保持させた。この場合の欠陥クラスター数の平均値は616個であった。
(Example 2)
The rotational acceleration was continuously increased at 100 rpm / second, and the rotational speed was set to 4000 rpm and held for 15 seconds. In this case, the average number of defect clusters was 616.

(比較例)
回転加速度10000rpm/秒で回転数を4000rpmまで増大させて、そのまま15秒間保持した。この場合の欠陥クラスター数の平均値は3329個であった。
(Comparative example)
The rotational speed was increased to 4000 rpm at a rotational acceleration of 10000 rpm / second, and held there for 15 seconds. In this case, the average number of defect clusters was 3329.

すなわち、液体の除去方法を変更したことにより、欠陥クラスター数は大幅に低減され、これは評価試験における液体の振り切り方法に起因するものであることが分かり、さらには実施例に記載した評価方法によれば、この液体の振り切り工程に起因する欠陥クラスターを大幅に削減可能で、パターン形成本来の欠陥クラスター数の評価が可能になることが判明した。   In other words, by changing the liquid removal method, the number of defect clusters was greatly reduced, which was attributed to the liquid shaking method in the evaluation test, and further to the evaluation method described in the examples. According to this, it has been found that the defect clusters resulting from this liquid shaking-off process can be greatly reduced, and the number of defect clusters inherent in pattern formation can be evaluated.

以上のように、本発明にかかる液体の除去方法は、レジスト膜やその上層に形成された保護膜などの被露光膜に接触し、付着した液体を迅速かつ十全に除去可能であり、そのために被露光膜の液体接触による特性変化の評価や、液体の接触による影響を最小限に抑えることができ、液体が被露光膜に接触するプロセスを有するフォトリソグラフィー技術の高精度化に効果的な寄与を行うことができる。   As described above, the method for removing a liquid according to the present invention makes it possible to quickly and fully remove the attached liquid in contact with an exposed film such as a resist film or a protective film formed thereon. In addition, it is possible to evaluate changes in characteristics of exposed films due to liquid contact and to minimize the effects of liquid contact, and is effective for improving the accuracy of photolithography technology that has a process in which liquid contacts the exposed film. You can make a contribution.

Claims (12)

基板上に形成された被露光膜上から液体をスピンナーにより除去するための方法であって、前記液体が付着した基板を、除去工程の始点で回転数を最大となるようにし続いて回転数を減衰させるか、もしくは加速度1000rpm以下で回転数を増大させながら終点で回転数を最大とすることを特徴とする液体の除去方法。   A method for removing a liquid from a film to be exposed formed on a substrate by a spinner, wherein the rotation speed of the substrate on which the liquid is adhered is maximized at a starting point of the removing process. A method for removing a liquid, characterized in that the rotational speed is maximized at the end point while being attenuated or increased at an acceleration of 1000 rpm or less. 前記最大回転数を少なくとも所定時間一定に維持することを特徴とする請求項1に記載の液体の除去方法。   2. The liquid removing method according to claim 1, wherein the maximum rotation number is kept constant for at least a predetermined time. 前記最大回転数を2500〜5000rpmとすることを特徴とする請求項1又は2に記載の液体の除去方法。   The method for removing a liquid according to claim 1, wherein the maximum rotation speed is 2500 to 5000 rpm. 前記除去工程の始点で回転数を最大となるようにし続いて回転数を減衰させる手法において、最大回転数を2500〜5000rpmとして15秒以上保持した後、回転数を500〜2000rpmとして15秒以上保持し、続いて回転数100〜300rpmとして15秒以上保持することを特徴とする請求項1〜3のいずれか1項に記載の液体の除去方法。   In the method of maximizing the rotational speed at the starting point of the removing step and subsequently attenuating the rotational speed, the maximum rotational speed is maintained at 2500 to 5000 rpm for 15 seconds or longer, and then the rotational speed is maintained at 500 to 2000 rpm for 15 seconds or longer. Then, the liquid removal method according to any one of claims 1 to 3, wherein the rotation speed is maintained at 100 to 300 rpm for 15 seconds or more. 前記加速度1000rpm以下で回転数を増加させながら終点で回転数を最大とする手法において、加速度を50〜1000rpmとして回転数を増大させ、終点の最大回転数のまま15秒以上保持することを特徴とする請求項1〜3のいずれか1項に記載の液体の除去方法。   In the method of maximizing the rotational speed at the end point while increasing the rotational speed at an acceleration of 1000 rpm or less, the rotational speed is increased at an acceleration of 50 to 1000 rpm, and the maximum rotational speed at the end point is maintained for 15 seconds or more. The method for removing a liquid according to any one of claims 1 to 3. 前記液体が、液浸露光プロセスにおいて、露光中に被露光膜とレンズとの間に配置される液体であることを特徴とする請求項1〜5のいずれか1項に記載の液体の除去方法。   6. The liquid removing method according to claim 1, wherein the liquid is a liquid disposed between an exposed film and a lens during exposure in an immersion exposure process. . 前記液体が、液浸露光プロセスにおいて、被露光膜を露光処理に供する前の表面処理に用いられるプリウェット液であることを特徴とする請求項1〜5のいずれか1項に記載の液体の除去方法。   The liquid according to any one of claims 1 to 5, wherein the liquid is a pre-wet liquid used for a surface treatment before subjecting the film to be exposed to an exposure process in an immersion exposure process. Removal method. 前記液体が、液浸露光プロセス用被露光膜材料の評価試験に用いられる液体であることを特徴とする請求項1〜5のいずれか1項に記載の液体の除去方法。   6. The liquid removing method according to claim 1, wherein the liquid is a liquid used for an evaluation test of a film material to be exposed for an immersion exposure process. 前記液浸露光プロセス用被露光膜の評価試験が、露光前及び/又は露光後の被露光膜上に液浸露光プロセスにおいて、露光中に被露光膜とレンズとの間に配置される液体を接触させることにより、液浸プロセス材料の評価を行う試験であることを特徴とする請求項8に記載の液体の除去方法。   In the immersion exposure process, the liquid disposed between the film to be exposed and the lens during the exposure in the liquid immersion exposure process on the film to be exposed before and / or after the exposure. The liquid removing method according to claim 8, wherein the liquid removing method is a test for evaluating an immersion process material by contacting the liquid. 前記液浸露光プロセス用被露光膜の評価試験が、プリズムと被露光膜との間に液浸露光プロセスにおいて、露光中に被露光膜とレンズとの間に配置される液体を設けることにより、液浸露光プロセス材料の評価を行う二光束干渉法による試験であることを特徴とする請求項8に記載の液体の除去方法。   In the immersion exposure process, an evaluation test of the exposed film for the immersion exposure process includes providing a liquid disposed between the exposed film and the lens during exposure in an immersion exposure process between the prism and the exposed film. 9. The method for removing a liquid according to claim 8, wherein the liquid exposure method is a test using a two-beam interference method for evaluating an immersion exposure process material. 前記被露光膜がホトレジスト膜、あるいはその上層に保護膜が設けられた積層膜であることを特徴とする請求項1〜10のいずれか1項に記載の液体の除去方法。   The method for removing a liquid according to claim 1, wherein the exposed film is a photoresist film or a laminated film provided with a protective film thereon. 請求項1〜11のいずれか1項に記載の液体の除去方法を用いて、液浸露光プロセスにおけるレジストパターン形成の評価試験を行い、レジストパターンの形状を評価することを特徴としたレジストパターンの評価方法。   An evaluation test for forming a resist pattern in an immersion exposure process using the method for removing a liquid according to claim 1, and evaluating the shape of the resist pattern. Evaluation methods.
JP2005347959A 2005-12-01 2005-12-01 Method for removing liquid and method for evaluating resist pattern using same Pending JP2007157827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005347959A JP2007157827A (en) 2005-12-01 2005-12-01 Method for removing liquid and method for evaluating resist pattern using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005347959A JP2007157827A (en) 2005-12-01 2005-12-01 Method for removing liquid and method for evaluating resist pattern using same

Publications (1)

Publication Number Publication Date
JP2007157827A true JP2007157827A (en) 2007-06-21

Family

ID=38241844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347959A Pending JP2007157827A (en) 2005-12-01 2005-12-01 Method for removing liquid and method for evaluating resist pattern using same

Country Status (1)

Country Link
JP (1) JP2007157827A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326014A (en) * 1993-05-13 1994-11-25 Fujitsu Ltd Method and apparatus for spin coating method
JPH07220990A (en) * 1994-01-28 1995-08-18 Hitachi Ltd Pattern forming method and exposure apparatus therefor
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
JP2000058436A (en) * 1998-08-11 2000-02-25 Nikon Corp Projection aligner and exposure method
JP2002075834A (en) * 2000-08-29 2002-03-15 Sharp Corp Developing method in semiconductor manufacturing process
JP2003092280A (en) * 2001-09-19 2003-03-28 Dainippon Screen Mfg Co Ltd Substrate drying method
JP2005236106A (en) * 2004-02-20 2005-09-02 Nec Electronics Corp Method for forming photoresist pattern
JP2006278955A (en) * 2005-03-30 2006-10-12 Dainippon Screen Mfg Co Ltd Method and device for substrate processing
JP2007134516A (en) * 2005-11-10 2007-05-31 Tokyo Electron Ltd Rinsing method, developing method, developing apparatus, control program, and computer-readable storage medium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326014A (en) * 1993-05-13 1994-11-25 Fujitsu Ltd Method and apparatus for spin coating method
JPH07220990A (en) * 1994-01-28 1995-08-18 Hitachi Ltd Pattern forming method and exposure apparatus therefor
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
JP2000058436A (en) * 1998-08-11 2000-02-25 Nikon Corp Projection aligner and exposure method
JP2002075834A (en) * 2000-08-29 2002-03-15 Sharp Corp Developing method in semiconductor manufacturing process
JP2003092280A (en) * 2001-09-19 2003-03-28 Dainippon Screen Mfg Co Ltd Substrate drying method
JP2005236106A (en) * 2004-02-20 2005-09-02 Nec Electronics Corp Method for forming photoresist pattern
JP2006278955A (en) * 2005-03-30 2006-10-12 Dainippon Screen Mfg Co Ltd Method and device for substrate processing
JP2007134516A (en) * 2005-11-10 2007-05-31 Tokyo Electron Ltd Rinsing method, developing method, developing apparatus, control program, and computer-readable storage medium

Similar Documents

Publication Publication Date Title
US7862982B2 (en) Chemical trim of photoresist lines by means of a tuned overcoat material
JP4579927B2 (en) Removable pellicle for immersion lithography
KR100197191B1 (en) Method of forming resist pattern
JP4460291B2 (en) Integrated circuits using reflective masks
JP4609878B2 (en) Resist upper layer film forming material and resist pattern forming method using the same
US20140186773A1 (en) Coating material and method for photolithography
JP2006024692A (en) Forming method of resist pattern
WO2010073390A1 (en) Method for forming pattern, method for manufacturing semiconductor device, and material for forming coating layer of resist pattern
KR20030078777A (en) Method and apparatus for producing a photo mask blank, and apparatus for removing an unnecessary portion of a film
JP2012256726A (en) Rework method for resist film, manufacturing method for semiconductor device, and substrate processing system
US9651870B2 (en) Method and tool of lithography
JP2008166475A (en) Resist pattern miniaturization material and method for forming micro resist pattern
JP4759311B2 (en) Pattern formation method
JP2002169291A (en) Photosensitive resin composition, resist composition and method and device for forming pattern
WO2001099161A2 (en) Method of reducing post-development defects in and around openings formed in photoresist by use of multiple development/rinse cycles
JP2007157827A (en) Method for removing liquid and method for evaluating resist pattern using same
WO2004079453A1 (en) Resist material for liquid immersion exposure process and method of forming resist pattern with the resist material
KR100764416B1 (en) Manufacturing Method of Semiconductor Device Using Immersion Lithography Process
KR100734672B1 (en) Patterning method using the same of immersion lithography
KR100764374B1 (en) Composition for Removing Immersion Lithography solution and Manufacturing Method of Semiconductor Device Comprising Immersion Lithography Process Using the Same
KR100802266B1 (en) Manufacturing Method of Semiconductor Device Using Immersion Lithography Process
US20230108447A1 (en) Method for inspecting photosensitive composition and method for producing photosensitive composition
JP2006516052A (en) Method for patterning photoresist on a wafer using a transmissive mask having a carbon layer
Shibayama et al. New Approach for ArFi Extension by Dry Development Rinse Process
Ando et al. Pattern Freezing Process Free Litho–Litho–Etch Double Patterning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315