JP2007157731A - Rotating anode type x-ray tube - Google Patents

Rotating anode type x-ray tube Download PDF

Info

Publication number
JP2007157731A
JP2007157731A JP2007017362A JP2007017362A JP2007157731A JP 2007157731 A JP2007157731 A JP 2007157731A JP 2007017362 A JP2007017362 A JP 2007017362A JP 2007017362 A JP2007017362 A JP 2007017362A JP 2007157731 A JP2007157731 A JP 2007157731A
Authority
JP
Japan
Prior art keywords
focus
small
focal point
filament
focusing electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007017362A
Other languages
Japanese (ja)
Inventor
Masaji Kujirai
政次 鯨井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007017362A priority Critical patent/JP2007157731A/en
Publication of JP2007157731A publication Critical patent/JP2007157731A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • X-Ray Techniques (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary anode type X-ray tube in which thermionic emission efficiency of a filament forming the smallest small focus is improved when thermionic focuses of different sizes such as large, medium, and small are formed on the rotary anode. <P>SOLUTION: When a vertical virtual plane P is drawn in a region where a focus F on the rotary anode 11 is formed, the filament 14a forming the small focus is positioned on one side of the virtual plane P, and two filaments 14 b, 14c forming a large focus and a medium focus are positioned on the other side of the virtual plane P. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、大、中、小と大きさが異なる熱電子の焦点を回転陽極上に形成する場合に、最も小さな小焦点を形成するフィラメントの熱電子放出効率を向上させた回転陽極型X線管に関する。   The present invention provides a rotary anode X-ray in which the thermoelectron emission efficiency of a filament forming the smallest small focus is improved when the focus of thermoelectrons having different sizes of large, medium, and small is formed on the rotary anode. Regarding the tube.

回転陽極型X線管は、電子銃から発生した熱電子を回転する陽極に照射し、陽極からX線を発生させる電子管で、X線による被写体の透視撮影や連続撮影などに利用されている。この場合、透視撮影や連続撮影など用途によって相違するX線量が用いられている。例えば、透視撮影は少ないX線量で行われ、また、連続撮影は透視撮影の場合よりも多いX線量で行われる。したがって、X線量の少ない透視撮影は焦点が小さい小焦点が主に用いられ、また、X線量の多い連続撮影には大焦点や中焦点が主に用いられている。   A rotary anode X-ray tube is an electron tube that irradiates a rotating anode with thermoelectrons generated from an electron gun and generates X-rays from the anode, and is used for fluoroscopic imaging or continuous imaging of a subject using X-rays. In this case, different X-ray doses are used depending on applications such as fluoroscopic imaging and continuous imaging. For example, fluoroscopic imaging is performed with a small X-ray dose, and continuous imaging is performed with a higher X-ray dose than in the case of fluoroscopic imaging. Therefore, a small focus with a small focus is mainly used for fluoroscopic imaging with a small X-ray dose, and a large focus and a medium focus are mainly used for continuous imaging with a large X-ray dose.

このように従来の回転陽極型X線管では、撮影部位や目的、必要とされる解像度など用途に応じたX線量を得るために、大、中、小と大きさが異なる熱電子の焦点を形成する電子銃が組み込まれている。   As described above, in the conventional rotary anode X-ray tube, in order to obtain an X-ray dose according to an application such as an imaging region, purpose, and required resolution, the focus of thermoelectrons having different sizes such as large, medium, and small is focused. Built-in electron gun to be formed.

ここで、大きさが異なる熱電子の焦点を形成する従来の回転陽極型X線管について図3を参照して説明する。符合31は、台形状の断面を持つ回転陽極で、軸Oを中心に回転する構造になっている。そして、台形状断面の斜辺に相当する部分に、X線を発生する熱電子の照射領域32が設けられている。また、回転陽極31の照射領域32に対向して電子銃33が配置されている。   Here, a conventional rotary anode type X-ray tube that forms focal points of thermoelectrons having different sizes will be described with reference to FIG. Reference numeral 31 is a rotary anode having a trapezoidal cross section, and has a structure that rotates around an axis O. An irradiation region 32 of thermoelectrons for generating X-rays is provided in a portion corresponding to the hypotenuse of the trapezoidal cross section. Further, an electron gun 33 is disposed so as to face the irradiation region 32 of the rotary anode 31.

電子銃33は、大きさが相違し少なくとも一部が互いに重畳する大、中、小の熱電子の焦点Fを照射領域32に形成する構造になっている。例えば、小焦点用のフィラメント34aが中央に設けられている。その左側に大焦点用のフィラメント34bが設けられ、また、右側に中焦点用のフィラメント34cが設けられている。3個のフィラメント34a、34b、34cは、その長手方向が図面の表側から裏側方向に垂直に延びており、照射領域32の側から見た場合、図3(b)の円内に示すようにその長手方向が平行し一方向に配列されている。   The electron gun 33 has a structure in which the focal points F of large, medium, and small thermoelectrons that are different in size and overlap at least partially overlap each other are formed in the irradiation region 32. For example, a small-focusing filament 34a is provided at the center. A filament 34b for large focus is provided on the left side, and a filament 34c for medium focus is provided on the right side. The three filaments 34a, 34b, and 34c extend in the longitudinal direction perpendicularly from the front side to the back side in the drawing, and when viewed from the irradiation region 32 side, as shown in the circle of FIG. The longitudinal directions are parallel and arranged in one direction.

また、各フィラメント34a、34b、34cの前方には、それぞれ小焦点形成用の集束電極35a、大焦点形成用の集束電極35b、中焦点形成用の集束電極35cが設けられている。なお、回転陽極31および電子銃33は真空外囲器(図示せず)内に収納され、回転陽極31で発生したX線は真空外囲器外に取り出せるようになっている。   Further, in front of each filament 34a, 34b, 34c, a focusing electrode 35a for forming a small focus, a focusing electrode 35b for forming a large focus, and a focusing electrode 35c for forming a middle focus are provided. The rotary anode 31 and the electron gun 33 are housed in a vacuum envelope (not shown) so that X-rays generated at the rotary anode 31 can be taken out of the vacuum envelope.

上記した構成において、小焦点用のフィラメント34aで発生した熱電子は集束電極35aで集束され、照射領域32に最も小さい焦点を形成する。また、大焦点用のフィラメント34bや中焦点用のフィラメント34cで発生した熱電子はそれぞれ集束電極35bや集束電極35cで集束され、照射領域32に最も大きい焦点や中間の大きさの焦点を形成する。   In the above-described configuration, the thermoelectrons generated by the small focus filament 34a are focused by the focusing electrode 35a to form the smallest focus in the irradiation region 32. Further, the thermoelectrons generated in the large-focus filament 34b and the intermediate-focus filament 34c are focused by the focusing electrode 35b and the focusing electrode 35c, respectively, and form the largest focus or an intermediate focus in the irradiation region 32. .

ところで、中央に位置する小焦点用のフィラメント34aおよび集束電極35aは、回転陽極31の照射領域32と正対しており、フィラメント34aから発生した熱電子は矢印Yaで示すように、照射領域32に対して垂直に進み照射領域32までほぼ直進する。また、大焦点用や中焦点用のフィラメント34b、34cから放出された熱電子は矢印YbおよびYcで示すように照射領域32まで弧を描くように進む。   By the way, the small-focusing filament 34a and the focusing electrode 35a located at the center face the irradiation region 32 of the rotating anode 31, and the thermoelectrons generated from the filament 34a are directed to the irradiation region 32 as indicated by an arrow Ya. On the other hand, it proceeds perpendicularly to the irradiation area 32. Further, the thermoelectrons emitted from the large-focus and medium-focus filaments 34b and 34c proceed to form an arc to the irradiation region 32 as indicated by arrows Yb and Yc.

回転陽極型X線管の小焦点は、これまで連続的透視に多く使用され、撮影管電流も5mA程度となっている。しかし、近年、デジタル技術が進歩し、また診断技術が高度化し、撮影管電流のピーク値も100mA程度と大きくなっている。そして、ある時間間隔でX線を断続させて被写体を透視する断続的透視が一般的となっている。このような断続的透視の場合、熱電子を発生するフィラメントの応答に遅れが出る。このため、透視時に必要な撮影管電流が得られるように、透視が断の間でも、電子銃のフィラメントに電流を流し加熱している。また、撮影管電流のピーク値の増大などから、小焦点のフィラメントに対して、撮影管電流を大きくしたいという要求が出てきている。   The small focus of the rotating anode type X-ray tube has been frequently used for continuous fluoroscopy so far, and the tube current is about 5 mA. However, in recent years, digital technology has advanced, diagnostic technology has advanced, and the peak value of the tube current has increased to about 100 mA. In addition, intermittent fluoroscopy in which X-rays are intermittent at certain time intervals and the subject is seen through is generally used. In the case of such intermittent fluoroscopy, there is a delay in the response of the filament that generates thermoelectrons. For this reason, even when the fluoroscopy is interrupted, a current is passed through the filament of the electron gun so as to obtain a necessary tube current during fluoroscopy. In addition, due to an increase in the peak value of the tube current, there has been a demand for increasing the tube current for small focus filaments.

ところで、撮影管電流を大きくする場合、フィラメントの動作温度を上昇する方法が考えられる。しかし、フィラメントの動作温度を上げると、フィラメント寿命が短縮するという問題がある。このため、フィラメントの動作温度を上げずに、例えば、フィラメントおよび集束電極を回転陽極に近づけたり、あるいは、フィラメントおよび集束電極をできるだけ回転陽極の照射領域に正対させたりして、フィラメントの熱電子放出効率を上げる方法が考えられる。   By the way, when the photographing tube current is increased, a method of increasing the operating temperature of the filament can be considered. However, raising the filament operating temperature has the problem of shortening the filament life. For this reason, without increasing the operating temperature of the filament, for example, the filament and the focusing electrode are brought close to the rotating anode, or the filament and the focusing electrode are made to face the irradiation area of the rotating anode as much as possible, so that the thermoelectrons of the filament A method for increasing the emission efficiency can be considered.

しかし、従来の回転陽極型X線管では、小焦点用のフィラメントおよび集束電極は回転陽極の照射領域に正対しているものの、照射領域からの距離が遠いため、熱電子放出効率の向上には限界がある。また、小焦点用のフィラメントおよび集束電極を、照射領域までの距離が比較的短い大焦点用や中焦点用のフィラメントや集束電極の位置に配置する方法が考えられる。しかし、大焦点用や中焦点用のフィラメントや集束電極の位置は、中央に位置するフィラメントや集束電極などの存在によって、照射領域に対し大きく傾いている。このため、熱電子放出効率の向上に限界がある。   However, in the conventional rotating anode type X-ray tube, although the small focus filament and the focusing electrode are directly facing the irradiation area of the rotating anode, the distance from the irradiation area is far away, so that the thermionic emission efficiency is improved. There is a limit. Further, a method of arranging the small focus filament and the focusing electrode at the positions of the large focus and middle focus filaments and the focusing electrode that are relatively short in distance to the irradiation region is conceivable. However, the positions of the filament and focusing electrode for large focus and medium focus are greatly inclined with respect to the irradiation region due to the presence of the filament and focusing electrode located at the center. For this reason, there is a limit in improving thermionic emission efficiency.

本発明は、上記した欠点を解決するもので、最も小さな焦点を形成するフィラメントの熱電子放出効率を高くした回転陽極型X線管を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks and to provide a rotary anode type X-ray tube in which the thermoelectron emission efficiency of a filament forming the smallest focal point is increased.

本発明は、熱電子の照射によってX線を発生する回転陽極と、前記熱電子を発生する長手方向が平行な3個のフィラメントを有し、かつ、大、中、小と大きさが異なり少なくとも一部が重畳する3個の熱電子の焦点を前記回転陽極上に形成する電子銃とを具備した回転陽極型X線管において、前記小焦点は少ないX線量の撮影に用い、前記大焦点または中焦点は小焦点よりもX線量の多い撮影に用い、かつ前記回転陽極上の焦点が形成される領域に、フィラメントの長手方向に平行に広がる垂直な仮想平面を描いた場合に、小焦点を形成する1つのフィラメントが前記仮想平面の一方の側に位置し、大焦点および中焦点を形成する2つのフィラメントが前記仮想平面の他方の側に位置し、かつ、前記小焦点を形成する集束電極前面の開口部分は焦点が形成される領域の面に対して傾き、かつ、大焦点を形成する集束電極前面の開口部分と中焦点を形成する集束電極前面の開口部分は、焦点が形成される領域の面に対する傾きの大きさが相違することを特徴とする。   The present invention has a rotating anode that generates X-rays by irradiation of thermoelectrons and three filaments that generate the thermoelectrons in parallel in the longitudinal direction, and are different in size from large, medium, small, and at least In a rotary anode type X-ray tube comprising an electron gun that forms a focal point of three thermionic electrons partially overlapping on the rotary anode, the small focus is used for photographing a small X-ray dose, and the large focus or The medium focus is used for imaging with a higher X-ray dose than the small focus, and when a vertical virtual plane extending parallel to the longitudinal direction of the filament is drawn in the region where the focus on the rotating anode is formed, the small focus is used. One forming filament is located on one side of the virtual plane, two filaments forming a large focal point and a medium focal point are located on the other side of the virtual plane, and a focusing electrode forming the small focal point Front opening Inclination with respect to the surface of the region where the focal point is formed, and the opening part of the front surface of the focusing electrode that forms the large focal point and the opening part of the front surface of the focusing electrode that forms the middle focal point are inclined with respect to the surface of the region where the focal point is formed. Are different in size.

本発明によれば、最も小さな焦点を形成するフィラメントの熱電子放出効率を高くした回転陽極型X線管を実現できる。   According to the present invention, it is possible to realize a rotary anode X-ray tube in which the thermoelectron emission efficiency of the filament forming the smallest focal point is increased.

本発明の実施の形態について図1の概略の構造図を参照して説明する。符合11は、熱電子の照射によってX線を発生する回転陽極で、台形状の断面を有し、軸Oを中心に回転する構造になっている。そして、台形状断面の斜辺に相当する部分に、X線を発生する熱電子の照射領域12が設けられている。   An embodiment of the present invention will be described with reference to a schematic structural diagram of FIG. Reference numeral 11 denotes a rotating anode that generates X-rays by thermionic irradiation, has a trapezoidal cross section, and rotates around an axis O. An irradiation region 12 of thermoelectrons for generating X-rays is provided in a portion corresponding to the hypotenuse of the trapezoidal cross section.

また、熱電子の照射領域12に対向して電子銃13が配置されている。電子銃13は、図1の(a)で示すように熱電子を発生する3個のフィラメント14a、14b、14cが図の左から右方向に順に設けられている。なお、3個のフィラメント14a、14b、14cは、その長手方向が図面に垂直に表側から裏側に延び、照射領域12の側から見た場合、図1(b)の円内に示すように、その長手方向が平行になって一方向に配列されている。   Further, an electron gun 13 is disposed so as to face the irradiation region 12 of the thermoelectrons. As shown in FIG. 1A, the electron gun 13 is provided with three filaments 14a, 14b, and 14c that generate thermoelectrons in order from the left to the right in the drawing. The three filaments 14a, 14b, and 14c extend in the longitudinal direction from the front side to the back side perpendicular to the drawing, and when viewed from the irradiation region 12 side, as shown in the circle of FIG. The longitudinal directions are parallel to each other and are arranged in one direction.

3個のフィラメント14a、14b、14cの前方には、各フィラメント14a、14b、14cから放出された熱電子をそれぞれ集束する集束電極15a、15b、15cが配置されている。例えば、フィラメント14aが発生した熱電子は集束電極15aで集束され、矢印Ya方向に進み照射領域12に最も小さい焦点Fを形成する。また、フィラメント14bやフィラメント14cが発生した熱電子は、集束電極15bや集束電極15cで集束され、矢印Yb、Yc方向に進み大きい焦点や中間の大きさの焦点Fを照射領域12に形成する。なお、照射領域12に形成される大、中、小の3個の焦点は少なくとも一部が互いに重畳する関係になっている。   In front of the three filaments 14a, 14b and 14c, focusing electrodes 15a, 15b and 15c for focusing the thermoelectrons emitted from the filaments 14a, 14b and 14c are arranged. For example, the thermoelectrons generated by the filament 14a are focused by the focusing electrode 15a, proceed in the direction of the arrow Ya, and form the smallest focal point F in the irradiation region 12. The thermoelectrons generated by the filament 14b and the filament 14c are converged by the focusing electrode 15b and the focusing electrode 15c, proceed in the directions of the arrows Yb and Yc, and form a large focal point or an intermediate focal point F in the irradiation region 12. Note that the three large, medium, and small focal points formed in the irradiation region 12 are in a relationship in which at least a part thereof overlaps each other.

そして、照射領域12の面に垂直で、かつ図面の表面から裏面に向かう仮想平面、たとえば回転陽極上の焦点が形成される領域に垂直な仮想平面Pを描いた場合に、小焦点を形成するフィラメント14aは仮想平面Pの一方の側に位置し、また仮想平面Pにできるだけ近い位置に設けられている。また、大焦点および中焦点を形成する2つのフィラメント14b、14cは仮想平面Pの他方の側に設けられている。なお、図1(b)では、仮想平面Pが線分p−pで示されている。   A small focal point is formed when a virtual plane perpendicular to the surface of the irradiation region 12 and extending from the front surface to the back surface of the drawing, for example, a virtual plane P perpendicular to the region where the focal point on the rotating anode is formed, is formed. The filament 14a is located on one side of the virtual plane P and is provided as close as possible to the virtual plane P. Further, the two filaments 14b and 14c forming the large focal point and the middle focal point are provided on the other side of the virtual plane P. In addition, in FIG.1 (b), the virtual plane P is shown by the line segment pp.

また、回転陽極および電子銃は真空外囲器(図示せず)内に収納され、回転陽極で発生したX線は真空外囲器外に取り出せるようになっている。   The rotating anode and the electron gun are housed in a vacuum envelope (not shown), and X-rays generated at the rotating anode can be taken out of the vacuum envelope.

上記した構成によれば、小焦点を形成するフィラメント14aおよび集束電極15aを、仮想平面Pの一方の側において照射領域12に近い位置に配置することができる。また、集束電極15a前面の開口部分の照射領域12の面Qに対する傾きの角度θが小さくなるように配置できる。このため、熱電子の放出効率が向上する。   According to the configuration described above, the filament 14a and the focusing electrode 15a that form a small focal point can be arranged at a position close to the irradiation region 12 on one side of the virtual plane P. Further, the inclination angle θ of the opening portion on the front surface of the focusing electrode 15a with respect to the surface Q of the irradiation region 12 can be reduced. For this reason, the emission efficiency of thermoelectrons is improved.

次に、この発明の他の実施形態について図2を参照して説明する。なお、図2では、図1に対応する部分には同一の符号を付し、重複する説明を一部省略している。   Next, another embodiment of the present invention will be described with reference to FIG. In FIG. 2, parts corresponding to those in FIG. 1 are denoted by the same reference numerals, and overlapping explanations are partially omitted.

図2の(a)は、各フィラメント14a、14b、14cの延長方向から見た図で、また図2の(b)は、各フィラメント14a、14b、14cの延長方向に対して垂直方向から見た図で、また図2の(c)は、照射領域12の側から各フィラメント14a、14b、14c方向を見た図である。この実施形態の場合、大焦点および中焦点を形成する2つのフィラメント14b、14cが並んで配置されている。そして、小焦点を形成するフィラメント14aはフィラメント14b、14cの中間に位置し、各フィラメント14b、14cの長手方向に偏位した配置になっている。したがって、3個のフィラメント14a、14b、14cはほぼ3角形状の各頂点に対応する位置に配置されている。そして、照射領域12の面に垂直な仮想平面が図2の(a)および(b)では符号Pで、また、図2の(c)では線分p−pで示されている。この場合も、小焦点を形成する1つのフィラメント14aが仮想平面Pの一方の側に位置し、また仮想平面Pにできるだけ近くに設けられている。また、大焦点および中焦点を形成する2つのフィラメント14b、14cは仮想平面Pの他方の側に設けられている。   2A is a view seen from the extending direction of each filament 14a, 14b, 14c, and FIG. 2B is a view seen from a direction perpendicular to the extending direction of each filament 14a, 14b, 14c. FIG. 2C is a view of the filaments 14a, 14b, and 14c viewed from the irradiation region 12 side. In the case of this embodiment, two filaments 14b and 14c forming a large focal point and a medium focal point are arranged side by side. And the filament 14a which forms a small focal point is located in the middle of the filaments 14b and 14c, and is arranged so as to be displaced in the longitudinal direction of the filaments 14b and 14c. Accordingly, the three filaments 14a, 14b, and 14c are arranged at positions corresponding to the respective apexes of the substantially triangular shape. A virtual plane perpendicular to the surface of the irradiation region 12 is indicated by a symbol P in FIGS. 2A and 2B and by a line segment pp in FIG. 2C. Also in this case, one filament 14a that forms a small focal point is located on one side of the virtual plane P and is provided as close to the virtual plane P as possible. Further, the two filaments 14b and 14c forming the large focal point and the middle focal point are provided on the other side of the virtual plane P.

大焦点および中焦点を形成する2つのフィラメント14b、14cは同一平面上に位置し、また、その長手方向が互いに平行するように配置されている。小焦点を形成するフィラメント14aは、大焦点や中焦点を形成するフィラメント14b、14cと交差する平面に位置し、照射領域12の面に対する傾きの角度θが小さくなるようにしている。この場合、2つのフィラメント14b、14cに設けられた集束電極15b、15c前面の開口部分と小焦点を形成するフィラメント14a前面の開口部分とは同一平面上になく、ある角度で交差した構造になっている。   The two filaments 14b and 14c forming the large focus and the medium focus are located on the same plane, and are arranged so that their longitudinal directions are parallel to each other. The filament 14a that forms the small focal point is positioned on a plane that intersects the filaments 14b and 14c that form the large focal point and the intermediate focal point, and the inclination angle θ with respect to the surface of the irradiation region 12 is small. In this case, the opening portions on the front surface of the focusing electrodes 15b and 15c provided on the two filaments 14b and 14c and the opening portion on the front surface of the filament 14a that forms a small focal point are not on the same plane but intersect with each other at an angle. ing.

上記した構成によれば、小焦点用のフィラメント14aおよび集束電極15aを照射領域12に近い位置に配置できる。また、小焦点用のフィラメント14aおよび集束電極15aの照射領域12の面に対する傾き、例えば、集束電極15a前面の開口部分の照射領域12や仮想平面Pに対する角度を小さくでき、熱電子放出効率を向上できる。   According to the above-described configuration, the small focus filament 14 a and the focusing electrode 15 a can be arranged at a position close to the irradiation region 12. Further, the inclination of the small focus filament 14a and the focusing electrode 15a with respect to the surface of the irradiation region 12, for example, the angle of the opening portion of the front surface of the focusing electrode 15a with respect to the irradiation region 12 and the virtual plane P can be reduced, and the thermionic emission efficiency is improved. it can.

また、上記した構成によれば、回転陽極上の焦点が形成される領域に垂直な仮想平面を描いた場合に、小焦点を形成するフィラメントが仮想平面の一方の側に位置し、大焦点および中焦点を形成する2つのフィラメントが仮想平面の他方の側に位置している。この場合、小焦点を形成するフィラメントを仮想平面の近くに配置することができる。したがって、小焦点を形成するフィラメントおよび集束電極の回転陽極の熱電子照射面に対する傾き、例えば、小焦点を形成する集束電極前面の開口部分の熱電子照射面に対する傾きを小さくでき、熱電子放出効率を高くできる。また、撮影管電流を大きくする場合に、フィラメントの動作温度を上昇させないため、長寿命の回転陽極型X線管を実現できる。   Further, according to the above-described configuration, when a virtual plane perpendicular to the region where the focal point on the rotating anode is formed is drawn, the filament forming the small focal point is located on one side of the virtual plane, The two filaments forming the middle focus are located on the other side of the imaginary plane. In this case, the filament forming the small focal point can be disposed near the virtual plane. Therefore, the inclination of the filament and the focusing electrode forming the small focus with respect to the thermoelectron irradiation surface of the rotating anode, for example, the inclination of the opening portion of the focusing electrode front surface forming the small focus with respect to the thermoelectron irradiation surface can be reduced, and the thermoelectron emission efficiency Can be high. Further, since the filament operating temperature is not increased when the imaging tube current is increased, a long-life rotating anode X-ray tube can be realized.

本発明の実施形態を説明する概略の構造図である。1 is a schematic structural diagram illustrating an embodiment of the present invention. 本発明の他の実施形態を説明する概略の構造図である。It is a general | schematic structural drawing explaining other embodiment of this invention. 従来の技術を説明する概略の構造図である。It is a general | schematic structural drawing explaining the prior art.

符号の説明Explanation of symbols

11…回転陽極
12…熱電子の照射領域
13…電子銃
14a…小焦点を形成するフィラメント
14b…大焦点を形成するフィラメント
14c…中焦点を形成するフィラメント
15a〜15c…集束電極
P…仮想平面
F…熱電子の焦点
O…回転陽極の回転軸
DESCRIPTION OF SYMBOLS 11 ... Rotary anode 12 ... Thermionic irradiation area | region 13 ... Electron gun 14a ... Filament 14b which forms a small focus ... Filament 14c which forms a large focus ... Filaments 15a-15c which form a medium focus ... Focusing electrode P ... Virtual plane F ... The focus of thermoelectron O ... Rotation axis of rotating anode

Claims (1)

熱電子の照射によってX線を発生する回転陽極と、前記熱電子を発生する長手方向が平行な3個のフィラメントを有し、かつ、大、中、小と大きさが異なり少なくとも一部が重畳する3個の熱電子の焦点を前記回転陽極上に形成する電子銃とを具備した回転陽極型X線管において、前記小焦点は少ないX線量の撮影に用い、前記大焦点または中焦点は小焦点よりもX線量の多い撮影に用い、かつ前記回転陽極上の焦点が形成される領域に、フィラメントの長手方向に平行に広がる垂直な仮想平面を描いた場合に、小焦点を形成する1つのフィラメントが前記仮想平面の一方の側に位置し、大焦点および中焦点を形成する2つのフィラメントが前記仮想平面の他方の側に位置し、かつ、前記小焦点を形成する集束電極前面の開口部分は焦点が形成される領域の面に対して傾き、かつ、大焦点を形成する集束電極前面の開口部分と中焦点を形成する集束電極前面の開口部分は、焦点が形成される領域の面に対する傾きの大きさが相違することを特徴とする回転陽極型X線管。   It has a rotating anode that generates X-rays when irradiated with thermoelectrons and three filaments that generate the thermoelectrons in parallel in the longitudinal direction, and are different in size from large, medium, small, and at least partially overlapped. In the rotary anode X-ray tube having the electron gun for forming the focus of the three thermoelectrons on the rotary anode, the small focus is used for photographing a small X-ray dose, and the large focus or the medium focus is small. One that forms a small focal point when a vertical imaginary plane that extends parallel to the longitudinal direction of the filament is drawn in a region where the focal point on the rotating anode is formed and used for imaging with a higher X-ray dose than the focal point. The opening portion of the front surface of the focusing electrode in which the filament is located on one side of the virtual plane, the two filaments forming the large focal point and the middle focal point are located on the other side of the virtual plane, and form the small focal point Is in focus The opening portion of the focusing electrode front surface that forms a large focal point and the opening portion of the focusing electrode front surface that forms a medium focus point are inclined with respect to the surface of the region where the focal point is formed. Rotating anode type X-ray tube characterized in that
JP2007017362A 2007-01-29 2007-01-29 Rotating anode type x-ray tube Pending JP2007157731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007017362A JP2007157731A (en) 2007-01-29 2007-01-29 Rotating anode type x-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007017362A JP2007157731A (en) 2007-01-29 2007-01-29 Rotating anode type x-ray tube

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3780097A Division JPH10241613A (en) 1997-02-21 1997-02-21 Rotary anode type x-ray tube

Publications (1)

Publication Number Publication Date
JP2007157731A true JP2007157731A (en) 2007-06-21

Family

ID=38241768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007017362A Pending JP2007157731A (en) 2007-01-29 2007-01-29 Rotating anode type x-ray tube

Country Status (1)

Country Link
JP (1) JP2007157731A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116172U (en) * 1976-02-28 1977-09-03
JPS5678054U (en) * 1979-11-12 1981-06-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116172U (en) * 1976-02-28 1977-09-03
JPS5678054U (en) * 1979-11-12 1981-06-25

Similar Documents

Publication Publication Date Title
US8520803B2 (en) Multi-segment anode target for an X-ray tube of the rotary anode type with each anode disk segment having its own anode inclination angle with respect to a plane normal to the rotational axis of the rotary anode and X-ray tube comprising a rotary anode with such a multi-segment anode target
US8213576B2 (en) X-ray tube apparatus
JP2004265606A (en) X-ray tube device
US8488737B2 (en) Medical X-ray imaging system
WO2014101283A1 (en) Cathode-controlled multi-cathode distributed x-ray device and ct apparatus having same
US20070064872A1 (en) X-ray radiator with thermionic emission of electrons from a laser-irradiated cathode
JPS5811079B2 (en) X-ray source device
JPWO2020261339A1 (en) X-ray generator, X-ray generator and X-ray imager
JP2011040272A (en) Flat plate filament and x-ray tube device using the same
US20020186816A1 (en) X-ray tube, particularly rotating bulb x-ray tube
JP2009009794A (en) X-ray tube device
JP2007157731A (en) Rotating anode type x-ray tube
JP2007305337A (en) Microfocus x-ray tube
JP2017135082A5 (en) Electron gun, X-ray generator tube, X-ray generator and X-ray imaging system
JP2000245731A (en) Radiographic device
JP4370576B2 (en) X-ray generator
JPH10241613A (en) Rotary anode type x-ray tube
JP4777130B2 (en) Method of apparently reducing effective focus in fixed anode type X-ray tube
JP4091217B2 (en) X-ray tube
US20220210900A1 (en) Hybrid multi-source x-ray source and imaging system
JPS5859546A (en) Rotary-anode-type x-ray tube
JP2007207468A (en) Cathode structure for x-ray tube
US11183355B2 (en) X-ray tube
JPH03194834A (en) X-ray tube
JP2018181768A (en) X-ray tube

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20100601

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101012