JP2007155587A - 通信装置 - Google Patents

通信装置 Download PDF

Info

Publication number
JP2007155587A
JP2007155587A JP2005353386A JP2005353386A JP2007155587A JP 2007155587 A JP2007155587 A JP 2007155587A JP 2005353386 A JP2005353386 A JP 2005353386A JP 2005353386 A JP2005353386 A JP 2005353386A JP 2007155587 A JP2007155587 A JP 2007155587A
Authority
JP
Japan
Prior art keywords
clock
circuit
signal
data
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005353386A
Other languages
English (en)
Inventor
Kenichi Kawakami
賢一 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2005353386A priority Critical patent/JP2007155587A/ja
Priority to US11/634,082 priority patent/US20070127614A1/en
Priority to CNA2006101531643A priority patent/CN1980118A/zh
Publication of JP2007155587A publication Critical patent/JP2007155587A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0091Transmitter details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/24Testing correct operation
    • H04L1/242Testing correct operation by comparing a transmitted test signal with a locally generated replica
    • H04L1/243Testing correct operation by comparing a transmitted test signal with a locally generated replica at the transmitter, using a loop-back
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0337Selecting between two or more discretely delayed clocks or selecting between two or more discretely delayed received code signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)

Abstract

【課題】CDR回路を有する双方向通信回路のループバックテストにおいて、クロックの結線及びCDR回路内の全回路を高速でテスト可能とする。
【解決手段】PLLからCDR回路へのCDR用多相クロックを入力としクロック選択信号に基づきCDR用多相クロック信号のいずれか1つを選択して出力するクロック選択回路を備えている。ループバックテスト時、クロック選択回路で選択されたクロック信号が送信クロックとして用いられ、送信データは入出力兼用端子にて折り返されて受信回路に入力され受信回路からのデータがCDR回路に入力され、比較回路はCDR回路からの再生データと期待値データの比較を行うことでテストが行われる。クロック選択回路で送信クロックの位相を可変させることで、送信回路遅延時間(tTx)と受信回路遅延時間(tRx)の和の遅延時間(=tTx+tRx)が可変自在とされる。
【選択図】図1

Description

本発明は、通信装置のループバックテストに関し、特に、多相クロック入力方式のクロックアンドデータリカバリ(CDR)回路を有する双方向高速通信装置のループバックテストに関する。
USB2.0(Universal Serial Bus Specification Revision 2.0)のような双方向の高速通信回路のテストとして、送受信回路のテストを効率化するために、送信部からの送信信号を受信部に直接折り返してテストするループバックテストが、一般的に採用されている。
近時、半導体装置の微細化プロセスにおいては回路を構成する素子の機能不良のみでなく、遅延不良の発生確率も高くなっており、半導体装置の選別工程において、精度の高い高速テストの実施が望まれている。
受信データを内部クロックと同期させるクロック・データリカバリ回路(CDR回路)を備えた通信装置のループバックテストは、従来より、各種提案されている。例えば特許文献1には、CDR回路を備えた通信装置において、ループバックテストによって実動作に近い通信状態で受信機、送信機の異常検出テストを可能とするため、通常動作時には、クロック生成回路(CDR回路に多相クロックを供給する)からの内部クロックが受信クロックとして供給され、ループバックテスト時には、内部クロックが受信クロックとして供給されるとともに、クロック変調回路からの変調クロック信号が送信クロックとして供給されるように切替制御するようにした構成が開示されている。この特許文献1において、クロック変調回路は、外部トリガに同期してカウントするカウンタと、クロック生成回路からの多相クロック(複数のクロック信号)を受け、複数のクロック信号のうちカウンタ値に応じた1つを変調クロック信号として選択的に出力するセレクタ回路を備えている。
また、特許文献2には、高価なテスタを用いることなく受信部をテストできるループバックテスト法では、CDR回路の故障検出率を上げることができないという課題を解決するための構成として、受信シリアルデータからクロックを再生するとともに生成するクロックの位相を変化させることが可能な第1CDR回路を含む第1受信部、パラレルデータを、送信クロック、第1CDR回路が生成したクロックのいずれかに同期したシリアルデータに変換する第1シリアライザを含む第1送信部、受信シリアルデータからクロックを再生するとともに生成するクロックの位相を変化させることが可能な第2CDR回路を含む第2受信部、パラレルデータを、送信クロック、第2CDR回路が生成したクロックのいずれかに同期したシリアルデータに変換する第2シリアライザを含む第2送信部とを備え、故障検出率を向上させることを可能とした半導体集積回路装置が開示されている。
図9は、従来のCDR回路を備えた通信装置におけるループバックテスト回路の典型的な構成の一例を示す図である。図9を参照すると、この通信装置は、互いに位相の異なる複数のクロック信号(多相クロック)16を生成するPLL(Phase Locked Loop)1(アナログPLL)と、送信データ(第1の送信データ)10をデータ端子に入力し、クロック入力端子に供給される送信クロック11に応答してサンプルして出力するD型フリップフロップ(DFF)2と、D型フリップフロップ2の出力を受け、送信信号を入出力兼用端子4に出力する送信回路3(ドライバ)と、入出力兼用端子4とグランド電位間に接続された終端抵抗5と、入出力兼用端子4に入力端が接続された受信回路6(レシーバ)と、受信回路6からの受信データ13を受け、受信データ13から再生クロック15を再生して出力するとともに、再生データ14を出力するCDR回路7’と、CDR回路7’からの再生データ14と、比較元データ17を比較する比較回路8と、テストを制御する制御論理回路(LOGIC)9を備えている。
PLL1からは、CDR回路7’へ、互いに位相が異なる複数のクロック信号16(「CDR用多相クロック」という)が供給される。CDR用多相クロック16は、φ1〜φnまで等間隔の位相差を持ち、シリアルデータの転送レート(1クロックサイクル)をtrateとすると、各クロック間の位相差(時間間隔)は、trate/nとなる。
多相クロック16の1つのクロック信号(図9では、φ1)は、送信クロック11として、制御論理回路9へ供給され、送信用のD型フリップフロップ2のクロック端子に供給される。
制御論理回路9からは、この送信クロック11に同期した第1の送信データ10が入力され、D型フリップフロップ2の出力信号は、第2の送信データ12として、送信回路3へ供給される。
送信回路3は、第2の送信データ12を、ある一定の遅延と振幅をもって、入出力兼用端子4へ出力する。
ループバックテスト時には、入出力兼用端子4の信号はそのまま受信回路6へ入力され、受信回路6は受信データ13をCDR回路7’へ出力する。
CDR回路7’は、受信データ13のエッジを検出し、PLL1から入力される多相クロック16(φ1〜φn)のうち、受信データ13の変化エッジから所定の位相だけ遅れたクロック信号を選択し(選択されたクロック信号の立ち上がりエッジは、受信データ13の変化エッジから、受信データ13の中央部に相当する分の位相だけ遅れる)、選択されたクロック信号を、再生クロック15として、制御論理回路9へ出力するとともに、受信データ13を、選択したクロック信号に同期させ、再生データ14として、制御論理回路9へ出力する。これと同時に、CDR回路7’は、受信開始信号19を、制御論理回路9と比較回路8へ出力し、正常にデータが受信されたことを通知する。
比較回路8は、制御論理回路9から出力された比較元データ17(期待値データ)と、CDR回路7’で再生された再生データ14を、受信開始信号19が変化した直後から比較を開始し、送信したデータが正しくループバックされているかを比較結果18として検出し、制御論理回路9に出力する。なお、制御論理回路9は、テスト用の第1の送信データ10を生成するパターン発生器(不図示)を備えている。
図10は、図9に示した回路の動作波形の一例を示す図であり、各波形の信号名は、図9に示したものに対応している。なお、PLL1からCDR回路7’への多相クロック16は8相とする。なお、図10では、送信データはNRZ(NonーReturn to Zero)波形とする。第1の送信データ10は、第1相のクロック信号φ1の位相に同期している。受信回路6の出力である受信データ13は、CDR回路7’に入力され再生クロック15の立ち上がりエッジに同期した再生データ14として出力される。
ここで、送信回路遅延時間(tTx)を、第1相のクロック信号φ1の立ち上がりエッジから入出力兼用端子4の信号レベルの遷移(図10では立ち上がり遷移)までの遅延時間とする。また、受信回路遅延時間(tRx)は、入出力兼用端子4の信号レベルの遷移から受信回路6の出力である受信データ13の遷移までの遅延時間とする。
D型フリップフロップ2の出力データである第2の送信データ12は、送信回路遅延時間と受信回路遅延時間の和(tTx+tRx)に等しい遅延時間をもって、CDR回路7’の入力へ受信データ13(受信回路6の出力)としてループバックされる。
この遅延時間の和(tTx+tRx)は、半導体装置のばらつき要因、温度、電源電圧によって決まる値をとるため、これらの要因が変化しない環境下においては、一定である。
このため、図10に示すようなタイミングにてループバックが行わる場合、CDR用多層クロック信号16のうち、第3相のクロック信号φ3が同期エッジとして検出され(すなわち、φ3の立ち上がりエッジが受信データ13の遷移エッジとタイミング的に重なる)、第7相クロック信号φ7が再生クロック15として出力される(φ7の立ち上がりエッジは受信データ13のエッジ間の真中に相当しており、これを再生クロック15とする)。CDR回路7’から出力される再生データ14を、受信データ13を第7相のクロック信号φ7に同期させて出力したものである。同時に、受信開始信号19は、HIGHレベルに設定される。
比較回路8は、制御論理回路9から入力された比較元データ17と、再生データ14を比較し、これらが一致している場合に、比較結果18としてPASS(良)を示すために、例えばHIGHレベルとして出力する。
特開2005−077274号公報 特開2004−260677号公報
上記したように、図9、図10を参照して説明したループバックテストにおいては、送信回路遅延時間と受信回路遅延時間の和(tTx+tRx)からなる遅延時間が一定の環境下では、その遅延時間は一意に決まってしまい、システムが安定した後には、CDR回路7’内で選択される再生クロック15の位相は変化することはない。例えば、図10に示すように、再生クロック15として、CDR用多相クロック16のうち、常に第7相クロック信号φ7が選択される。
このため、ループバックテストにおいて、CDR回路7’において選択されたクロック信号(再生クロック)に同期した再生データ14を比較元データ17と比較しても、実質的に、1本のクロックラインの結線と一部の回路動作の確認にしかならない。
つまり、動作に寄与しない他のクロックラインに、断線等の故障が発生した場合や、一部の回路以外の回路に異常が発生した場合に、ループバックテストで不良として検出することができない、という課題がある。換言すれば、クロックの結線及びCDR回路内の全回路をテストすることができず、テストによる故障検出カバレッジが制限される(テスト性能が劣る)。
本発明は、前述の課題を解決するため、送信クロックの位相を、ループバックテスト時に選択できるようにしたクロック選択回路を追加することで、ループバックテスト時に、送信クロックと、CDR回路からの再生クロックとの位相関係をシフトさせ、CDRのすべてのクロック結線と再生用回路のテストを可能にするものである。
本発明の1つのアスペクト(側面)に係る通信装置は、位相が互いに異なる複数のクロック信号よりなる多相クロックを生成するクロック生成回路と、前記クロック生成回路からの多相クロックを入力し、受信データと同期したクロック信号を選択してデータを再生し、前記選択したクロック信号を再生クロックとして出力するクロック・データリカバリ回路と、を備え、送信回路からの送信信号を折り返して受信回路に入力し、前記受信回路からの受信データを前記クロック・データリカバリ回路に供給し、前記クロック・データリカバリ回路からの再生データを期待値データと比較することで、ループバックテストを行う通信装置であって、前記クロック生成回路から前記クロック・データリカバリ回路に供給される前記多相クロックのうち、与えられたクロック選択信号に基づき1つの相のクロック信号を選択して送信クロックとして供給し、前記送信クロックに基づき規定される、前記送信回路の遅延時間を可変に設定して、ループバックテストを行うことを可能としている。
本発明は、位相が互いに異なる複数のクロック信号よりなる多相クロックを生成するクロック生成回路と、前記クロック生成回路からの多相クロックを入力し、入力されたデータと同期したクロック信号を選択しデータを再生するクロック・データリカバリ回路と、前記クロック生成回路から前記クロック・データリカバリ回路に供給される前記多相クロック信号を入力とし、前記多相クロックのうち、与えられたクロック選択信号に基づき1つの相のクロック信号を選択して出力するクロック選択回路と、を備え、ループバックテスト時に、前記クロック選択回路で選択されたクロック信号が、送信クロックとして、ループバックテスト用の送信データを生成する回路、及び、前記生成された送信データをラッチする回路に供給され、前記送信データは送信回路の出力で折り返えされて受信回路に入力され、前記クロック・データリカバリ回路に供給される構成とされ、前記クロック選択回路で選択するクロック信号を変えることで、前記送信データが出力されてから前記受信回路から受信データとして出力されるまでの遅延時間が可変に設定自在とされている。
本発明において、前記クロック・データリカバリ回路は、前記多相クロックのうちどの相のクロック信号が選択されたかを示す第1の選択クロック信号を出力し、前記第1の選択クロック信号を入力とする第1のカウンタ回路を備え、前記第1のカウンタ回路は、前記第1の選択クロック信号が、前記多相クロックのうちの1つの相のクロック信号が継続して予め定められた所定期間選択されていることを示す場合、これを検出し、検出結果を、第2の選択クロック信号として出力し、前記クロック・データリカバリ回路内で再生クロックとして、前記多相クロックのうちどの相のクロック信号が選択されたかを判定可能とした構成としてもよい。
本発明において、前記多相クロックが位相が等間隔で離間した第1乃至第n相のクロック(φ1〜φn)よりなり、前記第1の選択クロック信号が、第1乃至第n相のクロックに対応して、n個の信号(s1〜sn)よりなり、前記クロック・データリカバリ回路は、iを1〜nの間の整数として、第1乃至第n相のクロックのうち第i相のクロックを再生クロックとして選択した場合、前記第1の選択クロック信号のi番目の信号(si)を活性化する構成としてもよい。
本発明において、前記第1のカウンタ回路は、前記クロック・データリカバリ回路からの前記第1の選択クロック信号を構成するn個の信号(s1〜sn)をそれぞれ入力するn個のカウンタを備え、前記n個のカウンタのそれぞれは、入力されるクロック信号を、前記第1の選択クロック信号を構成するn個の信号(s1〜sn)が、活性状態の間計数し、所定のカウント値に達したら、活性状態の出力信号を出力し、前記n個のカウンタのn個の出力のいずれか1つが活性化した場合、前記n個のカウンタに対するクロック信号の伝達を遮断するように制御する回路を備えた構成としてもよい。
本発明において、前記第1のカウンタ回路の前記第1の選択クロック信号をクロック切り替え信号として入力し、第1のクロック入力信号と第2のクロック入力信号を入力し、前記クロック切り替え信号に基づきいずれかを選択して出力する選択回路と、前記選択回路の出力を計数するカウンタとを備えた第2のカウンタ回路を備え、前記第2のカウンタ回路のカウント出力が、前記クロック選択回路に前記クロック選択信号として供給される構成としてもよい。
本発明において、前記第2の選択クロック信号が、第1の選択クロック信号のn個の信号(s1〜sn)に対応して、n個の信号(t1〜tn)よりなり、そのうちの1つがクロック切替信号として、前記第2のカウンタ回路に供給される構成としてもよい。
本発明によれば、多相クロック入力のCDR回路を有する双方向通信回路のループバックテストにおいて、クロックの結線及びCDR回路内の全回路を高速でテストすることができる。
本発明によれば、多相クロック入力のCDR回路を有する双方向通信回路のループバックテストにおいて、クロック選択回路の故障を検出することができる。
本発明によれば、多相クロック入力のCDR回路を有する双方向通信回路のループバックテストにおいて、クロック選択回路の故障検出を、同じ状態でテストを開始することができる。
上記した本発明についてさらに詳細に説述すべく添付図面を参照して説明する。本発明の一実施の形態の構成は、図1を参照すると、PLL(1)からCDR回路(7)へのCDR用多相クロック(16)を入力とし、外部より供給されたクロック選択信号(21)に基づき、CDR用多相クロック信号(16)のいずれか1つを選択して出力するクロック選択回路(20)を備え、ループバックテスト時、クロック選択回路(20)の出力は送信クロック(11)として用いられ、送信データは入出力兼用端子(4)にて折り返され、受信回路(6)に入力され、受信回路(6)からのデータがCDR回路(7)に入力され、CDR回路(7)からの再生データを比較回路(8)で比較元データ(期待値データ)と比較することで、ループバックによるテスト(ファンクショナルテスト)を行う。クロック選択回路(20)によって送信クロック(11)の位相を変えることで、送信回路遅延時間と受信回路遅延時間の和(tTX+tRx)の遅延時間を異ならせた上で、ループバックテストを行うことができる。
本発明の第2の実施形態においては、図3を参照すると、前記実施の形態の構成に加えて、CDR回路(7)におけるクロックの選択結果(CDR用多相クロック(16)のうちどれを再生クロック(15)として選択したか)を、第1の選択クロック信号(23)として出力する。本発明においては、さらに、第1の選択クロック信号(23)を入力とするカウンタ回路(22)を備え、第1の選択クロック信号(23)が、一定期間、予め定められた論理レベル(例えばHIGHレベル)を保つ(ある相のクロック信号が一定期間、再生クロックとして選択されていることを示す)ことを検出し、検出結果を、第2の選択クロック信号(24)として制御論理回路(9’)に出力する。かかる構成により、制御論理回路(9’)では、CDR回路(7)内においてCDR用多相クロック(16)のうち何番目の相のクロック信号が再生クロック(15)として選択されたかを判定することができる。
本発明の第3の実施の形態においては、図6を参照すると、カウンタ回路(22)の第1の選択クロック信号(23)をクロック切り替え信号(204)として入力し、第1と第2のクロック入力(205、206)を有する第2のカウンタ回路(26)を備え、第2のカウンタ回路(26)の出力をクロック選択信号(21)として用い、クロック切り替え信号(204)により、第2のカウンタ回路(26)へのクロック入力を切り替える。以下、実施例に即して説明する。
図1は、本発明の第1の実施例の構成を示す図である。図1を参照すると、本実施例は、図9の構成と同様に、PLL回路1(アナログPLL)、D型フリップフロップ(DFF)2、送信回路3(ドライバ)、入出力兼用端子4、終端抵抗5、受信回路6(レシーバ)、CDR回路7、比較回路8、テストを制御する制御論理回路9を備えているほか、PLL1から出力される多相クロック16を入力し、外部より入力されるクロック選択信号21にて、多相クロック16(図1では、8相クロックφ1〜φn)のうち1つを選択し送信クロック11として出力するクロック選択回路20を備えている。
PLL1からは、CDR回路7へ、互いに位相が異なる複数のクロック信号16(「CDR用多相クロック」という)が供給される。
多相クロック16のうち、ある相のクロック信号が、クロック選択回路20で選択され、送信クロック11として、制御論理回路9へ供給され、送信用のD型フリップフロップ2のクロック端子に供給される。
制御論理回路9は、クロック選択回路20で選択された送信クロック11に同期した第1の送信データ10を出力し、D型フリップフロップ2の出力信号は、第2の送信データ12として、送信回路3へ入力される。
送信回路3は、入力された第2の送信データ12を、ある一定の遅延と振幅をもって、入出力兼用端子4へ出力する。
ループバックテスト時には、入出力兼用端子4の信号はそのまま受信回路6へ入力され、受信回路6から出力される受信データ13はCDR回路7へ供給される。
CDR回路7は、入力された受信データ13の遷移エッジを検出し、PLL1から供給される多相クロック16のうち、受信データ13の遷移エッジから所定の位相だけ遅れたクロック信号を選択する。該選択されたクロック信号の遷移エッジは受信データの中央部に相当する。CDR回路7は、選択したクロック信号を再生クロック信号15として、制御論理回路9へ出力するとともに、受信データ13を、選択したクロック信号に同期させ、再生データ14として、制御論理回路9へ出力する。これと同時に、CDR回路7は、受信開始信号19を制御論理回路9と比較回路8へ出力し、正常にデータが受信されたことを通知する。
本実施例において、CDR回路7は、いずれのクロックが再生クロック15として選択されているかを示す信号を、選択クロック信号23(s1〜sn)として、制御論理回路9へ出力する。選択クロック信号23(s1〜sn)は、CDR用多相クロック16(φ1〜φn)のうち、CDR回路7において、再生クロック15として第i相のクロック信号φi(1≦i≦n)が選択された場合、選択クロック信号23のsiをHIGHレベルとし、他はLOWレベルのままとする。
比較回路8は、制御論理回路9から出力された比較元データ17と、CDR回路7で再生された再生データ14を、受信開始信号19が変化した直後から比較を開始し、送信したデータが正しくループバックされているかを比較結果18として検出し、制御論理回路9に出力する。
図2は、本実施例の動作波形を示す図である。特に制限されないが、図2では、図1の多相クロック16の相数は8相(φ1〜φ8)としてある。図2と図10を比較すると、クロック選択信号21により、クロック選択回路20の出力位相を、第1相クロックφ1(図10参照)から、第2相クロックφ2(図2参照)に替えた場合、第1の送信データ10及び第2の送信データ12も、第1相クロックφ1から、trate/n(ただし、trateは1クロックサイクルであり、trate/nは、クロック間の位相差)だけ位相が遅れるため、CDR回路7で選択される再生クロック15は、第7相クロックφ7(図10参照)から、第8相クロックφ8(図2参照)に変更されており、選択クロック信号23のS8がHIGHレベルとして出力されている。
次に、クロック選択回路20の出力位相を、第2相クロックφ2から第3相クロックφ3に変化させた場合には、同様に、CDR回路7で選択される再生クロック15は、第8相クロックφ8から一巡して、第1相クロックφ1に戻り、選択クロック信号23のs1がHIGHレベルとして出力される。
前述のとおり、クロック選択信号21を、多相クロック16(φ1〜φ8)のそれぞれに対応して、ビット数分(図2の例では、8ビット)、順次、変化させ、クロック選択回路20から出力される送信クロック11の位相を変化させることで、CDR回路7が選択するクロックの全ての組み合わせの結線のテストと、回路を動作させることが可能になる。
また、CDR回路7からの選択クロック信号23(s1〜s8)が切り替わる(HIGHレベルの信号がsiからsjへ切り替わる、ただし、i≠j、1≦i、j≦n)ことをモニタすることで、クロック選択回路20内での故障も検出することができる。例えば、クロック選択信号21により、送信クロック11をφ1からφ8に順次切り替えていく場合、CDR回路7からの選択クロック信号23(s1〜s8)が切り替わらない場合には、クロック選択回路20に故障があるもとの判断される。
次に、本発明の第2の実施例を説明する。図3は、本発明の第2の実施例の構成を示す図である。図3において、図1の要素と同一の構成には、同一の参照符号が付されている。本実施例では、CDR回路7から出力される選択クロック信号(「第1の選択クロック信号」という)(s1〜sn)23を入力するカウンタ回路22をさらに備えている。
本実施例では、CDR回路7からの第1の選択クロック信号23(s1〜sn)は、前記した図1の第1の実施例と同様、CDR回路7の内部で、現在、CDR用多相クロック16のうち、どの相のクロック信号が、再生クロック15として選択されているかを示している。すなわち、CDR回路7の内部で第i相クロック信号φi(ただし、1≦i≦n)が選択されている場合、第1の選択クロック信号23(s1〜sn)のうちsiがHIGHレベルとされる。CDR回路7の内部で、再生クロックとして選択されたクロック信号の位相に変化が無い場合(φiが選択され続ける場合)、siはHIGHレベルに保持される。
カウンタ回路22は、カウンタリセット信号25でリセットされ、第1の選択クロック信号23を、一定期間、カウントし、安定化して、第2の選択クロック信号(t1〜tn)24として出力する。
前記第1の実施例においては、クロック選択回路20が故障して送信クロック11の位相が切り替わらない場合には、図9と同様な動作が行われることになる。このため、CDR回路7の故障を検出することはできない。
したがって、クロック選択回路20の故障を検出するためには、CDR回路7から出力される第1の選択クロック信号23(s1〜sn)をモニタし、送信クロック11の位相の切替えに対応して、再生クロック15の位相が変化していることを確認する必要がある。
また、CDR回路7で選択された再生クロック15が、多相クロック16(φ1〜φn)のうち隣り合った位相のクロックの境界付近にあった場合には、第1の選択クロック信号23は、不安定となり、境界の前後を値を交互に出力する。
そこで、本実施例では、カウンタ回路22を設け、第1の選択クロック信号23のsi(1≦i≦n)のHIGHレベルが、一定期間以上、継続して出力された場合にのみ、第2の選択クロック信号24を制御論理回路9’へ出力する。
カウンタリセット信号25は、カウンタ回路22のリセット信号で、クロック選択信号21を変化させる度に出力される。
図4は、図3に示したカウンタ回路22の構成の一例を示した図である。図4において、参照番号101乃至106は図3の第1の選択クロック信号23を示し、参照番号122乃至127は、第2の選択クロック信号24を示している。参照番号107はクロック入力端子、108はリセット入力端子である。参照番号110乃至115は、クロックを後段へ伝えるか遮断するかを選択するセレクタである。カウンタ116〜121は、それぞれ、入力端子101〜106のHIGHレベルが一定期間以上継続した場合、入力端子101〜106のHIGHレベル期間におけるクロックのカウント値が一定である場合、出力端子122から127にHIGHレベルを出力するカウンタ回路よりなる。
第1乃至第nの出力端子122〜127は、n入力OR回路109の第1乃至第nの入力にそれぞれ接続され、n入力OR回路109の出力は、第1乃至第nのセレクタ110〜115の制御端子に接続されている。第1乃至第nのカウンタ回路116〜121のいずれか1つがHIGHレベルを出力すると、n入力OR回路109の出力がHIGHレベルとなり、第1乃至第nのセレクタ110〜115は、いずれも、クロック入力(clk)からGND電位(LOW固定)に切り替え出力することで、第1乃至第nのカウンタ回路116〜121へのクロック入力を遮断し、出力の状態を保持する。
図5は、図4のカウンタ116〜121の動作波形の一例を示す図である。テスト開始時にリセット入力端子108からのリセット信号でリセットされ、その後、第1の選択クロック信号s2およびs3が交互に選択され、仮にs3が一定期間以上HIGHレベルを保持すると、t3をHIGHに変化させカウント動作を停止する。
次に、本発明の第3の実施例について説明する。図6は、本発明の第3の実施例の構成を示す図である。図6を参照すると、本発明の第3の実施例は、図3の第2の実施例に対し、第2のカウンタ回路26をさらに備えている。この第2のカウンタ回路26は、制御論理回路9”から、2種類のクロック信号205、206(tclk1、tclk2)を入力し、カウンタ回路22からの第2の選択クロック信号24のうちの1つの信号t1を、クロックの切り替え信号204として入力する。
第2のカウンタ回路26の出力は、クロック選択信号21として、クロック選択回路20へ出力する。すなわち、本実施例では、クロック選択信号21を第2のカウンタ回路26で生成しており、クロック選択信号21入力用の外部端子等を不要としている。そして、クロック選択信号21に基づきクロック選択回路20によるクロック切り替え前後で、送信クロックとして多相クロック16から選択されるクロック信号の位相が、例えば相隣るように制御される。
リセット信号入力207は、制御論理回路9”から、テスト初期時に、第2のカウンタ回路26をリセットするために入力される。
図7は、図6の第2のカウンタ回路26の構成の一例を示す図である。図7を参照すると、第2のカウンタ回路26は、セレクタ回路201と、D型フリップフロップ202と、10進カウンタ203とを備えている。セレクタ回路201は、第1及び第2のクロック入力信号(tclk1、tclk2)を切り替える。D型フリップフロップ202は、第1のクロック入力信号(tclk1)をクロック入力端子に入力し、クロック切り替え信号204(t1)をデータ端子に入力とし、その出力端子Qからの出力信号は、セレクタ201に選択制御信号として供給される。
10進カウンタ203は、セレクタ回路201の出力を入力とし、カウント出力(C1〜Cn)は、クロック選択信号21として、クロック選択回路20に供給される。
図8は、図7の第2のカウンタ回路26の動作波形を示す図である。図8を参照すると、まず、制御論理回路9”では、第2のクロック入力信号tclk2は停止させ、第2のカウンタ回路26には、第1のクロック入力信号tclk1を供給する。tclk1の計数に応じて、10進カウンタ203は、カウント結果を出力する。クロック切り替え信号t1がLOWレベルの間、セレクタ回路201は、第1のクロック入力tclk1を選択して、10進カウンタ203に供給され、カウント出力であるクロック選択信号21のC1、C2、C3、C4が順次HIGHレベルとなる。
ここで、CDR回路7において、再生クロック15として第1相クロック信号φ1を選択し、第1の選択クロック信号23のs1がHIGHレベルとなり、第1のカウンタ回路22から出力される第2の選択クロック信号24(t1〜tn)のt1がHIGHレベルとなると、第2のカウンタ回路26に入力されるクロック切り替え信号t1がHIGHレベルとなり、第1のクロック入力tclk1に同期してD型フリップフロップ202の出力もHIGHレベルとなる。このためセレクタ回路201では、第2のクロック入力tclk2に切り替えて出力する。このとき、第2のクロック入力tclk2はLOWレベル固定である。このため、第2のカウンタ回路26において、10進カウンタ203へのクロック入力は停止される。
クロック切り替え信号t1がHIGHレベルの期間、第2のクロック入力tclk2はLOW固定とされ、クロック選択信号21(C1〜Cn)のうち、C4がHIGHレベルのまま保持される。このとき、クロック選択回路20は、第4相クロックφ4を選択する。またCDR回路7では、再生クロック15として第1相のクロックφ1を選択した状態とされる。
続いて、第2の選択クロック信号24のt1がHIGHレベルからLOWレベルに変化するものとする(クロック切替信号t1がLOWレベルとなる)。これを受けて、D型フリップフロップ202の出力は再びLOWレベルとなり、セレクタ201は第1のクロックtclk1を選択する。10進カウンタ203は、セレクタ回路201からのクロック(第1のクロックtclk1)を受けて計数する。すなわち、クロック選択信号21は、セレクタ回路201からのクロック(tclk1)の立ち上がりに応答して、順に増加していく。すなわち、図8に示すように、クロック切り替え信号t1がLOWレベルの後、クロック選択信号21(C1〜Cn)は、C4の次の相であるC5から、順次、HIGHレベルに設定されていく。なお、クロック切り替え信号204(t1)に基づき、上記のような制御動作を行う構成であれば、第1、第2のクロック入力(tclk1、tclk2)の一方を選択する構成に限定されず、他の任意の構成としてもよいことは勿論である。
図3に示した前記第2の実施例では、クロック選択信号21に対するCDR回路7で選択される再生クロック15は、送信回路遅延時間(tTx)および受信回路遅延時間(tRx)に依存するため、一意的に決まらない。このため、テストする際に、クロック選択信号21に対する第2の選択クロック信号24の状態を予め求めておく必要がある。すなわち、クロック選択信号21に基づきクロック選択回路20で多相クロック16のうちある相のクロック信号が送信クロック11として選択された場合、第2の選択クロック信号24(t1〜tn)のいずれがHIGHレベルとされるかを、測定等により、予め求めておくことが必要とされる。
一方、本発明の第3の実施例においては、上記したように、例えば送信クロック11として多相クロック16の第4相クロックφ4を選択しているときに、CDR回路により再生クロック15として第1相クロックφ1が選択されることが、第2のカウンタ回路26で管理される。
本発明の第3の実施例においては、CDR回路7における再生クロック15の選択結果を判定する前に、クロック選択回路20で選択されるクロック信号の位相分だけ、クロック入力を行うことで、必ず同じ状態からテストを開始することができる。
上記した各実施例によれば、ループバックテスト手法において、クロックの結線およびCDR内の全回路を、高速でテストできる。また、クロック選択回路の故障も検出することができる。
さらに、本発明の第3の実施例によれば、クロック選択回路における故障検出を、必ず、同じ状態でテストを開始することができる。
なお、上記実施例では、1つのチャネル構成(入出力兼用端子4が1つ)が示されているが、本発明はかかる構成に制限されるものでなく、入出力兼用端子4を複数備え、複数の入出力兼用端子に対応して、送信回路と受信回路の対を複数備えたマルチチャネル構成にも適用できることは勿論である。
また、上記実施例では、送信回路3の出力と受信回路6の入力が、入出力兼用端子4に共通に接続されている例(I/O Common)を示したが、本発明がかかる構成に制限されるものでなく、送信回路3の出力が接続される出力端子と、受信回路6の入力が接続される入力端子を別々に備え(I/O Separate)、テスト時に、テスタ等又は治具等で、これらの端子を電気的に接続してループバックテストを行うようにしてもよいことは勿論である。
以上、本発明を上記実施例に即して説明したが、本発明は上記実施例の構成にのみに制限されるものでなく、本発明の範囲内で当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
本発明の第1の実施例の構成を示す図である。 本発明の第1の実施例の動作波形を示す図である。 本発明の第2の実施例の構成を示す図である。 本発明の第2の実施例のカウンタ回路の構成を示す図である。 本発明の第2の実施例のカウンタ回路の動作波形を示す図である。 本発明の第3の実施例の構成を示す図である。 本発明の第3の実施例の第2のカウンタ回路の構成を示す図である。 本発明の第3の実施例の第2のカウンタ回路の動作波形を示す図である。 従来の通信装置のループバックテストを説明するための図である。 図9の通信装置のループバックテストの動作波形を示す図である。
符号の説明
1 PLL(アナログPLL)
2 D型フリップフロップ
3 送信回路
4 入出力兼用端子
5 終端抵抗
6 受信回路
7、7’ CDR回路
8 比較回路
9、9’、9” 制御論理回路
10 第1の送信データ
11 送信クロック
12 第2の送信データ
13 受信データ
14 再生データ
15 再生クロック
16 CDR用多相クロック
17 比較元データ(期待値データ)
18 比較結果
19 受信開始信号
20 クロック選択回路
21 クロック選択信号
22 カウンタ
23 第1の選択クロック信号(クロック選択信号)
24 第2の選択クロック信号
25 カウンタリセット信号
26 第2のカウンタ回路
101〜106 入力端子
107 クロック入力端子
108 リセット入力端子
109 n入力OR回路
110〜115 セレクタ
116〜121 カウンタ
122〜127 出力端子
201 セレクタ回路
202 D型フリップフロップ
203 カウンタ(10進カウンタ)
204 クロック切替信号
205 第1のクロック入力
206 第2のクロック入力
207 リセット入力

Claims (8)

  1. 位相が互いに異なる複数のクロック信号よりなる多相クロックを生成するクロック生成回路と、
    前記クロック生成回路からの多相クロックを入力し、受信データと同期したクロック信号を選択してデータを再生し、前記選択したクロック信号を再生クロックとして出力するクロック・データリカバリ回路と、
    を備え、
    送信回路からの送信信号を折り返して受信回路に入力し、前記受信回路からの受信データを前記クロック・データリカバリ回路に供給し、前記クロック・データリカバリ回路からの再生データを期待値データと比較することで、ループバックテストを行う通信装置であって、
    前記クロック生成回路から前記クロック・データリカバリ回路に供給される前記多相クロックのうち、与えられたクロック選択信号に基づき1つの相のクロック信号を選択して送信クロックとして供給し、
    前記送信クロックに基づき規定される、前記送信回路の遅延時間を可変に設定して、ループバックテストを行うことを可能としてなる、ことを特徴とする通信装置。
  2. 位相が互いに異なる複数のクロック信号よりなる多相クロックを生成するクロック生成回路と、
    前記クロック生成回路からの多相クロックを入力し、入力されたデータと同期したクロック信号を選択しデータを再生するクロック・データリカバリ回路と、
    前記クロック生成回路から前記クロック・データリカバリ回路に供給される前記多相クロック信号を入力とし、前記多相クロックのうち、与えられたクロック選択信号に基づき1つの相のクロック信号を選択して出力するクロック選択回路と、
    を備え、
    ループバックテスト時に、前記クロック選択回路で選択されたクロック信号が、送信クロックとして、ループバックテスト用の送信データを生成する回路、及び、前記生成された送信データをラッチする回路に供給され、前記送信データは送信回路の出力端で折り返えされて受信回路に入力され、前記受信回路から前記クロック・データリカバリ回路に供給される構成とされ、前記クロック選択回路で選択するクロック信号を変えることで、前記送信データが出力されてから前記受信回路から受信データとして出力されるまでの遅延時間が可変に設定自在とされている、ことを特徴とする通信装置。
  3. 前記クロック・データリカバリ回路は、前記多相クロックのうちどの相のクロック信号が選択されたかを示す第1の選択クロック信号を出力し、
    前記第1の選択クロック信号を入力とする第1のカウンタ回路を備え、
    前記第1のカウンタ回路は、前記第1の選択クロック信号が、前記多相クロックのうちの1つの相のクロック信号が継続して予め定められた所定期間選択されていることを示す場合、これを検出し、検出結果を、第2の選択クロック信号として出力し、
    前記クロック・データリカバリ回路内で再生クロックとして、前記多相クロックのうちどの相のクロック信号が選択されたかを判定可能としてなる、ことを特徴とする請求項1又は2記載の通信装置。
  4. 前記多相クロックが位相が等間隔で離間した第1乃至第n相のクロック(φ1〜φn)よりなり、
    前記第1の選択クロック信号が、第1乃至第n相のクロックに対応して、n個の信号(s1〜sn)よりなり、
    前記クロック・データリカバリ回路は、iを1〜nの間の整数として、前記多相クロックの第1乃至第n相のクロック信号のうち第i相のクロック信号を、前記再生クロックとして選択した場合には、前記第i相のクロック信号に対応して、前記第1の選択クロック信号の第iの信号(si)を活性化する、ことを特徴とする請求項3記載の通信装置。
  5. 前記第1のカウンタ回路は、前記クロック・データリカバリ回路からの前記第1の選択クロック信号を構成するn個の信号(s1〜sn)をそれぞれ入力するn個のカウンタを備え、
    前記n個のカウンタのそれぞれは、入力されるクロック信号を、前記第1の選択クロック信号を構成するn個の信号(s1〜sn)が、活性状態の間計数し、所定のカウント値に達したら、活性状態の出力信号を出力し、
    前記n個のカウンタのn個の出力のいずれか1つが活性化した場合、前記n個のカウンタに対するクロック信号の伝達を遮断するように制御する回路を備えている、ことを特徴とする請求項3記載の通信装置。
  6. 前記第1のカウンタ回路の前記第1の選択クロック信号をクロック切り替え信号として入力し、前記クロック切り替え信号に基づき、第1及び第2のクロック入力信号のいずれかを選択して出力する選択回路と、
    前記選択回路の出力を計数するカウンタと、
    を含む第2のカウンタ回路を備え、
    前記第2のカウンタ回路のカウント出力が、前記クロック選択回路に対して前記クロック選択信号として供給される、ことを特徴とする請求項3記載の通信装置。
  7. 前記カウンタは、前記クロック切り替え信号が第1の論理レベルのとき、前記選択回路からのクロック入力が停止されると、カウント動作を停止し、前記クロック切り替え信号が第2の論理レベルのとき、前記選択回路からのクロック入力に基づきカウント動作する、ことを特徴とする請求項6記載の通信装置。
  8. 前記第2の選択クロック信号が、第1の選択クロック信号のn個の信号(s1〜sn)に対応して、n個の信号(t1〜tn)よりなり、そのうちの1つがクロック切替信号として、前記第2のカウンタ回路に供給される、ことを特徴とする請求項3記載の通信装置。
JP2005353386A 2005-12-07 2005-12-07 通信装置 Pending JP2007155587A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005353386A JP2007155587A (ja) 2005-12-07 2005-12-07 通信装置
US11/634,082 US20070127614A1 (en) 2005-12-07 2006-12-06 Communication device
CNA2006101531643A CN1980118A (zh) 2005-12-07 2006-12-07 通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005353386A JP2007155587A (ja) 2005-12-07 2005-12-07 通信装置

Publications (1)

Publication Number Publication Date
JP2007155587A true JP2007155587A (ja) 2007-06-21

Family

ID=38118732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005353386A Pending JP2007155587A (ja) 2005-12-07 2005-12-07 通信装置

Country Status (3)

Country Link
US (1) US20070127614A1 (ja)
JP (1) JP2007155587A (ja)
CN (1) CN1980118A (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5179726B2 (ja) * 2006-06-27 2013-04-10 マーベル ワールド トレード リミテッド 半導体デバイス
JP5096024B2 (ja) * 2007-03-19 2012-12-12 株式会社リコー Usbコントローラ及びusbコントローラ試験方法
JP2008250725A (ja) * 2007-03-30 2008-10-16 Nec Electronics Corp インターフェース回路
JP2009159296A (ja) * 2007-12-26 2009-07-16 Panasonic Corp クロック信号生成装置及び方法
TWI358906B (en) * 2008-08-15 2012-02-21 Ind Tech Res Inst Burst-mode clock and data recovery circuit using p
US20120017118A1 (en) * 2010-07-19 2012-01-19 Advanced Micro Devices, Inc. Method and apparatus for testing an integrated circuit including an i/o interface
US8760188B2 (en) * 2011-06-30 2014-06-24 Silicon Image, Inc. Configurable multi-dimensional driver and receiver
US9071243B2 (en) 2011-06-30 2015-06-30 Silicon Image, Inc. Single ended configurable multi-mode driver
US9742444B1 (en) * 2016-02-24 2017-08-22 Avago Technologies General Ip (Singapore) Pte. Ltd. Broadband digital transmitter using π/4 phase offset local oscillator (LO) signals
CN106059723B (zh) * 2016-08-03 2023-04-07 索尔思光电(成都)有限公司 信号产生装置和方法、误码测试仪和方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260677A (ja) * 2003-02-27 2004-09-16 Renesas Technology Corp 通信装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168848A (ja) * 1999-12-07 2001-06-22 Mitsubishi Electric Corp デジタル同期回路
JP3647364B2 (ja) * 2000-07-21 2005-05-11 Necエレクトロニクス株式会社 クロック制御方法及び回路
JP2003134096A (ja) * 2001-10-29 2003-05-09 Toshiba Corp データ抽出回路
JP3946050B2 (ja) * 2002-01-28 2007-07-18 株式会社ルネサステクノロジ データ・クロック・リカバリ回路

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260677A (ja) * 2003-02-27 2004-09-16 Renesas Technology Corp 通信装置

Also Published As

Publication number Publication date
US20070127614A1 (en) 2007-06-07
CN1980118A (zh) 2007-06-13

Similar Documents

Publication Publication Date Title
JP2007155587A (ja) 通信装置
US8072253B2 (en) Clock adjusting circuit and semiconductor integrated circuit device
JP4339317B2 (ja) クロック乗換装置、及び試験装置
US7439785B2 (en) Jitter producing circuitry and methods
JP4893052B2 (ja) レシーバ回路及びレシーバ回路試験方法
JP2007184847A (ja) クロックアンドデータリカバリ回路及びserdes回路
US6943595B2 (en) Synchronization circuit
JP2004260677A (ja) 通信装置
JP2002289776A (ja) 半導体装置
US6374392B1 (en) Semiconductor test system
JPWO2003045003A1 (ja) 位相調整装置及び半導体試験装置
CN113728241A (zh) 并行路径延迟线
KR101285287B1 (ko) 타이밍 발생기 및 시험 장치
US7750711B2 (en) Phase select circuit with reduced hysteresis effect
KR100617957B1 (ko) 역방향 데이터 샘플링 방법 및 이를 이용한 역방향 데이터샘플링 회로
US10944407B1 (en) Source synchronous interface with selectable delay on source and delay on destination control
JP2744094B2 (ja) ディジタルシステム
KR100728906B1 (ko) 듀티 싸이클 보정장치
JP2000029563A (ja) 動作タイミング制御機能を有するシステム
US20220413044A1 (en) Semiconductor device and method for generating test pulse signals
JP2018074413A (ja) 伝送装置、及び信号処理方法
JP3948923B2 (ja) Da変換部の試験装置、試験方法、及び半導体集積回路装置
CN116298775A (zh) 一种芯片同步时钟之间电路跳变故障测试方法
JP2000332732A (ja) クロック乗せ替え回路
CN115561612A (zh) 半导体装置与测试脉冲信号产生方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726