JP2007152470A - 自己診断機能付きロボット - Google Patents

自己診断機能付きロボット Download PDF

Info

Publication number
JP2007152470A
JP2007152470A JP2005349117A JP2005349117A JP2007152470A JP 2007152470 A JP2007152470 A JP 2007152470A JP 2005349117 A JP2005349117 A JP 2005349117A JP 2005349117 A JP2005349117 A JP 2005349117A JP 2007152470 A JP2007152470 A JP 2007152470A
Authority
JP
Japan
Prior art keywords
robot
diagnosis
unit
self
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005349117A
Other languages
English (en)
Inventor
Ryota Hiura
亮太 日浦
Ken Onishi
献 大西
Keiichiro Osada
啓一郎 長田
Kyoko Oshima
京子 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005349117A priority Critical patent/JP2007152470A/ja
Publication of JP2007152470A publication Critical patent/JP2007152470A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

【課題】低コストで自己診断を行うことができる自己診断機能付きロボットを提供することを目的とする。
【解決手段】自己診断機能付きロボットを、ロボット本体1と、ロボット本体に設けられる超音波距離センサ16,22と、ロボット本体1に設けられる右腕部4a、左腕部4bと、これら右腕部4a、左腕部4bの動作を制御する駆動制御部56と、超音波距離センサ16,22、右腕部4a、左腕部4b、及び駆動制御部56の診断を行う診断部73とを有する構成とする。診断部73を、駆動制御部56に、右腕部4a、左腕部4bを超音波距離センサ16,22の検出領域内と検出領域外との間で移動させる動作指令を送ったのちに、超音波距離センサ16,22の出力信号に変動が生じなかった場合に、故障が生じていると判定する構成とする。
【選択図】図3

Description

本発明は、自己診断機能付きロボットに関する。
ロボットには、正確な動作のため、もしくは安全を確保するために、各種のセンサが設けられている。
このため、ロボットには、各センサに故障が生じていないかどうかを判定する自己診断機能を設けることが求められている。
センサの診断部としては、例えば後記の特許文献1に記載のガスセンサの診断部が知られている。
このガスセンサの診断部は、第一の検知手段と、第二の検知手段と、これら第一、第二の検知手段の出力値を比較する比較手段とを有しており、第一の検知手段の出力値と第二の検知手段の出力値とがほぼ等しくなる条件下でこれらの出力値の差が設定値以上となった場合にセンサが異常であると診断するものである。
特開2004−212145号公報(段落[0013]参照)
しかしながら、このようにセンサを二重化すると、コストがかかってしまうので、好ましくない。
本発明は、上記問題を解決するためになされたもので、低コストで自己診断を行うことができる自己診断機能付きロボットを提供することを目的とする。
上記課題を解決するために、本発明は以下の手段を採用する。
本発明は、ロボット本体と、該ロボット本体に設けられる距離センサと、前記ロボット本体に設けられるアームと、該アームの動作を制御する駆動制御部と、前記距離センサ、前記アーム、及び前記駆動制御部の診断を行う診断部とを有しており、該診断部が、前記駆動制御部に、前記アームを前記距離センサの検出領域内と該検出領域外との間で移動させる動作指令を送ったのちに、前記距離センサの出力信号に変動が生じなかった場合に、故障が生じていると判定する自己診断機能付きロボットを提供する。
このように構成される自己診断機能付きロボットでは、自己診断を行うにあたって、診断部が、駆動制御部に、アームを距離センサの検出領域内と検出領域外との間で移動させる動作指令を送る。
このとき、距離センサ、アーム、駆動制御部の全てが正常に機能している場合には、動作指令のとおりにアームが距離センサの検出領域内と検出領域外との間で移動するので、距離センサの出力信号には、なんらかの変動が生じる。
言い換えれば、診断部が動作指令を発しても、距離センサの出力信号に変化が見られない場合は、距離センサ、アーム、駆動制御部のうちの少なくともいずれか一つが故障しているということである。
このように、本発明に係る自己診断機能付きロボットでは、センサを二重化することなしに、自身に設けられている構成のみを用いて、自身の故障の有無を診断することができる。
ここで、距離センサ、アーム、駆動制御部の全てが機能していて、アームが動作指令に従って動作すると、距離センサによってアームの動作が検出される。このときの距離センサの出力信号には、アームの動作パターンを反映した波形が現れる。
言い換えれば、距離センサの実際の出力信号波形と、アームが動作指令に忠実に従って動作した場合に検出されるであろう出力信号波形(予想出力信号波形)とを比較し、これらの差が大きい場合には、アームが動作指令のとおりに動作していないか、距離センサが故障していると判断することができる。
そこで、診断部を、駆動制御部に対してアームを距離センサの検出領域内で所定のパターンで動作させる動作指令を送ったのちに、距離センサの実際の出力信号波形と、予想出力信号波形とを比較し、これらの差が基準範囲を超えた場合には、故障と判断する構成とすることで、より高精度に故障の判定を行うことができる。
また、本発明は、ロボット本体と、該ロボット本体に設けられるマイクロフォンと、前記ロボット本体に設けられるスピーカと、該スピーカの動作を制御する音声処理部と、前記マイクロフォン、前記スピーカ、及び前記音声処理部の診断を行う診断部とを有しており、該診断部が、前記音声処理部に、前記スピーカから音声を出力させる動作指令を送ったのちに、前記マイクロフォンの出力信号に変動が生じなかった場合に、故障が生じていると判定する自己診断機能付きロボットを提供する。
このように構成される自己診断機能付きロボットでは、自己診断を行うにあたって、診断部が、音声処理部に、スピーカから音声を出力させる動作指令を送る。
このとき、マイクロフォン、スピーカ、音声処理部の全てが正常に機能している場合には、動作指令のとおりにスピーカから音声が出力されるので、マイクロフォンの出力信号には、なんらかの変動が生じる。
言い換えれば、診断部が動作指令を発しても、マイクロフォンの出力信号に変化が見られない場合は、マイクロフォン、スピーカ、音声処理部のうちの少なくともいずれか一つが故障しているということである。
このように、本発明に係る自己診断機能付きロボットでは、センサを二重化することなしに、自身に設けられている構成のみを用いて、自身の故障の有無を診断することができる。
ここで、マイクロフォン、スピーカ、音声処理部の全てが機能していて、スピーカが動作指令に従って動作すると、マイクロフォンによってスピーカが出力した音声が検出される。このときのマイクロフォンの出力信号には、スピーカが出力した音声パターンを反映した波形が現れる。
言い換えれば、マイクロフォンの実際の出力信号波形と、スピーカが動作指令に忠実に従って動作した場合に検出されるであろう出力信号波形(予想出力信号波形)とを比較し、これらの差が大きい場合には、スピーカが動作指令のとおりに動作していないか、マイクロフォンが故障していると判断することができる。
そこで、診断部を、音声処理部に対してスピーカから所定の音声を出力させる動作指令を送ったのちに、マイクロフォンの実際の出力信号波形と、予想出力信号波形とを比較し、これらの差が基準範囲を超えた場合には、故障と判断する構成とすることで、より高精度に故障の判定を行うことができる。
本発明に係る自己診断機能付きロボットによれば、センサを二重化することなしに、自己診断を行うことができるので、コストを低減することができる。
以下に、本発明に係る自己診断機能付きロボット(以下、単に「ロボット」という。)の一実施形態について、図面を参照して説明する。
図1は、本発明の一の実施形態に係るロボットの正面図、図2は、図1に示したロボットの左側面図である。
図1および図2に示すように、ロボット本体1には、頭部2と、この頭部2を下方から支持する胸部3と、この胸部3の右側に設けられた右腕部4a(アーム)、胸部3の左側に設けられた左腕部4b(アーム)と、胸部3の下方に接続された腰部5と、この腰部5の下方に接続されたスカート部6と、このスカート部6の下方に接続された脚部7とが設けられている。
頭部2には、頭頂部近傍に全方位カメラ11(周辺状況撮影装置)が一つ設けられている。この全方位カメラ11の外周に沿って複数の赤外線LED12が所定の間隔で円環上に配置されている。
頭部2の前面の中央近傍には、図1に示すように、前方を撮像するための前方カメラ13が正面視して右側に一つ、マイクロフォン14が正面視して左側に一つ、それぞれ設けられている。
胸部3の前面の中央近傍には、モニタ15が一つ設けられている。このモニタ15の上方には、人を検知するための超音波距離センサ16が一つ設けられている。モニタ15の下方には、電源スイッチ17が一つ設けられている。超音波距離センサ16の上方には、2つのスピーカ18が左右に一つずつ設けられている。また、図2に示すように、胸部3の背面には、荷物を収納することができるランドセル部33が設けられている。ランドセル部33には、上部に設けたヒンジ周りに回動可能な開閉扉33aが設けられている。
図1に示すように、胸部3の左右の肩部には、マンマシンインターフェースとして機能する肩スイッチ19がそれぞれ一つずつ設けられている。肩スイッチ19には、例えば、タッチセンサが採用されている。
ここで、本実施形態では、ユーザが肩スイッチ19を所定時間(例えば5秒間)押しつづけることで、後述する制御装置51がロボット本体1の現在の動作モードを中止させたり、直前に終了した各種認識処理をやり直すようになっている。
このように、肩スイッチ19をユーザが直接押圧することで、音声認識や画像認識等、外的要因によって精度が低下する可能性のある手段を用いて制御装置51にユーザの意思を伝達する場合よりも、確実かつ直感的にユーザの意思を制御装置51に伝達することが可能である。
右腕部4aおよび左腕部4bには、多関節構造が採用されている。右腕部4a、左腕部4bにおいて、胸部3との接続部近傍には、体や物の挟み込みを検知して腕の動作を止めるための脇スイッチ20がそれぞれ設けられている。図1に示すように、右腕部4aの手のひら部分には、マンマシンインターフェースとして機能する握手スイッチ21が内蔵されている。これら脇スイッチ20や握手スイッチ21には、例えば、押圧センサが採用される。
ここで、本実施形態では、ユーザが握手スイッチ21を所定時間(例えば5秒間)押し続けることで、制御装置51が、現在のロボット本体51の動作またはユーザに対する確認に対して、ユーザの承認が下りたと判断するようになっている。
また、このように、握手スイッチ21をユーザが直接押圧することで、音声認識や画像認識等、外的要因によって精度が低下する可能性のある手段を用いて制御装置51にユーザの意思を伝達する場合よりも、確実かつ直感的にユーザの意思を制御装置51に伝達することが可能である。
腰部5の前面の中央近傍には、人を検知するための超音波距離センサ22が左右に一つずつ設けられている。これら超音波距離センサ22の下方には、複数の赤外線センサ23が配列されたセンサ領域24が設けられている。これら赤外線センサ23は、ロボット本体1の下方前方にある障害物等を検出するためのものである。図1および図2に示すように、腰部5の下方には、前面および背面において、音源方向を検出するためのマイクロフォン25が左右に一つずつ、計4つ設けられている。図2に示すように、腰部5の側面の左右には、本体を持ち上げるときに使用する取手部26がそれぞれ一つずつ設けられている。取手部26は、凹所とされており、操作者の手が挿入できるようになっている。
スカート部6の前面下方には、段差を検出するための赤外線センサ27が、中央および左右に計3つ設けられている。図2に示すように、スカート部6の背面には、充電コネクタ28が設けられている。
図1に示すように、脚部7の前面には、側方の距離を検出するための赤外線センサ29が左右に一つずつ設けられている。これら赤外線センサ29は、主に段差検出に用いられるものである。
図2に示すように、脚部7の背面には、充電ステーションにロボット本体1を位置固定するためのフック30が設けられている。脚部7は、走行用車輪31および4つのボールキャスタ32を備えた台車とされている。
上述したロボットにおいて、胸部3の超音波距離センサ16、腰部5の超音波距離センサ22およびマイクロフォン25は、ロボット周辺にいる人物を検知する人検知センサ34として機能する。
このようなロボットは、ロボット本体1に内蔵されたバッテリからの電源供給により、作業空間を自立的に移動することが可能な構成を備えており、一般家庭等の屋内を作業空間として人間と共存し、例えば、一般家庭内でロボットの所有者や操作者などのユーザの生活を補助・支援・介護するための各種サービスを提供するために用いられる。
そのため、ロボットは、ユーザとの会話を実現させる会話機能のほか、ユーザの行動を見守ったり、ユーザの行動を補助したり、ユーザと一緒に行動したりする機能を備えている。このような機能は、例えば、後述するロボット本体1の内部に内蔵されたマイクロコンピュータ等からなる制御装置により実現されるものである。制御装置には、図1および図2に示した各種カメラや各種センサ等が接続されており、カメラからの画像情報やセンサからのセンサ検出情報を取得し、これらの情報に基づいて各種プログラムを実行することにより、上述した各種機能を実現させる。なお、ロボット本体1の形状としては、図1および図2に示した形状に限られず、愛玩用に動物を模したものなど、種々のものを採用することが可能である。
以下、ロボット本体1に内蔵されるロボットの電気的構成について図3を参照して説明する。図3において、図1乃至図2と同様の構成要素には、同一の符号を付している。
図3に示すように、本実施形態に係るロボットは、その本体内部に、制御装置51、画像処理部52、音声処理部53、表示制御部54、無線通信部55、駆動制御部56、駆動機構57、及びバッテリ58を備えている。
画像処理部52、音声処理部53、表示制御部54、無線通信部55、及び駆動制御部56は、制御装置51と互いに接続されており、制御装置51からの制御信号に基づいて各種処理を実行するとともに、その処理結果や各種センサからの情報等を制御装置51へ提供する。バッテリ58は、各構成要素に対して電力を供給する電源装置として機能する。
画像処理部52は、制御装置51からの制御信号に基づいて、図1に示した全方位カメラ11、前方カメラ13によって撮影された画像を処理して、制御装置51へ出力する。
音声処理部53は、制御装置51からの制御信号に基づいて、マイクロフォン14から入力される音声信号を認識する音声認識処理を実行し、この音声認識結果を制御装置51へ出力する。更に、音声処理部53は、制御装置51から供給される音声データに基づいて、スピーカ18から発すべき音声信号を生成する音声合成処理を実行し、この音声信号をスピーカ18へ出力する。すなわち、制御装置51内の発話に関する情報処理、並びに、上記音声処理部53、マイクロフォン14、およびスピーカ18等により、このロボット本体1の発話手段が構成される。
表示制御部54は、制御装置51から与えられた画像データを処理して、モニタ15に表示させる。
無線通信部55は、アンテナ55aを介して外部との無線通信を実行する。具体的には、無線通信部55は、外部に設けられた情報管理装置(図示せず)とネットワークを介して接続することにより、両者間での情報の授受を実現させる。
駆動制御部56は、制御装置51からの指令に応じて走行用駆動機構57を制御することにより、走行用車輪31を駆動してロボット本体1の走行および操舵を実行する。更に、駆動制御部56は、頭部2と胸部3との間の首関節や、胸部3と右腕部4a間、胸部3と左腕部4b間の肩関節、右腕部4a、左腕部4b内の肘関節、手首関節等を駆動するためにそれぞれ設けられている各駆動機構(図示略)を制御することにより、ロボットの腕等を駆動し、様々な動作を実現させる。
例えば、ユーザに意思確認を求める状況になった場合には、制御装置51から駆動制御部56に動作指令が送られて、握手スイッチ21が設けられた右腕部4aをロボット本体1の前方に差し出して、握手スイッチ21による意思確認をユーザに促すようになっている。
また、上記頭部2の顔表情についても、モータ等の駆動機構を制御することにより可変となっている。
バッテリ58は、充電コネクタ28が家庭内に設けられた充電ステーション(図示せず)に電気的に接続することにより自動的に充電される。
制御装置51は、上述したように、ロボット本体1の各構成要素を制御するものであり、動作モード設定部61、動作モード実行部62、ユーザ認識部(顔認識処理部)63、自己位置認識部64、光源位置判定部65、撮影状況通知部66、サービス用スケジュール情報管理部70、動作アプリケーション記憶部72、診断部73等を備えている。
上記サービス用スケジュール情報管理部70は、ユーザにより予約されたサービス用スケジュール情報を管理する。このサービス用スケジュール情報は、予約を登録したユーザの識別番号、予約されたサービスの内容、該サービスの開始時間ならびに終了時間が互いに対応付けられた情報である。サービス用スケジュール情報管理部70は、一定時間間隔でこのサービス用スケジュール情報を参照し、予約開始時刻になると、予約開始時刻となったサービスの内容、終了時間、ユーザの識別番号等を予約開始情報として動作モード設定部61へ出力する。
動作アプリケーション記憶部72には、後述する各種動作モードを実現させるために必要となる各種動作アプリケーションが格納されているほか、該動作アプリケーションを実行するのに必要となる付加情報等、例えば、家庭内の地図情報、ユーザへの話かけを行うための音声データ、ユーザとの会話時やユーザとの対話時における身振り動作の駆動データ等が格納されている。
上記地図情報は、ロボット本体1が家庭内を自律的に移動するために必要となるマップ情報であり、家庭内での後述するマーカの位置、ユーザにより予め登録された家庭内の所定の位置(例えば、テラス、リビング、寝室、玄関等の各任意位置)に関する位置情報、後述する巡回モードにおいて巡回を行う各巡回ポイントの位置情報、充電ステーションの位置情報、並びに、これらを移動するために必要となる経路情報等が含まれている。
動作モード設定部61は、上記サービス用スケジュール情報管理部70および音声処理部53から入力されたユーザからのサービス要求指令に基づいて、動作モード実行部62に実行させる動作モードを現在のモードとして設定する。
動作モード実行部62は、動作モード設定部61により現在のモードとして設定された動作モードに対応する動作アプリケーションを動作アプリケーション記憶部72から読み出し、この動作アプリケーションを実行することにより、各種動作モードに基づくサービス等をユーザに提供する。
ユーザ認識部63は、画像処理部52から受け付けた画像に基づいて顔認証を行うことにより、予め登録されているユーザを識別する。顔認証によるユーザ認証の手法については、公知の技術を採用することが可能である。
自己位置認識部64は、画像処理部52から受け付けた画像情報に基づいてロボット本体1の位置および方位(向き、姿勢)を認識するとともに、上記地図情報を参照することにより、家庭内における現在位置を特定する。
ここで、ロボット本体1が運用される作業空間では、各室内に、赤外線を反射する複数のマーカが設けられている。これにより、制御装置51が赤外線LED12を発光させると、全方位カメラ11にマーカからの赤外線の反射光が撮影され、全方位カメラ11の撮影画像から、画像処理部52によってマーカの位置が認識される。
自己位置認識部64は、画像処理部52が認識したマーカの位置と、予め取得しておいたこのマーカの位置情報とに基づいて、ロボット本体1の現在位置と向きとを特定する。
このように、自己の位置を常に把握するこのできる自己位置認識部64を備えているので、当該ロボットは、自律的に家庭内を移動することができる。
診断部73は、赤外線LED12の発光動作を制御し、音声処理部53へはスピーカ18の動作指令を送り、駆動制御部56へは右腕部4a及び左腕部4bの動作指令を送り、その後の制御装置51の出力、画像処理部52の出力、音声処理部53の出力に基づいて、ロボット本体1の各部について故障の有無を判定する。診断部73による故障の判定方法については後述する。
上述した制御装置51は、例えば、CPU(中央演算装置)、ROM(Read Only Memory)、RAM(Random Access Memory)等を備えるマイクロコンピュータ等により構成されている。上述した各部を実現するための一連の処理手順は、プログラムの形式でROM等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、上述の動作モード設定部61、動作モード実行部62等の機能や各動作モードの実行によるサービスの提供が実現される。
次に、本実施形態に係るロボットの動作について説明する。
まず、図3の動作モード設定部61は、ロボットが起動された後は、動作モードを自己診断モードに移行して、ロボットに各部の自己診断を行わせる。なお、自己診断の詳細については後述する。
動作モード設定部61は、自己診断を終えたのちは、自己診断モードを終了させ、動作モードに対応する各種キーワード等が音声により入力された場合、或いは、サービス用スケジュール情報管理部70から予約開始情報を受け付けた場合に、対応する動作モードを現在のモードとして設定する。
上記のように、所定の動作モードが現在のモードとして設定されると、動作モード実行部62は、現在のモードとして設定された動作モードに対応する動作アプリケーションを動作アプリケーション記憶部72から読み出して実行する。これにより、各種動作モードに対応する動作が提供されたり、各動作モードに対応するサービスがユーザに対して提供されることとなる。
また、上述のようなサービスの提供と並行して、ユーザ認識部63によりサービスを提供している相手であるユーザの認証が行われる。
以下、このロボットの自己診断の流れについて、図4のフローチャートを参照して詳細に説明する。なお、以下では、一例として、超音波距離センサ16,22、右腕部4a、左腕部4b、及び駆動制御部56の自己診断の流れについて説明する。
動作モードが自己診断モードに設定されると、制御装置51は、診断部73に、自己診断指令を出力する。
診断部73は、自己診断指令を受けることで、音声処理部53に、ユーザに自己診断開始を通知するような音声データ(例えば「今日の調子はどうかな?」といったセリフの音声データ)を発するように動作指令を送る。音声処理部53がこの音声データに基づく音声信号をスピーカ18へ出力することにより、この音声がスピーカ18から発せられることとなる(ステップS1)。
その後、診断部73は、肩スイッチ19が押されたかどうかを監視し(ステップS2)、肩スイッチ19が所定時間以上押されたことを検出すると、自己診断処理を停止して、動作モード設定部61に他の動作モードを現在のモードとして設定させる(ステップS3)。
一方、肩スイッチ19が押されていない場合には、診断部73は、自己診断処理を継続する。
自己診断処理が継続される場合には、診断部73は、まず、駆動制御部56に、右腕部4aまたは左腕部4bを、超音波距離センサ16,22の検出領域外から検出領域内に進入させるよう、動作指令を出力する(ステップS4)。
これにより、右腕部4aまたは左腕部4bが正常であれば、超音波距離センサ16、22の検出領域外から検出領域内に進入する。具体的には、右腕部4aが右側の超音波距離センサ22の検出領域に進入させられ、左腕部4bが左側の超音波距離センサ22の検出領域に進入させられる。ここで、胸部3に設けられた超音波距離センサ16の検出領域には、右腕部4aと左腕部4bとのうちのどちらが進入させられても良い。
診断部73は、駆動制御部56に動作指令を出力したのちは、超音波距離センサ16,22の出力信号をそれぞれ監視する(ステップS5)。そして、この出力信号に変化が生じた場合には、右腕部4aまたは左腕部4bが動作して、超音波距離センサ16,22の検出領域に進入し、これが超音波距離センサ16,22によって検出されたと判断して(すなわち故障が生じていないと判断して)、自己診断処理を終了し、動作モード設定部61に他の動作モードを現在のモードとして設定させる(ステップS6)。
一方、診断部73は、超音波距離センサ16,22の出力信号に変化が生じなかった場合には、ロボットの動作履歴を参照して、自己診断処理を開始してから再起動処理を経験したかどうかを判定する(ステップS7)。まだ再起動を経験していない場合には、ロボットを再起動して各装置を一旦初期化したのち(ステップS8)、改めて自己診断モードを開始させる。
ここで、ステップS7において、すでに再起動を経験している場合には、診断部73は、右腕部4a、左腕部4b、超音波距離センサ16,22、駆動制御部56のうちの少なくともいずれかが正しく動作していないと判断して(すなわち故障が生じていると判断して)、この故障情報を検証することができるように、無線通信部55に動作指令を送って、故障が生じている旨の履歴情報を外部の情報管理装置に送信して記録させ、その後、自己診断処理を含むロボットの全ての動作を停止させる。(ステップS9)。
また、診断部73は、上記の超音波距離センサ16,22に関連する自己診断と前後して、もしくは超音波距離センサ16,22に関連する自己診断と並行して、他のセンサに関連する自己診断を行う。
以下では、音声処理部53、スピーカ18、及びマイクロフォン14,25の自己診断の流れについて、図5のフローチャートを用いて説明する。
なお、音声処理部53、スピーカ18、及びマイクロフォン14,25の自己診断の流れは、超音波距離センサ16,22に関連する自己診断の流れと、ステップS3までが共通しており、ステップS4以降の処理が独自の処理となる。
具体的には、ステップS2において、肩スイッチ19が押されておらず、自己診断処理が継続される場合には、診断部73は、まず、音声処理部53に、スピーカ18から任意の音声を出力させる動作指令を送る。(ステップS14)。
診断部73は、音声処理部53に動作指令を出力したのちは、マイクロフォン14,25の出力信号をそれぞれ監視する(ステップS15)。そして、この出力信号に変化が生じた場合には、スピーカ18が音声を発して、この音声がマイクロフォン14,25によって検出されたと判断して(すなわち故障が生じていないと判断して)、自己診断処理を終了し、動作モード設定部61に他の動作モードを現在のモードとして設定させる(ステップS16)。
一方、診断部73は、マイクロフォン14,25の出力信号に変化が生じなかった場合には、ロボットの動作履歴を参照して、自己診断処理を開始してから再起動処理を経験したかどうかを判定する(ステップS17)。まだ再起動を経験していない場合には、ロボットを再起動して各装置を一旦初期化したのち(ステップS18)、改めて自己診断モードを開始させる。
ここで、ステップS17において、すでに再起動を経験している場合には、診断部73は、音声処理部53、スピーカ18、及びマイクロフォン14,25のうちの少なくともいずれかが正しく動作していないと判断して(すなわち故障が生じていると判断して)、無線通信部55に動作指令を送って、故障が生じている旨の履歴情報を、外部の情報管理装置に送信して記録させ、その後、自己診断処理を含むロボットの全ての動作を停止させる。(ステップS19)。
次に、赤外線LED12、全方位カメラ11、及び画像処理部52の自己診断の流れについて説明する。なお、赤外線LED12、全方位カメラ11、及び画像処理部52の自己診断の流れは、超音波距離センサ16,22に関連する自己診断の流れと、ステップS3までが共通しており、ステップS4以降の処理が独自の処理となる。
具体的には、ステップS2において、肩スイッチ19が押されておらず、自己診断処理が継続される場合には、診断部73は、まず、赤外線LED12を発光させるとともに、以降は、画像処理部52の出力信号を監視する。そして、この出力信号に変化が生じた場合、もしくはマーカが一個でも認識された場合には、赤外線LEDが発光して、この光が全方位カメラ11によって検出されたと判断して(すなわち故障が生じていないと判断して)、自己診断処理を終了し、動作モード設定部61に他の動作モードを現在のモードとして設定させる。
一方、診断部73は、画像処理部52の出力信号に変化が生じなかった場合には、ロボットの動作履歴を参照して、自己診断処理を開始してから再起動処理を経験したかどうかを判定する。まだ再起動を経験していない場合には、ロボットを再起動して各装置を一旦初期化したのち、改めて自己診断モードを開始させる。
ここで、ロボットがすでに再起動を経験している場合には、診断部73は、赤外線LED12、全方位カメラ11、画像処理部52のうちの少なくともいずれかが正しく動作していないと判断して(すなわち故障が生じていると判断して)、無線通信部55に動作指令を送って、故障が生じている旨の履歴情報を、外部の情報管理装置に送信して記録させ、その後、自己診断処理を含むロボットの全ての動作を停止させる。
ここで、障害物検出用の赤外線センサ23、段差検出用の赤外線センサ27,29の自己診断にあたっては、診断部73は、前記の地図情報から判断して周囲に障害物や段差のないと思われる領域で、各赤外線センサ23,27,29を作動させて、障害物や段差が検出されない場合にはこれらセンサが正常であると判断して通常動作に移行させ、障害物や段差が検出された場合には故障が生じていると判断して、無線通信部55に動作指令を送って、故障が生じている旨の履歴情報を、外部の情報管理装置に送信して記録させ、その後、自己診断処理を含むロボットの全ての動作を停止させる。
このように、本実施形態にかかるロボットによれば、センサの二重化を行わずに、自身に設けられている構成のみを用いて、自身の故障の有無を診断することができるので、コストを抑えることができる。
ここで、上記実施形態では、診断部73が、自己診断の過程で各センサの出力信号に変化があった場合には、このセンサに関連する装置に故障がないと判断する構成を示したが、これに限られることなく、より詳細に各センサ及びこのセンサに関連する装置の状態を検出する構成としても良い。
例えば、超音波距離センサ16,22、右腕部4a、左腕部4b、駆動制御部56の全てが機能していて、右腕部4a及び左腕部4bが動作指令に従って動作すると、超音波距離センサ16,22によって右腕部4aまたは左腕部4bの動作が検出される。このときの超音波距離センサ16,22の出力信号には、右腕部4aまたは左腕部4bの動作パターンを反映した波形が現れる。
そこで、前記の超音波距離センサ16(または超音波距離センサ22)に関連する自己診断の際に、図6のフローチャートに示すように、ステップS4を終えたのちは、超音波距離センサ16の実際の出力信号波形R(図7(a)参照)と、右腕部4a(または左腕部4b)が動作指令に忠実に従って動作した場合に検出されるであろう出力信号波形(予想出力信号波形I、図7(b)参照)とを比較し(ステップS21、S22)、一定時間範囲内でのこれらの差D(図8参照)が大きい場合には、右腕部4aまたは左腕部4bが動作指令のとおりに動作していないか、超音波距離センサ16,22が故障していると判断する。
これにより、右腕部4a(または左腕部4b)や超音波距離センサ16(または超音波距離センサ22)の故障の判定を、さらに高精度に行うことができる。
以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
本発明の一実施形態に係るロボットの正面図である。 図1に示したロボットの左側面図である。 図1に示したロボット本体に内蔵されるロボットの電気的構成例を示す図である。 図1に示したロボットによる超音波距離センサに関連する自己診断処理の流れを示すフローチャートである。 図1に示したロボットによるマイクロフォンに関連する自己診断処理の流れを示すフローチャートである。 図1に示したロボットによる超音波距離センサに関連する自己診断処理の他の例における流れを示すフローチャートである。 図1に示したロボットによる超音波距離センサに関連する自己診断処理の他の例の原理を示すグラフである。 図1に示したロボットによる超音波距離センサに関連する自己診断処理の他の例の原理を示すグラフである。
符号の説明
1 ロボット本体
4a 右腕部(アーム)
4b 左腕部(アーム)
14,25 マイクロフォン
16,22 超音波距離センサ
18 スピーカ
53 音声処理部
56 駆動制御部
73 診断部

Claims (4)

  1. ロボット本体と、
    該ロボット本体に設けられる距離センサと、
    前記ロボット本体に設けられるアームと、
    該アームの動作を制御する駆動制御部と、
    前記距離センサ、前記アーム、及び前記駆動制御部の診断を行う診断部とを有しており、
    該診断部が、前記駆動制御部に、前記アームを前記距離センサの検出領域内と該検出領域外との間で移動させる動作指令を送ったのちに、前記距離センサの出力信号に変動が生じなかった場合に、故障が生じていると判定する自己診断機能付きロボット。
  2. 前記診断部が、前記駆動制御部に対して前記アームを前記距離センサの検出領域内で所定のパターンで動作させる動作指令を送ったのちに、前記距離センサの実際の出力信号波形と、前記アームが前記動作指令に従ったパターンで動作した場合に予想される前記距離センサの予想出力信号波形とを比較し、前記実際の出力信号波形と前記予想出力信号波形との差が基準範囲を超えた場合に、故障が生じていると判定する請求項1記載の自己診断機能付きロボット。
  3. ロボット本体と、
    該ロボット本体に設けられるマイクロフォンと、
    前記ロボット本体に設けられるスピーカと、
    該スピーカの動作を制御する音声処理部と、
    前記マイクロフォン、前記スピーカ、及び前記音声処理部の診断を行う診断部とを有しており、
    該診断部が、前記音声処理部に、前記スピーカから音声を出力させる動作指令を送ったのちに、前記マイクロフォンの出力信号に変動が生じなかった場合に、故障が生じていると判定する自己診断機能付きロボット。
  4. 前記診断部が、前記音声処理部に対して前記スピーカから所定の音声を出力させる動作指令を送ったのちに、前記マイクロフォンの実際の出力信号波形と、前記スピーカが前記動作指令に従った音声を出力した場合に予想される前記マイクロフォンの予想出力信号波形とを比較し、前記実際の出力信号波形と前記予想出力信号波形との差が基準範囲を超えた場合に、故障が生じていると判定する請求項3記載の自己診断機能付きロボット。
JP2005349117A 2005-12-02 2005-12-02 自己診断機能付きロボット Withdrawn JP2007152470A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005349117A JP2007152470A (ja) 2005-12-02 2005-12-02 自己診断機能付きロボット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005349117A JP2007152470A (ja) 2005-12-02 2005-12-02 自己診断機能付きロボット

Publications (1)

Publication Number Publication Date
JP2007152470A true JP2007152470A (ja) 2007-06-21

Family

ID=38237464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005349117A Withdrawn JP2007152470A (ja) 2005-12-02 2005-12-02 自己診断機能付きロボット

Country Status (1)

Country Link
JP (1) JP2007152470A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050970A (ja) * 2007-08-28 2009-03-12 Nec Access Technica Ltd ロボットシステム、レスキューロボット
JP2009196030A (ja) * 2008-02-21 2009-09-03 Nachi Fujikoshi Corp 産業用ロボットの出力トルク制限回路
WO2013168285A1 (ja) * 2012-05-11 2013-11-14 トヨタ自動車株式会社 圧力センサの故障診断装置及び圧力センサの故障診断方法
WO2014167700A1 (ja) * 2013-04-12 2014-10-16 株式会社日立製作所 移動ロボット、及び、音源位置推定システム
WO2016157944A1 (ja) * 2015-03-31 2016-10-06 シャープ株式会社 ロボット
JP2018153880A (ja) * 2017-03-16 2018-10-04 トヨタ自動車株式会社 ロボットの故障診断支援システム及び故障診断支援方法
US10471601B2 (en) 2016-12-07 2019-11-12 Hanwha Precision Machinery Co., Ltd. Apparatus and method of controlling robot arm
US10664334B2 (en) 2016-09-23 2020-05-26 Casio Computer Co., Ltd. Robot that diagnoses failure, failure diagnosis system, failure diagnosis method, and recording medium
CN112441158A (zh) * 2019-08-30 2021-03-05 北京京东乾石科技有限公司 传感器组件、底盘及机器人

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050970A (ja) * 2007-08-28 2009-03-12 Nec Access Technica Ltd ロボットシステム、レスキューロボット
JP2009196030A (ja) * 2008-02-21 2009-09-03 Nachi Fujikoshi Corp 産業用ロボットの出力トルク制限回路
WO2013168285A1 (ja) * 2012-05-11 2013-11-14 トヨタ自動車株式会社 圧力センサの故障診断装置及び圧力センサの故障診断方法
JPWO2014167700A1 (ja) * 2013-04-12 2017-02-16 株式会社日立製作所 移動ロボット、及び、音源位置推定システム
WO2014167700A1 (ja) * 2013-04-12 2014-10-16 株式会社日立製作所 移動ロボット、及び、音源位置推定システム
US9989626B2 (en) 2013-04-12 2018-06-05 Hitachi, Ltd. Mobile robot and sound source position estimation system
WO2016157944A1 (ja) * 2015-03-31 2016-10-06 シャープ株式会社 ロボット
JP2016193466A (ja) * 2015-03-31 2016-11-17 シャープ株式会社 ロボット
US10664334B2 (en) 2016-09-23 2020-05-26 Casio Computer Co., Ltd. Robot that diagnoses failure, failure diagnosis system, failure diagnosis method, and recording medium
US10471601B2 (en) 2016-12-07 2019-11-12 Hanwha Precision Machinery Co., Ltd. Apparatus and method of controlling robot arm
JP2018153880A (ja) * 2017-03-16 2018-10-04 トヨタ自動車株式会社 ロボットの故障診断支援システム及び故障診断支援方法
US10713486B2 (en) 2017-03-16 2020-07-14 Toyota Jidosha Kabushiki Kaisha Failure diagnosis support system and failure diagnosis support method of robot
CN112441158A (zh) * 2019-08-30 2021-03-05 北京京东乾石科技有限公司 传感器组件、底盘及机器人

Similar Documents

Publication Publication Date Title
JP2007152470A (ja) 自己診断機能付きロボット
US9427863B2 (en) Robot cleaner and method of caring for human using the same
JP5033994B2 (ja) コミュニケーションロボット
US7222000B2 (en) Mobile videoconferencing platform with automatic shut-off features
WO2020071060A1 (en) Information processing apparatus, information processing method, computer program, and package receipt support system
JP2002352354A (ja) 遠隔介護方法
KR100857578B1 (ko) 시각장애인을 위한 도우미로봇
US20070291109A1 (en) Remote controlled mobile robot with auxillary input ports
US20050091684A1 (en) Robot apparatus for supporting user's actions
JP4126291B2 (ja) ロボットの制御プログラム更新方法及び該システム
JP2007160473A (ja) ロボットにおける対話相手識別方法およびロボット
JP2009222969A (ja) 音声認識ロボットおよび音声認識ロボットの制御方法
JP4658891B2 (ja) ロボットの制御装置
JP2009050970A (ja) ロボットシステム、レスキューロボット
KR20130060952A (ko) 서비스로봇 원격제어 시스템
JP2007156689A (ja) 光源位置検出装置、これを用いた顔認識装置及び自走式ロボット
JP2007156688A (ja) ユーザ認証装置およびその方法
JP2007152444A (ja) 自走式ロボットおよび情報管理システム
KR101919354B1 (ko) 기계학습과 음성인식 기반의 스마트폰 착탈식 지능형 이동로봇 시스템
JP2007226634A (ja) 人物状況認識装置、方法、プログラム、ロボットおよび生活支援システム
JP2007155985A (ja) ロボットおよび音声認識装置ならびにその方法
JP2019220145A (ja) 操作端末、音声入力方法、及びプログラム
JP6730087B2 (ja) 監視システム
KR101324168B1 (ko) 로봇 청소기, 이의 동작 방법 및 원격 제어 시스템
CN210968901U (zh) 一种监护机器人装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090203