JP2007150905A - Linc amplifier - Google Patents

Linc amplifier Download PDF

Info

Publication number
JP2007150905A
JP2007150905A JP2005344628A JP2005344628A JP2007150905A JP 2007150905 A JP2007150905 A JP 2007150905A JP 2005344628 A JP2005344628 A JP 2005344628A JP 2005344628 A JP2005344628 A JP 2005344628A JP 2007150905 A JP2007150905 A JP 2007150905A
Authority
JP
Japan
Prior art keywords
signal
linc
phase
quadrature
amplification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005344628A
Other languages
Japanese (ja)
Inventor
Yoshihiko Takeuchi
嘉彦 竹内
Juichiro Kimura
寿一郎 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2005344628A priority Critical patent/JP2007150905A/en
Publication of JP2007150905A publication Critical patent/JP2007150905A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0294Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a LINC (Linear Amplification with Nonlinear Components) amplifier in which spread in the frequency band of a constant-amplitude separated signal is suppressed. <P>SOLUTION: On a pre-stage of LINC separation, an input signal is separated into an in-phase signal and a quadrature signal, each of the signals is amplified in a LINC amplification scheme, and the amplified in-phase signal and quadrature signal are orthogonally added again. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内部の定振幅分離信号の周波数帯域の広帯域化を抑制したLINC増幅器に関するものである。   The present invention relates to a LINC amplifier that suppresses an increase in the frequency band of an internal constant amplitude separation signal.

LINC(Linear Amplification with Nonlinear Components)増幅器の原理は、ベル研究所のD.C.Coxによって1974年に提案された(非特許文献1)。LINC増幅器の概略構成を図5に示す。12は入力信号を2個の定振幅分離信号に分離するLINC分離器、13,14は利得がGで同一特性の非線形増幅器、15は信号加算器である。   The principle of LINC (Linear Amplification with Nonlinear Components) amplifier was proposed in 1974 by D.C.Cox of Bell Laboratories (Non-Patent Document 1). A schematic configuration of the LINC amplifier is shown in FIG. Reference numeral 12 denotes a LINC separator that separates an input signal into two constant amplitude separation signals, reference numerals 13 and 14 denote non-linear amplifiers having a gain of G and the same characteristics, and reference numeral 15 denotes a signal adder.

入力信号をS(t)とし、これが帯域制限された一定位相の信号であるとすると、

Figure 2007150905
で表すことができる。ここで、E(t)はベースバンド信号成分、cosω0tはキャリア信号成分である。E(t)≧0である。ここで、ベースバンド信号成分E(t)が次式ように表されたとする。
Figure 2007150905
EmはE(t)の最大値を表す。この(2)式により位相情報φ(t)が定義される。 If the input signal is S (t) and this is a band-limited signal with a constant phase,
Figure 2007150905
It can be expressed as Here, E (t) is a baseband signal component, and cosω 0 t is a carrier signal component. E (t) ≧ 0. Here, it is assumed that the baseband signal component E (t) is expressed as follows.
Figure 2007150905
Em represents the maximum value of E (t). The phase information φ (t) is defined by this equation (2).

(2)式を(1)式に代入することにより、次式の関係が成り立つ。

Figure 2007150905
Sa(t),Sb(t)は定振幅分離信号であり、
Figure 2007150905
である。この定振幅分離信号Sa(t),Sb(t)は振幅一定(Em/2)であり、位相φ(t)が入力信号S(t)に依存して反対方向に回転する。 By substituting equation (2) into equation (1), the following relationship is established.
Figure 2007150905
Sa (t) and Sb (t) are constant amplitude separation signals,
Figure 2007150905
It is. The constant amplitude separation signals Sa (t) and Sb (t) have a constant amplitude (Em / 2), and the phase φ (t) rotates in the opposite direction depending on the input signal S (t).

このように、入力信号S(t)はLINC分離器12によって(4)式で表される定振幅分離信号Sa(t),Sb(t)となり、特性の揃った利得Gの非線形増幅器13,14によりそれぞれ増幅されて、信号GSa(t),GSb(t)となる。そして、その非線形増幅器13,14の出力段で2信号間の差信号を信号加算器15によって取り出すと、

Figure 2007150905
となり、入力信号S(t)が利得Gで線形増幅されていることが判る。 In this way, the input signal S (t) is converted into constant amplitude separated signals Sa (t) and Sb (t) expressed by the equation (4) by the LINC separator 12, and the non-linear amplifier 13 having a gain G with uniform characteristics, 14 are amplified to become signals GSa (t) and GSb (t), respectively. When the difference signal between the two signals is extracted by the signal adder 15 at the output stage of the nonlinear amplifiers 13 and 14,
Figure 2007150905
Thus, it can be seen that the input signal S (t) is linearly amplified with a gain G.

同様に考えることにより、より一般的な帯域制限された信号についても、定振幅分離信号に分離し増幅した後に合成することにより、振幅および位相変調された信号の線形増幅が可能なことが判る。   From the same consideration, it can be seen that a more general band-limited signal can be linearly amplified in amplitude and phase-modulated signals by separating and amplifying the signals into constant amplitude separated signals and then synthesizing them.

一般化のため、入力信号S(t)を下式のようにキャリア信号成分が位相情報θ(t)を含む信号とする。

Figure 2007150905
ここで、E(t)≧0であり、E(t)が(2)式で表されるとすると、
Figure 2007150905
となる。ここで、定振幅分離信号Sa(t),Sb(t)は、
Figure 2007150905
である。 For generalization, the input signal S (t) is a signal whose carrier signal component includes phase information θ (t) as in the following equation.
Figure 2007150905
Here, if E (t) ≧ 0 and E (t) is expressed by equation (2),
Figure 2007150905
It becomes. Here, the constant amplitude separation signals Sa (t) and Sb (t) are
Figure 2007150905
It is.

よって、(6)式で示されるような一般的な帯域制限された入力信号S(t)であっても、これをLINC分離器12で2個の定振幅分離信号に分離し、特性の揃った利得Gの非線形増幅器13,14によりそれぞれ増幅し、加算器15により2信号間の差信号を取り出すことにより、その入力信号S(t)を利得Gで線形増幅できることが判る。   Therefore, even a general band-limited input signal S (t) as shown in the equation (6) is separated into two constant amplitude separated signals by the LINC separator 12, and the characteristics are uniformed. It can be seen that the input signal S (t) can be linearly amplified with the gain G by amplifying by the non-linear amplifiers 13 and 14 having the gain G and extracting the difference signal between the two signals by the adder 15.

このように、LINC増幅器では非線形増幅器13,14を使用するので電力効率が高くなり、しかも線形増幅されるので、無線通信システムにおいて、基地局と移動局の低消費電力化等を実現するための重要な技術として注目されている。
ID.C.COX,"Linear Amplification with Nonlinear Components",IEEE TRANSACTION ON COMMUNICATION,Vol.COM-22,pp.1942-1945,Dec.,1974
As described above, since the LINC amplifier uses the non-linear amplifiers 13 and 14, the power efficiency is increased and the linear amplification is performed. Therefore, in the wireless communication system, the power consumption of the base station and the mobile station can be reduced. It is attracting attention as an important technology.
ID.C.COX, "Linear Amplification with Nonlinear Components", IEEE TRANSACTION ON COMMUNICATION, Vol.COM-22, pp.1942-1945, Dec., 1974

LINC増幅器の問題点は入力信号の変調帯域に関わる。一般化した入力信号は(6)式の形で表現でき、帯域制限された信号を定振幅の信号に分離すると、(8)式の定振幅分離信号Sa(t),Sb(t)となる。図6のように、入力信号S(t)が位相平面上でS(t1)からS(t2)へと軌跡を描く場合、定包絡線31上をベクトル先端が移動する定振幅分離信号Sa(t),Sb(t)の単位時間当たりの移動角度(位相変化)は、入力信号S(t)の位相面での単位時間あたりの移動角度よりも大きい場合がある。このような大きな角度の変化量は、定振幅分離信号Sa(t),Sb(t)の周波数帯域が大きく広くなることを意味する。この帯域広がりが顕著な場合は、図7に示すような信号点が位相面原点近傍を通る場合である。このように、入力信号S(t)に対して定振幅分離信号Sa(t),Sb(t)はその帯域が広くなる。図8に入力信号S(t)の周波数スペクトルを、図9に定振幅分離信号Sa(t),Sb(t)の周波数スペクトルを示した。   The problem of the LINC amplifier is related to the modulation band of the input signal. The generalized input signal can be expressed in the form of equation (6). When the band-limited signal is separated into constant amplitude signals, constant amplitude separation signals Sa (t) and Sb (t) in equation (8) are obtained. . As shown in FIG. 6, when the input signal S (t) draws a locus from S (t1) to S (t2) on the phase plane, the constant amplitude separation signal Sa ( The movement angle (phase change) per unit time of t) and Sb (t) may be larger than the movement angle per unit time on the phase plane of the input signal S (t). Such a large change amount of the angle means that the frequency bands of the constant amplitude separation signals Sa (t) and Sb (t) become large and wide. The case where the band broadening is remarkable is a case where signal points as shown in FIG. 7 pass near the origin of the phase plane. In this way, the constant amplitude separation signals Sa (t) and Sb (t) have a wider band with respect to the input signal S (t). FIG. 8 shows the frequency spectrum of the input signal S (t), and FIG. 9 shows the frequency spectrum of the constant amplitude separation signals Sa (t) and Sb (t).

LINC増幅器では、入力信号を定包絡線の軌跡上を変化する2個の定振幅分離信号に分離して増幅するが、周波数帯域がその入力信号に比較して広帯域を必要とすることになれば、たとえ定包絡線で信号の増幅が可能な非線形のユニットが実現できたとしても、各々のユニットに広帯域特性が要求されることとなり、定包絡線であることのメリットは半減することとなる。   In the LINC amplifier, the input signal is separated and amplified into two constant amplitude separation signals that change on the locus of the constant envelope, but if the frequency band requires a wider band than the input signal. Even if a non-linear unit capable of amplifying a signal with a constant envelope can be realized, broadband characteristics are required for each unit, and the merit of being a constant envelope is halved.

以上のように、入力する信号が振幅変調だけでなく位相変調をも受けた信号である場合には、LINC増幅器で増幅するときに、定振幅分離信号が元信号の原点付近を通過するほど周波数帯域が広がる問題があった。   As described above, when the input signal is a signal that has undergone not only amplitude modulation but also phase modulation, when the signal is amplified by the LINC amplifier, the frequency is such that the constant amplitude separation signal passes near the origin of the original signal. There was a problem of expanding the bandwidth.

本発明の目的は、LINC分離部に入力する信号を位相が変化せず振幅のみが変化する同相信号または直交信号に限らせ、上記した周波数帯域の広がりを抑制したLINC増幅器を提供することである。   An object of the present invention is to provide a LINC amplifier in which the signal input to the LINC separation unit is limited to an in-phase signal or a quadrature signal whose phase does not change and only the amplitude changes, and which suppresses the spread of the frequency band described above. is there.

上記目的を達成するために、請求項1にかかる発明は、入力信号を定振幅の2個の信号に分離するLINC分離手段と、該LINC分離手段で分離されたそれぞれの信号を同一の利得で増幅する同一特性の第1および第2の非線形増幅手段と、該第1および第2の非線形増幅手段の出力信号を加算する信号加算手段とからなるLINC増幅手段を有するLINC増幅器において、前記入力信号を同相信号と直交信号に分離する直交分離手段と、前記同相信号を増幅する前記LINC増幅手段と同じ構成の第1のLINC増幅手段と、前記直交信号を増幅する前記LINC増幅手段と同じ構成の第2のLINC増幅手段と、前記第1および第2のLINC増幅手段の出力信号を加算する直交加算手段とを備えたことを特徴とする。
請求項2にかかる発明は、請求項1に記載のLINC増幅器において、前記第1のLINC増幅手段は前記同相信号の正から負への変化および負から正への変化時に該同相信号の定振幅分離信号の位相変化が連続し、且つ前記第2のLINC増幅手段は前記直交信号の正から負への変化および負から正への変化時に該直交信号の定振幅分離信号の位相変化が連続することを特徴とする。
請求項3にかかる発明は、請求項1又は2に記載のLINC増幅器において、前記第1のLINC増幅手段の前記第1および第2の非線形増幅手段並びに前記第2のLINC増幅手段の前記第1および第2の非線形増幅手段の前段又は後段に、それぞれ周波数変換手段を挿入したことを特徴とする。
請求項4にかかる発明は、請求項1、2又は3に記載のLINC増幅器において、前記第1のLINC増幅手段の出力信号と前記第2のLINC増幅手段の出力信号を取り込み直交検波する直交検波手段と、該直交検波手段の検波結果に応じて前記第1のLINC増幅手段の出力信号又は前記第2のLINC増幅手段の出力信号の位相を調整し前記直交加算手段に入力する同相信号と直交信号との直交性を補正する移相手段とを設けたことを特徴とする。
In order to achieve the above object, the invention according to claim 1 is directed to a LINC separating means for separating an input signal into two signals having a constant amplitude, and the respective signals separated by the LINC separating means with the same gain. In the LINC amplifier having the LINC amplifying means comprising first and second nonlinear amplifying means having the same characteristics to be amplified and signal adding means for adding the output signals of the first and second nonlinear amplifying means, the input signal Is separated into an in-phase signal and a quadrature signal, a first LINC amplifying unit having the same configuration as the LINC amplifying unit for amplifying the in-phase signal, and the same as the LINC amplifying unit for amplifying the quadrature signal. A second LINC amplifying unit having a configuration; and an orthogonal addition unit that adds the output signals of the first and second LINC amplifying units.
According to a second aspect of the present invention, in the LINC amplifier according to the first aspect, the first LINC amplifying means is configured to detect the common-mode signal when the common-mode signal changes from positive to negative and from negative to positive. The phase change of the constant amplitude separation signal is continuous, and the second LINC amplification means changes the phase of the constant amplitude separation signal of the quadrature signal when the quadrature signal changes from positive to negative and from negative to positive. It is characterized by being continuous.
The invention according to claim 3 is the LINC amplifier according to claim 1 or 2, wherein the first and second nonlinear amplification means of the first LINC amplification means and the first of the second LINC amplification means. Further, the frequency conversion means is inserted before or after the second nonlinear amplification means, respectively.
According to a fourth aspect of the present invention, in the LINC amplifier according to the first, second, or third aspect, quadrature detection is performed in which the output signal of the first LINC amplifying unit and the output signal of the second LINC amplifying unit are captured and quadrature detected. And an in-phase signal that adjusts the phase of the output signal of the first LINC amplifying means or the output signal of the second LINC amplifying means in accordance with the detection result of the quadrature detection means and inputs the signal to the quadrature addition means Phase shift means for correcting orthogonality with the orthogonal signal is provided.

本発明によれば、入力信号を同相信号と直交信号に直交分離して、それらを個々のLINC増幅手段によって個別に増幅しその後直交加算するため、それら同相信号と直交信号はI軸上あるいはQ軸上のみを変化するので、入力信号が振幅変調だけでなく位相変化を含み元信号が原点付近を通過するときであっても、同相信号や直交信号から分離された定振幅分離信号が必要以上に周波数帯域を広げることはなく、構成要素に対する広帯域化の要求を緩和することができる。   According to the present invention, the input signal is orthogonally separated into an in-phase signal and a quadrature signal, they are individually amplified by the individual LINC amplification means, and then subjected to quadrature addition. Alternatively, since it changes only on the Q axis, the constant amplitude separation signal separated from the in-phase signal and quadrature signal even when the input signal includes not only amplitude modulation but also the phase change and the original signal passes near the origin. However, the frequency band is not expanded more than necessary, and the requirement for a wider band for the components can be relaxed.

[第1の実施例]
図1は本発明の第1の実施例のLINC増幅器の構成を示すブロック図である。11は入力信号S(t)を直交分離して同相信号SI(t)と直交信号SQ(t)にする直交分離器、12Aは同相信号SI(t)を定振幅分離信号SIa(t)、SIb(t)に分離するLINC分離器、12Bは直交信号SQ(t)を定振幅分離信号SQa(t)、SQb(t)に分離するLINC分離器、13A,13B,14A,14Bは利得Gで特性が揃った非線形増幅器、15Aは信号GSIa(t)と信号GSIb(t)を加算する信号加算器、15Bは信号GSQa(t)と信号GSQb(t)を加算する信号加算器、16は信号GSI(t)と信号GSQ(t)を直交加算する直交加算器である。つまり、本実施例は、入力信号を同相信号と直交信号に2分割して振幅成分のみが変化するようにしてからそれぞれの分割信号をLINC方式で増幅することにより、信号の周波数帯域を必要以上に広げないようにしたものである。
[First embodiment]
FIG. 1 is a block diagram showing a configuration of a LINC amplifier according to a first embodiment of the present invention. 11 is a quadrature separator that quadrature-separates the input signal S (t) into an in-phase signal S I (t) and a quadrature signal S Q (t), and 12A is a constant-amplitude separated signal from the in-phase signal S I (t). LINC separator for separating S Ia (t) and S Ib (t), 12B is a LINC separator for separating quadrature signal S Q (t) into constant amplitude separated signals S Qa (t) and S Qb (t), 13A, 13B, 14A and 14B are non-linear amplifiers whose characteristics are uniform with a gain G, 15A is a signal adder for adding the signal GS Ia (t) and the signal GS Ib (t), and 15B is a signal GS Qa (t) and the signal A signal adder for adding GS Qb (t), and 16 is an orthogonal adder for orthogonally adding the signal GS I (t) and the signal GS Q (t). In other words, in this embodiment, an input signal is divided into an in-phase signal and a quadrature signal so that only the amplitude component changes, and then each divided signal is amplified by the LINC method, thereby requiring a signal frequency band. It is designed not to spread more.

入力信号S(t)を複素数表現に直して、

Figure 2007150905
と変形すると、入力信号S(t)はベースバンド信号成分E(t)cosθ(t)+jE(t)sinθ(t)でキャリア信号成分cosω0(t)を変調していることが分かる。そこで、本実施例では、入力信号を実数部(同相信号)と虚数部(直交信号)に2分し、その2分された信号に対して各々LINC方式の増幅を行い、最後に直交加算する。 Convert the input signal S (t) into a complex number expression,
Figure 2007150905
In other words, the input signal S (t) modulates the carrier signal component cosω 0 (t) by the baseband signal component E (t) cosθ (t) + jE (t) sinθ (t). Therefore, in this embodiment, the input signal is divided into a real part (in-phase signal) and an imaginary part (orthogonal signal), and each of the divided signals is amplified by the LINC method, and finally the quadrature addition is performed. To do.

このようにした場合、同相信号SI(t)、直交信号SQ(t)は、

Figure 2007150905
となる。ここで、同相信号SI(t)、直交信号SQ(t)は各々振幅成分のみとなり、位相成分を含まない。従って、このように入力信号S(t)を直交する同相信号SI(t)、直交信号SQ(t)に分離することにより、急激な位相変化(信号が位相平面で原点近傍を通過する際に生じる)は、各々の同相信号SI(t)、直交信号SQ(t)には発生しない。 In this case, the in-phase signal S I (t) and the quadrature signal S Q (t) are
Figure 2007150905
It becomes. Here, each of the in-phase signal S I (t) and the quadrature signal S Q (t) includes only an amplitude component and does not include a phase component. Therefore, by separating the input signal S (t) into the in-phase signal S I (t) and the quadrature signal S Q (t) that are orthogonal, a sudden phase change (the signal passes near the origin on the phase plane). Is not generated in each in-phase signal S I (t) and quadrature signal S Q (t).

図2はこれを説明する位相平面図である。入力信号S(t)が図2(a)に示すような場合、その信号S(t)は同相信号SI(t)、直交信号SQ(t)に分離されるが、同相信号SI(t)はI軸上において振幅を正又は負方向に増減するのみであるので、図2(b)に示すように、そのLINC分離成分である定振幅分離信号SIa(t)、SIb(t)もその位相は大きく変化しない。また直交信号SQ(t)はQ軸上において振幅を正又は負方向に増減するのみであるので、図2(c)に示すように、そのLINC分離成分である定振幅分離信号SQa(t)、SQb(t)もその位相は大きく変化しない。以下、詳しく説明する。 FIG. 2 is a phase plan view for explaining this. When the input signal S (t) is as shown in FIG. 2A, the signal S (t) is separated into an in-phase signal S I (t) and a quadrature signal S Q (t). Since S I (t) only increases or decreases the amplitude in the positive or negative direction on the I axis, as shown in FIG. 2B, the constant amplitude separation signal S Ia (t), which is the LINC separation component, The phase of S Ib (t) does not change greatly. Further, since the quadrature signal S Q (t) only increases or decreases the amplitude in the positive or negative direction on the Q axis, as shown in FIG. 2C, the constant amplitude separation signal S Qa (the LINC separation component) The phases of t) and S Qb (t) do not change greatly. This will be described in detail below.

ここで、従来例(1)式に対する(2)式とは異なり、(10)式を変形して、

Figure 2007150905
とおく。さらに、
Figure 2007150905
とおく。ここで、
Figure 2007150905
とする。 Here, unlike the formula (2) for the conventional example (1), the formula (10) is modified,
Figure 2007150905
far. further,
Figure 2007150905
far. here,
Figure 2007150905
And

このようにすることにより、位相面の原点を通過する信号の場合、すなわち、「EI(t)、EQ(t)が正から負、もしくは、負から正への変化」に対して、(12)式で汎関数EI(t)、EQ(t)を決める関数ρ(t)、σ(t)は(13)式の範囲で連続となる。また、原点を通過する際の位相変化は、ρ(t)、σ(t)がπ/2を通過するときの変化であるため、汎関数を構成する関数ρ(t)、σ(t)においても、急激な位相変化は無い。 By doing so, in the case of a signal passing through the origin of the phase plane, that is, “E I (t), E Q (t) changes from positive to negative or from negative to positive”, Functions ρ (t) and σ (t) that determine functionals E I (t) and E Q (t) in equation (12) are continuous within the range of equation (13). Further, since the phase change when passing through the origin is a change when ρ (t) and σ (t) pass through π / 2, the functions ρ (t) and σ (t) constituting the functional are used. Also, there is no sudden phase change.

(12)式を(11)式に代入すると、

Figure 2007150905
となる。ここで、
Figure 2007150905
となる。(16)式、(17)式は定振幅分離信号である。 Substituting (12) into (11),
Figure 2007150905
It becomes. here,
Figure 2007150905
It becomes. Equations (16) and (17) are constant amplitude separation signals.

このように、(9)式で与えられる入力信号S(t)は(10)式で与えられる同相信号SI(t)、直交信号SQ(t)に分割でき、これらの同相信号SI(t)、直交信号SQ(t)は各々(16)式、(17)式で与えられる定振幅分離信号とすることができる。 As described above, the input signal S (t) given by the equation (9) can be divided into the in-phase signal S I (t) and the quadrature signal S Q (t) given by the equation (10). S I (t) and quadrature signal S Q (t) can be constant amplitude separation signals given by equations (16) and (17), respectively.

以上により、定振幅分離信号SIa(t)、SIb(t)、SQa(t)、SQb(t)を利得がGで特性の揃った非線形増幅器13A,14A,13B,14Bで増幅し、SIa(t)とSIb(t)、SQa(t)とSQb(t)を信号加算器15A,15Bで各々加算し、その加算信号を直交加算器16で直交加算することにより、入力信号をG倍に増幅することができ、このとき帯域が大きく広がることはない。 As described above, the constant amplitude separation signals S Ia (t), S Ib (t), S Qa (t), and S Qb (t) are amplified by the non-linear amplifiers 13A, 14A, 13B, and 14B having a gain of G and uniform characteristics. Then, S Ia (t) and S Ib (t), S Qa (t) and SQ b (t) are added by the signal adders 15A and 15B, respectively, and the added signals are orthogonally added by the orthogonal adder 16. As a result, the input signal can be amplified by a factor of G, and at this time, the bandwidth is not greatly expanded.

[第2の実施例]
図3は第2の実施例のLINC増幅器の構成を示すブロック図である。ここでは、非線形増幅器13A,14A,13B,14Bの前段に乗算器17A,18A,17B,18Bを挿入し、発振器19からキャリア信号cosωa(t)を入力して周波数変換を行うようにしている。このうように、各々周波数変換してからRF信号で加算及び直交加算することもできる。なお、乗算器17A,18A,17B,18Bは、非線形増幅器13A,14A,13B,14Bの後段に挿入してもよい。
[Second embodiment]
FIG. 3 is a block diagram showing the configuration of the LINC amplifier of the second embodiment. Here, multipliers 17A, 18A, 17B, and 18B are inserted before the nonlinear amplifiers 13A, 14A, 13B, and 14B, and the carrier signal cosω a (t) is input from the oscillator 19 to perform frequency conversion. . As described above, addition and quadrature addition can be performed using RF signals after frequency conversion. The multipliers 17A, 18A, 17B, and 18B may be inserted after the nonlinear amplifiers 13A, 14A, 13B, and 14B.

[第3の実施例]
図4は第3の実施例のLINC増幅器の構成を示すブロック図である。ここでは、直交加算器16に入力する信号GSI(t)とGSQ(t)の直交性を直交検波器20で検出して、その検出信号を積分器21で積分し、その結果により、信号加算器15Aの後段に挿入した移相器22によって一方の信号GSQ(t)の位相を制御し、信号GSI(t)とGSQ(t)の直交性を補正できるようにしたものである。なお、移相器22を信号加算器15Aの後段に挿入して、他方の信号GSQ(t)の位相を制御してもよい。
[Third embodiment]
FIG. 4 is a block diagram showing the configuration of the LINC amplifier of the third embodiment. Here, the orthogonality of the signals GS I (t) and GS Q (t) input to the quadrature adder 16 is detected by the quadrature detector 20, and the detection signal is integrated by the integrator 21. The phase shifter 22 inserted after the signal adder 15A controls the phase of one of the signals GS Q (t) so that the orthogonality between the signals GS I (t) and GS Q (t) can be corrected. It is. Note that the phase shifter 22 may be inserted after the signal adder 15A to control the phase of the other signal GS Q (t).

本発明の第1の実施例のLINC増幅器のブロック図である。It is a block diagram of the LINC amplifier of the 1st example of the present invention. 図1の動作説明用のベクトル図である。FIG. 2 is a vector diagram for explaining the operation of FIG. 1. 本発明の第2の実施例のLINC増幅器のブロック図である。It is a block diagram of the LINC amplifier of the 2nd Example of this invention. 本発明の第3の実施例のLINC増幅器のブロック図である。It is a block diagram of the LINC amplifier of the 3rd Example of this invention. 従来のLINC増幅器のブロック図である。It is a block diagram of the conventional LINC amplifier. 図5のLINC増幅器の動作説明用のベクトル図である。FIG. 6 is a vector diagram for explaining the operation of the LINC amplifier of FIG. 5. 図5のLINC増幅器の動作説明用のベクトル図である。FIG. 6 is a vector diagram for explaining the operation of the LINC amplifier of FIG. 5. 入力信号の周波数スペクトル図である。It is a frequency spectrum figure of an input signal. 図5のLINC増幅器内部信号の周波数スペクトル図である。FIG. 6 is a frequency spectrum diagram of a signal inside the LINC amplifier of FIG. 5.

符号の説明Explanation of symbols

11:直交分離器
12,12A,12B:LINC分離器
13,13A,13B,14,14A,14B:非線形増幅器
15,15A,15B:信号加算器
16:直交加算器
17A,17B,18A,18B:乗算器
19:発振器
20:直交検波器
21:積分器
22:移相器
31:定包絡線
11: Quadrature separators 12, 12A, 12B: LINC separators 13, 13A, 13B, 14, 14A, 14B: Nonlinear amplifiers 15, 15A, 15B: Signal adders 16: Quadrature adders 17A, 17B, 18A, 18B: Multiplier 19: Oscillator 20: Quadrature detector 21: Integrator 22: Phase shifter 31: Constant envelope

Claims (4)

入力信号を定振幅の2個の信号に分離するLINC分離手段と、該LINC分離手段で分離されたそれぞれの信号を同一の利得で増幅する同一特性の第1および第2の非線形増幅手段と、該第1および第2の非線形増幅手段の出力信号を加算する信号加算手段とからなるLINC増幅手段を有するLINC増幅器において、
前記入力信号を同相信号と直交信号に分離する直交分離手段と、前記同相信号を増幅する前記LINC増幅手段と同じ構成の第1のLINC増幅手段と、前記直交信号を増幅する前記LINC増幅手段と同じ構成の第2のLINC増幅手段と、前記第1および第2のLINC増幅手段の出力信号を加算する直交加算手段とを備えたことを特徴とするLINC増幅器。
LINC separation means for separating an input signal into two signals having constant amplitude, and first and second nonlinear amplification means having the same characteristics for amplifying each signal separated by the LINC separation means with the same gain, In a LINC amplifier having a LINC amplifying means comprising signal adding means for adding the output signals of the first and second nonlinear amplifying means,
Quadrature separation means for separating the input signal into in-phase and quadrature signals; first LINC amplification means having the same configuration as the LINC amplification means for amplifying the in-phase signal; and the LINC amplification for amplifying the quadrature signal A LINC amplifier comprising: a second LINC amplification unit having the same configuration as the unit; and an orthogonal addition unit for adding the output signals of the first and second LINC amplification units.
請求項1に記載のLINC増幅器において、
前記第1のLINC増幅手段は前記同相信号の正から負への変化および負から正への変化時に該同相信号の定振幅分離信号の位相変化が連続し、且つ前記第2のLINC増幅手段は前記直交信号の正から負への変化および負から正への変化時に該直交信号の定振幅分離信号の位相変化が連続することを特徴とするLINC増幅器。
The LINC amplifier according to claim 1, wherein
The first LINC amplifying means continuously changes the phase of the constant amplitude separation signal of the in-phase signal when the in-phase signal changes from positive to negative and from negative to positive, and the second LINC amplification The means is a LINC amplifier characterized in that the phase change of the constant amplitude separation signal of the orthogonal signal continues when the orthogonal signal changes from positive to negative and from negative to positive.
請求項1又は2に記載のLINC増幅器において、
前記第1のLINC増幅手段の前記第1および第2の非線形増幅手段並びに前記第2のLINC増幅手段の前記第1および第2の非線形増幅手段の前段又は後段に、それぞれ周波数変換手段を挿入したことを特徴とするLINC増幅器。
The LINC amplifier according to claim 1 or 2,
Frequency conversion means is inserted in the first stage or the second stage of the first and second nonlinear amplification means of the first LINC amplification means and the first and second nonlinear amplification means of the second LINC amplification means, respectively. A LINC amplifier.
請求項1、2又は3に記載のLINC増幅器において、
前記第1のLINC増幅手段の出力信号と前記第2のLINC増幅手段の出力信号を取り込み直交検波する直交検波手段と、該直交検波手段の検波結果に応じて前記第1のLINC増幅手段の出力信号又は前記第2のLINC増幅手段の出力信号の位相を調整し前記直交加算手段に入力する同相信号と直交信号との直交性を補正する移相手段とを設けたことを特徴とするLINC増幅器。
The LINC amplifier according to claim 1, 2 or 3,
Quadrature detection means for receiving and orthogonally detecting the output signal of the first LINC amplification means and the output signal of the second LINC amplification means, and the output of the first LINC amplification means according to the detection result of the quadrature detection means LINC comprising phase shift means for adjusting the phase of the signal or the output signal of the second LINC amplification means and correcting the orthogonality between the in-phase signal input to the quadrature addition means and the quadrature signal amplifier.
JP2005344628A 2005-11-29 2005-11-29 Linc amplifier Pending JP2007150905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005344628A JP2007150905A (en) 2005-11-29 2005-11-29 Linc amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005344628A JP2007150905A (en) 2005-11-29 2005-11-29 Linc amplifier

Publications (1)

Publication Number Publication Date
JP2007150905A true JP2007150905A (en) 2007-06-14

Family

ID=38211742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344628A Pending JP2007150905A (en) 2005-11-29 2005-11-29 Linc amplifier

Country Status (1)

Country Link
JP (1) JP2007150905A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074069A1 (en) * 2008-12-24 2010-07-01 京セラ株式会社 Addition circuit, power amplifier circuit using same, and transmission device and communication device using the power amplifier circuit
US8427231B2 (en) 2010-12-28 2013-04-23 Fujitsu Limited Amplifying device and amplifying method
WO2013087232A1 (en) * 2011-12-15 2013-06-20 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for use with an amplifier circuit
US8766738B2 (en) 2008-11-18 2014-07-01 Nxp, B.V. Decomposer and amplifier
CN104283573A (en) * 2014-09-16 2015-01-14 电子科技大学 Method and device for improving the efficiency of LINC transmitter
JP2017216493A (en) * 2016-05-30 2017-12-07 Necネットワーク・センサ株式会社 Linear amplifier device, input signal supply method and origin avoidance circuit used therefor
JP2020156022A (en) * 2019-03-22 2020-09-24 古河電気工業株式会社 Amplification device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422749A (en) * 1977-07-20 1979-02-20 Western Electric Co Interrferroometallic amplifier
JPH05207080A (en) * 1992-01-24 1993-08-13 Nec Eng Ltd Modulator
JP2002510927A (en) * 1998-04-02 2002-04-09 エリクソン インコーポレイテッド Power waveform synthesis of CHIREIX / DOHERTY hybrid amplifier
JP2004343666A (en) * 2003-05-19 2004-12-02 Japan Radio Co Ltd High frequency amplifier circuit
WO2006047377A2 (en) * 2004-10-22 2006-05-04 Parkervision, Inc. Systems and methods for vector power amplification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422749A (en) * 1977-07-20 1979-02-20 Western Electric Co Interrferroometallic amplifier
JPH05207080A (en) * 1992-01-24 1993-08-13 Nec Eng Ltd Modulator
JP2002510927A (en) * 1998-04-02 2002-04-09 エリクソン インコーポレイテッド Power waveform synthesis of CHIREIX / DOHERTY hybrid amplifier
JP2004343666A (en) * 2003-05-19 2004-12-02 Japan Radio Co Ltd High frequency amplifier circuit
WO2006047377A2 (en) * 2004-10-22 2006-05-04 Parkervision, Inc. Systems and methods for vector power amplification

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8766738B2 (en) 2008-11-18 2014-07-01 Nxp, B.V. Decomposer and amplifier
WO2010074069A1 (en) * 2008-12-24 2010-07-01 京セラ株式会社 Addition circuit, power amplifier circuit using same, and transmission device and communication device using the power amplifier circuit
JP2010153967A (en) * 2008-12-24 2010-07-08 Kyocera Corp Addition circuit, power amplifying circuit using the addition circuit, transmitter using the power amplifying circuit, and communication device
US8351881B2 (en) 2008-12-24 2013-01-08 Kyocera Corporation Addition circuit, power amplifier circuit using same, and transmission device and communication device using the power amplifier circuit
US8427231B2 (en) 2010-12-28 2013-04-23 Fujitsu Limited Amplifying device and amplifying method
WO2013087232A1 (en) * 2011-12-15 2013-06-20 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for use with an amplifier circuit
US8836421B2 (en) 2011-12-15 2014-09-16 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and method for use with an amplifier circuit
CN104283573A (en) * 2014-09-16 2015-01-14 电子科技大学 Method and device for improving the efficiency of LINC transmitter
JP2017216493A (en) * 2016-05-30 2017-12-07 Necネットワーク・センサ株式会社 Linear amplifier device, input signal supply method and origin avoidance circuit used therefor
WO2017209045A1 (en) * 2016-05-30 2017-12-07 Necネットワーク・センサ株式会社 Linear amplifying device, input signal supplying method, and origin avoiding circuit used therein
US10819292B2 (en) 2016-05-30 2020-10-27 NEC Network and Sensor Systems, Ltd Linear amplifying device, input signal supplying method, and origin avoiding circuit used therein
JP2020156022A (en) * 2019-03-22 2020-09-24 古河電気工業株式会社 Amplification device

Similar Documents

Publication Publication Date Title
US6737914B2 (en) Removing effects of gain and phase mismatch in a linear amplification with nonlinear components (LINC) system
JP2007150905A (en) Linc amplifier
US9350302B2 (en) Reduced bandwith of signal in an envelope path for envelope tracking system
US7260368B1 (en) Linear amplification with non-linear components (LINC) modulator and method for generating out-phased signals for a LINC transmitter
Sundstrom The effect of quantization in a digital signal component separator for LINC transmitters
JP4637850B2 (en) Transmission device, communication device, and mobile radio
CN100481741C (en) Amplifier circuit, wireless base station, wireless terminal, and amplifying method
JP2008028509A (en) Transmission power amplifier, its control method and wireless communication apparatus
US11444362B2 (en) Signal processing circuit, radio frequency signal transmitter, and communications device
JP2000069098A (en) Predistortion circuit
JP2009519613A (en) Transmission circuit and communication device using the same
Helaoui et al. A new mode-multiplexing LINC architecture to boost the efficiency of WiMAX up-link transmitters
US8344781B2 (en) Power amplification device, and transmission device and communication device using same
JP2004527153A (en) Signal processing of high frequency signal (RF signal) subjected to amplitude and / or phase modulation
JP5589887B2 (en) Amplifier circuit, transmitter, and amplifier circuit control method
EP2602931B1 (en) Amplifier
JP2006157256A (en) Transmission circuit, wireless communication circuit, wireless base station apparatus, and wireless terminal
US8427231B2 (en) Amplifying device and amplifying method
Hegazi et al. Improved LINC power transmission using a quadrature outphasing technique
KR101276795B1 (en) Apparatus for modulating and method thereof, apparatus for demodulating and method thereof
JP2003023468A (en) Digital modulator
WO2015188300A1 (en) Power amplification method and device for outphase modulation-based power amplifier
JP6730715B2 (en) Linear amplifier, input signal supply method, and origin avoidance circuit used therein
CN107046406B (en) Outphasing amplifier
JP4786570B2 (en) Transmitter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018