JP2007149513A - Catalyst support for polymer electrolyte fuel cell - Google Patents

Catalyst support for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2007149513A
JP2007149513A JP2005342981A JP2005342981A JP2007149513A JP 2007149513 A JP2007149513 A JP 2007149513A JP 2005342981 A JP2005342981 A JP 2005342981A JP 2005342981 A JP2005342981 A JP 2005342981A JP 2007149513 A JP2007149513 A JP 2007149513A
Authority
JP
Japan
Prior art keywords
catalyst
polymer electrolyte
fuel cell
electrolyte fuel
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005342981A
Other languages
Japanese (ja)
Inventor
Hiroshi Shioyama
洋 塩山
Kuniaki Honjo
国明 本城
Masato Kiuchi
正人 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005342981A priority Critical patent/JP2007149513A/en
Publication of JP2007149513A publication Critical patent/JP2007149513A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new catalyst support effective for relaxation of a flooding phenomenon in a cathode of a polymer electrolyte fuel cell, and capable of improving activity of an electrode catalyst. <P>SOLUTION: In a manufacturing method of this electrode catalyst support for a polymer electrolyte fuel cell, a contact angle to water of a surface of a carbon material is set above 90° by applying a plasma treatment to the carbon material in the presence of a carbon fluoride compound or in the presence of the carbon fluoride compound and oxygen. this electrode catalyst support for a polymer electrolyte fuel cell is provided by the method and formed of a carbon material having a contact angle to water above 90°, and an electrode catalyst and a polymer electrolyte fuel cell using the support are also provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体高分子形燃料電池用触媒担体、その製造方法、該触媒担体を用いてなる固体高分子形燃料電池用電極触媒、及び固体高分子形燃料電池に関する。
に関する。
The present invention relates to a catalyst support for a polymer electrolyte fuel cell, a production method thereof, an electrode catalyst for a polymer electrolyte fuel cell using the catalyst support, and a polymer electrolyte fuel cell.
About.

固体高分子形燃料電池(PEFC)は、小型で効率が高く、また地球環境問題の観点からも早期の実用化・普及が期待されている。   A polymer electrolyte fuel cell (PEFC) is small and highly efficient, and is expected to be put to practical use and spread at an early stage from the viewpoint of global environmental problems.

通常、固体高分子形燃料電池は単セルを多数積層した電池スタツクと、それに反応ガスを必要量供給するためのガス供給装置、および制御装置を基本として構成されている。固体高分子形燃料電池用のセルは、電解質膜を挟んでアノード(燃料極)触媒層とカソード(酸素極)触媒層が配されており、触媒層には白金、白金合金等がカーボン担体表面に高分散に担持されている(例えば、特許文献1、2参照)。   In general, a polymer electrolyte fuel cell is basically composed of a battery stack in which a large number of single cells are stacked, a gas supply device for supplying a necessary amount of reaction gas thereto, and a control device. A cell for a polymer electrolyte fuel cell has an anode (fuel electrode) catalyst layer and a cathode (oxygen electrode) catalyst layer sandwiching an electrolyte membrane, and platinum, a platinum alloy or the like is placed on the surface of the carbon support. (See, for example, Patent Documents 1 and 2).

この様な構造の固体高分子形燃料電池のカソード(酸素極)では、酸素が還元されて生成する水が触媒近傍に滞留し、酸素の供給を妨げて継続した発電を阻害するフラッディング現象が懸念される。その対策として、これまで撥水性を有するPTFE微粒子を電極触媒に混合する方法がなされている(下記非特許文献1,2参照)。しかしながら、混合したRTFE微粒子は結着剤としての働きを兼ねてはいるが、PTFEを混合することによって、触媒層の導電性が下がり、白金を担持できる担体の量も減少するという問題がある。   In the cathode (oxygen electrode) of the polymer electrolyte fuel cell having such a structure, there is a concern about the flooding phenomenon that the water generated by the reduction of oxygen stays in the vicinity of the catalyst, preventing the supply of oxygen and preventing the continued power generation. Is done. As a countermeasure, there has been a method of mixing PTFE fine particles having water repellency with an electrode catalyst (see Non-Patent Documents 1 and 2 below). However, although the mixed RTFE fine particles also serve as a binder, there is a problem that mixing PTFE lowers the conductivity of the catalyst layer and reduces the amount of the carrier capable of supporting platinum.

更に、固体高分子形燃料電池の実現に際しては、電極触媒として使用する白金量が問題となっており、白金使用量の低減が望まれている。
特開2002−305000号公報 特開2003−157856号公報 池田宏之助編、「燃料電池のすべて」(2001年8月20日、(株)日本実業出版社発行)、138〜139頁 松田好晴他編、「電池便覧 第3版」(平成13年2月20日、丸善(株)発行)、398〜399頁
Furthermore, in realizing a polymer electrolyte fuel cell, the amount of platinum used as an electrode catalyst has become a problem, and a reduction in the amount of platinum used is desired.
JP 2002-305000 A JP 2003-157856 A Edited by Hironosuke Ikeda, “All about Fuel Cells” (August 20, 2001, published by Nihon Jitsugyo Publishing Co., Ltd.), pages 138-139 Matsuda Yoshiharu et al., “Battery Handbook 3rd Edition” (issued February 20, 2001, Maruzen Co., Ltd.), pages 398-399

本発明の主な目的は、固体高分子形燃料電池のカソードにおけるフラッディング現象の緩和に有効であり、更に電極触媒の活性を向上させることもできる新規な触媒担体を提供することである。   The main object of the present invention is to provide a novel catalyst carrier that is effective in alleviating flooding phenomenon at the cathode of a polymer electrolyte fuel cell and that can also improve the activity of an electrode catalyst.

本発明者は、上記した従来技術の現状に鑑みて鋭意研究を重ねてきた。その結果、フッ化炭素化合物の存在下にカーボン材料に対してプラズマ処理を行うことによってカーボン材料の疎水性を向上させることができ、これを固体高分子形燃料電池の触媒担体とすることによって、フラッディング現象を緩和することができることを見出した。更に、この様にして処理された担体を用いると、触媒活性も向上して触媒金属量の低減が可能となることを見出し、ここに本発明を完成するに至った。   The inventor has conducted intensive research in view of the above-described current state of the prior art. As a result, the hydrophobicity of the carbon material can be improved by performing a plasma treatment on the carbon material in the presence of a fluorocarbon compound, and by using this as a catalyst carrier for a polymer electrolyte fuel cell, It was found that the flooding phenomenon can be alleviated. Furthermore, it has been found that the use of a carrier treated in this way improves the catalytic activity and reduces the amount of catalytic metal, thereby completing the present invention.

即ち、本発明は、下記の固体高分子形燃料電池用触媒担体、その製造方法、該触媒担体
を用いてなる固体高分子形燃料電池用電極触媒、及び固体高分子形燃料電池を提供するものである。
1.フッ化炭素化合物の存在下又はフッ化炭素化合物と酸素の存在下に、カーボン材料に対してプラズマ処理を施すことによってカーボン材料表面の水の接触角を90°以上とする、ことを特徴とする固体高分子形燃料電池用電極触媒担体の製造方法。
2.フッ化炭素化合物が飽和フッ化炭素であり、カーボン材料がカーボンブラックである上記項1に記載の方法。
3.水の接触角が90°以上のカーボン材料からなる固体高分子形燃料電池用電極触媒担体。
4.上記項3に記載の電極触媒担体上に触媒金属を担持してなる固体高分子形燃料電池用電極触媒。
5.上記項4の電極触媒を構成要素として含む固体高分子形燃料電池。
That is, the present invention provides the following polymer carrier for a polymer electrolyte fuel cell, a method for producing the same, an electrode catalyst for a polymer electrolyte fuel cell using the catalyst carrier, and a polymer electrolyte fuel cell It is.
1. The contact angle of water on the surface of the carbon material is set to 90 ° or more by subjecting the carbon material to plasma treatment in the presence of a fluorocarbon compound or in the presence of a fluorocarbon compound and oxygen. A method for producing an electrode catalyst carrier for a polymer electrolyte fuel cell.
2. Item 2. The method according to Item 1, wherein the fluorocarbon compound is saturated fluorocarbon and the carbon material is carbon black.
3. An electrode catalyst carrier for a polymer electrolyte fuel cell comprising a carbon material having a water contact angle of 90 ° or more.
4). 4. An electrode catalyst for a polymer electrolyte fuel cell, comprising a catalyst metal supported on the electrode catalyst carrier according to item 3.
5. 5. A polymer electrolyte fuel cell comprising the electrode catalyst according to item 4 as a constituent element.

本発明では、プラズマ処理の対象となるカーボン材料としては、例えば、従来、固体高分子形燃料電池用の触媒担体として用いられているカーボン材料を特に限定なく使用できる。この様なカーボン材料としては、カーボンブラック、活性炭、黒鉛等を例示できる。これらの内で、特に、カーボンブラックは、適度な細孔径と比表面積を有するために微細な触媒粒子を担持させやすく、しかも導電性が良好であるので、触媒担体として好適である。   In the present invention, as a carbon material to be subjected to plasma treatment, for example, a carbon material conventionally used as a catalyst support for a polymer electrolyte fuel cell can be used without any particular limitation. Examples of such a carbon material include carbon black, activated carbon, graphite and the like. Among these, carbon black is particularly suitable as a catalyst carrier because it has an appropriate pore size and specific surface area, so that it can easily support fine catalyst particles and has good conductivity.

カーボン材料の形状などについては特に限定はないが、カーボンブラックを用いる場合には、例えば、BET法による比表面積が100〜2000m/g程度の範囲内にあるものが好ましく、200〜1200 m/g程度の範囲内にあるものがより好ましい。
この様なカーボンブラックの具体例としては、Vulcan XC-72(Cabot社製)の商標名で市
販されているものを用いることができる。
Although there is no particular limitation on such shape of the carbon material, when carbon black is used, for example, preferably has a specific surface area by the BET method is in the range of about 100~2000m 2 / g, 200~1200 m 2 Those within the range of about / g are more preferable.
As a specific example of such a carbon black, those commercially available under the trade name of Vulcan XC-72 (manufactured by Cabot) can be used.

本発明では、上記したカーボン材料に対して、フッ化炭素化合物の存在下にプラズマ処理を施す。これにより、カーボン材料の表面に撥水性を有する官能基が付与されて、炭素質材料の撥水性が向上する。   In the present invention, the above carbon material is subjected to plasma treatment in the presence of a fluorocarbon compound. Thereby, the functional group which has water repellency is provided to the surface of a carbon material, and the water repellency of a carbonaceous material improves.

フッ化炭素化合物については、特に限定的ではないが、プラズマ処理によって生じた活性種が重合して非導電性のフッ化炭素ポリマーがカーボン材料の表面を被覆することを避けるために、飽和フッ化炭素化合物を用いることが好ましい。飽和フッ化炭素化合物の内でも、重合性が低い点から、テトラフルオロメタン、ヘキサフルオロエタンなどが好ましい。特に、ヘキサフルオロエタンは、比較的低エネルギーで解離して、活性種である・CFラジカルを生じ、これにより重合反応を生じることなく、炭素質材料の表面を疎水化できる点で好ましい。 The fluorocarbon compound is not particularly limited, but may be saturated fluoride in order to prevent the active species generated by the plasma treatment from polymerizing and covering the surface of the carbon material with the non-conductive fluorocarbon polymer. It is preferable to use a carbon compound. Among the saturated fluorocarbon compounds, tetrafluoromethane, hexafluoroethane and the like are preferable from the viewpoint of low polymerizability. In particular, hexafluoroethane is preferable in that it can be dissociated with relatively low energy to generate the active species .CF 3 radical, thereby making the surface of the carbonaceous material hydrophobic without causing a polymerization reaction.

また、フッ化炭素の分解によって生じるF・ラジカルによって、炭素質材料の表面をフッ素化し、疎水性にすることもできる。この場合、フッ化炭素化合物の分解によって・CH・等の重合性を有する活性種が生じることがあるが、フッ化炭素化合物に加えて、酸素ガスを添加するとCO等として重合性成分が除去され、重合膜の形成を抑制できる。酸素ガスの添加量については、通常、フッ化炭素化合物中の炭素原子数を基準として、炭素原子1モルに対して、0.1〜0.5モル程度のO量とすればよい。即ち、フッ化炭素化合物としてCFを用いる場合には、CF1モルに対してOを0.1〜0.5モル程度用い、フッ化炭素化合物としてCを用いる場合には、C1モルに対してOを0.2〜1.0モル程度用いればよい。 Further, the surface of the carbonaceous material can be fluorinated and made hydrophobic by F. radicals generated by the decomposition of fluorocarbon. In this case, active species having polymerizability such as CH 2 may be generated by decomposition of the fluorocarbon compound, but when oxygen gas is added in addition to the fluorocarbon compound, the polymerizable component becomes CO 2 or the like. It is removed and formation of a polymerized film can be suppressed. The amount of oxygen gas, usually based on the number of carbon atoms of the fluorocarbon compound, to the carbon atom 1 mol, may be the amount of O 2 of about 0.1 to 0.5 mol. That is, in the case of using CF 4 as fluorocarbon compounds, when the O 2 using about 0.1 to 0.5 mol relative to CF 4 1 mole, using C 2 F 6 as fluorinated carbon compound , About 0.2 to 1.0 mole of O 2 may be used with respect to 1 mole of C 2 F 6 .

プラズマ発生装置内の圧力については特に限定的ではなく、適用する処理条件下において安定してプラズマを発生でき、フッ化炭素化合物の分解によって活性種を生じることが
できる範囲であればよい。通常は、1Pa〜1000Pa程度の範囲とすればよい。
The pressure in the plasma generator is not particularly limited as long as it can stably generate plasma under the applied processing conditions and can generate active species by decomposition of the fluorocarbon compound. Usually, the range may be about 1 Pa to 1000 Pa.

プラズマ発生方法については特に限定はなく、例えば、RFプラズマ法、直流プラズマ法、マイクロ波プラズマ法などの公知の方法を適用できる。特に、目的とする部分に局部的に密度の高いプラズマ発生させることが容易である点で誘導結合型RFプラズマ法が好ましい。   The plasma generation method is not particularly limited, and for example, a known method such as an RF plasma method, a direct current plasma method, or a microwave plasma method can be applied. In particular, the inductively coupled RF plasma method is preferable because it is easy to generate a high-density plasma locally at a target portion.

プラズマ処理の条件についても限定的ではないが、高エネルギーで励起すると、各種の活性種が生じて重合反応などが生じ易くなるので、出来るだけ低エネルギーで励起することが好ましい。例えば、上記した圧力範囲で内径35mm、コイル長60mmの誘導結合型RFプラズマ反応器によって処理する場合には、10〜100W程度のRF出力とすればよく、この範囲内においてできるだけ低エネルギーで処理することが好ましい。   The conditions for the plasma treatment are not limited. However, when excited with high energy, various active species are generated and a polymerization reaction or the like is likely to occur. Therefore, excitation with as low energy as possible is preferable. For example, in the case of processing with an inductively coupled RF plasma reactor having an inner diameter of 35 mm and a coil length of 60 mm within the pressure range described above, an RF output of about 10 to 100 W is sufficient, and processing is performed with as low energy as possible within this range. It is preferable.

上記した方法でプラズマ処理を施すことによって、カーボン材料の表面に疎水性の官能基が付与される。通常、ヘキサフルオロエタン等のフッ化炭素化合物のみを用いてプラズマ処理を行った場合には、炭素質材料の表面には、疎水性官能基として、主としてフルオロメチル基が付与され、フッ化炭素化合物に加えて、酸素ガスを添加した場合には、フルオロメチル基の他に、フッ素基が疎水性官能基として付与されるものと考えられる。   By performing the plasma treatment by the method described above, a hydrophobic functional group is imparted to the surface of the carbon material. Usually, when the plasma treatment is performed using only a fluorocarbon compound such as hexafluoroethane, the surface of the carbonaceous material is mainly given a fluoromethyl group as a hydrophobic functional group, and the fluorocarbon compound In addition to the above, when oxygen gas is added, it is considered that in addition to the fluoromethyl group, a fluorine group is added as a hydrophobic functional group.

プラズマ処理の程度については、処理時間、処理条件などによって調整することができる。通常、カーボン材料の表面における水の接触角が90°以上となるまでプラズマ処理を施すことが好ましく、水の接触角が140°以上となるまでプラズマ処理を施すことがより好ましい。   The degree of the plasma treatment can be adjusted depending on the treatment time, treatment conditions, and the like. Usually, it is preferable to perform plasma treatment until the contact angle of water on the surface of the carbon material is 90 ° or more, and it is more preferable to perform plasma treatment until the contact angle of water is 140 ° or more.

上記した方法でプラズマ処理を施して得られた触媒担体は、表面に疎水性官能基が付与されていることにより、酸素が還元されて生成する水が触媒近傍に滞留することを防止できる。その結果、酸素の供給が妨げられるフラッディング現象を緩和して、継続して安定な発電を行うことが可能となる。しかも、担体表面は疎水性膜で被覆されていないので、担体の導電性が低下することがなく、触媒金属の担持可能な量が減少することもない。   The catalyst carrier obtained by performing the plasma treatment by the above-described method can prevent water generated by reduction of oxygen from staying in the vicinity of the catalyst because the surface is provided with a hydrophobic functional group. As a result, it is possible to alleviate the flooding phenomenon that hinders the supply of oxygen and continuously perform stable power generation. In addition, since the support surface is not coated with a hydrophobic film, the conductivity of the support does not decrease, and the amount of catalyst metal that can be supported does not decrease.

更に、本発明の触媒担体を用いる場合には、プラズマ処理を施していないカーボン材料を担体とする場合と比較して、触媒金属の活性を向上させることができる。これは、カーボン材料の表面に官能基が付与されていることによって、触媒金属の電子状態に影響が生じ、これにより触媒金属の活性が向上するものと推測される。このため、プラズマ処理を施したカーボン材料を触媒担体とすることによって、触媒金属の質量当たりの触媒活性が向上し、触媒金属量の低減が可能となる。   Furthermore, when the catalyst carrier of the present invention is used, the activity of the catalyst metal can be improved as compared with the case where a carbon material not subjected to plasma treatment is used as a carrier. This is presumed that the functional state is imparted to the surface of the carbon material, thereby affecting the electronic state of the catalyst metal, thereby improving the activity of the catalyst metal. For this reason, by using the carbon material subjected to the plasma treatment as the catalyst carrier, the catalytic activity per mass of the catalytic metal is improved, and the amount of the catalytic metal can be reduced.

上記した方法でプラズマ処理を施して得られるカーボン材料は、固体高分子形燃料電池の電極触媒用担体として好適に用いることができる。特に、フラッディング現象の防止効果を有することから、カソード(酸素極)用の触媒担体として有用性が高いものである。   The carbon material obtained by performing the plasma treatment by the above-described method can be suitably used as an electrode catalyst carrier for a polymer electrolyte fuel cell. In particular, since it has an effect of preventing flooding, it is highly useful as a catalyst carrier for a cathode (oxygen electrode).

本発明の触媒担体に担持させる触媒金属としては、従来から、固体高分子形燃料電池の触媒物質として知られている白金、白金合金などを使用することができる。   As the catalyst metal to be supported on the catalyst carrier of the present invention, platinum, platinum alloys and the like that are conventionally known as catalyst materials for polymer electrolyte fuel cells can be used.

本発明の触媒担体に触媒金属を担持させる方法としては、例えば、溶解乾燥法、気相法などの公知の方法を適用できる。   As a method for supporting the catalyst metal on the catalyst carrier of the present invention, for example, a known method such as a dissolution drying method or a gas phase method can be applied.

触媒担体上に担持させる触媒金属の量については特に限定はないが、本発明の触媒担体を用いると、通常のカーボン材料を担体とする場合と比べて触媒活性が向上するので、触媒金属の使用量を低減した場合にも優れた触媒活性を発揮することができる。例えば、触
媒金属の担持量は、触媒担体と触媒金属の合計量を基準として10〜60重量%程度の範囲とすればよい。
The amount of catalyst metal to be supported on the catalyst carrier is not particularly limited. However, when the catalyst carrier of the present invention is used, the catalytic activity is improved as compared with the case of using a normal carbon material as a carrier. Even when the amount is reduced, excellent catalytic activity can be exhibited. For example, the supported amount of the catalyst metal may be in the range of about 10 to 60% by weight based on the total amount of the catalyst carrier and the catalyst metal.

上記した触媒担体を用いた固体高分子形燃料電池は、該触媒担体をカソード用触媒担体として使用する以外は、その他の構造、例えば、高分子電解質膜、膜−電極接合体、セル構造等については、公知の固体高分子形燃料電池と同様とすればよい。   The polymer electrolyte fuel cell using the catalyst carrier described above has other structures such as a polymer electrolyte membrane, a membrane-electrode assembly, a cell structure, etc., except that the catalyst carrier is used as a cathode catalyst carrier. May be the same as that of a known polymer electrolyte fuel cell.

例えば、高分子電解質膜としては、パーフルオロカーボン系、スチレン−ジビニルベンゼン共重合体系、ポリベンズイミダゾール系をはじめとする各種イオン交換樹脂膜、無機高分子イオン交換膜、有機―無機複合体高分子イオン交換膜等を使用することができる。   For example, polymer electrolyte membranes include various ion exchange resin membranes such as perfluorocarbon, styrene-divinylbenzene copolymer, polybenzimidazole, inorganic polymer ion exchange membrane, and organic-inorganic composite polymer ion exchange. A membrane or the like can be used.

固体高分子電解質膜と電極触媒との接合体は、公知の方法により作製することができる。例えば、触媒粉末と電解質溶液とを混合して作製した触媒インクを薄膜化させた後、電解質膜上にホットプレスする方法、あるいは直接高分子膜上に塗布・乾燥する方法などが適用される。その他にも、吸着還元法、無電解めっき法やスパッタ、CVDなどの方法で固体高分子膜に直接触媒を取り付けることもできる。また、ガス拡散層や集電体に直接触媒インクを塗布・乾燥する、あるいは前駆体となる金属錯体を含浸・還元するなどの方法によって電極を作製してもよい。   The joined body of the solid polymer electrolyte membrane and the electrode catalyst can be produced by a known method. For example, a method in which a catalyst ink produced by mixing catalyst powder and an electrolyte solution is thinned and then hot-pressed on the electrolyte membrane or directly applied and dried on the polymer membrane is applied. In addition, the catalyst can be directly attached to the solid polymer film by a method such as adsorption reduction, electroless plating, sputtering, or CVD. Further, the electrode may be produced by a method such as applying and drying the catalyst ink directly on the gas diffusion layer or the current collector, or impregnating or reducing the metal complex as the precursor.

得られた膜−電極接合体の両面をカーボンペーパー、カーボンクロスなどの集電体で挟んでセルに組み込むことによって、燃料電池セルを作製することができる。   A fuel battery cell can be produced by sandwiching both surfaces of the obtained membrane-electrode assembly between current collectors such as carbon paper and carbon cloth and incorporating them into the cell.

本発明によれば、固体高分子形燃料電池の触媒担体用カーボン材料の導電性や触媒担持能を大きく低下させることなく、該カーボン材料に疎水性を付与することができる。本発明によって得られるカーボン材料を固体高分子形燃料電池の触媒担体として用いることにより、フラッディング現象を緩和して、継続して安定な発電を行うことが可能となる。   According to the present invention, hydrophobicity can be imparted to the carbon material without significantly reducing the conductivity and catalyst supporting ability of the carbon material for the catalyst carrier of the polymer electrolyte fuel cell. By using the carbon material obtained by the present invention as a catalyst support for a polymer electrolyte fuel cell, it is possible to alleviate the flooding phenomenon and continuously perform stable power generation.

更に、本発明方法によって処理されたカーボン材料を触媒担体とすることによって、プラズマ処理を施していないカーボン材料を担体とする場合と比較して、触媒金属の活性を向上させることができ、その結果、触媒金属量の低減が可能となる。   Furthermore, by using the carbon material treated by the method of the present invention as a catalyst carrier, the activity of the catalyst metal can be improved as compared with the case of using a carbon material not subjected to plasma treatment as a carrier, and as a result. The amount of catalytic metal can be reduced.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
プラズマ処理
内径35mmの石英管を反応管とする誘導型RFプラズマ装置を用い、反応管内に被処理物であるカーボンブラック(比表面積254m/g、商標名:Vulcan XC 72、Cabot
社製)を300mg入れた。
Example 1
Using an induction type RF plasma apparatus using a quartz tube having an inner diameter of 35 mm as a reaction tube as a reaction tube, carbon black (specific surface area: 254 m 2 / g, trade names: Vulcan XC 72, Cabot) as an object to be processed in the reaction tube.
300 mg).

次いで、反応管内にヘキサフルオロエタン(C)を流量2.7sccm(標準状態換算流量cm/min)で供給し、周波数13.5MHz、電力10〜100Wの範囲の高周波を付与して、プラズマ処理を行った。反応管内の圧力は80Pa(0.6torr)とした。処理時間は、下記表1に示すとおりである。 Next, hexafluoroethane (C 2 F 6 ) was supplied into the reaction tube at a flow rate of 2.7 sccm (standard state converted flow rate cm 3 / min), and a high frequency in the range of 13.5 MHz frequency and 10 to 100 W power was applied. Plasma treatment was performed. The pressure in the reaction tube was 80 Pa (0.6 torr). The processing time is as shown in Table 1 below.

また、ヘキサフルオロエタン(C)を単独で供給することに代えて、ヘキサフルオロエタン(C)(流量2.7sccm)と酸素(流量0.8sccm)を同時に供給して、同様にして、プラズマ処理を行った。反応管内の圧力は、90Pa(0.7torr)とした。 Further, instead of supplying hexafluoroethane (C 2 F 6 ) alone, hexafluoroethane (C 2 F 6 ) (flow rate 2.7 sccm) and oxygen (flow rate 0.8 sccm) are supplied simultaneously, Similarly, plasma treatment was performed. The pressure in the reaction tube was 90 Pa (0.7 torr).

処理前及び処理後のカーボンブラックの水の接触角を下記表1に示す。   Table 1 below shows the water contact angles of the carbon black before and after the treatment.

電極触媒の調製
上記した方法でプラズマ処理が施されたカーボンブラック200mgをエタノール50mlに分散させた後、白金含有量10.3g/リットルのPt(NO2)2(NH3)2エタノール溶液2.21mlを加えて1時間放置した。その後、ロータリーエバポレーターによりエタノールを除去して、Pt(NO2)2(NH3)2が担体表面に付着した試料を得た。この試料を反応管につめ、10%H2−90%N2気流中に250℃で2時間保持し、Pt(NO2)2(NH3)2を白金微粒子に還元した。これらの操作により、10重量%の白金微粒子が担体表面に担持された電極触媒が得られた。
Preparation of electrode catalyst After dispersing 200 mg of carbon black plasma-treated by the above method in 50 ml of ethanol, Pt (NO 2 ) 2 (NH 3 ) 2 having a platinum content of 10.3 g / liter. Ethanol solution 2.21ml was added and left for 1 hour. Thereafter, ethanol was removed by a rotary evaporator to obtain a sample in which Pt (NO 2 ) 2 (NH 3 ) 2 was adhered to the support surface. This sample was put in a reaction tube and kept in a 10% H 2 -90% N 2 stream at 250 ° C. for 2 hours to reduce Pt (NO 2 ) 2 (NH 3 ) 2 to platinum fine particles. By these operations, an electrode catalyst having 10% by weight of platinum fine particles supported on the support surface was obtained.

触媒活性試験
上記した方法で得られた各電極触媒について、酸素還元に対する活性を次の方法で評価した。
Catalyst activity test Each electrode catalyst obtained by the above-described method was evaluated for its activity against oxygen reduction by the following method.

まず、電極触媒を回転ディスク電極のガラス状カーボン上に載せて、その上に水とエタノールとの混合溶媒に溶かした固体高分子電解質材料(商標名“ナフィオン”、デュポン社製)を滴下し、次いで加熱して溶媒を除去することにより、PEFC用の電極(カソード)を調製した。   First, the electrode catalyst is placed on the glassy carbon of the rotating disk electrode, and a solid polymer electrolyte material (trade name “Nafion”, manufactured by DuPont) dissolved in a mixed solvent of water and ethanol is dropped on the electrode catalyst, Next, an electrode (cathode) for PEFC was prepared by heating to remove the solvent.

次いで、この電極を使ってアルゴン置換した0.1M過塩素酸水溶液中で水素吸脱着波を測定し、その面積を見積もることにより、作製した作用電極の白金表面積を求めた。次いで、0.1M過塩素酸水溶液にバブリングするガス種を酸素に変えて30分間酸素置換を行った後、1V (可逆水素電極(RHE)基準)から0V(可逆水素電極基準)まで
1mV/秒の速度で電位走査を行い、電流−電位曲線を求めた。
Subsequently, the hydrogen adsorption / desorption wave was measured in a 0.1 M perchloric acid aqueous solution substituted with argon using this electrode, and the area of the electrode was estimated to obtain the platinum surface area of the produced working electrode. Next, after changing the gas species to be bubbled into 0.1M perchloric acid aqueous solution to oxygen and performing oxygen substitution for 30 minutes, 1 mV / second from 1 V (reversible hydrogen electrode (RHE) standard) to 0 V (reversible hydrogen electrode standard) A potential scan was performed at a speed of 1 to obtain a current-potential curve.

尚、ある電位における真の動力学的電流量ikinの値は、その電位で測定して得られた
実測値iobsと、拡散限界電流ilimを用いて、次の式で求めることができる。
The value of the true kinetic current amount i kin at a certain potential can be obtained by the following equation using the actual measurement value i obs obtained by measurement at the potential and the diffusion limit current i lim. .

Figure 2007149513
Figure 2007149513

表1に、0.8V(可逆水素電極基準)の電位での動力学的電流量ikinの計算値を示
す。得られたikinは、白金表面積あたりの数値であり、各電極触媒の酸素還元に対する
活性を示す指標となる。
Table 1 shows a calculated value of the kinetic current amount i kin at a potential of 0.8 V (reversible hydrogen electrode reference). The obtained i kin is a numerical value per platinum surface area and is an index indicating the activity of each electrode catalyst for oxygen reduction.

Figure 2007149513
Figure 2007149513

以上の結果から明らかなように、ヘキサフルオロエタンの存在下又はヘキサフルオロエタンと酸素の存在下にプラズマ処理を行って得られるカーボンブラックは、未処理のカーボンブラックと比較して水の接触角が非常に大きく、表面が疎水化されていることがわかる。この様な疎水化されたカーボンブラックに白金を担持した触媒は、未処理のカーボンブラックを担体とする場合と比較して、白金表面積あたりの動力学的電流量ikinが大き
く、酸素還元に対して高い触媒活性を有することが明らかである。
As is clear from the above results, carbon black obtained by performing plasma treatment in the presence of hexafluoroethane or in the presence of hexafluoroethane and oxygen has a water contact angle as compared to untreated carbon black. It is very large and it can be seen that the surface is hydrophobized. Such a catalyst having platinum supported on hydrophobic carbon black has a large kinetic current amount i kin per platinum surface area compared to the case where untreated carbon black is used as a carrier, and is effective in reducing oxygen. And has a high catalytic activity.

実施例2
実施例1においてヘキサフルオロエタン(C)の存在下に40Wで60分間のプラズマ処理を行って得たカーボンブラックに白金を担持させた触媒をカソード触媒、カーボンブラックに白金を担持させた触媒(田中貴金属製、TEC10V40E)をアノード触媒、Nafion 117(商標名、Du Pont社 Nafion PSFA Membrane N117)を電解質膜として用いてJournal of Electrochemical Society, 150(9)A1225-A1230に記載されている方法で膜電極接
合体を調製した。カソード極における使用白金量は0.085mg/cm、アノード極における白金使用量は、0.4mg/cmとした。
Example 2
In Example 1, a catalyst in which platinum was supported on carbon black obtained by performing a plasma treatment at 40 W for 60 minutes in the presence of hexafluoroethane (C 2 F 6 ) was a cathode catalyst, and platinum was supported on carbon black. A method described in Journal of Electrochemical Society, 150 (9) A1225-A1230 using a catalyst (manufactured by Tanaka Kikinzoku, TEC10V40E) as an anode catalyst and Nafion 117 (trade name, Nafion PSFA Membrane N117 from Du Pont) as an electrolyte membrane A membrane / electrode assembly was prepared. Use amount of platinum in the cathode electrode 0.085mg / cm 2, amount of platinum used in the anode electrode was set to 0.4 mg / cm 2.

この膜電極接合体のカソード側に酸素(加湿ガス、大気圧)を300ml / 分、アノード側に水素(加湿ガス、大気圧)を150ml / 分で吹き込み、セル温度50℃で発電実験を行った。実験用セルとしては、JARI標準セル(電極面積25cm)を用いた。 Oxygen (humidified gas, atmospheric pressure) was blown into the cathode side of this membrane electrode assembly at 300 ml / min and hydrogen (humidified gas, atmospheric pressure) was blown into the anode side at 150 ml / min, and a power generation experiment was conducted at a cell temperature of 50 ° C. . As an experimental cell, a JARI standard cell (electrode area 25 cm 2 ) was used.

また、比較実験として、プラズマ処理を行っていないカーボンブラック(Vulcan XC 72、Cabot社製)をカソード触媒用担体として用いること以外は、上記発電実験と同様の条
件で発電実験を行った。
Further, as a comparative experiment, a power generation experiment was performed under the same conditions as the above power generation experiment, except that carbon black not subjected to plasma treatment (Vulcan XC 72, manufactured by Cabot) was used as a cathode catalyst carrier.

以上の発電実験結果を図1に示す。図1において、記号:FFで表されているものが、プラズマ処理未処理のカーボンブラックを担体とした場合の結果であり、記号:DGで表されているものが、プラズマ処理を施されたカーボンブラックを担体とした場合の結果である。   The results of the above power generation experiment are shown in FIG. In FIG. 1, the symbol: FF represents the result when the plasma-treated untreated carbon black is used as the carrier, and the symbol: DG represents the plasma-treated carbon. It is a result when black is used as a carrier.

図1から明らかなように、ヘキサフルオロエタンの存在下にプラズマ処理を行って得られたカーボンブラック担体を用いた場合には、プラズマ処理未処理の担体を用いた場合と比較して、最大出力密度は約1.7倍となり、セル電圧が0.7Vの時の電流密度は、約2倍となった。この結果から、ヘキサフルオロエタンの存在下にプラズマ処理を行って得られたカーボンブラックを触媒担体とする場合には、フラッディング現象が緩和され、そ
れにより最大出力密度が増大したものと考えられる。更に、電流密度が大きくなっていることから、カーボンブラックの表面に付与された疎水性官能基の存在によって白金微粒子の活性が向上したことも推測される。
As can be seen from FIG. 1, when the carbon black support obtained by performing the plasma treatment in the presence of hexafluoroethane is used, the maximum output is compared with the case of using the support not subjected to the plasma treatment. The density was about 1.7 times, and the current density when the cell voltage was 0.7 V was about twice. From this result, it is considered that when carbon black obtained by performing plasma treatment in the presence of hexafluoroethane is used as a catalyst carrier, the flooding phenomenon is alleviated, thereby increasing the maximum power density. Furthermore, since the current density is increased, it is assumed that the activity of the platinum fine particles is improved by the presence of the hydrophobic functional group imparted to the surface of the carbon black.

実施例3
カソード触媒として下記の4種類の触媒を用い、それ以外は、実施例2と同様にして膜電極接合体を作製して、発電実験を行った。
*触媒の種類:
DF:ヘキサフルオロエタンの存在下にカーボンブラック(Vulcan XC 72)に対して40Wで60分間のプラズマ処理を行って得られた担体に白金を担持させた触媒(白金使用量:0.17 mg/cm2)。
DH:プラズマ処理未処理のカーボンブラック(Vulcan XC 72)に白金を担持させた触媒(白金使用量:0.25 mg/cm2 )。
DC:プラズマ処理未処理のカーボンブラック(Vulcan XC 72)にフッ化カーボン粉末を混合し、白金を担持させた触媒(10 wt%フッ化カーボン粉末混合(白金+カーボンブラック+フッ化カーボンの合計量基準)、白金使用量:0.25 mg/cm2)。
Example 3
Using the following four types of catalysts as the cathode catalyst, a membrane electrode assembly was produced in the same manner as in Example 2 except that the power generation experiment was performed.
* Catalyst types:
DF: catalyst in which platinum is supported on a support obtained by performing plasma treatment at 40 W for 60 minutes on carbon black (Vulcan XC 72) in the presence of hexafluoroethane (platinum usage: 0.17 mg / cm 2 ).
DH: a catalyst in which platinum is supported on carbon black (Vulcan XC 72) not subjected to plasma treatment (platinum used amount: 0.25 mg / cm 2 ).
DC: Plasma treated untreated carbon black (Vulcan XC 72) mixed with carbon fluoride powder and platinum supported catalyst (10 wt% fluorocarbon powder mixture (total amount of platinum + carbon black + fluorocarbon) Standard), platinum usage: 0.25 mg / cm 2 ).

DI: プラズマ処理未処理のカーボンブラック(Vulcan XC 72)にPTFE粉末を混合し、
白金を担持させた触媒(10 wt%PTFE粉末混合(白金+カーボンブラック+PTFEの合計量基準)、白金使用量:0.25 mg/cm2)。
DI: PTFE powder is mixed with plasma-treated untreated carbon black (Vulcan XC 72)
Catalyst carrying platinum (10 wt% PTFE powder mixture (platinum + carbon black + PTFE based on total amount), platinum usage: 0.25 mg / cm 2 ).

以上の発電実験結果を図2に示す。図2に示された最大出力密度(Power density)の
測定結果によれば、プラズマ処理を行ったカーボンブラックをカソード触媒用担体とした場合(DF)、カソード触媒にフッ化カーボン粉末添加した場合(DC)、及びカソード触媒にPTFE粉末添加した場合(DI)には、いずれも、プラズマ処理未処理のカーボンブラックをカソード触媒用担体とした場合(DH)と比較して、最大出力密度が約1.2倍に増加した。この結果から、カソード触媒にフッ化カーボン粉末又はPTFE粉末添加を添加した場合と、カソード担体にプラズマ処理を行った場合には、いずれも、フラッディング現象を緩和する効果が生じたものと考えられる。尚、プラズマ処理を行ったカーボンブラックを担体とした触媒では、白金の使用量が2/3であるにもかかわらず、フッ化カーボン粉末又はPTFE粉末添加を添加した場合と同様の最大出力密度となっており、特に、撥水効果が効率的に生じているものと考えられる。
The results of the above power generation experiment are shown in FIG. According to the measurement result of the maximum power density (Power density) shown in FIG. 2, when carbon black subjected to plasma treatment is used as a cathode catalyst support (DF), when carbon fluoride powder is added to the cathode catalyst ( DC), and when PTFE powder is added to the cathode catalyst (DI), the maximum power density is about 1 compared to the case of using carbon black not treated with plasma as a carrier for cathode catalyst (DH). Increased 2 times. From these results, it is considered that both the case where the addition of carbon fluoride powder or PTFE powder is added to the cathode catalyst and the case where the cathode carrier is subjected to plasma treatment have the effect of alleviating the flooding phenomenon. In addition, in the case of a catalyst using carbon black that has been subjected to plasma treatment as a carrier, the maximum output density is the same as in the case of addition of carbon fluoride powder or PTFE powder, even though the amount of platinum used is 2/3. In particular, it is considered that the water-repellent effect is efficiently generated.

また、セル電圧が0.7Vの時の電流密度は、いずれの触媒を用いた場合にもほぼ同様であったが、プラズマ処理を行ったカーボンブラックを担体とした場合には、白金使用量が2/3であることから、非常に高い触媒活性が発揮されたものと判断できる。   The current density when the cell voltage was 0.7 V was almost the same when any catalyst was used. However, when the plasma-treated carbon black was used as a carrier, the amount of platinum used was Since it is 2/3, it can be judged that very high catalytic activity was exhibited.

実施例2における発電実験結果を示すグラフ。10 is a graph showing a power generation experiment result in Example 2. 実施例3における発電実験結果を示すグラフ。10 is a graph showing a power generation experiment result in Example 3.

Claims (5)

フッ化炭素化合物の存在下又はフッ化炭素化合物と酸素の存在下に、カーボン材料に対してプラズマ処理を施すことによってカーボン材料表面の水の接触角を90°以上とする、ことを特徴とする固体高分子形燃料電池用電極触媒担体の製造方法。 The contact angle of water on the surface of the carbon material is set to 90 ° or more by subjecting the carbon material to plasma treatment in the presence of a fluorocarbon compound or in the presence of a fluorocarbon compound and oxygen. A method for producing an electrode catalyst carrier for a polymer electrolyte fuel cell. フッ化炭素化合物が飽和フッ化炭素であり、カーボン材料がカーボンブラックである請求項1に記載の方法。 The method according to claim 1, wherein the fluorocarbon compound is saturated fluorocarbon and the carbon material is carbon black. 水の接触角が90°以上のカーボン材料からなる固体高分子形燃料電池用電極触媒担体。 An electrode catalyst carrier for a polymer electrolyte fuel cell comprising a carbon material having a water contact angle of 90 ° or more. 請求項3に記載の電極触媒担体上に触媒金属を担持してなる固体高分子形燃料電池用電極触媒。 An electrode catalyst for a polymer electrolyte fuel cell, comprising a catalyst metal supported on the electrode catalyst carrier according to claim 3. 請求項4の電極触媒を構成要素として含む固体高分子形燃料電池。 A polymer electrolyte fuel cell comprising the electrode catalyst according to claim 4 as a constituent element.
JP2005342981A 2005-11-29 2005-11-29 Catalyst support for polymer electrolyte fuel cell Pending JP2007149513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005342981A JP2007149513A (en) 2005-11-29 2005-11-29 Catalyst support for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005342981A JP2007149513A (en) 2005-11-29 2005-11-29 Catalyst support for polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2007149513A true JP2007149513A (en) 2007-06-14

Family

ID=38210676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005342981A Pending JP2007149513A (en) 2005-11-29 2005-11-29 Catalyst support for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2007149513A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019519080A (en) * 2016-06-30 2019-07-04 フオルクスワーゲン・アクチエンゲゼルシヤフトVolkswagen Aktiengesellschaft Method of producing a supported catalyst material for a fuel cell
WO2019208310A1 (en) * 2018-04-25 2019-10-31 ステラケミファ株式会社 Fuel cell catalyst, membrane electrode assembly for fuel cell, and fuel cell provided therewith
WO2020209346A1 (en) * 2019-04-09 2020-10-15 凸版印刷株式会社 Membrane electrode assembly and polymer electrolyte fuel cell
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
JP7476888B2 (en) 2019-04-09 2024-05-01 Toppanホールディングス株式会社 Membrane electrode assembly and polymer electrolyte fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270052A (en) * 1997-03-27 1998-10-09 Toyota Central Res & Dev Lab Inc Manufacture of electrode for gas reaction or generation based battery
JP2000239704A (en) * 1999-02-19 2000-09-05 Matsushita Electric Ind Co Ltd Water repellant electrically conductive material, its production and electrode for fuel battery using the same
WO2002073722A1 (en) * 2001-03-08 2002-09-19 Sony Corporation Gas diffusive electrode body, method of manufacturing the electrode body, and electrochemical device
JP2006216503A (en) * 2005-02-07 2006-08-17 Nissan Motor Co Ltd Catalyst layer of solid polymer fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270052A (en) * 1997-03-27 1998-10-09 Toyota Central Res & Dev Lab Inc Manufacture of electrode for gas reaction or generation based battery
JP2000239704A (en) * 1999-02-19 2000-09-05 Matsushita Electric Ind Co Ltd Water repellant electrically conductive material, its production and electrode for fuel battery using the same
WO2002073722A1 (en) * 2001-03-08 2002-09-19 Sony Corporation Gas diffusive electrode body, method of manufacturing the electrode body, and electrochemical device
JP2006216503A (en) * 2005-02-07 2006-08-17 Nissan Motor Co Ltd Catalyst layer of solid polymer fuel cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
JP2019519080A (en) * 2016-06-30 2019-07-04 フオルクスワーゲン・アクチエンゲゼルシヤフトVolkswagen Aktiengesellschaft Method of producing a supported catalyst material for a fuel cell
US11489167B2 (en) 2016-06-30 2022-11-01 Audi Ag Method for producing a supported catalyst material for a fuel cell
CN111837272A (en) * 2018-04-25 2020-10-27 斯泰拉化工公司 Catalyst for fuel cell, membrane electrode assembly for fuel cell, and fuel cell provided with same
US11469424B2 (en) 2018-04-25 2022-10-11 Stella Chemifa Corporation Fuel cell catalyst, membrane electrode assembly for fuel cell, and fuel cell including the same
WO2019208310A1 (en) * 2018-04-25 2019-10-31 ステラケミファ株式会社 Fuel cell catalyst, membrane electrode assembly for fuel cell, and fuel cell provided therewith
WO2020209346A1 (en) * 2019-04-09 2020-10-15 凸版印刷株式会社 Membrane electrode assembly and polymer electrolyte fuel cell
JP7476888B2 (en) 2019-04-09 2024-05-01 Toppanホールディングス株式会社 Membrane electrode assembly and polymer electrolyte fuel cell
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders

Similar Documents

Publication Publication Date Title
JP2007149513A (en) Catalyst support for polymer electrolyte fuel cell
US7132385B2 (en) High loading supported carbon catalyst, method of preparing the same, catalyst electrode including the same, and fuel cell including the catalyst electrode
KR100669456B1 (en) Electrode for fuel cell, fuel cell comprising the same, and method for preparing the smme
US8007957B2 (en) Electrode for fuel cell, fuel cell system comprising the same, and method for preparing the same
CA2605342C (en) Hydrophobic catalyst layer for polymer electrolyte fuel cell and method of producing the same, and polymer electrolyte fuel cell and method of producing the same
EP2270907B1 (en) Catalyst for fuel cell, fuel cell system and associated methods
KR20070106199A (en) Seperater for fuel cell, method of preparing same, and fuel cell system comprising same
Chabi et al. Electrocatalysis of oxygen reduction reaction on Nafion/platinum/gas diffusion layer electrode for PEM fuel cell
WO2011013206A1 (en) Direct methanol fuel cell and anode used therein
US9105936B2 (en) Fuel cell catalyst, method of preparing same, and membrane-electrode assembly for fuel cell and fuel cell system including same
JP2004172107A (en) Electrocatalyst for fuel cells and manufacturing method thereof
Caillard et al. Effect of Nafion and platinum content in a catalyst layer processed in a radio frequency helicon plasma system
Shao et al. Influence of anode diffusion layer on the performance of a liquid feed direct methanol fuel cell by AC impedance spectroscopy
EP1855335A1 (en) Method and apparatus for producing catalyst layer for fuel cell
JP2009217975A (en) Fuel electrode catalyst, membrane electrode assembly, and fuel cell
Brandalise et al. Preparation and characterization of PtSn/C-rare earth using an alcohol reduction process for ethanol electro-oxidation
Pethaiah et al. Evaluation of platinum catalyzed MEAs for PEM fuel cell applications
Baglio et al. Investigation of IrO 2/Pt electrocatalysts in unitized regenerative fuel cells
Lee et al. Electrochemical characterization of hydrothermally synthesized Pt–Ru–Ni–P catalyst for direct methanol fuel cell
Ergul et al. Oxygen reduction reaction activity of platinum thin films with different densities
Jung et al. Performance comparison of Pt1–xPdx/carbon nanotubes catalysts in both electrodes of polymer electrolyte membrane fuel cells
JP2006331845A (en) Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder
Choi et al. Optimization of hydrophobic additives content in microporous layer for air breathing PEMFC
Wu et al. High pressure organic colloid method for the preparation of high performance carbon nanotube-supported Pt and PtRu catalysts for fuel cell applications
Nefedkin et al. Catalytically active platinum blacks prepared by magnetron sputtering in vacuum and their using in fuel cells with solid polymer electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322