JP2007149512A - Thermo-protector and conductive heat-sensitive fusible material - Google Patents

Thermo-protector and conductive heat-sensitive fusible material Download PDF

Info

Publication number
JP2007149512A
JP2007149512A JP2005342977A JP2005342977A JP2007149512A JP 2007149512 A JP2007149512 A JP 2007149512A JP 2005342977 A JP2005342977 A JP 2005342977A JP 2005342977 A JP2005342977 A JP 2005342977A JP 2007149512 A JP2007149512 A JP 2007149512A
Authority
JP
Japan
Prior art keywords
conductive heat
soluble material
binder
sensitive
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005342977A
Other languages
Japanese (ja)
Inventor
Hideyuki Ichida
英之 市田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2005342977A priority Critical patent/JP2007149512A/en
Publication of JP2007149512A publication Critical patent/JP2007149512A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermo-protector capable of being mounted similarly to other electronic components by a flow method or a reflow method even if the thermo-protector has operating temperatures lower than soldering temperatures of the flow method or the reflow method, and to provide a conductive heat-sensitive fusible material used as a member of the thermo-protector. <P>SOLUTION: A conductive heat-sensitive material formed by binding semiconductor ceramic particles (a) of which the specific resistance has a positive temperature characteristic, and resistor particles (b) with each other by a binder (c) melting at a predetermined temperature is used as the fusible material. When an ambient temperature rises, the specific resistance value of the semiconductor ceramic particles exponentially increases across a specific temperature lower than a fusion starting point of the binder, as the result, the density of a current flowing through the resistor particles is drastically increased, the conductive heat-sensitive fusible material is heated by the Joule heat generation of the resistor particles, the binder is melted, and the binder liquidized. By setting the melting point or softening point of the binder of the conductive heat-sensitive fusible material higher than the soldering temperatures of the flow method or reflow method, the thermo-protector can be mounted by the flow method or the like without causing a trouble. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はサーモプロテクタ及びそのサーモプロテクタに使用する通電性感熱可溶材に関し、特に、フロー法またはリフロー法によりサーモプロテクタを半導体装置、コンデンサ、抵抗等の回路素子と同様に実装するのに有用なものである。   The present invention relates to a thermoprotector and a conductive heat-sensitive soluble material used for the thermoprotector, and particularly useful for mounting a thermoprotector in the same manner as a circuit element such as a semiconductor device, a capacitor, and a resistor by a flow method or a reflow method. It is.

電子・電気機器のサーモプロテクタとして、所定の温度で動作する合金型温度ヒューズが知られている。
例えば、FETに合金型温度ヒューズを熱的に接触させ、FETが異常発熱すると合金型温度ヒューズのヒューズエレメントを溶断させてFETへの課電を遮断することが行われている。
FET等の回路素子の回路基板への実装は、回路素子のリード導体を回路基板のスルーホールに差し込み、噴流はんだ槽のはんだ噴流に接触させ、次で付着はんだを冷却凝固させるフロー法やチップタイプ回路素子を回路基板にソルダーペーストで仮固定し、これを加熱炉に通してソルダーペーストを溶融させ、次で凝固させるリフロー法により行われている。
前記のサーモプロテクタ、例えば合金型温度ヒューズをフロー法またはリフロー法で実装すると、合金型温度ヒューズのヒューズエレメント(可溶合金片)の溶融損傷が避けられないので、前記半導体装置等を実装したのちに、合金型温度ヒューズを後付けしている。
しかしながら、この後付け手作業で行われ、作業性に劣り、その対策が要請される。
2. Description of the Related Art An alloy type thermal fuse that operates at a predetermined temperature is known as a thermo protector for electronic and electrical equipment.
For example, an alloy type thermal fuse is brought into thermal contact with the FET, and when the FET abnormally generates heat, the fuse element of the alloy type thermal fuse is blown to cut off the power applied to the FET.
Mounting circuit elements such as FETs on the circuit board is a flow method or chip type in which the lead conductor of the circuit element is inserted into the through hole of the circuit board, brought into contact with the solder jet of the jet solder bath, and then the attached solder is cooled and solidified. A circuit element is temporarily fixed to a circuit board with a solder paste, and this is passed through a heating furnace to melt the solder paste and then solidify by a reflow method.
When the thermo protector, for example, an alloy type thermal fuse is mounted by the flow method or the reflow method, the fuse element (soluble alloy piece) of the alloy type thermal fuse is unavoidably melted. Therefore, after mounting the semiconductor device, etc. In addition, an alloy type thermal fuse is retrofitted.
However, this work is performed manually afterwards, and the workability is inferior, and countermeasures are required.

そこで、はんだ付け時に温度ヒューズ嵌着用ケースを他の回路素子と同様に実装し、この実装後に温度ヒューズを前記ケースに装着することが提案されている(特許文献1)。
また、温度ヒューズのヒューズエレメント(可溶合金片)の融点Tmをフロー法またはリフロー法はんだ付けの温度よりも高くし、ヒューズエレメントを加熱するための抵抗体を付設した抵抗体付き合金型温度ヒューズをフロー法またはリフロー法はんだ付け時に実装し、常温よりΔT℃の昇温で動作させるとすると、前記抵抗体の通電発熱によりヒューズエレメントの常時温度を常温より(Tm−ΔT)℃だけ高く保持することが提案されている(特許文献2)。
特開2000−31620号公報 特開平08−64097号公報
Thus, it has been proposed to mount a thermal fuse fitting case in the same manner as other circuit elements during soldering, and to attach the thermal fuse to the case after this mounting (Patent Document 1).
In addition, an alloy-type thermal fuse with a resistor, in which the melting point Tm of the fuse element (fusible alloy piece) of the thermal fuse is made higher than the temperature of the flow method or reflow method soldering, and a resistor for heating the fuse element is attached. Is mounted at the time of soldering by the flow method or the reflow method and is operated at a temperature rise of ΔT ° C. from room temperature, the fuse element always keeps the temperature of the fuse element higher than the normal temperature by (Tm−ΔT) ° C. (Patent Document 2).
JP 2000-31620 A Japanese Patent Laid-Open No. 08-64097

しかしながら、前者では、フロー法またはリフロー法はんだ付け後に、実装した温度ヒューズ嵌着用ケースに温度ヒューズを装着する必要があり、この装着を手作業で行わざるを得ず、作業性のさしたる向上は期待できない。
また、後者の抵抗体付き合金型温度ヒューズでは寸法アップが避けられず、しかも常時、抵抗体の通電発熱によるヒューズエレメントの温度バイアス課けが必要であり、消費電力量アップの不具合もある。
However, in the former method, it is necessary to attach a thermal fuse to the mounted thermal fuse fitting case after soldering by the flow method or reflow method, and this installation must be done manually, and a significant improvement in workability is expected. Can not.
Further, in the latter type of alloy-type thermal fuse with a resistor, an increase in size is unavoidable, and it is always necessary to impose a temperature bias of the fuse element by energizing heat generation of the resistor, which causes a problem of an increase in power consumption.

本発明の目的は、フロー法またはリフロー法はんだ付け温度よりも低い温度を動作温度と死するサーモプロテクタをフロー法またはリフロー法により他の電子部品と同様に実装できるサーモプロテクタ及びそのサーモプロテクタの部材としての通電性感熱可溶材を提供することにある。   An object of the present invention is to provide a thermo protector capable of mounting a thermo protector whose temperature is lower than an operating temperature lower than the soldering temperature of the flow method or reflow method in the same manner as other electronic components by the flow method or reflow method, and a member of the thermo protector It is providing the electroconductive heat-sensitive soluble material as.

請求項1に係る通電性感熱可溶材は、比抵抗が正の温度特性である半導体セラミックス粒子と抵抗体粒子とを、所定の温度で融解するバインダーで結合してなり、半導体セラミックス粒子及び抵抗体粒子間が接触されて所定の比抵抗を有することを特徴とする。
請求項2に係る通電性感熱可溶材は、比抵抗が正の温度特性である半導体セラミックス粒子を、所定の温度で融解するバインダーで結合してなり、半導体セラミックス粒子間が接触されて所定の比抵抗を有することを特徴とする。
請求項3に係る通電性感熱可溶材は、請求項1または2の通電性感熱可溶材において、バインダーが可溶合金であることを特徴とする。
請求項4に係る通電性感熱可溶材は、請求項3の通電性感熱可溶材において、半導体セラミックス粒子または抵抗体粒子の少なくとも何れかが可溶合金と同一の金属または可溶合金との濡れ性が高い金属で被覆されていること特徴とする。
請求項5に係る通電性感熱可溶材は、請求項1または2の通電性感熱可溶材において、バインダーが樹脂或は油脂であることを特徴とする。
請求項6に係る通電性感熱可溶材は、請求項5に係る通電性感熱可溶材において、油脂に炭素または導電性金属粒体が含有されていることを特徴とする。
請求項7に係る通電性感熱可溶材は、請求項1〜6何れかの通電性感熱可溶材において、半導体セラミックス粒子がVまたはBaTiOをベースとする半導体セラミックスであることを特徴とする。
請求項8に係る通電性感熱可溶材は、請求項1、3、4〜7何れかの通電性感熱可溶材において、抵抗体粒子が金属の酸化物、炭化物、ケイ化物、硫化物、窒化物、または単体金属或は金属間化合物または炭素の何れかであることを特徴とする。
請求項9に係るサーモプロテクタは、弾性を有する導電片が、弾性歪エネルギーを保持した状態で電極間に固定され、少なくとも一方の固定が、請求項1〜8何れかの通電性感熱可溶材で行われていることを特徴とする。
請求項10に係るサーモプロテクタは、一端固定の歪まされたバネの他端と、一端が一方の電極に固定された導電片の他端とが共に他方の電極に請求項1〜8何れかの通電性感熱可溶材で固定されていることを特徴とする。
請求項11に係るサーモプロテクタは、請求項1〜8何れかの通電性感熱可溶材でヒューズエレメントが形成されていることを特徴とする。
The electrically conductive heat-soluble material according to claim 1 is formed by bonding semiconductor ceramic particles having positive specific resistance and resistor particles with a binder that melts at a predetermined temperature. The particles are in contact with each other and have a predetermined specific resistance.
An electrically conductive heat-sensitive soluble material according to claim 2 is formed by bonding semiconductor ceramic particles having a positive specific resistance temperature characteristic with a binder that melts at a predetermined temperature. It has a resistance.
The conductive heat-sensitive soluble material according to claim 3 is the conductive heat-sensitive soluble material according to claim 1 or 2, wherein the binder is a soluble alloy.
The conductive heat-sensitive soluble material according to claim 4 is the conductive heat-sensitive soluble material according to claim 3, wherein at least one of the semiconductor ceramic particles and the resistor particles is wettable with the same metal or soluble alloy as the soluble alloy. It is characterized by being coated with a high metal.
The conductive heat-sensitive soluble material according to claim 5 is characterized in that, in the conductive heat-sensitive soluble material according to claim 1 or 2, the binder is a resin or oil.
The conductive heat-sensitive soluble material according to claim 6 is the conductive heat-sensitive soluble material according to claim 5, characterized in that the fat or oil contains carbon or conductive metal particles.
The electrically conductive thermosensitive soluble material according to claim 7 is characterized in that, in the electrically conductive thermosensitive soluble material according to any one of claims 1 to 6, the semiconductor ceramic particles are semiconductor ceramics based on V 2 O 3 or BaTiO 3. To do.
The conductive heat-sensitive soluble material according to claim 8 is the conductive heat-sensitive soluble material according to any one of claims 1, 3, 4 to 7, wherein the resistor particles are metal oxide, carbide, silicide, sulfide, nitride. Or a single metal, an intermetallic compound, or carbon.
In the thermo protector according to claim 9, the conductive piece having elasticity is fixed between the electrodes while maintaining elastic strain energy, and at least one of the fixings is the electrically conductive heat-sensitive soluble material according to any one of claims 1 to 8. It is characterized by what has been done.
The thermo-protector according to claim 10 is characterized in that the other end of the distorted spring fixed at one end and the other end of the conductive piece with one end fixed to one electrode are both on the other electrode. It is fixed with a conductive heat-sensitive soluble material.
A thermo protector according to an eleventh aspect is characterized in that a fuse element is formed of the conductive heat-sensitive soluble material according to any one of the first to eighth aspects.

本発明に係る通電性感熱可溶材においては、比抵抗が正の温度特性である半導体セラミックス粒子と抵抗体粒子との接触により所定の比抵抗値を有し、これらの粒子がバインダーで結合されて固形を呈している。
この通電性感熱可溶材がサーモプロテクタの通電路中に介在され、周囲温度が上昇すると、バインダーの溶融開始点よりも低いある特定の温度を境として半導体セラミックス粒子の比抵抗値が指数関数的に増加し、その結果、抵抗体粒子を流れる電流の密度が飛躍的に増加し、抵抗体粒子のジュール発熱により通電性感熱可溶材が加熱されてバインダーが溶融され、バインダーが液状化される。
それまでの通電性感熱可溶材の固形性のために弾性歪エネルギーが保持されていた弾性導電片の弾性歪エネルギーが通電性感熱可溶材の液状開始に伴い解放されてサーモプロテクタが動作される。
前記周囲温度の昇温時からサーモプロテクタの動作時までの時間は、半導体セラミックス粒子の比抵抗値の増加が指数関数的であり急峻であるために充分に短くできる。
而して、通電性感熱可溶材のバインダーの溶融開始点をフロー法またはリフロー法はんだ付け温度(例えば260℃)より高くす設定する(例えば290℃に設定する)ことにより、サーモプロテクタを他の回路素子と同様にフロー法またはリフロー法により支障なく実装できる。
In the conductive heat-sensitive fusible material according to the present invention, the specific resistance has a predetermined specific resistance value due to contact between the semiconductor ceramic particles having positive temperature characteristics and the resistor particles, and these particles are bonded with a binder. Presents a solid.
When this conductive heat-sensitive soluble material is interposed in the current path of the thermoprotector and the ambient temperature rises, the specific resistance value of the semiconductor ceramic particles exponentially increases at a certain temperature lower than the melting start point of the binder. As a result, the density of the current flowing through the resistor particles increases dramatically, the conductive heat-sensitive soluble material is heated by Joule heat generation of the resistor particles, the binder is melted, and the binder is liquefied.
The thermo-protector is operated by releasing the elastic strain energy of the elastic conductive piece, which had been retained due to the solid state of the conductive heat-sensitive soluble material, with the start of the liquid state of the conductive heat-soluble soluble material.
The time from when the ambient temperature is raised to when the thermoprotector is operated can be sufficiently shortened because the increase in the specific resistance value of the semiconductor ceramic particles is exponential and steep.
Thus, by setting the melting start point of the binder of the conductive heat-sensitive soluble material to be higher than the flow method or reflow method soldering temperature (for example, 260 ° C.) (for example, set to 290 ° C.), As with circuit elements, it can be mounted without any problems by the flow method or the reflow method.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明に係る通電性感熱可溶材を示す拡大説明図である。
図1において、aは比抵抗が正の温度特性である半導体セラミックス粒子であり、VまたはBaTiOをベースとするものを使用できる。
bは抵抗体粒子であり、金属の酸化物、炭化物、ケイ化物、硫化物、窒化物、または単体金属或は金属間化合物または炭素の何れかを使用できる。
cは所定融点のバインダーであり、半導体セラミックス粒子と抵抗体粒子との間がこのバインダーで結合されてそれらの粒子間が接触されている。このバインダーには、可溶合金や熱可塑性樹脂もしくは油脂を使用できる。熱可塑性樹脂もしくは油脂に炭素や導電性金属粒体を添加して導電性とすることもできる。
前記通電性感熱可溶材の比抵抗は、半導体セラミックス粒子と抵抗体粒子との体積比や各粒子の粒径等の調整により設定される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an enlarged explanatory view showing an electrically conductive heat-sensitive soluble material according to the present invention.
In FIG. 1, a is a semiconductor ceramic particle having a positive specific resistance temperature characteristic, and one based on V 2 O 3 or BaTiO 3 can be used.
b is a resistor particle, and can be any metal oxide, carbide, silicide, sulfide, nitride, or a single metal, an intermetallic compound, or carbon.
c is a binder having a predetermined melting point, and the semiconductor ceramic particles and the resistor particles are bonded by the binder and the particles are in contact with each other. As the binder, a soluble alloy, a thermoplastic resin, or an oil and fat can be used. Carbon or conductive metal particles can be added to the thermoplastic resin or oil to make it conductive.
The specific resistance of the conductive heat-sensitive fusible material is set by adjusting the volume ratio of semiconductor ceramic particles and resistor particles, the particle size of each particle, and the like.

前記通電性感熱可溶材は、例えば、棒状とすることができ、これは半導体セラミックス粒子、抵抗体粒子及び粉状バインダー(半導体セラミックス粒子径及び抵抗体粒子径よりも細かい粒子径)を混合し、これをバインダーの軟化点乃至は融点よりもやや高い温度のもとで型により棒状に加圧成形することにより得ることができる。
また、バインダーの皮膜を被覆した半導体セラミックス粒子とバインダーの皮膜を被覆した抵抗体粒子とをバインダーの軟化点乃至は融点よりもやや高い温度のもとで型により棒状に加圧成形することにより得ることもできる。
半導体セラミックス粒子と抵抗体粒子の双方または一方に可溶金属と同一の金属または可溶金属に対し高い濡れ性を呈する金属例えばAg、Sn、Cu等を被覆することもできる。
The conductive heat-sensitive soluble material can be, for example, a rod-like material, which is a mixture of semiconductor ceramic particles, resistor particles, and a powdery binder (a particle size smaller than the semiconductor ceramic particle size and the resistor particle size), This can be obtained by pressure forming into a rod shape with a mold at a temperature slightly higher than the softening point or melting point of the binder.
Further, the semiconductor ceramic particles coated with the binder film and the resistor particles coated with the binder film are pressure-molded into a rod shape with a mold at a temperature slightly higher than the softening point or melting point of the binder. You can also.
The semiconductor ceramic particles and the resistor particles may be coated with the same metal as the soluble metal or a metal exhibiting high wettability with respect to the soluble metal, such as Ag, Sn, or Cu.

前記可溶合金には、環境衛生上、PbやCd等の生体系に有害な元素を含まないものを使用することが好ましく、次ぎの組成[A](1)43%<Sn≦70%,0.5%≦In≦10%,残Bi、(2)25%≦Sn≦40%,50%≦In≦55%,残Bi、(3)25%<Sn≦44%,55%<In≦74%,1%≦Bi<20%、(4)46%<Sn≦70%,18%≦In<48%,1%≦Bi≦12%、(5)5%≦Sn≦28%,15%≦In<37%,残Bi(但し、Bi57.5%,In25.2%,Sn17.3%とBi54%,In29.7%,Sn16.3%のそれぞれを基準にBi±2%,In及びSn±1%の範囲を除く)、(6)10%≦Sn≦18%,37%≦In≦43%,残Bi、(7)25%<Sn≦60%,20%≦In<50%,12%<Bi≦33%、(8)(1)〜(7)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(9)33%≦Sn≦43%,0.5%≦In≦10%,残Bi、(10)47%≦Sn≦49%,51%≦In≦53%の100重量部にBiを3〜5重量部を添加、(11)40%≦Sn≦46%,7%≦Bi≦12%,残In、(12)0.3%≦Sn≦1.5%,51%≦In≦54%,残Bi、(13)2.5%≦Sn≦10%,25%≦Bi≦35%,残In、(14)(9)〜(13)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(15)10%≦Sn≦25%,48%≦In≦60%,残Biを100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn−Bi系合金の組成[B](16)30%≦Sn≦70%,0.3%≦Sb≦20%,残Bi、(17)(16)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn−Sb系合金の組成[C](18)52%≦In≦85%,残Sn、(19)(18)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn系合金の組成[D](20)45%≦Bi≦55%,残In、(21)(20)の組成の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Bi系合金の組成、[E](22)50%Bi≦56%,残Sn、(23)(22)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn系合金の組成[F](24)Inの100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(25)90%≦In≦99.9%,0.1%≦Ag≦10%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(26)95%≦In≦99.9%,0.1%≦Sb≦5%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加等のIn系合金の組成(27)2%≦Zn≦15%,70%≦Sn≦95%,残Bi及びその合金100重量部にAu、In、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加した合金の組成等からサーモプロテクタの動作温度に適合した融点の組成を選定することができる。   It is preferable to use an alloy that does not contain elements harmful to biological systems such as Pb and Cd for environmental hygiene, and the following composition [A] (1) 43% <Sn ≦ 70%, 0.5% ≦ In ≦ 10%, remaining Bi, (2) 25% ≦ Sn ≦ 40%, 50% ≦ In ≦ 55%, remaining Bi, (3) 25% <Sn ≦ 44%, 55% <In ≦ 74%, 1% ≦ Bi <20%, (4) 46% <Sn ≦ 70%, 18% ≦ In <48%, 1% ≦ Bi ≦ 12%, (5) 5% ≦ Sn ≦ 28%, 15% ≦ In <37%, remaining Bi (however, Bi57.5%, In25.2%, Sn17.3% and Bi54%, In29.7%, Sn16.3% based on Bi ± 2%, (Except for the range of In and Sn ± 1%), (6) 10% ≦ Sn ≦ 18%, 37% ≦ In ≦ 43%, remaining Bi, (7) 25% <Sn ≦ 0%, 20% ≦ In <50%, 12% <Bi ≦ 33%, (8) Ag, Au, Cu, Ni, Pd, Pt, Sb, 100 parts by weight of any one of (1) to (7), Add one or more of Ga, Ge, and P in a total of 0.01 to 7 parts by weight, (9) 33% ≦ Sn ≦ 43%, 0.5% ≦ In ≦ 10%, remaining Bi, (10) Add 3-5 parts by weight of Bi to 100 parts by weight of 47% ≦ Sn ≦ 49%, 51% ≦ In ≦ 53%, (11) 40% ≦ Sn ≦ 46%, 7% ≦ Bi ≦ 12%, remaining In, (12) 0.3% ≦ Sn ≦ 1.5%, 51% ≦ In ≦ 54%, remaining Bi, (13) 2.5% ≦ Sn ≦ 10%, 25% ≦ Bi ≦ 35%, remaining In, any one or two or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P is added to 100 parts by weight of any one of In, (14), (9) to (13). 01 to 7 parts by weight, (15) 10% ≦ Sn ≦ 25%, 48% ≦ In ≦ 60%, and remaining Bi to 100 parts by weight of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge In-Sn-Bi-based alloy composition [B] (16) 30% ≦ Sn ≦ 70%, 0.3% ≦ A total of 0.01 to 7 parts by weight of one or more of P added Sb ≦ 20%, remaining Bi, (17) (16) 100 parts by weight of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P or a total of 0.01 to 7 Bi-Sn-Sb-based alloy composition [C] (18) 52% ≦ In ≦ 85%, remaining Sn, (19) (18) in 100 parts by weight of Ag, Au, Cu, Ni , Pd, Pt, Sb, Ga, Ge, P, or a combination of In-Sn alloys such as one to two or more added in a total of 0.01 to 7 parts by weight [D] (20) 45% ≦ Bi ≦ 55%, remaining In, (21) Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P in 100 parts by weight of the composition of (20) Composition of In-Bi alloy such as addition of one or two or more of 0.01 to 7 parts by weight in total, [E] (22) 50% Bi ≦ 56%, remaining Sn, (23) (22) Composition of Bi-Sn based alloy such that 0.01 to 7 parts by weight of one or more of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P is added to 100 parts by weight [F (24) Add one or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P to 100 parts by weight of In in total 0.01 to 7 parts by weight, (25) 90% ≦ In ≦ 99.9%, 0.1% ≦ Ag ≦ 10% in 100 parts by weight Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, P One or two or more of these are added in a total of 0.01 to 7 parts by weight, (26) Au, Bi, Cu in 100 parts by weight of 95% ≦ In ≦ 99.9%, 0.1% ≦ Sb ≦ 5% , Ni, Pd, Pt, Ga, Ge, P In-type alloy composition such as addition of 0.01 to 7 parts by weight in total (27) 2% ≦ Zn ≦ 15%, 70% ≦ An alloy in which 0.01 to 7 parts by weight in total of one or more of Au, In, Cu, Ni, Pd, Pt, Ga, Ge, and P is added to 100 parts by weight of Sn ≦ 95%, remaining Bi and its alloy The composition of the melting point suitable for the operating temperature of the thermo protector can be selected from the composition of the above.

前記油脂としては、例えばロジンを使用できる。   For example, rosin can be used as the oil.

前記熱可塑性樹脂としては、ポリエチレン、ポリスチレン、ポリエチレンテレフタレ−ト、ポリエチレンナフタレ−ト、ポリアミド、ポリイミド、ポリブチレンテレフタレ−ト、ポリフェニレンオキシド、ポリエチレンサルファイド、ポリサルホン、ポリアセタ−ル、ポリカ−ボネ−ト、ポリフェニレンスルフィド、ポリオキシベンゾイル、ポリエ−テルエ−テルケトン、ポリエ−テルイミド、ポリプロピレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリメチルメタクリレ−ト、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、エチレンポリテトラフルオロエチレン共重合体、エチレン酢酸ビニル共重合体(EVA)、AS樹脂、ABS樹脂、アイオノマ−、AAS樹脂、ACS樹脂等中から所定融点のものを選定できる。   Examples of the thermoplastic resin include polyethylene, polystyrene, polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, polybutylene terephthalate, polyphenylene oxide, polyethylene sulfide, polysulfone, polyacetal, and polycarbonate. Polyphenylene sulfide, polyoxybenzoyl, polyether terketone, polyether imide, polypropylene, polyvinyl chloride, polyvinyl acetate, polymethyl methacrylate, polyvinylidene chloride, polytetrafluoroethylene, ethylene polytetrafluoroethylene A copolymer having a predetermined melting point can be selected from a copolymer, an ethylene vinyl acetate copolymer (EVA), an AS resin, an ABS resin, an ionomer, an AAS resin, an ACS resin, and the like.

図2は本発明に係るサーモプロテクタの一実施例を示す断面図である。
図2において、1は絶縁基板であり、例えばセラミックス板、耐熱性樹脂板等を使用できる。21,22は基板1の両端部に表面側から裏面側にわたって設けた電極であり、導電ペイント例えば銀系ペイントの印刷・焼き付けにより設けることができる。
3は弾性歪エネルギーを付与した弾性導電片、例えば弾性引張りエネルギーを付与した燐青銅コイルであり、一端を前記の通電性感熱可溶材4を接合材として一方の電極21に固定し、他端を他方の電極22に同通電性感熱可溶材4のバインダーよりも高融点のはんだによる接合または溶接により固定してある。
弾性導電片一端と一方の電極との通電性感熱可溶材による接合は、一方の電極に弾性導電片一端を弾性導電片の弾性反力に抗して接触させ、この接触箇所に粉末状の通電性感熱可溶材を加熱射出治具で射出成形することにより行うことができる。また、棒状の通電性感熱可溶材を加熱鏝を用いて前記接触箇所に盛り付けるようにしてもよい。
5は封止カバーである。
本発明に係るサーモプロテクタにおいては、通電性感熱可溶材の半導体セラミックス粒子と抵抗体粒子との安定な接触のために通電性感熱可溶材の常時比抵抗値が一定であり、サーモプロテクタの初期抵抗値を充分に低くするように通電性感熱可溶材による接合部の厚みや外郭寸法を設定してある。
FIG. 2 is a cross-sectional view showing an embodiment of a thermoprotector according to the present invention.
In FIG. 2, reference numeral 1 denotes an insulating substrate, and for example, a ceramic plate, a heat resistant resin plate, or the like can be used. Reference numerals 21 and 22 denote electrodes provided on both ends of the substrate 1 from the front surface side to the back surface side, and can be provided by printing or baking a conductive paint such as silver paint.
Reference numeral 3 denotes an elastic conductive piece to which elastic strain energy is applied, for example, a phosphor bronze coil to which elastic tensile energy is applied. One end is fixed to one electrode 21 by using the conductive heat-sensitive soluble material 4 as a bonding material, and the other end is fixed. The other electrode 22 is fixed by bonding or welding with a solder having a melting point higher than that of the binder of the same conductive heat-sensitive soluble material 4.
Joining one end of an elastic conductive piece and one electrode with a heat-sensitive heat-soluble material brings one end of the elastic conductive piece into contact with one electrode against the elastic reaction force of the elastic conductive piece. The heat-sensitive fusible material can be formed by injection molding with a heating injection jig. Moreover, you may make it arrange | position a stick-shaped electroconductive heat-sensitive soluble material to the said contact location using a heating rod.
Reference numeral 5 denotes a sealing cover.
In the thermo protector according to the present invention, the constant specific resistance value of the conductive heat-sensitive soluble material is constant for stable contact between the semiconductor ceramic particles of the conductive heat-sensitive soluble material and the resistor particles, and the initial resistance of the thermo protector is constant. The thickness and outline dimensions of the joint by the electrically conductive heat-sensitive soluble material are set so that the value is sufficiently low.

本発明に係るサーモプロテクタにおいは、周囲温度が上昇すると、ある特定の温度を境として通電性感熱可溶材の半導体セラミックス粒子の比抵抗が指数関数的に増加し、抵抗体粒子を流れる電流の密度も指数関数的に増加し、その電流密度のもとでのジュール発生熱が急激に増えて通電性感熱可溶材のバインダーの溶融開始点へと急速に昇温され、バインダーの溶融で前記燐青銅コイルの弾性引張りエネルギーが解放され、そのコイル一端と一方の電極との間の接合が脱離されてオフ動作される。
図2において、両方の固定とも通電性感熱可溶材により行うことができる。
In the thermo protector according to the present invention, when the ambient temperature rises, the specific resistance of the semiconductor ceramic particles of the electrically conductive heat-sensitive soluble material increases exponentially at a specific temperature, and the density of the current flowing through the resistor particles Also increases exponentially, the Joule heat generated under the current density rapidly increases, and the temperature is rapidly raised to the melting start point of the binder of the electrically conductive heat-sensitive soluble material. The elastic tensile energy of the coil is released, and the connection between one end of the coil and one electrode is released and the coil is turned off.
In FIG. 2, both fixations can be performed with an electrically conductive heat-sensitive soluble material.

図3は本発明に係るサーモプロテクタの別実施例を示す断面図である。
図3において、1は絶縁基板であり、例えばセラミックス板、耐熱性樹脂板等を使用できる。21,22は基板1の両端部に表面側から裏面側にわたって設けた電極であり、導電ペイント例えば銀系ペイントの印刷・焼き付けにより設けることができる。
31は一端が一方の電極21に溶接等により固定された鋼製のバネ、30は一端が一方の電極21に溶接等により固定された弓状の導電片であり、鋼製バネ31の他端と導電片30の他端とが溶接e等により結着され、鋼製バネ31の引張りにより導電片30が伸ばされ、鋼製バネ31の引張り反力に抗して鋼製バネ31及び導電片30の他端eが他方の電極22に通電性感熱可溶材4で固定されている。
このサーモプロテクタにおいても、周囲温度が上昇すると、通電性感熱可溶材4の半導体セラミックス粒子の比抵抗が特定の温度(通電性感熱可溶材のバインダーの溶融開始温度よりも低い)を境にして指数関数的に増加し、抵抗体粒子を流れる電流の密度も指数関数的に増加し、その電流密度のもとでのジュール発生熱が急激に増えて通電性感熱可溶材4のバインダーの溶融開始点へと急速に昇温され、バインダーの溶融で前記鋼製バネ31の弾性引張りエネルギーが解放され、鋼製バネ31と前記弓状導電片30とが共に収縮され他方の電極22との接合が脱離されてオフ動作される。
図3において、両方の固定とも通電性感熱可溶材により行うことができる。
FIG. 3 is a sectional view showing another embodiment of the thermoprotector according to the present invention.
In FIG. 3, reference numeral 1 denotes an insulating substrate, and for example, a ceramic plate, a heat resistant resin plate, or the like can be used. Reference numerals 21 and 22 denote electrodes provided on both ends of the substrate 1 from the front surface side to the back surface side, and can be provided by printing or baking a conductive paint such as silver paint.
31 is a steel spring whose one end is fixed to one electrode 21 by welding or the like, 30 is an arcuate conductive piece whose one end is fixed to one electrode 21 by welding or the like, and the other end of the steel spring 31 is And the other end of the conductive piece 30 are joined by welding e or the like, the conductive piece 30 is stretched by pulling the steel spring 31, and the steel spring 31 and the conductive piece are resisted against the tensile reaction force of the steel spring 31. The other end e of 30 is fixed to the other electrode 22 with the electrically conductive heat-soluble material 4.
Also in this thermo protector, when the ambient temperature rises, the specific resistance of the semiconductor ceramic particles of the conductive heat-sensitive soluble material 4 becomes an index with a specific temperature (lower than the melting start temperature of the binder of the conductive heat-sensitive soluble material) as a boundary. It increases functionally, the density of the current flowing through the resistor particles also increases exponentially, the Joule heat generated under the current density increases rapidly, and the melting start point of the binder of the conductive heat-sensitive soluble material 4 The elastic tension energy of the steel spring 31 is released by melting the binder, the steel spring 31 and the arcuate conductive piece 30 are contracted together, and the joining of the other electrode 22 is released. It is released and turned off.
In FIG. 3, both fixations can be performed with an electrically conductive heat-sensitive soluble material.

本発明に係るサーモプロテクタにおいては、一直線状に対向するリード導体間を絶縁体の介在やギャップにより絶縁し、引っ張り状態の導電性コイルバネを両リード導体間に跨って挿通し、該バネの一端を一方のリード導体の端部に溶接等により結着し、同バネの他端を他方のリード導体の端部に本発明に係る通電性感熱可溶材で接着固定した構成とし、通電性感熱過溶剤の軟化乃至は溶融でバネを引っ張りから解放して一方のリード導体端部側に寄せバネによるリード導体間の導通を遮断させるようにしてもよい。
この場合、筒状ケースで包囲し、ケース各端と各リード導体との間をエポキシ樹脂等の封止材で封止することもできる。
In the thermo protector according to the present invention, the lead conductors that are opposed to each other in a straight line are insulated by an intervening insulator or a gap, and a stretched conductive coil spring is inserted between the two lead conductors, and one end of the spring is inserted. The end of one lead conductor is bonded by welding or the like, and the other end of the spring is bonded and fixed to the end of the other lead conductor with the conductive heat-sensitive fusible material according to the present invention. The spring may be released from tension by softening or melting, and the conduction between the lead conductors by the spring may be interrupted by approaching one end of the lead conductor.
In this case, it is also possible to enclose with a cylindrical case and seal between each end of the case and each lead conductor with a sealing material such as epoxy resin.

本発明において、通電性感熱可溶材には、比抵抗が正の温度特性である半導体セラミックス粒子を、所定の温度で融解するバインダーで結合してなり、半導体セラミックス粒子間が接触されて所定の比抵抗を有し、半導体セラミックス粒子の比抵抗がバインダーの溶融開始温度よりも低い既知の特定温度(Te)を境として指数関数的に増加するものも使用でき、Teをサーモプロテクタの実質的な動作温度とすることができる。   In the present invention, the electrically conductive heat-sensitive soluble material is formed by bonding semiconductor ceramic particles having a positive specific resistance temperature characteristic with a binder that melts at a predetermined temperature. It is also possible to use a semiconductor ceramic particle whose specific resistance increases exponentially at a known specific temperature (Te) that is lower than the melting start temperature of the binder. It can be temperature.

本発明に係るサーモプロテクタにおいては、通電性感熱可溶材でヒューズエレメントを形成し、このヒューズエレメントを通電性感熱可溶材のバインダーに対し優れた濡れ性を呈する電極の間に接続し、ヒューズエレメントの溶融した通電性感熱可溶材を電極との濡れにより分断させるようにすることも可能である。
この場合、通電性感熱可溶材のバインダーに可溶合金を使用し、電極には可溶合金との濡れに優れた材質、例えば銀メッキ電極、錫メッキ電極を使用することが好ましい。
In the thermo protector according to the present invention, a fuse element is formed of a conductive heat-sensitive fusible material, and the fuse element is connected between electrodes exhibiting excellent wettability with respect to the binder of the conductive heat-sensitive fusible material. It is also possible to sever the melted conductive heat-sensitive soluble material by wetting with the electrode.
In this case, it is preferable to use a soluble alloy for the binder of the electrically conductive heat-sensitive soluble material, and to use a material excellent in wettability with the soluble alloy, for example, a silver plating electrode or a tin plating electrode.

本発明に係る通電性感熱可溶材を示す説明図である。It is explanatory drawing which shows the electroconductive heat-sensitive soluble material which concerns on this invention. 本発明に係るサーモプロテクタの一実施例を示す図面である。It is drawing which shows one Example of the thermo protector which concerns on this invention. 本発明に係るサーモプロテクタの別実施例を示す図面である。It is drawing which shows another Example of the thermoprotector which concerns on this invention.

符号の説明Explanation of symbols

a 半導体セラミックス粒子
b 抵抗体粒子
c バインダー
1 絶縁基板
21 電極
22 電極
3 弾性導電片
30 導電片
31 バネ
4 通電性感熱可溶材
5 封止ケース
a semiconductor ceramic particle b resistor particle c binder 1 insulating substrate 21 electrode 22 electrode 3 elastic conductive piece 30 conductive piece 31 spring 4 conductive heat-sensitive soluble material 5 sealing case

Claims (11)

比抵抗が正の温度特性である半導体セラミックス粒子と抵抗体粒子とを、所定の温度で融解するバインダーで結合してなり、半導体セラミックス粒子及び抵抗体粒子間が接触されて所定の比抵抗を有することを特徴とする通電性感熱可溶材。 Semiconductor ceramic particles having positive specific resistance and resistor particles are bonded with a binder that melts at a predetermined temperature, and the semiconductor ceramic particles and the resistor particles are brought into contact with each other to have a predetermined specific resistance. An electrically conductive heat-soluble material characterized by the above. 比抵抗が正の温度特性である半導体セラミックス粒子を、所定の温度で融解するバインダーで結合してなり、半導体セラミックス粒子間が接触されて所定の比抵抗を有することを特徴とする通電性感熱可溶材 Semiconductor ceramic particles having a positive specific resistance temperature characteristic are bonded with a binder that melts at a predetermined temperature, and the semiconductor ceramic particles are brought into contact with each other to have a predetermined specific resistance. Molten metal バインダーが可溶合金であることを特徴とする請求項1または2記載の通電性感熱可溶材。 The conductive heat-sensitive soluble material according to claim 1 or 2, wherein the binder is a soluble alloy. 半導体セラミックス粒子または抵抗体粒子の少なくとも何れかが可溶合金と同一の金属または可溶合金との濡れ性が高い金属で被覆されていること特徴とする請求項3記載の通電性感熱可溶材。 4. The electrically conductive heat-sensitive soluble material according to claim 3, wherein at least one of the semiconductor ceramic particles and the resistor particles is coated with a metal having high wettability with the same metal or soluble alloy as the soluble alloy. バインダーが樹脂或は油脂であることを特徴とする請求項1または2記載の通電性感熱可溶材。 The conductive heat-sensitive soluble material according to claim 1 or 2, wherein the binder is a resin or an oil. 樹脂或は油脂に炭素または導電性金属粒体が含有されていることを特徴とする請求項5記載の通電性感熱可溶材。 6. The electrically conductive heat-sensitive soluble material according to claim 5, wherein the resin or oil contains carbon or conductive metal particles. 半導体セラミックス粒子がVまたはBaTiOをベースとする半導体セラミックスであることを特徴とする請求項1〜6何れか記載の通電性感熱可溶材。 The electrically conductive heat-soluble material according to any one of claims 1 to 6, wherein the semiconductor ceramic particles are semiconductor ceramics based on V 2 O 3 or BaTiO 3 . 抵抗体粒子が金属の酸化物、炭化物、ケイ化物、硫化物、窒化物、または単体金属或は金属間化合物または炭素の何れかであることを特徴とする請求項1、3、4〜7何れか記載の通電性感熱可溶材。 The resistor particles are any of metal oxides, carbides, silicides, sulfides, nitrides, or simple metals, intermetallic compounds, or carbon. An electrically conductive heat-soluble material described in 弾性を有する導電片が、弾性歪エネルギーを保持した状態で電極間に固定され、少なくとも一方の固定が、請求項1〜8何れか記載の通電性感熱可溶材で行われていることを特徴とするサーモプロテクタ。 The conductive piece having elasticity is fixed between the electrodes while maintaining elastic strain energy, and at least one of the fixing is performed with the electrically conductive heat-sensitive soluble material according to any one of claims 1 to 8. A thermo protector. 一端固定の歪まされたバネの他端と、一端が一方の電極に固定された導電片の他端とが共に他方の電極に請求項1〜8何れか記載の通電性感熱可溶材で固定されていることを特徴とするサーモプロテクタ。 The other end of the distorted spring fixed at one end and the other end of the conductive piece whose one end is fixed to one electrode are both fixed to the other electrode with the conductive heat-sensitive soluble material according to any one of claims 1 to 8. A thermo protector characterized by 請求項1〜8何れか記載の通電性感熱可溶材でヒューズエレメントが形成されていることを特徴とするサーモプロテクタ。 A thermo protector, wherein a fuse element is formed of the electrically conductive heat-sensitive soluble material according to claim 1.
JP2005342977A 2005-11-29 2005-11-29 Thermo-protector and conductive heat-sensitive fusible material Pending JP2007149512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005342977A JP2007149512A (en) 2005-11-29 2005-11-29 Thermo-protector and conductive heat-sensitive fusible material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005342977A JP2007149512A (en) 2005-11-29 2005-11-29 Thermo-protector and conductive heat-sensitive fusible material

Publications (1)

Publication Number Publication Date
JP2007149512A true JP2007149512A (en) 2007-06-14

Family

ID=38210675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005342977A Pending JP2007149512A (en) 2005-11-29 2005-11-29 Thermo-protector and conductive heat-sensitive fusible material

Country Status (1)

Country Link
JP (1) JP2007149512A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110884A1 (en) 2009-03-24 2010-09-30 Tyco Electronics Corporation Reflowable thermal fuse
JP2013512538A (en) * 2009-11-24 2013-04-11 リッテルフューズ,インコーポレイティド Circuit protection device
US8854784B2 (en) 2010-10-29 2014-10-07 Tyco Electronics Corporation Integrated FET and reflowable thermal fuse switch device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110884A1 (en) 2009-03-24 2010-09-30 Tyco Electronics Corporation Reflowable thermal fuse
EP2411994A1 (en) * 2009-03-24 2012-02-01 Tyco Electronics Corporation Reflowable thermal fuse
EP2411994A4 (en) * 2009-03-24 2014-07-23 Tyco Electronics Corp Reflowable thermal fuse
JP2013512538A (en) * 2009-11-24 2013-04-11 リッテルフューズ,インコーポレイティド Circuit protection device
US9401257B2 (en) 2009-11-24 2016-07-26 Littelfuse, Inc. Circuit protection device
KR101760966B1 (en) * 2009-11-24 2017-07-24 리텔퓨즈 인코포레이티드 Circuit protection device
US8854784B2 (en) 2010-10-29 2014-10-07 Tyco Electronics Corporation Integrated FET and reflowable thermal fuse switch device

Similar Documents

Publication Publication Date Title
KR101688671B1 (en) Protection element
US8767368B2 (en) Protective element and method for producing the same
US4652848A (en) Fusible link
US20100176910A1 (en) Fusible alloy element, thermal fuse with fusible alloy element and method for producing a thermal fuse
JP2012521634A5 (en)
JP2008311161A (en) Protective element
US11640892B2 (en) Fuse element and protective element
CN105814657B (en) Switch element, switching circuit and warning circuit
US3974105A (en) Overtemperature and overcurrent resistor fuse
KR20200085896A (en) Fuse element
CN100367433C (en) Temp fuse with current fusing function
JP2007149512A (en) Thermo-protector and conductive heat-sensitive fusible material
JP3841257B2 (en) Alloy type temperature fuse
US6614341B2 (en) Thick film circuit with fuse
TWI689961B (en) Switching element
US20040184947A1 (en) Alloy type thermal fuse and material for a thermal fuse element
EP1383149B1 (en) Alloy type thermal fuse and wire member for a thermal fuse element
EP0560908A1 (en) Binary fuse device
KR20160009517A (en) Thermal Fuse and Printed Circuit Board with Thermal Fuse
JP4912447B2 (en) Alloy type thermal fuse
CN108780718A (en) Protection element
JP6711704B2 (en) Protective device with bypass electrode
CN109727832A (en) Protection element and its circuit protection device
KR102053654B1 (en) Reflowable thermal fuse
JPH04351877A (en) Heater