JP2007147703A - Color resolution and composition optical system - Google Patents

Color resolution and composition optical system Download PDF

Info

Publication number
JP2007147703A
JP2007147703A JP2005338289A JP2005338289A JP2007147703A JP 2007147703 A JP2007147703 A JP 2007147703A JP 2005338289 A JP2005338289 A JP 2005338289A JP 2005338289 A JP2005338289 A JP 2005338289A JP 2007147703 A JP2007147703 A JP 2007147703A
Authority
JP
Japan
Prior art keywords
optical system
adhesive
light
color
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005338289A
Other languages
Japanese (ja)
Inventor
Takehisa Asami
剛尚 浅見
Makoto Ashihara
真 芦原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2005338289A priority Critical patent/JP2007147703A/en
Publication of JP2007147703A publication Critical patent/JP2007147703A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a color resolution and composition optical system which is applied to a reflection type projection display and capable of fixing a polarized light beam splitter on a reference base by adhesion in a short time, and in which system a positional shift of the bonded part hardly occurs after the adhesion. <P>SOLUTION: The color resolution and composition optical system comprises: a color resolution optical system which resolves white light into three primary colors of light; and a color composition optical system which modulates the intensity of light of three primary colors resolved with the color resolution optical system with a reflection type spatial light modulating elements corresponding to the respective colors and composes the colors of modulated light, wherein both systems are fixed on the reference base by an adhesive. In the color resolution and composition optical system, the used adhesive is a mixture of an ultraviolet ray setting adhesive and a thermosetting material which are mixed at a predetermined proportion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、反射型投射表示装置に適用される色分解合成光学系に係り、特に、偏光ビームスプリッタを高精度にベース基盤に固定することが可能な色分解合成光学系に関する。   The present invention relates to a color separation / synthesis optical system applied to a reflective projection display device, and more particularly to a color separation / synthesis optical system capable of fixing a polarization beam splitter to a base substrate with high accuracy.

反射型投射表示装置は、直方体の形状をしたガラス製プリズムからなる複数の偏光ビームスプリッタで構成された色分解合成光学系により、入射した白色光を一旦R(赤)G(緑)B(青)に分解し、分解したRGB各光線を液晶等による空間光変調素子に照射し、光変調されたRGB各光線の反射光を再び合成してスクリーンに投射することで拡大した映像を表示するようになっている。   The reflective projection display device temporarily converts incident white light into R (red) G (green) B (blue) using a color separation / synthesis optical system composed of a plurality of polarizing beam splitters made of glass prisms having a rectangular parallelepiped shape. ), And the separated RGB rays are applied to a spatial light modulation element such as a liquid crystal, and the reflected light of the RGB modulated rays is again synthesized and projected onto the screen to display an enlarged image. It has become.

一般に、反射型投射表示装置に適用される偏光ビームスプリッタは、装置内のベース基盤に加熱硬化又は室温硬化のエポキシ系接着剤、あるいはメタクリアアクリレートやウレタンアクリレート、エポキシアクリレート系の紫外線硬化接着剤により接着固定されているが、この偏光ビームスプリッタは極めて高精度に固定させる必要があり、更に接着後に温度変化や湿度の影響、あるいは輸送等による振動などで固定した位置のずれが起きてはならないものである。   In general, a polarizing beam splitter applied to a reflective projection display device is made of a base substrate in the device with an epoxy-based adhesive that is cured by heating or room temperature, or an ultraviolet-curing adhesive such as methacrylic acrylate, urethane acrylate, or epoxy acrylate. Although it is bonded and fixed, this polarizing beam splitter needs to be fixed with extremely high accuracy, and after bonding, the fixed position must not shift due to temperature change, humidity, or vibration due to transportation, etc. It is.

偏光ビームスプリッタの位置固定の精度については、例えば、使用する空間光変調素子の画素ピッチが10ミクロン程度とすると、偏光ビームスプリッタは3乃至5ミクロンの位置変化によって投射画面上のRGB各光線に目視で認識できるずれが現れてしまう程である。こうしたことから、反射型投射表示装置における偏光ビームスプリッタの位置精度を確保するのは容易でなく、従来、多くの改良技術が提案されている(例えば、下記特許文献1参照)。
特開2004−177894号公報
Regarding the accuracy of fixing the position of the polarizing beam splitter, for example, if the pixel pitch of the spatial light modulator to be used is about 10 microns, the polarizing beam splitter visually observes each RGB light beam on the projection screen by a position change of 3 to 5 microns. The discrepancies that can be recognized will appear. For these reasons, it is not easy to ensure the positional accuracy of the polarization beam splitter in the reflective projection display device, and many improved techniques have been proposed in the past (for example, see Patent Document 1 below).
JP 2004-177894 A

しかしながら、特許文献1は、反射型投射表示装置の使用時に温度変化で偏光ビームスプリッタの位置が変動しないよう固定する改良技術であるため、ベース基盤に偏光ビームスプリッタを固定する段階での位置精度を確保することはできないものである。   However, since Patent Document 1 is an improved technique for fixing the position of the polarizing beam splitter so that the position of the polarizing beam splitter does not fluctuate due to a change in temperature when the reflective projection display device is used, the positional accuracy at the stage of fixing the polarizing beam splitter to the base substrate is improved. It cannot be secured.

すなわち、反射型投射表示装置内のベース基盤に偏光ビームスプリッタを固定するのに用いる従来の接着剤においては、加熱硬化又は室温硬化の接着剤は硬化までにかなり多くの時間がかかり、その間、長時間に渡り所定の位置に偏光ビームスプリッタを固定させておかねばならず、精度維持が困難であるばかりか生産性が極めて低下する問題を有していた。   That is, in the conventional adhesive used to fix the polarizing beam splitter to the base substrate in the reflection type projection display device, the heat-curing or room-temperature curing adhesive takes a considerable time until curing. The polarizing beam splitter must be fixed at a predetermined position over time, and it is difficult to maintain accuracy and has a problem that productivity is extremely lowered.

また、偏光ビームスプリッタに使用するガラス製プリズムは、偏光面が無用に回転しないように多くの鉛成分を含有させているが、このため、偏光ビームスプリッタは光弾性乗定数の低い材料になっており紫外線の透過率が著しく低いものである。   In addition, glass prisms used for polarizing beam splitters contain many lead components so that the polarization plane does not rotate unnecessarily. For this reason, polarizing beam splitters have become a material with a low photoelastic multiplier constant. The transmittance of ultraviolet rays is extremely low.

その結果、紫外線硬化性の接着剤を用いた場合では、硬化するまで非常に強い強度で長時間紫外線を照射し続けなければならないが、しかし、それでも接着剤に到達する紫外線の絶対量が小さいため全域にわたり均一に完全硬化することは難しい状態であった。   As a result, when UV curable adhesive is used, it must continue to be irradiated with UV for a long time with a very strong intensity until it is cured. However, the absolute amount of UV that reaches the adhesive is still small. It was difficult to completely cure the entire region uniformly.

そのため、接着剤の未硬化部分が後に染み出し、アウトガスの発生など他の光学部品に悪影響を及ぼすことがあった。さらに、紫外線硬化性の接着剤のなかでもアクリレートやメタアクリレート、変性アクリレート樹脂を用いると、接着後の長時間の高温高湿下において著しい位置ずれや接着面の剥離が起きる問題を有していた。   For this reason, the uncured portion of the adhesive oozes out later, which may adversely affect other optical components such as outgassing. Furthermore, among the UV curable adhesives, when acrylate, methacrylate, or modified acrylate resin is used, there is a problem that significant positional displacement and peeling of the adhesive surface occur under high temperature and high humidity for a long time after bonding. .

本発明は、このような従来の問題点に鑑みなされたものであり、反射型投射表示装置に適用される色分解合成光学系に係り、特に、ベース基盤に接着固定される偏光ビームスプリッタの接着手段の改良により、短時間で接着固定できると共に、接着後に接着部の位置ずれが発生しにくい色分解合成光学系を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and relates to a color separation / synthesis optical system applied to a reflection type projection display device, and in particular, adhesion of a polarizing beam splitter which is bonded and fixed to a base substrate. It is an object of the present invention to provide a color separation / synthesis optical system that can be bonded and fixed in a short time by improving the means and is less likely to cause displacement of the bonded portion after bonding.

本発明は、上記課題を解決する手段として以下に記載の構成からなる。すなわち、
白色光から3原色光に色分解を行う色分解光学系と、前記色分解光学系で色分解した3原色光の強度を各色光対応用の反射型空間光変調素子で光変調して、これらの光変調された変調光の色合成を行う色合成光学系とがベース基板上に接着剤を介して固定された色分解合成光学系において、
前記接着剤は、紫外線硬化接着剤に熱硬化性材料を所定の割合で混合したものであることを特徴とする色分解合成光学系を提供する。
The present invention has the following configuration as means for solving the above problems. That is,
A color separation optical system that performs color separation from white light to three primary color lights, and the intensity of the three primary color lights that have been color-separated by the color separation optical system are modulated by a reflective spatial light modulator for each color light. In a color separation / combination optical system in which a color composition optical system that performs color composition of modulated light of light is fixed on a base substrate via an adhesive,
The adhesive provides a color separation / synthesis optical system in which a thermosetting material is mixed with an ultraviolet curing adhesive at a predetermined ratio.

本発明によれば、白色光からRGB3原色光に色分解を行う色分解光学系と、色分解した3原色光の強度を各色対応用の反射型空間光変調素子で光変調した後に再び色合成を行う色合成光学系とがベース基板上に接着剤を介して固定される色分解合成光学系において、上記接着剤として、紫外線硬化接着剤に熱硬化性材料を所定の割合で混合した格別な構成であるので、接着剤を硬化するにあたり、紫外線と赤外線を含む光線を照射することにより、まず紫外線で硬化が始まり、紫外線では硬化しきれない未硬化部分を赤外線による加熱で硬化することが可能となり、短時間に接着強度の信頼性に優れた色分解合成光学系を作成することが可能となるものである。   According to the present invention, a color separation optical system that performs color separation from white light to RGB three primary color light, and color synthesis is performed again after the intensity of the three primary color lights subjected to color separation is modulated by a reflective spatial light modulator for each color. In the color separation / synthesis optical system in which the color synthesis optical system is fixed on the base substrate via an adhesive, the UV curable adhesive is mixed with a thermosetting material at a predetermined ratio as the adhesive. Because of its structure, when curing the adhesive, by irradiating with light including ultraviolet rays and infrared rays, curing begins with ultraviolet rays, and uncured parts that cannot be cured with ultraviolet rays can be cured by heating with infrared rays. Thus, it is possible to create a color separation / synthesis optical system excellent in adhesive strength reliability in a short time.

以下、本発明の各実施形態に係る色分解合成光学系について、図面を参照して説明する。
図1は本発明の実施例に係る反射型投射表示装置の構成と光路を示す平面図、図2は本発明の実施例に係るベース基盤材を裏面から見た図、図3は本発明の実施例に係るベース基盤材上の接着個所を裏面から示した図、図4は本発明の実施例に係るベース基盤材上に偏光ビームスプリッタを配置した平面図、図5は接着後の偏光ビームスプリッタの位置精度を測定したデータ図、図6は接着後の偏光ビームスプリッタの位置精度を測定する方法を説明する図である。
Hereinafter, a color separation / synthesis optical system according to each embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a plan view showing a configuration and an optical path of a reflective projection display apparatus according to an embodiment of the present invention, FIG. 2 is a view of a base substrate material according to the embodiment of the present invention as viewed from the back side, and FIG. The figure which showed the adhesion part on the base base material which concerns on an Example from the back surface, FIG. 4 is the top view which has arrange | positioned the polarizing beam splitter on the base base material which concerns on the Example of this invention, FIG. 5 is the polarization beam after adhesion | attachment FIG. 6 is a diagram for explaining a method for measuring the positional accuracy of the polarization beam splitter after bonding.

まず、図1を用い本発明の実施例に係る反射型投射表示装置の構成と光路を説明する。
図1において、符号2,3,4,5は反射型投射表示装置の色分解合成光学系を構成する4個の偏光ビームスプリッタである。
First, the configuration and optical path of a reflective projection display apparatus according to an embodiment of the present invention will be described with reference to FIG.
In FIG. 1, reference numerals 2, 3, 4 and 5 denote four polarization beam splitters constituting a color separation / synthesis optical system of a reflection type projection display device.

偏光ビームスプリッタ2,3,4,5は同図に示すように、夫々の偏光分離面21,31,41,51が上面から見たときに略X字状に交差するように配置してあり、各偏光分離面は、入来した光線がP波S波の違いにより透過若しくは直角方向に反射する働きがある。   The polarization beam splitters 2, 3, 4, and 5 are arranged so that the polarization separation surfaces 21, 31, 41, and 51 intersect in a substantially X shape when viewed from the top, as shown in the figure. Each polarization splitting surface has a function of allowing incoming light rays to be transmitted or reflected in a perpendicular direction depending on the difference between the P wave and the S wave.

この配置で、偏光ビームスプリッタ2は外部のランプ等からの照射光が入射する光入射偏光ビームスプリッタであり、その対角に配置された偏光ビームスプリッタ5が外部に映像を投射する光出射側偏光ビームスプリッタである。   With this arrangement, the polarization beam splitter 2 is a light incident polarization beam splitter on which irradiation light from an external lamp or the like is incident, and the polarization beam splitter 5 arranged at the diagonal of the polarization beam splitter 2 projects the light output side polarization that projects an image to the outside. It is a beam splitter.

一方、色分解合成光学系には反射型空間光変調素子61,62,63が夫々図に示す位置に配置されている。この反射型空間光変調素子は、各偏光ビームスプリッタの働きにより白色光から分解された三原色光のR(赤)B(青)G(赤)の一つが照射され、その反射光の強度が入力画像情報に対応した光変調を受けるようにするものである。   On the other hand, in the color separation / synthesis optical system, reflective spatial light modulation elements 61, 62, and 63 are arranged at the positions shown in the drawing. This reflective spatial light modulator is irradiated with one of the three primary colors R (red), B (blue), and G (red) separated from white light by the action of each polarization beam splitter, and the intensity of the reflected light is input. It is intended to receive light modulation corresponding to image information.

光変調されたRGBの各光線は再び偏光ビームスプリッタにより合成され出射側偏光ビームスプリッタ5から外部に投射される。
次に、図2、図3、図4を用いベース基盤上に各偏光ビームスプリッタを接着固定する構成を説明する。
The light-modulated RGB light beams are again synthesized by the polarization beam splitter and projected from the output side polarization beam splitter 5 to the outside.
Next, a configuration in which each polarization beam splitter is bonded and fixed on the base substrate will be described with reference to FIGS. 2, 3, and 4.

図2において、1は前記各偏光ビームスプリッタを接着固定させるベース基盤であり、周囲の材質はセラミックまたはプラスチックからなっている。中央のAの部分15は偏光ビームスプリッタを接着固定する個所で、この個所の材質は偏光ビームスプリッタのガラス材とほぼ同じ熱膨張係数を持ったガラス材を用いるが、偏光ビームスプリッタのように鉛成分を含有する必要はない。   In FIG. 2, reference numeral 1 denotes a base substrate to which each of the polarizing beam splitters is bonded and fixed, and the surrounding material is made of ceramic or plastic. A portion 15 in the center is a portion where the polarizing beam splitter is bonded and fixed, and the material of this portion is a glass material having substantially the same thermal expansion coefficient as that of the polarizing beam splitter. It is not necessary to contain an ingredient.

この部分を透明なガラス材とすることで、接着剤を硬化させるときにベース基盤の裏面から硬化用の光線を照射できる。したがって、硬化用の光線は偏光ビームスプリッタを介さずに照射できる利点がある。   By making this part a transparent glass material, a curing light beam can be irradiated from the back surface of the base substrate when the adhesive is cured. Therefore, there is an advantage that the curing light beam can be irradiated without passing through the polarizing beam splitter.

図2の6,7,8はこのベース基盤を光学装置ハウジング(図示せず)に固定されるためのねじ穴である。例えばベース基盤材をすべてガラス材で構成すると、この固定用のねじ穴が作りにくく弱いものになる。   2, 7 and 8 are screw holes for fixing the base substrate to an optical device housing (not shown). For example, if the base substrate is made entirely of glass, this fixing screw hole is difficult to make and becomes weak.

図3において、破線で示した9,10,11,12の4個所はベース基盤材上で偏光ビームスプリッタを接着固定する接着剤の塗布個所を示したものである。
接着法は、あらかじめ所定量(約0.02g)の接着剤を図3に示すベース基盤の所定位置9,10,11,12に塗布しておき、その上に各偏光ビームスプリッタを押し付けることで接着剤を所定の塗布厚みまで広げていく。
In FIG. 3, the four places 9, 10, 11, and 12 indicated by broken lines indicate the places where the adhesive is applied to bond and fix the polarizing beam splitter on the base substrate.
In the bonding method, a predetermined amount (about 0.02 g) of adhesive is applied in advance to predetermined positions 9, 10, 11, and 12 of the base substrate shown in FIG. 3, and each polarization beam splitter is pressed onto the adhesive. The adhesive is spread to a predetermined coating thickness.

なお、本発明の実施例で用いる接着剤は、紫外線の照射により硬化する紫外線硬化性接着剤に熱硬化性材料を所定の割合、例えば、3重量パーセントを混合したエポキシ接着剤である。   The adhesive used in the examples of the present invention is an epoxy adhesive in which a thermosetting material is mixed at a predetermined ratio, for example, 3 weight percent, with an ultraviolet curable adhesive that is cured by irradiation with ultraviolet rays.

すなわち、本実施例に用いられる接着剤としては、紫外線により硬化するエポキシ接着剤で、主剤はグリシジルエーテル型、グリシジルエステル型、グリシジルアミン型、脂環族エポキサイドなど、これに光開始剤さらに熱触媒を含んでおり、紫外線で硬化した後でも、加熱することで酸が発生し、カチオン重合によって、未硬化部の硬化が促進されるものである。更に改質剤として、可塑剤、フィラーなどの充填材、流動調節成分が混合されていてもよい。   That is, the adhesive used in this example is an epoxy adhesive that is cured by ultraviolet rays, and the main agent is a glycidyl ether type, a glycidyl ester type, a glycidyl amine type, an alicyclic epoxide, a photoinitiator, and a thermal catalyst. Even after curing with ultraviolet light, an acid is generated by heating, and curing of the uncured portion is promoted by cationic polymerization. Further, a plasticizer, a filler such as a filler, and a flow control component may be mixed as a modifier.

ここで、塗布する接着剤の厚みを管理するためには、各偏光ビームスプリッタに一定圧力を一定時間かけておいて硬化させることで一定の接着剤の膜厚を得ることができる。また、接着剤を塗布しない個所に所定の厚みのスペーサを挟むことでも膜厚を管理するができる。一例として、接着剤の厚みを30ミクロン以下で厚みの分布が±10%以内に管理できれば良好である。   Here, in order to manage the thickness of the adhesive to be applied, it is possible to obtain a constant thickness of the adhesive by curing each polarizing beam splitter with a constant pressure over a certain time. The film thickness can also be controlled by sandwiching a spacer having a predetermined thickness at a place where no adhesive is applied. As an example, it is favorable if the thickness of the adhesive is 30 microns or less and the thickness distribution can be controlled within ± 10%.

また、更に接着剤の厚みむらをなくすためには、偏光ビームスプリッタの側面を底面に垂直な面を持つ真空チャックに固定させてそのままベース面に降ろしていく方法がある。このようにしてできた接着剤層は良好に均一な膜厚が得られる。   Further, in order to further eliminate the uneven thickness of the adhesive, there is a method in which the side surface of the polarizing beam splitter is fixed to a vacuum chuck having a surface perpendicular to the bottom surface and is lowered onto the base surface as it is. The adhesive layer thus formed can obtain a uniform film thickness.

次に、本実施例に係る接着剤の硬化手段について図3を参照して説明する。
前記したように、接着固定にあたり、ガラス材15上の4個所に接着剤を所定量塗布し、その上に各偏光ビームスプリッタを所定の圧力で、位置を固定した状態で押し付けて設置する。
Next, the adhesive curing means according to this embodiment will be described with reference to FIG.
As described above, for bonding and fixing, a predetermined amount of adhesive is applied to four locations on the glass material 15, and each polarizing beam splitter is pressed and installed on the glass material 15 with a predetermined pressure in a fixed position.

次いで、この状態でガラス材15の裏面から多量の紫外線と赤外線を含むランプ光を接着剤に向けて照射する。
まず照射した紫外線で接着剤の硬化が始まる。3分乃至5分で紫外線による硬化はほぼ停止する。しかしながら、更に光線を照射しつづけることで、次第に赤外線による発熱が高まり、接着剤部分は高温となる。その結果、紫外線照射による未硬化部分の硬化が熱硬化性成分の働きで促進され、強固で信頼性の有る接着が行えるようになる。
Next, in this state, a lamp light including a large amount of ultraviolet rays and infrared rays is irradiated from the back surface of the glass material 15 toward the adhesive.
First, curing of the adhesive begins with the irradiated ultraviolet rays. Curing by ultraviolet rays almost stops in 3 to 5 minutes. However, by continuing to irradiate light further, heat generation by infrared rays gradually increases, and the adhesive portion becomes high temperature. As a result, curing of the uncured portion by ultraviolet irradiation is promoted by the action of the thermosetting component, and strong and reliable adhesion can be performed.

なお、このとき赤外線で効率よく発熱するように、色分解合成光学系全体を密閉箱に入れて作業すると良い。この赤外線による硬化は約摂氏100度で60分程度行う。
こうして接着された偏光ビームスプリッタは、従来の問題点を解決し、接着後すぐに硬化が始まるので位置の固定が容易であり、その後も更に硬化が進み以降の温度変化や湿度の影響を受けることなく、又、機械的な振動によるずれの発生もなく強固にベース基盤に固定される。
At this time, it is preferable that the entire color separation / synthesis optical system is placed in a sealed box so that heat is efficiently generated by infrared rays. Curing with infrared rays is performed at about 100 degrees Celsius for about 60 minutes.
The polarization beam splitter thus bonded solves the conventional problems, and curing is started immediately after bonding, so that the position can be easily fixed. After that, the curing progresses further and is affected by temperature changes and humidity after that. In addition, it is firmly fixed to the base substrate without occurrence of displacement due to mechanical vibration.

この点について、図5を用いて本実施例のおける偏光ビームスプリッタの接着固定された位置精度の信頼性と接着剤の膜厚および膜厚むらの状態を説明する。
図5は、本発明の実施例による接着固定のサンプル件数を6例(1〜6)、従来の接着固定のサンプル件数を2例(7、8)について、接着固定後に2つの試験条件を与えて偏光ビームスプリッタの位置の変位量を測定したものである。
Regarding this point, the reliability of the positional accuracy of the polarization beam splitter bonded and fixed in the present embodiment, the thickness of the adhesive, and the state of unevenness of the adhesive will be described with reference to FIG.
FIG. 5 shows two test conditions after bonding and fixing for six cases (1 to 6) of adhesive fixing samples according to the embodiment of the present invention and two cases (7 and 8) of conventional adhesive fixing samples. Thus, the displacement amount of the position of the polarization beam splitter is measured.

なお、試験条件は、「ヒートサイクル」は摂氏70度から−15度を1度/分の温度勾配で昇温、降温を1サイクルとしてこれを10サイクル行うもの、「高温高湿」は摂氏60度90%で240時間放置後である。   The test conditions are as follows: “heat cycle” is a temperature gradient from 70 ° C. to −15 ° C. with a temperature gradient of 1 degree / minute, and the temperature drop is 10 cycles, and “high temperature and high humidity” is 60 ° C. After 90 hours at 90% degree.

また、図6は偏光ビームスプリッタの位置変位量の測定方法である。測定は偏光ビームスプリッタ正面のa〜d付近の4点について、基準となるベース基盤の反射面eに対するZ軸方向のずれを測定し平均をとったものである。   FIG. 6 shows a method for measuring the positional displacement amount of the polarizing beam splitter. In the measurement, the deviation in the Z-axis direction with respect to the reflection surface e of the base substrate as a reference is measured and averaged at four points in the vicinity of a to d in front of the polarizing beam splitter.

また、接着強度は、位置変位量を測定しない残りの偏光ビームスプリッタで行った。
図5に示すテスト結果から、位置の変位量は1〜6のサンプルが7,8に比して極めて良好であり、また、接着強度については、初期とヒートサイクル後はほぼ同等ながら、高温高湿後は7,8の劣化が著しいことが分る。また、接着剤塗布の厚みや厚みむらによる位置の変位量や接着強度への影響はほとんどないといえる。
The adhesive strength was measured with the remaining polarizing beam splitter that does not measure the amount of positional displacement.
From the test results shown in FIG. 5, the displacement amount of the position is extremely good for the samples of 1 to 6 as compared with 7 and 8, and the adhesive strength is almost the same between the initial stage and after the heat cycle, but the high temperature and the high level. It can be seen that 7 and 8 are markedly degraded after wetting. Moreover, it can be said that there is almost no influence on the amount of displacement of the position and the adhesive strength due to the thickness or unevenness of the adhesive application.

このように、本発明の実施例に係る接着剤を用いて接着固定を行った偏光ビームスプリッタは、温度変化や高湿条件下でも位置精度や接着強度の信頼性に優れたものであるといえる。   Thus, it can be said that the polarization beam splitter that has been bonded and fixed using the adhesive according to the embodiment of the present invention has excellent positional accuracy and reliability of bonding strength even under temperature change and high humidity conditions. .

以上詳述したように、本発明に係る色分解合成光学系は、ベース基板上に接着剤を介して固定される過程において、上記接着剤として紫外線硬化接着剤に熱硬化性材料を所定の割合で混合したものであるから、接着剤を硬化するにあたり、紫外線と赤外線を含む光線を照射することにより、まず紫外線で硬化が始まり、紫外線では硬化しきれない未硬化部分を赤外線による加熱で硬化することが可能となり、短時間に接着強度の信頼性に優れた色分解合成光学系を作成することができるものである。   As described above in detail, the color separation / synthesis optical system according to the present invention has a predetermined ratio of a thermosetting material to the ultraviolet curable adhesive as the adhesive in the process of being fixed on the base substrate via the adhesive. When curing the adhesive, by irradiating light containing ultraviolet rays and infrared rays, curing begins with ultraviolet rays, and uncured parts that cannot be cured with ultraviolet rays are cured by heating with infrared rays. Therefore, it is possible to create a color separation / synthesis optical system excellent in reliability of adhesive strength in a short time.

本発明の実施例に係る反射型投射表示装置の構成と光路を示す平面図である。It is a top view which shows the structure and optical path of the reflection type projection display apparatus which concern on the Example of this invention. 本発明の実施例に係るベース基盤材を裏面から見た図である。It is the figure which looked at the base base material which concerns on the Example of this invention from the back surface. 本発明の実施例に係るベース基盤材上の接着個所を裏面から示した図である。It is the figure which showed the adhesion part on the base base material which concerns on the Example of this invention from the back surface. 本発明の実施例に係るベース基盤材上に偏光ビームスプリッタを配置した平面図である。It is the top view which has arrange | positioned the polarizing beam splitter on the base base material which concerns on the Example of this invention. 接着後の偏光ビームスプリッタの位置精度を測定したデータ図である。It is the data figure which measured the positional accuracy of the polarizing beam splitter after adhesion | attachment. 接着後の偏光ビームスプリッタの位置精度を測定する方法を説明する図である。It is a figure explaining the method to measure the positional accuracy of the polarization | polarized-light beam splitter after adhesion | attachment.

符号の説明Explanation of symbols

1…ベース基盤
2,3,4,5…偏光ビームスプリッタ
6,7,8…ねじ穴
9,10,11,12…接着剤の塗布個所
15…ガラス材(ベース基盤の接着個所)
21,31,41,51…偏光分離面
61,62,63…反射型空間光変調素子

DESCRIPTION OF SYMBOLS 1 ... Base base 2, 3, 4, 5 ... Polarizing beam splitter 6, 7, 8 ... Screw hole 9, 10, 11, 12 ... Application place of adhesive 15 ... Glass material (adhesion place of base base)
21, 31, 41, 51... Polarization separation surface 61, 62, 63... Reflective spatial light modulator

Claims (1)

白色光から3原色光に色分解を行う色分解光学系と、前記色分解光学系で色分解した3原色光の強度を各色光対応用の反射型空間光変調素子で光変調して、これらの光変調された変調光の色合成を行う色合成光学系とがベース基板上に接着剤を介して固定された色分解合成光学系において、
前記接着剤は、紫外線硬化接着剤に熱硬化性材料を所定の割合で混合したものであることを特徴とする色分解合成光学系。

A color separation optical system that performs color separation from white light to three primary color lights, and the intensity of the three primary color lights that have been color-separated by the color separation optical system are modulated by a reflective spatial light modulator for each color light. In a color separation / combination optical system in which a color composition optical system that performs color composition of modulated light of light is fixed on a base substrate via an adhesive,
The color separation / synthesis optical system according to claim 1, wherein the adhesive is a mixture of a thermosetting material and an ultraviolet curing adhesive in a predetermined ratio.

JP2005338289A 2005-11-24 2005-11-24 Color resolution and composition optical system Pending JP2007147703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005338289A JP2007147703A (en) 2005-11-24 2005-11-24 Color resolution and composition optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005338289A JP2007147703A (en) 2005-11-24 2005-11-24 Color resolution and composition optical system

Publications (1)

Publication Number Publication Date
JP2007147703A true JP2007147703A (en) 2007-06-14

Family

ID=38209217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005338289A Pending JP2007147703A (en) 2005-11-24 2005-11-24 Color resolution and composition optical system

Country Status (1)

Country Link
JP (1) JP2007147703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162651A (en) * 2015-03-03 2016-09-05 トヨタ自動車株式会社 Fuel battery single cell and method for manufacturing fuel battery single cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162651A (en) * 2015-03-03 2016-09-05 トヨタ自動車株式会社 Fuel battery single cell and method for manufacturing fuel battery single cell

Similar Documents

Publication Publication Date Title
KR100718560B1 (en) The liquid crystal display device and the manufacturing method thereof
US20050041289A1 (en) Advanced prism assemblies and prism assemblies using cholesteric reflectors
JP5541056B2 (en) Polarization conversion element, polarization conversion unit, projection device, and method of manufacturing polarization conversion element
JP2005208318A (en) Projector
JP2006235571A (en) Projection type display apparatus
US8764197B2 (en) Polarization conversion element, polarization converting unit, and projecting apparatus
JP6417677B2 (en) Optical module and optical modulator
CN104793399B (en) Display device and preparation method thereof
CN101135745A (en) Optical element, method of manufacturing the same, and projector
JP2007147703A (en) Color resolution and composition optical system
WO2020238666A1 (en) Prism assembly and projection device
JP2000321480A (en) Prism device and manufacture of prism device
CN102981285A (en) Optical apparatus, projection apparatus and method of manufacturing optical apparatus
JP4277922B2 (en) Optical element manufacturing method
JP5228321B2 (en) Optical compensation panel, optical compensation panel manufacturing method, and liquid crystal display device
JP4085387B2 (en) Color separation / synthesis optical system
JP6638390B2 (en) Package and image display device
JP2007232870A (en) Projector
JP2522549B2 (en) Laminating structure
JP4375450B2 (en) Method for manufacturing optical compensation element
JP2001147306A (en) Jointed optical parts and jointing method for the optical parts
JP2009069248A (en) Method of manufacturing optical compensating element and projector
JP2010231239A (en) Optical device and projector
JP2017120799A (en) Package, manufacturing method of package, and image display device
JP2017044766A (en) projector