JP2007143702A - Apparatus for measuring component in body and method for measuring component in body - Google Patents

Apparatus for measuring component in body and method for measuring component in body Download PDF

Info

Publication number
JP2007143702A
JP2007143702A JP2005339935A JP2005339935A JP2007143702A JP 2007143702 A JP2007143702 A JP 2007143702A JP 2005339935 A JP2005339935 A JP 2005339935A JP 2005339935 A JP2005339935 A JP 2005339935A JP 2007143702 A JP2007143702 A JP 2007143702A
Authority
JP
Japan
Prior art keywords
light
living body
measurement
light source
vivo component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005339935A
Other languages
Japanese (ja)
Inventor
Osao Hamada
長生 濱田
Masato Kinoshita
雅登 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005339935A priority Critical patent/JP2007143702A/en
Publication of JP2007143702A publication Critical patent/JP2007143702A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide not only an apparatus for measuring the components in a body with high measuring precision but also the method for measuring the components in the body with high measuring accuracy. <P>SOLUTION: The apparatus 1 for measuring the components in the body has a light source 3 for measuring and a light source 5 for activating cells are mounted to a housing 2, and further, a skin transmitting light detecting element 6 (a light receiving element), a light source monitor 7 for measuring, a transmitting wavelength variable filter 8, and two half mirrors 10, 11 are mounted to the housing 2. The light source 5 for activating cells is lit, and the living body is irradiated with light to activate the cells prior to irradiating the living body with the light for measuring. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、生体に対して針を刺したり、メスや鋏で組織を切り取ることなく体内成分を測定する体内成分計測装置に関するものである。また併せて本発明は、体内成分を計測する方法に関するものである。   The present invention relates to an in-vivo component measuring apparatus that measures an in-vivo component without piercing a living body with a needle or cutting a tissue with a scalpel or scissors. In addition, the present invention also relates to a method for measuring in-vivo components.

例えば血糖値の測定は、旧来、注射器等で少量の血液を採血し、この血液中のグルコース濃度を測定することによって行われていた。しかしながらこの方策は痛みを伴うものであるため、患者にとって苦痛である。そこで、生体に対して針を刺したり、メスや鋏で組織を切り取ることなく体内成分を測定する装置が開発されている。この装置は、例えば非侵襲血糖計と称されるものであり、特許文献1,2等に開示されている。   For example, blood glucose levels are conventionally measured by collecting a small amount of blood with a syringe or the like and measuring the glucose concentration in the blood. However, this strategy is painful for the patient because it is painful. In view of this, devices have been developed that measure components in the body without piercing the living body or cutting tissue with a scalpel or scissors. This device is called a non-invasive blood glucose meter, for example, and is disclosed in Patent Documents 1 and 2 and the like.

体内成分計測装置の基本構成は、光源と、受光部と、受光した光を解析する解析装置及び演算装置から成る。そして生体(例えば被検者の指)に近赤外光を照射し、生体内部に入り込んで透過及び反射を繰り返して再び生体表面に出てきた光を受光部で受光する。そしてこの光を解析装置で分光し、特定領域の光強度を測定する。この光強度に基づいて算出した吸光度から生体内の血糖値(グルコース濃度)を演算する。   The basic configuration of the in-vivo component measuring device includes a light source, a light receiving unit, an analysis device that analyzes the received light, and an arithmetic device. The living body (for example, the subject's finger) is irradiated with near-infrared light, and the light that enters the living body and repeats transmission and reflection and emerges from the surface of the living body is received by the light receiving unit. Then, this light is spectrally separated by an analyzer, and the light intensity in a specific region is measured. The blood glucose level (glucose concentration) in the living body is calculated from the absorbance calculated based on the light intensity.

上記した方法は、被検者に苦痛を与えることがない点で優れているが、採血による方法に比べて測定精度が劣るという問題がある。そのためこの種の体内成分計測装置では、いかにして検査精度を向上させかという点が共通する課題である。   The above-described method is excellent in that it does not cause pain to the subject, but there is a problem that measurement accuracy is inferior to the method using blood collection. Therefore, in this kind of in-vivo component measuring device, the common issue is how to improve the inspection accuracy.

たとえば特許文献1に開示された発明では、測定精度を向上させるために、被検体に対する接触圧を圧力センサで検出し、その値に基づいて接触圧が一定となるように被検体の支持板を上下させている。また特許文献2に開示された発明では、光源部の光量を計測する光量計測手段を設け、光量計測手段の出力に応じて光源部の出力を制御している。
特開2003−111750号公報 特開2003−245265号公報
For example, in the invention disclosed in Patent Document 1, in order to improve the measurement accuracy, the contact pressure on the subject is detected by a pressure sensor, and the support plate of the subject is set so that the contact pressure becomes constant based on the value. It is moving up and down. In the invention disclosed in Patent Document 2, a light amount measuring unit for measuring the light amount of the light source unit is provided, and the output of the light source unit is controlled according to the output of the light amount measuring unit.
JP 2003-111750 A JP 2003-245265 A

従来技術の体内成分計測装置は、上記した様に各種の方策を講じて測定精度の向上に努めている。しかしながら、前記した様に体内成分計測装置では、検査精度を向上させることが共通する課題であり、測定精度のさらなる向上が望まれている。   As described above, the in-vivo component measuring device of the prior art strives to improve measurement accuracy by taking various measures. However, as described above, in the in-vivo component measuring device, it is a common problem to improve the inspection accuracy, and further improvement in the measurement accuracy is desired.

そこで本発明は、従来技術の上記した問題点に注目し、測定精度の高い体内成分計測装置の開発を課題とするものである。また併せて本発明は、測定精度の高い体内成分計測方法の開発を課題とする。   Accordingly, the present invention focuses on the above-described problems of the prior art and aims to develop an in-vivo component measuring device with high measurement accuracy. In addition, another object of the present invention is to develop a method for measuring in-vivo components with high measurement accuracy.

本発明者らは、上記した課題を解決するために鋭意研究を行ったところ、生体に光を照射すると細胞が活性化することが分かった。そのため生体に予備的な光を照射し、その直後に測定用の光を照射して測定を行うと、測定精度が向上することが判明した。   The inventors of the present invention conducted intensive research to solve the above-described problems, and found that the cells are activated when the living body is irradiated with light. For this reason, it has been found that measurement accuracy is improved by irradiating a living body with preliminary light and immediately after that measurement light is irradiated.

上記した知見に基づいて完成された請求項1に記載の発明は、測定用光を発生させる光源と、受光手段とを備え、光源から発する測定用光を生体に照射し、生体を透過或いは拡散反射した光を受光手段で受光し、受光手段で受光した光に基づいて生体内の成分を計測する体内成分計測装置において、測定用光を生体に照射するのに先立って所定強度の光を生体に照射し、生体に変化をもたらすことを特徴とする体内成分計測装置である。本発明の体内成分計測装置では、測定用光を生体に照射するのに先立って予備的な光を生体に照射する。その結果、生体の血流が増大すると共にグルコース等が高濃度となる。本発明では、予備的な光を生体に照射した後に測定用光を生体に照射して所定の測定を行うので、測定精度が高い。   The invention according to claim 1, which has been completed based on the above knowledge, includes a light source for generating measurement light and a light receiving means, irradiates the living body with the measurement light emitted from the light source, and transmits or diffuses the living body. In an in-vivo component measuring apparatus that receives reflected light by a light receiving means and measures a component in the living body based on the light received by the light receiving means, the light with a predetermined intensity is irradiated before the measurement light is irradiated on the living body. It is an in-vivo component measuring device characterized by irradiating and inducing changes in the living body. In the in-vivo component measurement apparatus of the present invention, preliminary light is irradiated onto the living body prior to the measurement light being irradiated onto the living body. As a result, the blood flow of the living body increases and glucose or the like becomes a high concentration. In the present invention, since the living body is irradiated with preliminary light and then the measuring light is irradiated onto the living body to perform a predetermined measurement, the measurement accuracy is high.

請求項2に記載の発明は、測定用光を発生させる光源と、受光手段とを備え、光源から発する測定用光を生体に照射し、生体を透過或いは拡散反射した光を受光手段で受光し、受光手段で受光した光に基づいて生体内の成分を計測する体内成分計測装置において、測定用光を生体に照射するのに先立って測定用光よりもエネルギーの高い光を生体に照射することを特徴とする体内成分計測装置である。本発明の体内成分計測装置においても請求項1に記載の発明と同様に測定用光を生体に照射するのに先立って測定用光よりもエネルギーの高い光を生体に照射する。そのため本発明の体内成分計測装置は、測定精度が高い。   The invention according to claim 2 includes a light source for generating measurement light and a light receiving means, irradiates the living body with the measurement light emitted from the light source, and receives the light transmitted through or diffusely reflected from the living body by the light receiving means. Irradiating the living body with light having higher energy than the measuring light prior to irradiating the living body with the measuring light in the in-vivo component measuring device that measures the components in the living body based on the light received by the light receiving means It is an in-vivo component measuring device characterized by this. Also in the in-vivo component measuring apparatus of the present invention, the living body is irradiated with light having higher energy than the measuring light prior to irradiating the living body with the measuring light, as in the first aspect of the invention. Therefore, the in-vivo component measuring device of the present invention has high measurement accuracy.

請求項3に記載の発明は、測定用光の照射に先立って生体に照射する光は、その波長が測定用光の波長よりも短いことを特徴とする請求項1又は2に記載の体内成分計測装置である。本発明の体内成分計測装置では、測定用光の照射に先立って生体に照射する光は、その波長が測定用光の波長よりも短い。そのため測定用光の照射に先立って生体に照射する光は、エネルギーが高い。   The invention according to claim 3 is characterized in that the wavelength of the light irradiating the living body prior to the measurement light irradiation is shorter than the wavelength of the measurement light. It is a measuring device. In the in-vivo component measuring apparatus of the present invention, the wavelength of the light irradiated on the living body prior to the measurement light irradiation is shorter than the wavelength of the measurement light. Therefore, the light irradiated on the living body prior to the measurement light irradiation has high energy.

請求項4に記載の発明は、測定用光の照射に先立って生体に照射する光は、その波長が400〜1000nmであることを特徴とする請求項1乃至3のいずれかに記載の体内成分計測装置である。この範囲の波長は、酸化ヘモグロビンに吸収される波長であるとともに、細胞へのダメージを与える紫外線領域を除く領域である。   The invention according to claim 4 is characterized in that the wavelength of the light irradiating the living body prior to the measurement light irradiation is 400 to 1000 nm. It is a measuring device. The wavelength in this range is a wavelength that is absorbed by oxyhemoglobin, and is a region excluding an ultraviolet region that damages cells.

請求項5に記載の発明は、測定用光の照射に先立って生体に照射する光は、単位面積あたりのエネルギーが1〜10J/cm2 であることを特徴とする請求項1乃至4のいずれかに記載の体内成分計測装置である。前記したエネルギーは、被検者の皮膚に照射されるエネネギーである。この範囲は、細胞にダメージを及ぼさない範囲である。   The invention according to claim 5 is characterized in that the light applied to the living body prior to the measurement light irradiation has an energy per unit area of 1 to 10 J / cm 2. It is an in-vivo component measuring device. The energy described above is energy that is applied to the skin of the subject. This range is a range that does not damage the cells.

請求項6に記載の発明は、測定用光の照射に先立って生体に照射する光は、その照射時間が測定用光の照射時間よりも長いことを特徴とする請求項1乃至5のいずれかに記載の体内成分計測装置である。測定用光の照射に先立って生体に照射する光は、その照射時間が測定用光の照射時間よりも長い。そのため細胞の活性化が可能である。   According to a sixth aspect of the present invention, in the light irradiated on the living body prior to the measurement light irradiation, the irradiation time is longer than the irradiation time of the measurement light. It is an in-vivo component measuring device. The light irradiated on the living body prior to the measurement light irradiation has a longer irradiation time than the measurement light irradiation time. Therefore, cell activation is possible.

請求項7に記載の発明は、測定用光の照射に先立って生体に照射する光は、断続的に照射されることを特徴とする請求項1乃至6のいずれかに記載の体内成分計測装置である。本発明の体内成分計測装置では、予備的な光の照射が断続的に行われる。そのため細胞に与えるダメージが低い。また同様の課題を解決するための方法に関する発明は、測定用光を生体に照射し、生体を透過或いは拡散反射した光に基づいて生体内の成分を計測する体内成分計測方法において、測定用光を生体に照射するのに先立って所定強度の光を生体に照射し、生体に変化をもたらすことを特徴とするものである。   The invention according to claim 7 is characterized in that the light for irradiating the living body prior to the measurement light is irradiated intermittently, according to any one of claims 1 to 6. It is. In the in-vivo component measuring apparatus of the present invention, preliminary light irradiation is intermittently performed. Therefore, damage to cells is low. An invention relating to a method for solving the same problem includes a measurement light in an in-vivo component measurement method in which a living body is irradiated with measurement light and a component in the living body is measured based on light transmitted through or diffusely reflected through the living body. Prior to irradiating a living body with light, the living body is irradiated with light of a predetermined intensity to cause a change in the living body.

本発明の体内成分計測装置では、測定に先立って予備的な光を照射し、測定に先立って細胞を活性化させる。そのため本発明の体内成分計測装置は、測定精度が高いという効果がある。   In the in-vivo component measurement apparatus of the present invention, preliminary light is irradiated prior to measurement, and cells are activated prior to measurement. Therefore, the in-vivo component measuring apparatus of the present invention has an effect of high measurement accuracy.

以下さらに本発明の実施形態について説明する。図1は、本発明の実施形態の体内成分計測装置を示す概念図である。図1に示す体内成分計測装置1は、ハウジング2に計測用光源3と細胞活性化用光源5が取り付けられ、さらにハウジング2内に皮膚透過光検知素子(受光手段)6、計測用光源モニター素子7、透過波長可変フィルター8及び2個のハーフミラー10,11が取り付けられたものである。またハウジング2には温度センサー12が設けられている。また外部装置として演算装置19がある。演算装置19には、検量モデル用データベースが記憶されている。即ち多数の被験者の皮膚に光を照射し、この時の生体を透過或いは拡散反射した光のスペクトル分布等と、当該被験者の血糖血との関係を検量モデルとし、このデータを多数集めてデータベース化したものが演算装置19に記憶されている。   Embodiments of the present invention will be further described below. FIG. 1 is a conceptual diagram showing an in-vivo component measuring apparatus according to an embodiment of the present invention. In a body component measuring apparatus 1 shown in FIG. 1, a measurement light source 3 and a cell activation light source 5 are attached to a housing 2, and further, a skin transmitted light detection element (light receiving means) 6 and a measurement light source monitor element are provided in the housing 2. 7. A transmission wavelength variable filter 8 and two half mirrors 10 and 11 are attached. The housing 2 is provided with a temperature sensor 12. There is a computing device 19 as an external device. The arithmetic unit 19 stores a calibration model database. That is, irradiate light on the skin of a large number of subjects, and use the calibration model to determine the relationship between the spectral distribution of the light transmitted through or diffusely reflected by the living body at this time and blood glucose blood of the subject. Is stored in the arithmetic unit 19.

以下、体内成分計測装置1の具体的構成について説明する。ハウジング2は、外部から光の混入が無い様に作られたものであり、内部に筒状の主光路15と副光路16が設けられている。即ち実施形態の体内成分計測装置1は、体内成分を計測するための光が通過する主光路15の他に、細胞を活性化させるための光を導くための副光路16を持っている。図1においては、二列の光路15、16はいずれも直線的であり、平行かつ隣接状態に図示している。   Hereinafter, a specific configuration of the in-vivo component measuring apparatus 1 will be described. The housing 2 is made so that light is not mixed from the outside, and a cylindrical main optical path 15 and a sub optical path 16 are provided inside. That is, the in-vivo component measuring apparatus 1 of the embodiment has a sub optical path 16 for guiding light for activating cells in addition to the main optical path 15 through which light for measuring the in-vivo components passes. In FIG. 1, the two rows of optical paths 15 and 16 are both linear and are shown in parallel and adjacent states.

ハウジング2の、前記した二列の光路15の内、主光路15は、前記した様に直線的であり一方の端部に計測用光源3が設けられている。計測用光源3は、例えばハロゲンランプのように近赤外線帯域に波長域を有するものである。なお計測用光源3には、図示しないレンズやミラーが内蔵されている。   Of the two rows of optical paths 15 of the housing 2, the main optical path 15 is linear as described above, and the measurement light source 3 is provided at one end thereof. The measurement light source 3 has a wavelength region in the near-infrared band, such as a halogen lamp. The measurement light source 3 incorporates a lens and a mirror (not shown).

前記した主光路15の他端側は開放されていて発光部17を形成している。また当該光路15の中途には第一ハーフミラー10が配置されている。前記した主光路15の中心部には、さらにもう一つの光路(受光用光路)20が形成されている。光路20は、生体から戻って来た光を受光するための光路であり、一端側は、前記した第一ハーフミラー10と接している。また受光用光路20の奥部には皮膚透過光検知素子(受光手段)6が設けられている。皮膚透過光検知素子6には、例えばInGaAsアレイ型受光素子を使用することができる。皮膚透過光検知素子6は、第一ハーフミラー10側を向いている。   The other end side of the main optical path 15 is opened to form a light emitting portion 17. A first half mirror 10 is disposed in the middle of the optical path 15. Another optical path (light receiving optical path) 20 is formed at the center of the main optical path 15 described above. The optical path 20 is an optical path for receiving light returned from the living body, and one end side thereof is in contact with the first half mirror 10 described above. Further, a skin transmitted light detecting element (light receiving means) 6 is provided in the back of the light receiving optical path 20. For the skin transmitted light detecting element 6, for example, an InGaAs array type light receiving element can be used. The skin transmitted light detecting element 6 faces the first half mirror 10 side.

また光路15から計測用光源モニター素子7が露出している。計測用光源モニター素子7は、計測用光源3から出た光の中心付近の光を検知する様に配置されている。計測用光源モニター素子7には、たとえばInGaAsアレイ型受光素子を使用することができる。計測用光源モニター素子7は、受光部が計測用光源3側に向いている。計測用光源モニター素子7は、計測用光源3のスペクトル分布を測定するために設けられたものである。   Further, the measurement light source monitor element 7 is exposed from the optical path 15. The measurement light source monitor element 7 is arranged so as to detect light near the center of the light emitted from the measurement light source 3. As the measurement light source monitor element 7, for example, an InGaAs array type light receiving element can be used. In the measurement light source monitor element 7, the light receiving portion faces the measurement light source 3 side. The measurement light source monitor element 7 is provided for measuring the spectral distribution of the measurement light source 3.

一方、前記した光路15に隣接する光路16は、一端側に細胞活性化用光源5が取り付けられ、他端側に第2ハーフミラー11が設けられている。また光路16の中途には透過波長可変フィルター8が設けられている。透過波長可変フィルター8と細胞活性化用光源5との間には、図示しないシャッターやスリット等が設けられており、透過波長可変フィルター8を通過させる場合と通過させない場合を切り換えることができる。   On the other hand, the optical path 16 adjacent to the optical path 15 is provided with the cell activation light source 5 on one end side and the second half mirror 11 on the other end side. A transmission wavelength variable filter 8 is provided in the middle of the optical path 16. Between the transmission wavelength variable filter 8 and the cell activation light source 5, a shutter, a slit, or the like (not shown) is provided, and the case where the transmission wavelength variable filter 8 is allowed to pass can be switched.

本実施形態では、細胞活性化用光源5は、波長が400〜1000nmの範囲の光を発する。前記した透過波長可変フィルター8を通過させると、600nm以上の波長がカットされ、結果的に400〜600nmの範囲の光が発せられる。また細胞活性化用光源5のエネルギーは、被測定部の皮膚上において1〜10J/cm2 であり、本実施形態では、3J/cm2 に調整されている。   In the present embodiment, the cell activation light source 5 emits light having a wavelength in the range of 400 to 1000 nm. When passing through the transmission wavelength variable filter 8 described above, a wavelength of 600 nm or more is cut, and as a result, light in the range of 400 to 600 nm is emitted. The energy of the cell activation light source 5 is 1 to 10 J / cm 2 on the skin of the measurement target, and is adjusted to 3 J / cm 2 in this embodiment.

上記した細胞活性化用光源5は、測定に先立って予備的に発光され、血糖値の精度を向上させるための照射光を発生させるものであり、血糖値の測定そのものには使用されない。そのため細胞活性化用光源5が発生させる光の波長は、血流増加・細胞活性化に効果的な波長であり、酸化ヘモグロビンに吸収される波長であるとともに、細胞へのダメージを与える紫外線領域を除く領域である。   The cell activation light source 5 described above is preliminarily emitted before measurement, and generates irradiation light for improving the accuracy of blood glucose level, and is not used for blood glucose level measurement itself. Therefore, the wavelength of light generated by the cell activation light source 5 is an effective wavelength for increasing blood flow and activating cells, and is a wavelength that is absorbed by oxyhemoglobin, and an ultraviolet region that damages cells. Excluded area.

具体的には、細胞活性化用光源5の波長は、400〜1000nmである。また細胞活性化のためにより好ましい波長は700〜800nmである。ただし皮膚への熱ダメージが出る場合は、相対的に酸化ヘモグロビンの吸光量がメラニンの吸光量より高くなる様に透過波長可変フィルター8を通して600nm以上をカットする。この場合の波長は、400〜600nmとなる。   Specifically, the wavelength of the cell activation light source 5 is 400 to 1000 nm. Further, a more preferable wavelength for cell activation is 700 to 800 nm. However, when heat damage is caused to the skin, 600 nm or more is cut through the transmission wavelength variable filter 8 so that the absorbance of oxyhemoglobin is relatively higher than the absorbance of melanin. In this case, the wavelength is 400 to 600 nm.

細胞活性化用光源5のパワーは、照射エネルギーは部位によって効果が異なるものの、細胞へのダメージを及ぼさないために10J/cm2 以下であることが望ましい。また細胞活性化の作用を顕著に表出させるためには、細胞活性化用光源5のパワーは、1J/cm2 以上であることが望ましい。これらの点に鑑み、推奨される細胞活性化用光源5のパワーは、1〜10J/cm2 である。   The power of the cell activation light source 5 is desirably 10 J / cm 2 or less in order to prevent damage to cells, although the effect of irradiation energy varies depending on the site. In order to express the cell activation effect remarkably, the power of the cell activation light source 5 is desirably 1 J / cm 2 or more. In view of these points, the recommended power of the cell activation light source 5 is 1 to 10 J / cm 2.

照射時間は、血流量増大のために1分間以内の照射を行い、皮膚への熱ダメージが出る場合はタンパクの変性を起こさないようにするために1回の照射を10ms以下とし、このパルス光を繰返し照射することにより血流量を増大させる効果を出す。細胞活性化用光源5が発生させる光と、計測用光源3が発生させる光とを比較すると、細胞活性化用光源5が発生させる光のパルスパワーは計測用光源3のパルスパワーよりも高い。   Irradiation time is less than 1 minute to increase blood flow, and if there is heat damage to the skin, one irradiation is 10 ms or less to prevent protein denaturation. The effect of increasing blood flow is obtained by repeatedly irradiating. When the light generated by the cell activation light source 5 is compared with the light generated by the measurement light source 3, the pulse power of the light generated by the cell activation light source 5 is higher than the pulse power of the measurement light source 3.

また細胞活性化用光源5が発生させる光の波長は、計測用光源3が発生させる光の波長よりも短い。また細胞活性化用光源5が発生させる光を皮膚に照射する時間は、計測用光源3が発生させる光を皮膚に照射する時間よりも短い。   The wavelength of light generated by the cell activation light source 5 is shorter than the wavelength of light generated by the measurement light source 3. The time for irradiating the skin with the light generated by the cell activation light source 5 is shorter than the time for irradiating the skin with the light generated by the measurement light source 3.

光路16の説明に戻ると、前記した主光路15と副光路16は、第一ハーフミラー10と第二ハーフミラー11の間で光学的に連通している。温度センサー12は、ハウジング2の外側に露出しており、その検知面は、発光部17と隣接している。そのため発光部17を被検者の皮膚に押し当てると、隣接する温度センサー12が被検者の皮膚に接触し、皮膚表面の温度を検知することができる。   Returning to the description of the optical path 16, the main optical path 15 and the sub optical path 16 described above are in optical communication between the first half mirror 10 and the second half mirror 11. The temperature sensor 12 is exposed outside the housing 2, and its detection surface is adjacent to the light emitting unit 17. Therefore, when the light emitting unit 17 is pressed against the subject's skin, the adjacent temperature sensor 12 comes into contact with the subject's skin, and the temperature of the skin surface can be detected.

次に、各光路中の光の経路について説明する。図2は、計測時における光の経路を示す説明図である。図3は、細胞活性化用光の経路を示す説明図である。本実施形態では、計測用光源3と細胞活性化用光源5とを個別に発光させる。計測用光源3から発せられた光は主光路15を直進し、第一ハーフミラー10を透過して主光路15端部の発光部17から外部に輻射される。この光は、被検者の皮膚に照射され、皮膚組織を透過あるいは拡散反射して発光部17側に戻る。   Next, the light path in each optical path will be described. FIG. 2 is an explanatory diagram showing light paths during measurement. FIG. 3 is an explanatory diagram showing a path of light for cell activation. In the present embodiment, the measurement light source 3 and the cell activation light source 5 are caused to emit light separately. The light emitted from the measurement light source 3 travels straight through the main optical path 15, passes through the first half mirror 10, and is radiated to the outside from the light emitting unit 17 at the end of the main optical path 15. This light is applied to the skin of the subject, passes through or diffusely reflects the skin tissue, and returns to the light emitting unit 17 side.

皮膚を透過或いは拡散反射して戻った光は、前記した発光部17から主光路15に入る。そして第一ハーフミラー10を透過して受光用光路20に入り、皮膚透過光検知素子6に至る。これに対して細胞活性化用光源5から発せられた光は副光路16を経て被検者の皮膚に照射される。   The light transmitted through the skin or diffusely reflected and returned returns from the light emitting unit 17 to the main optical path 15. Then, the light passes through the first half mirror 10, enters the light receiving optical path 20, and reaches the skin transmitted light detecting element 6. On the other hand, the light emitted from the cell activation light source 5 is irradiated to the skin of the subject through the auxiliary optical path 16.

即ち細胞活性化用光源5から発せられた光は副光路16を直進し、透過波長可変フィルター8の部位を通過する。そして細胞活性化用光源5から発せられた光はさらに直進するが、第二ハーフミラー11の表面で反射して主光路15に入る。この光は第一ハーフミラー10の裏面で反射し、発光部17から外部に輻射される。細胞活性化用光源5から発せられた光は、被検者の皮膚に照射される。   That is, the light emitted from the cell activation light source 5 travels straight through the auxiliary optical path 16 and passes through the portion of the transmission wavelength variable filter 8. The light emitted from the cell activation light source 5 further travels straight, but is reflected by the surface of the second half mirror 11 and enters the main optical path 15. This light is reflected by the back surface of the first half mirror 10 and radiated from the light emitting portion 17 to the outside. The light emitted from the cell activation light source 5 is applied to the skin of the subject.

次に本発明の実施形態の体内成分計測装置1の作用について、動作手順を追って説明する。本実施形態の体内成分計測装置1は、発光部17に指等の生体組織を乗せて血糖値を測定するものである。即ち発光部17に指等を置き、図示しないスタートボタンをオンすることによって計測が開始される。本実施形態では、血糖値の測定は、計測用光源3を発光させて行われるが、測定に先立って、細胞活性化用光源5からエネルギーの高い光が皮膚に照射され、細胞の活性化が行われる。   Next, the operation of the in-vivo component measuring apparatus 1 according to the embodiment of the present invention will be described following the operation procedure. The in-vivo component measurement apparatus 1 according to the present embodiment measures a blood glucose level by placing a biological tissue such as a finger on the light emitting unit 17. That is, measurement is started by placing a finger or the like on the light emitting unit 17 and turning on a start button (not shown). In this embodiment, the blood glucose level is measured by causing the measurement light source 3 to emit light. Prior to the measurement, the skin activation light is irradiated with light having high energy from the cell activation light source 5 to activate the cells. Done.

以下、図4のフローチャートに従って説明する。図4は、本発明の実施形態の体内成分計測装置の動作手順を示すフローチャートである。前記した様に発光部17に指等を置き、図示しないスタートボタンをオンすることによって計測が開始され、ステップ1に移行して細胞活性化用光源5がオンされる。細胞活性化用光源5から発せられた光は、前記した経路を経て被検者の皮膚に照射される。ここで細胞活性化用光源5から照射される光は、測定制度の精度向上のためだけに照射されるものであり、その波長は、酸化ヘモグロビンに吸収される波長であるとともに、細胞へのダメージを与える紫外線領域を除く領域のものである。   Hereinafter, description will be given with reference to the flowchart of FIG. FIG. 4 is a flowchart showing an operation procedure of the in-vivo component measuring apparatus according to the embodiment of the present invention. As described above, a finger or the like is placed on the light emitting unit 17 and a start button (not shown) is turned on to start measurement. The process proceeds to step 1 and the cell activation light source 5 is turned on. The light emitted from the cell activation light source 5 is applied to the skin of the subject through the above-described route. Here, the light emitted from the cell activation light source 5 is emitted only for improving the accuracy of the measurement system. The wavelength of the light is absorbed by oxyhemoglobin and damages the cells. It is a region excluding the ultraviolet region that gives light.

本実施形態では、ステップ1で細胞活性化用光源5がオンとなり、細胞活性化用光源5から400〜1000nmの波長で、エネルギーが3J/cm2 の光を発させる。そしてこの光を透過波長可変フィルター8を透過させずに被検者に照射する。即ち400〜1000nmの波長の光が、前記した経路を経て被検者に照射され、細胞が活性化される。細胞活性化用光源5がオンとなるとステップ2に移行し、タイマの計時が開始される。このタイマは、細胞活性化用光を照射する時間を計測するものである。この時間は、例えば0.5〜2分程度である。本実施形態では、1分を計時するものとする。   In the present embodiment, the cell activation light source 5 is turned on in Step 1, and light having an energy of 3 J / cm 2 is emitted from the cell activation light source 5 at a wavelength of 400 to 1000 nm. Then, the subject is irradiated with this light without passing through the transmission wavelength variable filter 8. That is, light having a wavelength of 400 to 1000 nm is irradiated to the subject through the above-described route, and the cells are activated. When the cell activation light source 5 is turned on, the process proceeds to step 2 and the timer is started. This timer measures the time to irradiate the cell activation light. This time is, for example, about 0.5 to 2 minutes. In this embodiment, it is assumed that 1 minute is counted.

続いてステップ3に移行し、温度センサー12によって被検者の皮膚の温度を検知し、ステップ4でその温度が40°C以下であるか否かを確認する。即ち皮膚のタンパクは、42°C越えると熱変性が生じるので、被検者に害を与える懸念がある。そこで余裕を勘案し、ステップ3,4で皮膚の温度が40°Cを越えないように監視する。   Subsequently, the process proceeds to step 3 where the temperature of the subject's skin is detected by the temperature sensor 12 and whether or not the temperature is 40 ° C. or less is confirmed in step 4. That is, if the skin protein exceeds 42 ° C., heat denaturation occurs, which may cause harm to the subject. Therefore, in consideration of the margin, in steps 3 and 4, the skin temperature is monitored so as not to exceed 40 ° C.

そしてステップ5で1分が経過したか否かを判別する。1分を経過していない場合は、ステップ4に戻り、皮膚温度の監視を続ける。実際上は、温度センサー12による皮膚温度の検知を一定時間ごとに繰り返す。例えば1秒程度の間隔を開けて温度を測定することとなる。細胞活性化用光の照射時間が1分を経過するとステップ6に移行し、細胞活性化用光源5をオフにして血糖値の測定を開始する。   In step 5, it is determined whether 1 minute has elapsed. If 1 minute has not elapsed, the process returns to step 4 to continue monitoring the skin temperature. In practice, the detection of the skin temperature by the temperature sensor 12 is repeated at regular intervals. For example, the temperature is measured at intervals of about 1 second. When the irradiation time of the cell activation light has passed 1 minute, the routine proceeds to step 6 where the cell activation light source 5 is turned off and measurement of the blood glucose level is started.

もし細胞活性化用光の照射時間が1分に満たない間に皮膚の温度が40°C以上となった場合は、皮膚が低温火傷する危険があるので次の対策を講じる。即ちステップ8に移行し、一旦細胞活性化用光源5をオフする。つまり本実施形態では、所定の時間(5秒間)細胞活性化用光源5をオフする。具体的には、ステップ9で停止時間の計時を開始し、ステップ10で5秒が経過するものを待つ。   If the temperature of the skin becomes 40 ° C or higher while the irradiation time of the cell activation light is less than 1 minute, the following measures are taken because the skin may be burned at low temperature. That is, the process proceeds to step 8 where the cell activation light source 5 is once turned off. That is, in the present embodiment, the cell activation light source 5 is turned off for a predetermined time (5 seconds). Specifically, the stop time is started to be measured in Step 9, and the process waits for 5 seconds to elapse in Step 10.

この後は、ステップ11以下によって400〜600nmの範囲の光を断続的に照射し、これを1分間続ける。またこの間においても、皮膚温度の監視を行う。即ちステップ11でフィルターをオン状態とする。その結果、図示しないシャッタ等が駆動し、細胞活性化用光源5から発せられた光が透過波長可変フィルター8を経て被検者に照射されるようになる。続くステップ12でタイマの計時が開始される。このタイマは、細胞活性化用光を照射する時間を計測するものであり、1分を計時する。   After this, light in the range of 400 to 600 nm is intermittently applied in step 11 and subsequent steps, and this is continued for 1 minute. During this time, the skin temperature is monitored. That is, in step 11, the filter is turned on. As a result, a shutter (not shown) is driven, and the light emitted from the cell activation light source 5 is irradiated to the subject through the transmission wavelength variable filter 8. In subsequent step 12, the timer starts counting. This timer measures the time during which the cell activation light is irradiated, and measures 1 minute.

そしてステップ13に移行し、細胞活性化用光源5を点滅させ、間欠的な光を被検者に照射する。具体的には、1回の照射を10ms以下とし、このパルス光を繰返し照射する。本実施形態では、照射パルスは、10msの間オンし、50msの間オフし、これを繰り返す。   Then, the process proceeds to step 13, the cell activation light source 5 is blinked, and the subject is irradiated with intermittent light. Specifically, one pulse is set to 10 ms or less, and this pulsed light is repeatedly irradiated. In this embodiment, the irradiation pulse is turned on for 10 ms, turned off for 50 ms, and this is repeated.

続いてステップ14に移行し、温度センサー12によって被検者の皮膚の温度を検知し、ステップ15でその温度が40°C以下であるか否かを確認する。そしてステップ16で1分が経過したか否かを判別する。1分を経過していない場合は、ステップ13に戻り、皮膚温度の監視を続ける。細胞活性化用光の照射時間が1分を経過するとステップ7に移行し、血糖値の測定を開始する。   Subsequently, the process proceeds to step 14 where the temperature of the subject's skin is detected by the temperature sensor 12 and whether or not the temperature is 40 ° C. or less is confirmed in step 15. In step 16, it is determined whether 1 minute has elapsed. When 1 minute has not passed, it returns to step 13 and continues monitoring of skin temperature. When the irradiation time of the cell activation light has passed 1 minute, the process proceeds to step 7 to start measuring the blood sugar level.

血糖値の測定は従来技術と同様であり、計測用光源3を点灯して被検者の皮膚に照射し、皮膚組織を透過あるいは拡散反射した光に基づいて血糖値を測定する。具体的には、照射する光は、対象成分の分子結合により決定される波長とし、近赤外線域の波長である。たとえば血糖計測の場合、1〜2μmの波長の光を使用する。即ち計測用光源3を点灯して波長1〜2μm、エネルギーが1J/cm2 未満の光を発生させる。被検者の皮膚に照射する照射時間は、計測中の変動要因を少なくするために1秒以下とする。   The blood glucose level is measured in the same manner as in the prior art. The measurement light source 3 is turned on to irradiate the subject's skin, and the blood glucose level is measured based on the light transmitted through or diffusely reflected through the skin tissue. Specifically, the light to be irradiated has a wavelength determined by molecular bonding of the target component, and a wavelength in the near infrared region. For example, in the case of blood glucose measurement, light having a wavelength of 1 to 2 μm is used. That is, the measurement light source 3 is turned on to generate light having a wavelength of 1 to 2 μm and energy of less than 1 J / cm 2. The irradiation time for irradiating the subject's skin is set to 1 second or less in order to reduce fluctuation factors during measurement.

なおこの時、計測用光源モニター素子7によって計測光照射時のスペクトル分布を計測しており、光源の劣化等による変動をモニタすることにより計測精度の向上を図っている。そして被検者の皮膚に入射した光が皮膚内部で拡散反射し、その光量が皮膚透過光検知素子6で計測される。   At this time, the spectrum distribution at the time of measurement light irradiation is measured by the measurement light source monitor element 7, and the measurement accuracy is improved by monitoring the fluctuation due to the deterioration of the light source. The light incident on the skin of the subject is diffusely reflected inside the skin, and the amount of light is measured by the skin transmitted light detecting element 6.

皮膚透過光検知素子6には透過波長可変フィルタが装着されており、時系列に透過する波長を切り替えながら皮膚透過光のスペクトル分布を計測する。計測用光源モニター素子7の検知信号及び皮膚透過光検知素子6の検知信号は、演算装置19に送られる。そして光源モニタ用素子7の値に基づいて、皮膚透過光検知素子6が検出したスペクトル分布を正規化し、血糖値を決定する。図5は、皮膚透過光検知素子6が検出したスペクトル分布のグラフである。受光信号は増幅及びAD変換後、マイクロコンピュータからなる演算装置19に送られ、演算装置19においてデータ解析によりグルコース濃度が算出される。   The skin transmitted light detecting element 6 is equipped with a transmission wavelength variable filter, and measures the spectrum distribution of the skin transmitted light while switching the wavelength transmitted in time series. The detection signal of the measurement light source monitor element 7 and the detection signal of the skin transmitted light detection element 6 are sent to the arithmetic unit 19. Based on the value of the light source monitor element 7, the spectrum distribution detected by the skin transmitted light detecting element 6 is normalized to determine the blood sugar level. FIG. 5 is a graph of the spectral distribution detected by the skin transmitted light detecting element 6. The received light signal is amplified and AD converted, and then sent to a computing device 19 composed of a microcomputer. The computing device 19 calculates the glucose concentration by data analysis.

上記した実施形態では、血糖値の測定に本発明を活用したが、他の成分、例えば赤血球量、白血球量、鉄分、尿酸等の測定にも適用できる可能性がある。   In the above-described embodiment, the present invention is used for measuring blood glucose level. However, the present invention may be applicable to measurement of other components such as red blood cell volume, white blood cell volume, iron content, and uric acid.

本発明の実施形態の体内成分計測装置を示す概念図である。It is a conceptual diagram which shows the in-vivo component measuring device of embodiment of this invention. 計測時における光の経路を示す説明図である。It is explanatory drawing which shows the path | route of the light at the time of a measurement. 細胞活性化用光の経路を示す説明図である。It is explanatory drawing which shows the path | route of the light for cell activation. 本発明の実施形態の体内成分計測装置の動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the in-body component measuring device of embodiment of this invention. 皮膚透過光検知素子が検出したスペクトル分布のグラフである。It is a graph of the spectrum distribution which the skin transmitted light detection element detected.

符号の説明Explanation of symbols

1 体内成分計測装置
2 ハウジング
3 計測用光源
5 細胞活性化用光源
6 皮膚透過光検知素子(受光手段)
7 計測用光源モニター素子
12 温度センサー
15 主光路
16 副光路
DESCRIPTION OF SYMBOLS 1 Body component measuring device 2 Housing 3 Light source for measurement 5 Light source for cell activation 6 Skin permeation light detection element (light receiving means)
7 Light source monitor element for measurement 12 Temperature sensor 15 Main optical path 16 Sub optical path

Claims (8)

測定用光を発生させる光源と、受光手段とを備え、光源から発する測定用光を生体に照射し、生体を透過或いは拡散反射した光を受光手段で受光し、受光手段で受光した光に基づいて生体内の成分を計測する体内成分計測装置において、測定用光を生体に照射するのに先立って所定強度の光を生体に照射し、生体に変化をもたらすことを特徴とする体内成分計測装置。   A light source for generating measurement light and a light receiving means are provided. The measurement light emitted from the light source is irradiated on the living body, the light transmitted or diffused and reflected by the living body is received by the light receiving means, and the light received by the light receiving means is used. An in-vivo component measuring apparatus for measuring an in-vivo component, wherein the in-vivo component measuring apparatus irradiates a living body with light of a predetermined intensity prior to irradiating the living body with measurement light. . 測定用光を発生させる光源と、受光手段とを備え、光源から発する測定用光を生体に照射し、生体を透過或いは拡散反射した光を受光手段で受光し、受光手段で受光した光に基づいて生体内の成分を計測する体内成分計測装置において、測定用光を生体に照射するのに先立って、測定用光よりもエネルギーの高い光を生体に照射することを特徴とする体内成分計測装置。   A light source for generating measurement light and a light receiving means are provided. The measurement light emitted from the light source is irradiated on the living body, the light transmitted or diffusely reflected by the living body is received by the light receiving means, and the light received by the light receiving means is used. An in-vivo component measuring apparatus for measuring in-vivo components, wherein the in-vivo component measuring apparatus irradiates the living body with light having higher energy than the measuring light before irradiating the living body with the measuring light. . 測定用光の照射に先立って生体に照射する光は、その波長が測定用光の波長よりも短いことを特徴とする請求項1又は2に記載の体内成分計測装置。   The in-vivo component measuring apparatus according to claim 1 or 2, wherein the wavelength of the light irradiating the living body prior to the measurement light irradiation is shorter than the wavelength of the measurement light. 測定用光の照射に先立って生体に照射する光は、その波長が400〜1000nmであることを特徴とする請求項1乃至3のいずれかに記載の体内成分計測装置。   The in-vivo component measuring device according to any one of claims 1 to 3, wherein the wavelength of the light irradiated on the living body prior to the measurement light irradiation is 400 to 1000 nm. 測定用光の照射に先立って生体に照射する光は、単位面積あたりのエネルギーが1〜10J/cm2 であることを特徴とする請求項1乃至4のいずれかに記載の体内成分計測装置。   The in-vivo component measuring apparatus according to any one of claims 1 to 4, wherein the light applied to the living body prior to the measurement light irradiation has an energy per unit area of 1 to 10 J / cm2. 測定用光の照射に先立って生体に照射する光は、その照射時間が測定用光の照射時間よりも長いことを特徴とする請求項1乃至5のいずれかに記載の体内成分計測装置。   6. The in-vivo component measuring apparatus according to claim 1, wherein the irradiation time of the light irradiated to the living body prior to the measurement light irradiation is longer than the irradiation time of the measurement light. 測定用光の照射に先立って生体に照射する光は、断続的に照射されることを特徴とする請求項1乃至6のいずれかに記載の体内成分計測装置。   The in-vivo component measuring device according to any one of claims 1 to 6, wherein the light irradiating the living body prior to the measurement light is irradiated intermittently. 測定用光を生体に照射し、生体を透過或いは拡散反射した光に基づいて生体内の成分を計測する体内成分計測方法において、測定用光を生体に照射するのに先立って所定強度の光を生体に照射し、生体に変化をもたらすことを特徴とする体内成分計測方法。   In an in-vivo component measurement method for irradiating a living body with measurement light and measuring components in the living body based on light transmitted or diffused and reflected through the living body, light with a predetermined intensity is irradiated prior to irradiating the living body with measurement light. An in-vivo component measurement method characterized by irradiating a living body and causing a change in the living body.
JP2005339935A 2005-11-25 2005-11-25 Apparatus for measuring component in body and method for measuring component in body Pending JP2007143702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005339935A JP2007143702A (en) 2005-11-25 2005-11-25 Apparatus for measuring component in body and method for measuring component in body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005339935A JP2007143702A (en) 2005-11-25 2005-11-25 Apparatus for measuring component in body and method for measuring component in body

Publications (1)

Publication Number Publication Date
JP2007143702A true JP2007143702A (en) 2007-06-14

Family

ID=38205835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339935A Pending JP2007143702A (en) 2005-11-25 2005-11-25 Apparatus for measuring component in body and method for measuring component in body

Country Status (1)

Country Link
JP (1) JP2007143702A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107398A1 (en) * 2019-11-29 2021-06-03 양태양 Optical protein measurement sensor
WO2022091403A1 (en) * 2020-11-02 2022-05-05 日本たばこ産業株式会社 Measurement device for living tissue, suction device, measurement method for living tissue, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06501869A (en) * 1991-03-11 1994-03-03 ギバート、ラウル General-purpose thermotherapy equipment and its techniques
JPH11104113A (en) * 1997-09-30 1999-04-20 Nippon Colin Co Ltd Peripheral circulation measuring system
JP2004500155A (en) * 1999-06-30 2004-01-08 リオ グランデ メディカル テクノロジーズ インコーポレイテッド Method and apparatus for non-invasive blood sample measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06501869A (en) * 1991-03-11 1994-03-03 ギバート、ラウル General-purpose thermotherapy equipment and its techniques
JPH11104113A (en) * 1997-09-30 1999-04-20 Nippon Colin Co Ltd Peripheral circulation measuring system
JP2004500155A (en) * 1999-06-30 2004-01-08 リオ グランデ メディカル テクノロジーズ インコーポレイテッド Method and apparatus for non-invasive blood sample measurement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107398A1 (en) * 2019-11-29 2021-06-03 양태양 Optical protein measurement sensor
WO2022091403A1 (en) * 2020-11-02 2022-05-05 日本たばこ産業株式会社 Measurement device for living tissue, suction device, measurement method for living tissue, and program
JPWO2022091403A1 (en) * 2020-11-02 2022-05-05
JP7453407B2 (en) 2020-11-02 2024-03-19 日本たばこ産業株式会社 Measuring device for living tissue, suction device, measuring method for living tissue, and program

Similar Documents

Publication Publication Date Title
US11412963B2 (en) Method for measuring concentration of substance in blood
JP7450677B2 (en) Apparatus and method for analyzing substances
US7389131B2 (en) Living body information measuring apparatus
US9915608B2 (en) Optical sensor for determining the concentration of an analyte
TW408219B (en) Method and apparatus for noninvasive measurement of blood glucose by photoacoustics
EP3359038B1 (en) Device for non-invasive measurement of blood sugar level
US6097975A (en) Apparatus and method for noninvasive glucose measurement
RU2015138985A (en) NON-INVASIVE BLOOD ANALYSIS
US9173603B2 (en) Non-invasive device and method for measuring bilirubin levels
RU2406548C1 (en) Device for hair growth regulation
JP4772408B2 (en) Optical biological information measurement system and coupling layer used for optical information measurement
JP2001299727A (en) Apparatus for measuring concentration of glucose in organism
JP4553954B2 (en) Blood component concentration measuring apparatus and blood component concentration measuring method
JP5400483B2 (en) Component concentration analyzer and component concentration analysis method
KR20150050523A (en) Noninvasive measurement of analyte concentration using a fiberless transflectance probe
JP2007143702A (en) Apparatus for measuring component in body and method for measuring component in body
JP2005028005A (en) Glucose concentration measuring apparatus
JP2004290226A (en) Glucose concentration measuring apparatus
WO2022061262A1 (en) Systems and methods for non-invasive solute measurement
JP2003265443A (en) Non-invasive organism measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110517